ON SYMMETRIES OF ITERATES OF RATIONAL FUNCTIONS

FEDOR PAKOVICH

Abstract

Let A be a rational function of degree $n \geqslant 2$. Let us denote by $G(A)$ the group of Möbius transformations σ such that $A \circ \sigma=\nu_{\sigma} \circ A$ for some Möbius transformations ν_{σ}, and by $\Sigma(A)$ and $\operatorname{Aut}(A)$ the subgroups of $G(A)$ consisting of σ such that $A \circ \sigma=A$ and $A \circ \sigma=\sigma \circ A$, correspondingly. In this paper, we study sequences of the above groups arising from iterating A. In particular, we show that if A is not conjugate to $z^{ \pm n}$, then the orders of the groups $G\left(A^{\circ k}\right), k \geqslant 2$, are finite and uniformly bounded in terms of n only. We also prove a number of results about the groups $\Sigma_{\infty}(A)=\cup_{k=1}^{\infty} \Sigma\left(A^{\circ k}\right)$ and $\operatorname{Aut}_{\infty}(A)=\cup_{k=1}^{\infty} \operatorname{Aut}\left(A^{\circ k}\right)$, which are especially interesting from the dynamical perspective.

1. Introduction

Let A be a rational function of degree $n \geqslant 2$. In this paper, we study a variety of different subgroups of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ related to A, and more generally to a dynamical system defined by iterating A. Specifically, let us define $\Sigma(A)$ and $\operatorname{Aut}(A)$ as the groups of Möbius transformations σ such that $A \circ \sigma=A$ and $A \circ \sigma=\sigma \circ A$, correspondingly. Notice that elements of $\Sigma(A)$ permute points of any fiber of A, and more generally of any fiber of $A^{\circ k}, k \geqslant 1$, while elements of $\operatorname{Aut}(A)$ permute fixed points of $A^{\circ k}, k \geqslant 1$. Since any Möbius transformation is defined by its values at any three points, this implies in particular that the groups $\Sigma(A)$ and $\operatorname{Aut}(A)$ are finite and therefore belong to the well-known list $A_{4}, S_{4}, A_{5}, C_{l}, D_{2 l}$ of finite subgroups of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$.

The both groups $\Sigma(A)$ and $\operatorname{Aut}(A)$ are subgroups of the group $G(A)$ defined as the group of Möbius transformations σ such that

$$
\begin{equation*}
A \circ \sigma=\nu_{\sigma} \circ A \tag{1}
\end{equation*}
$$

for some Möbius transformations ν_{σ}. It is easy to see that $G(A)$ is indeed a group, and that ν_{σ} is defined in a unique way by σ. Furthermore, the map

$$
\begin{equation*}
\gamma_{A}: \sigma \rightarrow \nu_{\sigma} \tag{2}
\end{equation*}
$$

is a homomorphism from $G(A)$ to the group $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$, whose kernel coincides with $\Sigma(A)$. We will denote the image of γ_{A} by $\widehat{G}(A)$. It was shown in the paper [15] that unless

$$
A=\alpha \circ z^{n} \circ \beta
$$

for some $\alpha, \beta \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ the group $G(A)$ is also finite and its order is bounded in terms of degree of A.

[^0]In this paper, we study the dynamical analogues of the groups $\Sigma(A)$ and $\operatorname{Aut}(A)$ defined by the formulas

$$
\Sigma_{\infty}(A)=\bigcup_{k=1}^{\infty} \Sigma\left(A^{\circ k}\right), \quad \operatorname{Aut}_{\infty}(A)=\bigcup_{k=1}^{\infty} \operatorname{Aut}\left(A^{\circ k}\right)
$$

Since

$$
\begin{equation*}
\Sigma(A) \subseteq \Sigma\left(A^{\circ 2}\right) \subseteq \Sigma\left(A^{\circ 3}\right) \subseteq \ldots \subseteq \Sigma\left(A^{\circ k}\right) \subseteq \ldots \tag{3}
\end{equation*}
$$

and

$$
\operatorname{Aut}\left(A^{\circ k}\right) \subseteq \operatorname{Aut}\left(A^{\circ r}\right), \quad \operatorname{Aut}\left(A^{\circ l}\right) \subseteq \operatorname{Aut}\left(A^{\circ r}\right)
$$

for any common multiple r of k and l, the sets $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ are groups. While it is not clear a priori that the groups $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ are finite, for A not conjugated to $z^{ \pm n}$ their finiteness can be deduced from the theorem of Levin ([5], [6]) about rational functions sharing the measure of maximal entropy. However, the Levin theorem does not permit to describe the groups $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ or to estimate their orders, and the main goal of this paper is to prove some results in this direction. More generally, we study the totality of the groups $G\left(A^{\circ k}\right), k \geqslant 1$, defined by iterating A.

Our main result about the groups $G\left(A^{\circ k}\right), k \geqslant 1$, can be formulated as follows.
Theorem 1.1. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Then the orders of the groups $G\left(A^{\circ k}\right), k \geqslant 2$, are finite and uniformly bounded in terms of n only.

In addition to Theorem 1.1, we prove a number of more precise results about the groups $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ allowing us in certain cases to calculate these groups explicitly. For a rational function A, let us denote by $c(A)$ the set of its critical values. Our main result concerning the groups $\operatorname{Aut}_{\infty}(A)$ is following.

Theorem 1.2. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Then the group $\operatorname{Aut}_{\infty}(A)$ is finite and its order is bounded in terms of n only. Moreover, every $\nu \in \operatorname{Aut}_{\infty}(A)$ maps the set $c(A)$ to the set $c\left(A^{\circ 2}\right)$.

Notice that since Möbius transformations ν such that

$$
\begin{equation*}
\nu(c(A)) \subseteq c\left(A^{\circ 2}\right) \tag{4}
\end{equation*}
$$

can be described explicitly, Theorem 1.2 provides us with a concrete subset of Aut $\left(\mathbb{C P}^{1}\right)$ containing the group $\operatorname{Aut}_{\infty}(A)$.

To formulate our main results concerning groups $\Sigma(A)$, let us introduce some definitions. Let A be a rational function. Then a rational function \widetilde{A} is called an elementary transformation of A if there exist rational functions U and V such that

$$
\begin{equation*}
A=U \circ V \quad \text { and } \quad \tilde{A}=V \circ U \tag{5}
\end{equation*}
$$

We say that rational functions A and A^{\prime} are equivalent and write $A \sim A^{\prime}$ if there exists a chain of elementary transformations between A and A^{\prime}. Since for any Möbius transformation μ the equality

$$
\begin{equation*}
A=\left(A \circ \mu^{-1}\right) \circ \mu \tag{6}
\end{equation*}
$$

holds, the equivalence class $[A]$ of a rational function A is a union of conjugacy classes. Moreover, by the results of the papers [12], [15], the number of conjugacy classes in $[A]$ is finite, unless A is a flexible Lattès map.

In this notation, our main result about the groups $\Sigma_{\infty}(A)$ is following.
Theorem 1.3. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Then the order of the group $\Sigma_{\infty}(A)$ is finite and bounded in terms of n only. Moreover, for every $\sigma \in \Sigma_{\infty}(A)$ the relation $A \circ \sigma \sim A$ holds.

Notice that in some cases Theorem 1.3 permits to describe the group $\Sigma_{\infty}(A)$ completely. Specifically, assume that A is indecomposable, that is, cannot be represented as a composition of two rational functions of degree at least two. In this case, the number of conjugacy classes in the equivalence class $[A]$ obviously is equal to one, and Theorem 1.3 yields the following statement.

Theorem 1.4. Let A be an indecomposable rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Then $\Sigma_{\infty}(A)=\Sigma(A)$, whenever the group $\widehat{G}(A)$ is trivial. Moreover, the group $\Sigma_{\infty}(A)$ is trivial, whenever $G(A)=\operatorname{Aut}(A)$.

Notice that Theorem 1.4 implies in particular that if A is indecomposable and the group $G(A)$ is trivial, then $\Sigma_{\infty}(A)$ is also trivial.

Finally, along with the groups $G\left(A^{\circ k}\right), k \geqslant 1$, we consider their "local" versions. Specifically, let $z_{0} \in \mathbb{C P}^{1}$ be a fixed point of A. For a point $z_{1} \in \mathbb{C P}^{1}$ distinct from z_{0}, we define $G\left(A, z_{0}, z_{1}\right)$ as the subgroup of $G(A)$ consisting of Möbius transformations σ such that $\sigma\left(z_{0}\right)=z_{0}$ and $\sigma\left(z_{1}\right)=z_{1}$. For these groups, we prove the following statement.

Theorem 1.5. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Assume that $z_{0} \in \mathbb{C P}^{1}$ is a fixed point of A, and $z_{1} \in \mathbb{C} \mathbb{P}^{1}$ is a point distinct from z_{0}. Then $G\left(A^{\circ k}, z_{0}, z_{1}\right), k \geqslant 1$, are finite cyclic groups equal to each other.

Notice that every element $\sigma \in \operatorname{Aut}\left(A^{\circ k}\right), k \geqslant 1$, belongs to $G\left(A^{\circ 2 k}, z_{0}, z_{1}\right)$ for some z_{0}, z_{1}. Indeed, the equality

$$
A^{\circ k} \circ \sigma=\sigma \circ A^{\circ k}, \quad k \geqslant 1,
$$

implies that $A^{\circ k}$ sends the set of fixed points of σ to itself. Therefore, at least one of these points z_{0}, z_{1} is a fixed point of $A^{\circ 2 k}$, and if z_{0} is such a point, then $\sigma \in G\left(A^{\circ 2 k}, z_{0}, z_{1}\right)$. In view of this relation between $\operatorname{Aut}\left(A^{\circ k}\right)$ and $G\left(A^{\circ 2 k}, z_{0}, z_{1}\right)$, Theorem 1.5 allows us in some cases to estimate the order of the group $\operatorname{Aut}_{\infty}(A)$ and even to describe this group explicitly.

The paper is organized as follows. In the second section, we establish basic properties of the group $G(A)$ and provide a method for its calculation. In the third section, we briefly discuss relations between the groups $\Sigma_{\infty}(A), \operatorname{Aut}_{\infty}(A)$ and the measure of maximal entropy for A. In particular, we deduce the finiteness of these groups from the results of Levin ([5], [6]).

In the fourth section, we prove Theorem 1.2. Moreover, we prove that (4) holds for any Möbius transformation ν that belongs to $\widehat{G}\left(A^{\circ k}\right)$ for some $k \geqslant 1$. In the fifth section, using results about semiconjugate rational functions from the papers [11], [15], we prove Theorem 1.3 and Theorem 1.4. We also prove a slightly more general version of Theorem 1.1. Finally, in the sixth section, we deduce Theorem 1.5 from the result of Reznick ([17]) about iterates of formal power series, and provide some applications of Theorem 1.5 concerning the groups $\operatorname{Aut}_{\infty}(A)$ and $\Sigma_{\infty}(A)$.

2. Groups $G(A)$

Let A be a rational function of degree $n \geqslant 2$, and $G(A), \widehat{G}(A), \Sigma(A)$, Aut (A) the groups defined in the introduction. Notice that if rational functions A and A^{\prime} are related by the equality

$$
\alpha \circ A \circ \beta=A^{\prime}
$$

for some $\alpha, \beta \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$, then

$$
\begin{equation*}
G\left(A^{\prime}\right)=\beta^{-1} \circ G(A) \circ \beta, \quad \widehat{G}\left(A^{\prime}\right)=\alpha \circ \widehat{G}(A) \circ \alpha^{-1} \tag{7}
\end{equation*}
$$

In particular, the groups $G(A)$ and $G\left(A^{\prime}\right)$ are isomorphic. Notice also that since

$$
\begin{equation*}
\widehat{G}(A) \cong G(A) / \Sigma(A) \tag{8}
\end{equation*}
$$

the equality

$$
\begin{equation*}
|G(A)|=|\widehat{G}(A)||\Sigma(A)| \tag{9}
\end{equation*}
$$

holds whenever the groups involved are finite.
Lemma 2.1. Let A be a rational function of degree $n \geqslant 2$. Then the following statements are true.
i) For every $z \in \mathbb{C P}^{1}$ and $\sigma \in G(A)$ the multiplicity of A at z is equal to the multiplicity of A at $\sigma(z)$.
ii) For every $c \in \mathbb{C P}^{1}$ and $\sigma \in G(A)$ the fiber $A^{-1}\{c\}$ is mapped by σ to the fiber $A^{-1}\left(\nu_{\sigma}(c)\right)$.
iii) Every $\nu \in \widehat{G}(A)$ maps $c(A)$ to $c(A)$.

Proof. Since (1) implies that

$$
\operatorname{mult}_{\sigma(z)} A \cdot \operatorname{mult}_{z} \sigma=\operatorname{mult}_{A(z)} \nu_{\sigma} \cdot \operatorname{mult}_{z} A
$$

the first statement follows from the fact that σ and ν_{σ} are one-to-one.
Further, it is clear that (1) implies

$$
\sigma^{-1}\left(A^{-1}\{c\}\right)=A^{-1}\left(\nu_{\sigma}^{-1}\{c\}\right)
$$

Changing now σ^{-1} to σ and taking into account that $\nu_{\sigma}^{-1}=\nu_{\sigma^{-1}}$, we obtain the second statement.

Finally, the third statement follows from the second one, taking into account that

$$
\left|A^{-1}\{c\}\right|=\left|A^{-1}\left\{\nu_{\sigma}(c)\right\}\right|
$$

since σ is one-to-one, and that c is a critical value of A if and only $\left|A^{-1}\{c\}\right|<n$.
We say that a rational function A of degree $n \geqslant 2$ is a quasi-power if there exist $\alpha, \beta \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ such that

$$
A=\alpha \circ z^{n} \circ \beta
$$

It is easy to see using Lemma 2.1 that the group $G\left(z^{n}\right)$ consists of the transformations $z \rightarrow c z^{ \pm 1}, c \in \mathbb{C} \backslash\{0\}$. Therefore, by (7), for any quasi-power A the groups $G(A)$ and $\widehat{G}(A)$ are infinite.

Lemma 2.2. A rational function A of degree $n \geqslant 2$ is a quasi-power if and only if it has only two critical values. If A is a quasi-power, then $A^{\circ 2}$ is a quasi-power if and only if A is conjugate to $z^{ \pm n}$.

Proof. The first part of the lemma is well-known and follows easily from the Riemann-Hurwitz formula. To prove the second, we observe that the chain rule implies that the function

$$
A^{\circ 2}=\alpha \circ z^{n} \circ \beta \circ \alpha \circ z^{n} \circ \beta
$$

has only two critical values if and only if $\beta \circ \alpha$ maps the set $\{0, \infty\}$ to itself. Therefore, $A^{\circ 2}$ is a quasi-power if and only if $\beta \circ \alpha=c z^{ \pm 1}, c \in \mathbb{C} \backslash\{0\}$, that is, if and only if

$$
A=\alpha \circ z^{n} \circ \beta=\alpha \circ z^{n} \circ c z^{ \pm 1} \circ \alpha^{-1}=\alpha \circ c^{n} z^{ \pm n} \circ \alpha^{-1}
$$

Finally, it is clear that the last condition is equivalent to the condition that A is conjugate to $z^{ \pm n}$.

Let G be a finite subgroup of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$. We recall that a rational function θ_{G} is called an invariant function for G if the equality $\theta_{G}(x)=\theta_{G}(y)$ holds for $x, y \in \mathbb{C P}^{1}$ if and only if there exists $\sigma \in G$ such that $\sigma(x)=y$. Such a function always exists and is defined in a unique way up to the transformation $\theta_{G} \rightarrow \mu \circ \theta_{G}$, where $\mu \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$. Obviously, θ_{G} has degree equal to the order of G. Invariant functions for finite subgroups of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ were first found by Klein in his book [4].
Theorem 2.3. Let A be a rational function of degree $n \geqslant 2$. Then $\Sigma(A)$ is a finite group and $|\Sigma(A)|$ is a divisor of n. Moreover, $|\Sigma(A)|=n$ if and only if A is an invariant function for $\Sigma(A)$.
Proof. Since for a finite subgroup G of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ the set of rational functions F such that $F \circ \sigma=F$ for every $\sigma \in G$ is a subfield of $\mathbb{C}(z)$, it follows easily from the Lüroth theorem that any such a function F is a rational function in θ_{G}. Thus, $\operatorname{deg} F$ is divisible by $\operatorname{deg} \theta_{G}=|G|$. In particular, setting $G=\Sigma(A)$, we see that the degree of A is divisible by $|\Sigma(A)|$, and $\operatorname{deg} A=|\Sigma(A)|$ if and only if A is an invariant function for $\Sigma(A)$.

The existence of invariant functions implies that for every finite subgroup G of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ there exist rational functions for which $\Sigma(A)=G$. Similarly, for every finite subgroup G of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ there exist rational functions for which $\operatorname{Aut}(A)=G$. A description of such functions in terms of homogenous invariant polynomials for G was obtained by Doyle and McMullen in [2]. Notice that rational functions with non-trivial automorphism groups are closely related to generalized Lattès maps (see [13] for more detail).

The following result was proved in [15]. For the reader convenience we provide a simpler proof.

Theorem 2.4. Let A be a rational function of degree $n \geqslant 2$ that is not a quasipower. Then the group $G(A)$ is isomorphic to one of the five finite rotation groups of the sphere $A_{4}, S_{4}, A_{5}, C_{l}, D_{2 l}$, and the order of any element of $G(A)$ does not exceed n. In particular, $|G(A)| \leqslant \max \{60,2 n\}$.
Proof. Any element of the group $\operatorname{Aut}\left(\mathbb{C P}^{1}\right) \cong \mathrm{PSL}_{2}(\mathbb{C})$ is conjugate either to $z \rightarrow z+1$ or to $z \rightarrow \lambda z$ for some $\lambda \in \mathbb{C} \backslash\{0\}$. Thus, making the change

$$
A \rightarrow \mu_{1} \circ A \circ \mu_{2}, \quad \sigma \rightarrow \mu_{2}^{-1} \circ \sigma \circ \mu_{2}, \quad \nu_{\sigma} \rightarrow \mu_{1} \circ \nu_{\sigma} \circ \mu_{1}^{-1}
$$

for convenient $\mu_{1}, \mu_{2} \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$, without loss of generality we may assume that σ and ν_{σ} in (1) have one of the two forms above.

We observe first that the equality

$$
\begin{equation*}
A(z+1)=\lambda A(z), \quad \lambda \in \mathbb{C} \backslash\{0\} \tag{10}
\end{equation*}
$$

is impossible. Indeed, if A has a finite pole, then (10) implies that A has infinitely many poles. On the other hand, if A does not have finite poles, then A has a finite zero, and (10) implies that A has infinitely many zeroes. Similarly, the equality

$$
\begin{equation*}
A(z+1)=A(z)+1 \tag{11}
\end{equation*}
$$

is impossible if A has a finite pole. On the other hand, if A is a polynomial of degree $n \geqslant 2$, then we obtain a contradiction comparing the coefficients of z^{n-1} on the left and the right sides of equality (11).

For the argument below, instead of considering A as a ratio of two polynomials, it is more convenient to assume that A is represented by its convergent Laurent series at zero or infinity. Comparing for such a representation the free terms on the left and the right sides of the equality

$$
A(\lambda z)=A(z)+1, \quad \lambda \in \mathbb{C} \backslash\{0\}
$$

we conclude that this equality is impossible either. Thus, equality (1) for a nonidentity σ reduces to the equality

$$
\begin{equation*}
A\left(\lambda_{1} z\right)=\lambda_{2} A(z), \quad \lambda_{1} \in \mathbb{C} \backslash\{0,1\}, \quad \lambda_{2} \in \mathbb{C} \backslash\{0\} \tag{12}
\end{equation*}
$$

Comparing now coefficients on the left and the right sides of (12) and taking into account that $A \neq a z^{ \pm n}, a \in \mathbb{C}$, by the assumption, we conclude that λ_{1} is a root of unity. Furthermore, if d is the order of λ_{1}, then $\lambda_{2}=\lambda_{1}^{r}$ for some $0 \leqslant r \leqslant d-1$, implying that A / z^{r} is a rational function in z^{d}. On the other hand, it is easy to see that if $A=z^{r} R\left(z^{d}\right)$, where $R \in \mathbb{C}(z)$ and $0 \leqslant r \leqslant d-1$, then $d \leqslant n$, unless either $R \in \mathbb{C} \backslash\{0\}$ or $R=a / z$ for some $a \in \mathbb{C} \backslash\{0\}$. Since for such R the function A is a quasi-power, we conclude that the order of λ_{1} and hence the order of any element of $G(A)$ does not exceed n.

To finish the proof we only must show that $G(A)$ is finite. By Lemma 2.2, A has at least three critical values. On the other hand, by Lemma 2.1, iii), every $\nu \in \widehat{G}(A)$ maps $c(A)$ to $c(A)$. Since any Möbius transformation is defined by its values at any three points, this implies that $\widehat{G}(A)$ is finite. Since $\Sigma(A)$ is finite by Theorem 2.3, this implies that $G(A)$ is finite because of the isomorphism (8).

Remark 2.5. Using some non-trivial group-theoretic results about subgroups of $\mathrm{GL}_{\mathrm{k}}(\mathbb{C})$, one can deduce the finiteness of $G(A)$ directly from the fact that the order of any element of $G(A)$ does not exceed n. Namely, the proof given in the paper [15] uses the Schur theorem (see e.g. [1], (36.2)), which states that any finitely generated periodic subgroup of $\mathrm{GL}_{\mathrm{k}}(\mathbb{C})$ has finite order. Alternatively, one can use the Burnside theorem (see e.g. [1], (36.1)), which states that any subgroup of $\mathrm{GL}_{\mathrm{k}}(\mathbb{C})$ of bounded period is finite. Indeed, assume that $G(A)$ is infinite. Then its lifting $\overline{G(A)} \subset \mathrm{SL}_{2}(\mathbb{C}) \subset \mathrm{GL}_{2}(\mathbb{C})$ is also infinite. On the other hand, if the order of any element of $G(A)$ is bounded by N, then the order of any element of $\overline{G(A)}$ is bounded by $2 N$. The contradiction obtained proves the finiteness of $G(A)$.

Corollary 2.6. Let A be a rational function of degree $n \geqslant 2$. Then $\Sigma(A)$ and Aut (A) are finite groups whose order does not exceed $\max \{60,2 n\}$.

Proof. If A is a not a quasi-power, then the corollary follows from Theorem 2.4. On the other hand, it is easy to see that if A is a quasi-power, then the corresponding groups are cyclic groups of order n and $n-1$ correspondingly.

Let us mention the following specification of Theorem 2.4.

Theorem 2.7. Let A be a rational function of degree $n \geqslant 2$. Assume that there exists a point $z_{0} \in \mathbb{C P}^{1}$ such that the multiplicity of A at z_{0} is distinct from the multiplicity of A at any other point $z \in \mathbb{C P}^{1}$. Then $G(A)$ is a finite cyclic group, and z_{0} is a fixed point of its generator.
Proof. It follows from the assumption that A is not a quasi-power. Therefore, $G(A)$ is finite. Moreover, every element of $G(A)$ fixes z_{0} by Lemma 2.1, i). On the other hand, a unique finite subgroup of $\operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ whose elements share a fixed point is cyclic.

In turn, Theorem 2.7 implies the following well-known corollary.
Corollary 2.8. Let P be a polynomial of degree $n \geqslant 2$ that is not a quasi-power. Then $G(P)$ is a finite cyclic group generated by a polynomial.

Proof. Since P is a not a quasi-power, the multiplicity of P at infinity is distinct from the multiplicity of P at any other point of $\mathbb{C P}^{1}$. Moreover, since every element of $G(P)$ fixes infinity, $G(P)$ consist of polynomials.

Notice that functions A of degree n with $|G(A)|=2 n$ do exist. Indeed, it is easy to see that for any function of the from

$$
A=\frac{z^{n}-a}{a z^{n}-1}, \quad a \in \mathbb{C} \backslash\{0\}
$$

the group $G(A)$ contains the dihedral group $D_{2 n}$, generated by

$$
z \rightarrow \frac{1}{z}, \quad z \rightarrow \varepsilon_{n} z
$$

where $\varepsilon_{n}=e^{\frac{2 \pi i}{n}}$. Thus, for n big enough, $G(A)=D_{2 n}$, by Theorem 2.4. On the other hand, for small n, functions A of degree n with $|G(A)|>2 n$ do exist as well (see for instance Example 2.10 below).

Lemma 2.1 provides us with a method for practical calculation of $G(A)$, at least if the degree of A is small enough. We illustrate it with the following example.
Example 2.9. Let us consider the function

$$
A=\frac{1}{8} \frac{z^{4}+8 z^{3}+8 z-8}{z-1}
$$

One can check that A has three critical values 1,9 , and ∞, and that

$$
A-1=\frac{1}{8} \frac{z^{3}(z+8)}{z-1}, \quad A-9=\frac{1}{8} \frac{\left(z^{2}+4 z-8\right)^{2}}{z-1}
$$

Since the multiplicities of A at the preimages of 1,9 , and ∞ are

$$
\operatorname{mult}_{0} A=3, \quad \operatorname{mult}_{-8} A=1, \quad \text { mult }_{-2+2 \sqrt{3}} A=2, \quad \text { mult }_{-2-2 \sqrt{3}} A=2
$$

and

$$
\operatorname{mult}_{\infty} A=3, \quad \operatorname{mult}_{1} A=1
$$

Lemma 2.1 implies that for any $\sigma \in G(A)$ either

$$
\begin{equation*}
\sigma(0)=0, \quad \sigma(\infty)=\infty, \quad \sigma(-8)=-8, \quad \sigma(1)=1 \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma(0)=\infty, \quad \sigma(\infty)=0, \quad \sigma(-8)=1, \quad \sigma(1)=-8 \tag{14}
\end{equation*}
$$

Moreover, in addition, either

$$
\begin{equation*}
\sigma(-2+2 \sqrt{3})=-2-2 \sqrt{3}, \quad \sigma(-2-2 \sqrt{3})=-2+2 \sqrt{3} \tag{15}
\end{equation*}
$$

or

$$
\sigma(-2+2 \sqrt{3})=-2+2 \sqrt{3}, \quad \sigma(-2-2 \sqrt{3})=-2-2 \sqrt{3}
$$

Clearly, condition (13) implies that $\sigma=z$, while the unique transformation satisfying (14) is

$$
\begin{equation*}
\sigma=-8 / z \tag{16}
\end{equation*}
$$

and this transformation satisfies (15). Furthermore, the corresponding ν_{σ} must satisfy

$$
\nu_{\sigma}(1)=\infty, \quad \nu_{\sigma}(\infty)=1, \quad \nu_{\sigma}(9)=9
$$

implying that

$$
\begin{equation*}
\nu_{\sigma}=\frac{z+63}{z-1} \tag{17}
\end{equation*}
$$

Therefore, (1) can hold only for σ and ν_{σ} given by formulas (16) and (17), and a direct calculation shows that (1) is indeed satisfied. Thus, the group $G(A)$ is a cyclic group of order two.

Notice that to verify whether a given Möbius transformation σ belongs to $G(A)$ one can use the Schwarz derivative. Let us recall that for a function f meromorphic on a domain $D \subset \mathbb{C}$ the Schwarz derivative is defined by

$$
S(f)(z)=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}
$$

The characteristic property of the Schwarz derivative is that for two functions f and g meromorphic on D the equality $S(f)(z)=S(g)(z)$ holds if and only if $g=\nu \circ f$ for some Möbius transformation ν. Thus, a Möbius transformation σ belongs to $G(A)$ if and only if

$$
S(A)(z)=S(A \circ \sigma)(z)
$$

We finish this section by another example of calculation of $G(A)$.
Example 2.10. Let us consider the function

$$
B=-\frac{2 z^{2}}{z^{4}+1}=-\frac{2}{z^{2}+\frac{1}{z^{2}}}
$$

It is easy to see that $\Sigma(B)$ contains the transformations $z \rightarrow-z$ and $z \rightarrow 1 / z$, which generate the Klein four-group $V_{4}=D_{4}$, implying that $\Sigma(B)=D_{4}$ by Theorem 2.3. Furthermore, it is clear that $G(B)$ contains the transformation $z \rightarrow i z$, implying that $G(B)$ contains D_{8}.

The groups A_{4}, A_{5}, and C_{l} do not contain D_{8}. Therefore, if D_{8} is a proper subgroup of $G(B)$, then either $G(B)=S_{4}$, or $G(B)$ is a dihedral group containing an element σ of order $k>4$, whose fixed points coincide with fixed points of $z \rightarrow i z$. The second case is impossible, since any Möbius transformation σ fixing 0 and ∞ has the form $c z, c \in \mathbb{C} \backslash\{0\}$, and it is easy to see that such σ belongs to $G(B)$ if and only if it is a power of $z \rightarrow i z$. On the other hand, a direct calculation shows that for the transformation $\mu=\frac{z+i}{z-i}$, generating together with $z \rightarrow i z$ and $z \rightarrow 1 / z$ the group S_{4}, equality (1) holds for $\nu=\frac{-z+1}{-3 z-1}$. Thus, $G(B) \cong S_{4}$.

3. Groups $\Sigma_{\infty}(A), \operatorname{Aut}_{\infty}(A)$ and the measure of maximal entropy

Let us recall that by the results of Freire, Lopes, Mañé ([3]) and Lyubich ([8]), for every rational function A of degree $n \geqslant 2$ there exists a unique probability measure μ_{A} on $\mathbb{C P}^{1}$, which is invariant under A, has support equal to the Julia set J_{A}, and achieves maximal entropy $\log n$ among all A-invariant probability measures.

The measure μ_{A} can be described as follows. For $a \in \mathbb{C P}^{1}$ let $z_{i}^{k}(a), i=1, \ldots, n^{k}$, be the roots of the equation $A^{\circ k}(z)=a$ counted with multiplicity, and $\mu_{A, k}(a)$ the measure defined by

$$
\begin{equation*}
\mu_{A, k}(a)=\frac{1}{n^{k}} \sum_{i=1}^{n^{k}} \delta_{z_{i}^{k}(a)} \tag{18}
\end{equation*}
$$

Then for every $a \in \mathbb{C P}^{1}$ with two possible exceptions, the sequence $\mu_{A, k}(a), k \geqslant 1$, converges in the weak topology to μ_{A}. Notice that this description of μ_{A} implies that $\mu_{A}=\mu_{B}$ whenever A and B share an iterate.

The measure μ_{A} is characterized by the balancedness property that

$$
\mu_{A}(A(S))=\mu_{A}(S) \operatorname{deg} A
$$

for any Borel set S on which A is injective. Notice that for rational functions A and B the property to have the same measure of maximal entropy can be expressed also in algebraic terms (see [7]), leading to characterizations of such functions in terms of functional equations (see [7], [14], [18]).

The relations between the groups $\Sigma_{\infty}(A), \operatorname{Aut}_{\infty}(A)$ and the measure of maximal entropy are described by the following two statements.

Lemma 3.1. Let A be a rational function of degree $n \geqslant 2$. Then $\sigma \in \operatorname{Aut}_{\infty}(A)$ if and only if A and $\sigma^{-1} \circ A \circ \sigma$ have a common iterate. In particular, if $\sigma \in \operatorname{Aut}_{\infty}(A)$, then A and $\sigma^{-1} \circ A \circ \sigma$ share the measure of maximal entropy.

Proof. The proof is trivial, given that rational functions sharing an iterate share a measure of maximal entropy.

Lemma 3.2. Let A be a rational function of degree $n \geqslant 2$. Then for every $\sigma \in \Sigma_{\infty}(A)$ the functions A and $A \circ \sigma$ share the measure of maximal entropy.

Proof. The equality

$$
A^{\circ l}=A^{\circ l} \circ \sigma, \quad l \geqslant 1
$$

implies that for any $k \geqslant l$ and $a \in \mathbb{C P}^{1}$ the transformation σ maps the set of roots of the equation $A^{\circ k}(z)=a$ to itself. Thus, for any set $S \subset \mathbb{C P}^{1}$ we have

$$
\left|S \cap A^{-k}(a)\right|=\left|\sigma(S) \cap A^{-k}(a)\right|, \quad k \geqslant l, \quad a \in \mathbb{C P}^{1}
$$

implying that any $\sigma \in \Sigma_{\infty}(A)$ is μ_{A}-invariant since μ_{A} is a limit of (18).
Let now S be a Borel set on which $A \circ \sigma$ is injective. Then A is injective on $\sigma(S)$, implying that

$$
\mu_{A}((A \circ \sigma)(S))=\mu_{A}\left(A(\sigma(S))=n \mu_{A}(\sigma(S))=n \mu_{A}(S)\right.
$$

Thus, μ_{A} is the balanced measure for $A \circ \sigma$, and hence $\mu_{A}=\mu_{A \circ \sigma}$.
It was proved by Levin ([5], [6]) that for any rational function A of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$ there exist at most finitely many rational functions B of any given degree $d \geqslant 2$ sharing the measure of maximal entropy with A. Levin's theorem combined with Lemma 3.1 and Lemma 3.2 implies the following result.

Theorem 3.3. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Then the groups $\operatorname{Aut}_{\infty}(A)$ and $\Sigma_{\infty}(A)$ are finite.
Proof. Since $\sigma \in \operatorname{Aut}_{\infty}(A)$ implies that A and $\sigma^{-1} \circ A \circ \sigma$ share the measure of maximal entropy by Lemma 3.1, it follows from Levin's theorem that the set of functions

$$
\begin{equation*}
\sigma^{-1} \circ A \circ \sigma, \quad \sigma \in \operatorname{Aut}_{\infty}(A) \tag{19}
\end{equation*}
$$

is finite. On the other hand, the equality

$$
\sigma^{-1} \circ A \circ \sigma=\sigma^{\prime-1} \circ A \circ \sigma^{\prime}, \quad \sigma^{\prime} \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)
$$

implies that $\sigma^{\prime} \circ \sigma^{-1} \in \operatorname{Aut}(A)$. Thus, the finiteness of set (19) implies that there exist $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{l}$ such that any $\sigma^{\prime} \in \operatorname{Aut}_{\infty}(A)$ has the form

$$
\sigma^{\prime}=\widehat{\sigma} \circ \sigma_{k},
$$

for some $\hat{\sigma} \in \operatorname{Aut}(A)$ and $k, 1 \leqslant k \leqslant l$. Since $\operatorname{Aut}(A)$ is finite, this implies that $\operatorname{Aut}_{\infty}(A)$ is also finite.

Similarly, it follows from Lemma 3.2 and Levin's theorem that the set of functions

$$
A \circ \sigma, \quad \sigma \in \Sigma_{\infty}(A)
$$

is finite, implying the finiteness of $\Sigma_{\infty}(A)$ since the equality

$$
A \circ \sigma=A \circ \sigma^{\prime}
$$

yields that $\sigma^{\prime} \circ \sigma^{-1} \in \Sigma(A)$.

$$
\text { 4. Groups } \widehat{G}\left(A^{\circ k}\right) \text { and } \operatorname{Aut}_{\infty}(A)
$$

Let A be a rational function of degree $n \geqslant 2$. We define the set $S(A)$ as the union

$$
S(A)=\bigcup_{i=1}^{\infty} \widehat{G}\left(A^{\circ k}\right)
$$

that is, as the set of Möbius transformation ν such that the equality

$$
\begin{equation*}
\nu \circ A^{\circ k}=A^{\circ k} \circ \mu \tag{20}
\end{equation*}
$$

holds for some Möbius transformation μ and $k \geqslant 1$. The next several results provide a characterization of elements of $S(A)$ and show that $S(A)$ is finite and bounded in terms of n, unless A is a quasi-power.

We start from the following statement.
Theorem 4.1. Let $A_{1}, A_{2}, \ldots, A_{k}$ and $B_{1}, B_{2}, \ldots, B_{k}, k \geqslant 2$, be rational functions of degree $n \geqslant 2$ such that

$$
\begin{equation*}
A_{1} \circ A_{2} \circ \cdots \circ A_{k}=B_{1} \circ B_{2} \circ \cdots \circ B_{k} \tag{21}
\end{equation*}
$$

Then $c\left(A_{1}\right) \subseteq c\left(B_{1} \circ B_{2}\right)$.
Proof. Let f be a rational function of degree d, and $T \subset \mathbb{C P}^{1}$ a finite set. It is clear that the cardinality of the preimage $f^{-1}(T)$ satisfies the upper bound

$$
\begin{equation*}
\left|f^{-1}(T)\right| \leqslant|T| d \tag{22}
\end{equation*}
$$

To obtain the lower bound, we observe that the Riemann-Hurwitz formula

$$
2 d-2=\sum_{z \in \mathbb{C P}^{1}}\left(\text { mult }_{z} f-1\right)
$$

implies that

$$
\sum_{z \in f^{-1}(T)}\left(\operatorname{mult}_{z} f-1\right) \leqslant 2 d-2
$$

Therefore,

$$
\begin{equation*}
\left|f^{-1}(T)\right|=\sum_{z \in f^{-1}\{T\}} 1 \geqslant \sum_{z \in f^{-1}\{T\}} \operatorname{mult}_{z} f-2 d+2=(|T|-2) d+2 . \tag{23}
\end{equation*}
$$

Let us denote by F the rational function defined by any of the parts of equality (21). Assume that c is a critical value of A_{1} such that $c \notin c\left(B_{1} \circ B_{2}\right)$. Clearly,

$$
\left|F^{-1}\{c\}\right|=\left|\left(A_{2} \circ \cdots \circ A_{k}\right)^{-1}\left(A_{1}^{-1}\{c\}\right)\right| .
$$

Therefore, since $c \in c\left(A_{1}\right)$ implies that $\left|A_{1}^{-1}\{c\}\right| \leqslant n-1$, it follows from (22) that

$$
\begin{equation*}
\left|F^{-1}\{c\}\right| \leqslant(n-1) n^{k-1} \tag{24}
\end{equation*}
$$

On the other hand,

$$
\left|F^{-1}\{c\}\right|=\left|\left(B_{3} \circ \cdots \circ B_{k}\right)^{-1}\left(\left(B_{1} \circ B_{2}\right)^{-1}\{c\}\right)\right| .
$$

Since the condition $c \notin c\left(B_{1} \circ B_{2}\right)$ is equivalent to the equality $\left|\left(B_{1} \circ B_{2}\right)^{-1}\{c\}\right|=n^{2}$, this implies by (23) that

$$
\begin{equation*}
\left|F^{-1}\{c\}\right| \geqslant\left(n^{2}-2\right) n^{k-2}+2 \tag{25}
\end{equation*}
$$

It follows now from (24) and (25) that

$$
\left(n^{2}-2\right) n^{k-2}+2 \leqslant(n-1) n^{k-1}
$$

or equivalently that $n^{k-1}+2 \leqslant 2 n^{k-2}$. However, this leads to a contradiction since $n \geqslant 2$ implies that $n^{k-1}+2 \geqslant 2 n^{k-2}+2$. Therefore, $c\left(A_{1}\right) \subseteq c\left(B_{1} \circ B_{2}\right)$.

Theorem 4.1 implies the following statement.
Theorem 4.2. Let A be a rational function of degree $n \geqslant 2$. Then for every $\nu \in S(A)$ the inclusion $\nu(c(A)) \subseteq c\left(A^{\circ 2}\right)$ holds.
Proof. Let ν be an element of $S(A)$. In case $\nu \in \widehat{G}(A)$, the statement of the theorem follows from Lemma 2.1, iii), since $c(A) \subseteq c\left(A^{\circ 2}\right)$ by the chain rule. Similarly, if ν belongs to $\widehat{G}\left(A^{\circ 2}\right)$, then $\nu\left(c\left(A^{\circ 2}\right)\right)=c\left(A^{\circ 2}\right)$, implying that

$$
\nu(c(A)) \subseteq \nu\left(c\left(A^{\circ 2}\right)\right)=c\left(A^{\circ 2}\right)
$$

Therefore, we may assume that $\nu \in \widehat{G}\left(A^{\circ k}\right)$ for some $k \geqslant 3$. Since equality (20) has the form (21) with

$$
A_{1}=\nu \circ A, \quad A_{2}=A_{3}=\cdots=A_{k}=A
$$

and

$$
B_{1}=B_{2}=\cdots=B_{k-1}=A, \quad B_{k}=A \circ \mu
$$

applying Theorem 4.1 we conclude that $c(\nu \circ A) \subseteq c\left(A^{\circ 2}\right)$. Taking into account that for any rational function A the equality

$$
c(\nu \circ A)=\nu(c(A))
$$

holds, this implies that $\nu(c(A)) \subseteq c\left(A^{\circ 2}\right)$.
Theorem 4.3. Let A be a rational function of degree $n \geqslant 2$. Then the set $S(A)$ is finite and bounded in terms of n, unless A is a quasi-power. Furthermore, the set $\bigcup_{i=2}^{\infty} \widehat{G}\left(A^{\circ k}\right)$ is finite and bounded in terms of n, unless A is conjugate to $z^{ \pm n}$.

Proof. Since any Möbius transformation is defined by its values at any three points, the condition $\nu(c(A)) \subseteq c\left(A^{\circ 2}\right)$ is satisfied only for finitely many Möbius transformations whenever A has at least three critical values. Thus, the finiteness of $S(A)$ in case A is not a quasi-power follows from the first part of Lemma 2.2. Moreover, since $|c(A)|$ and $\left|c\left(A^{\circ 2}\right)\right|$ are bounded in terms of n, the set $S(A)$ is also bounded in terms of n.

Further, if A is not conjugate to $z^{ \pm n}$, then its second iterate $A^{\circ 2}$ is not a quasipower by the second part of Lemma 2.2. To prove the finiteness of $\bigcup_{i=2}^{\infty} \widehat{G}\left(A^{\circ k}\right)$ in this case, it is enough to show that for every $\nu \in \widehat{G}\left(A^{\circ k}\right), k \geqslant 2$, the inclusion

$$
\begin{equation*}
\nu\left(c\left(A^{\circ 2}\right)\right) \subseteq c\left(A^{\circ 4}\right) \tag{26}
\end{equation*}
$$

holds, and this can be done by a modification of the proof of Theorem 4.2. Indeed, equality (20) implies the equality

$$
\nu \circ A^{\circ 2 k}=A^{\circ k} \circ \mu \circ A^{\circ k}
$$

which can be rewritten for $k \geqslant 4$ in the form (21) with

$$
A_{1}=\nu \circ A^{\circ 2}, \quad A_{2}=A_{3}=\cdots=A_{k}=A^{\circ 2}
$$

and

$$
B_{1}=\cdots=B_{\frac{k}{2}}=A^{\circ 2}, \quad B_{\frac{k}{2}+1}=\mu \circ A^{\circ 2}, \quad B_{\frac{k}{2}+2}=\cdots=B_{k}=A^{\circ 2}
$$

if k is even, or

$$
B_{1}=\cdots=B_{\frac{k-1}{2}}=A^{\circ 2}, \quad B_{\frac{k-1}{2}+1}=A \circ \mu \circ A, \quad B_{\frac{k-1}{2}+2}=\cdots=B_{k}=A^{\circ 2}
$$

if k is odd. Therefore, if ν belongs to $\widehat{G}\left(A^{\circ k}\right)$ for some $k \geqslant 4$, then applying Theorem 4.1, we conclude that (26) holds. On the other hand, if ν belongs to $\widehat{G}\left(A^{\circ 2}\right)$, then $\nu\left(c\left(A^{\circ 2}\right)\right)=c\left(A^{\circ 2}\right)$, by Lemma 2.1, iii), implying (26) by the chain rule. Similarly, if ν belongs to $\widehat{G}\left(A^{\circ 3}\right)$, then $\nu\left(c\left(A^{\circ 3}\right)\right)=c\left(A^{\circ 3}\right)$, implying that

$$
\nu\left(c\left(A^{\circ 2}\right)\right) \subseteq \nu\left(c\left(A^{\circ 3}\right)\right)=c\left(A^{\circ 3}\right) \subseteq c\left(A^{\circ 4}\right)
$$

Theorem 4.3 implies the following result.
Theorem 4.4. Let A be a rational function of degree $n \geqslant 2$. Then the orders of the groups $\widehat{G}\left(A^{\circ k}\right), k \geqslant 1$, are finite and uniformly bounded in terms of n only, unless A is a quasi-power. Furthermore, the orders of the groups $\widehat{G}\left(A^{\circ k}\right), k \geqslant 2$, are finite and uniformly bounded in terms of n only, unless A is conjugate to $z^{ \pm n}$.

Proof. The theorem is a direct corollary of Theorem 4.3.
Finally, Theorem 4.2 and Theorem 4.3 imply Theorem 1.2 from the introduction.
Proof of Theorem 1.2. The boundedness of the set $\bigcup_{i=2}^{\infty} \operatorname{Aut}\left(A^{\circ k}\right)$ in terms of n for A that is not conjugate to z^{n} follows from Theorem 4.3. On the other hand, $\operatorname{Aut}(A)$ is finite and bounded in terms of n by Corollary 2.6. This proves the first part of the theorem. Finally, since the set $S(A)$ contains the group $\operatorname{Aut}_{\infty}(A)$, the second part of the theorem follows from Theorem 4.2 (the assumption that A is not conjugate to z^{n} is actually redundant).

5. Groups $\Sigma_{\infty}(A)$ And $G\left(A^{\circ k}\right)$

Let A and B be rational functions of degree at least two. We recall that the function B is said to be semiconjugate to the function A if there exists a nonconstant rational function X such that the equality

$$
\begin{equation*}
A \circ X=X \circ B \tag{27}
\end{equation*}
$$

holds. Usually, we will write this condition in the form of a commuting diagram

The simplest examples of semiconjugate rational functions are provided by equivalent rational functions defined in the introduction. Indeed, it follows from equalities (5) that the diagrams

commutes, implying inductively that if A is equivalent to B, then A is semiconjugate to B, and B is semiconjugate to A.

A comprehensive description of semiconjugate rational functions was obtained in the papers [11], [12], [13]. In particular, it was shown in [11] that solutions A, X, B of (27) satisfying $\mathbb{C}(X, B)=\mathbb{C}(z)$, called primitive, can be described in terms of group actions on $\mathbb{C P}^{1}$ or \mathbb{C}, implying strong restrictions on a possible form of A, B and X. On the other hand, an arbitrary solution of equation (27) can be reduced to a primitive one by a sequence of elementary transformations as follows. By the Lüroth theorem, the field $\mathbb{C}(X, B)$ is generated by some rational function W. Therefore, if $\mathbb{C}(X, B) \neq \mathbb{C}(z)$, then there exists a rational function W of degree greater than one such that

$$
B=\widetilde{B} \circ W, \quad X=\tilde{X} \circ W
$$

for some rational functions \widetilde{X} and \widetilde{B} satisfying $\mathbb{C}(\widetilde{X}, \widetilde{B})=\mathbb{C}(z)$. Moreover, it is easy to see that the diagram

commutes. Thus, the triple $A, \widetilde{X}, W \circ \widetilde{B}$ is another solution of (27). This new solution is not necessarily primitive, however $\operatorname{deg} \tilde{X}<\operatorname{deg} X$. Therefore, continuing in this way, after a finite number of similar transformations we will arrive to a primitive solution. In more detail, the above argument shows that for any rational
functions A, X, B satisfying (27) there exist rational functions X_{0}, B_{0}, U such that $X=X_{0} \circ U$, the diagram

commutes, the triple A, X_{0}, B_{0} is a primitive solution of (27), and $B_{0} \sim B$.
The following theorem is essentially the second part of Theorem 1.3 from the introduction but without the assumption that A is not conjugate to z^{n}, which is redundant in this case.

Theorem 5.1. Let A be a rational function of degree $n \geqslant 2$. Then for every $\sigma \in \Sigma_{\infty}(A)$ the relation $A \circ \sigma \sim A$ holds.

Proof. Let σ be an element of $\Sigma_{\infty}(A)$. Then

$$
\begin{equation*}
A^{\circ k}=A^{\circ k} \circ \sigma \tag{29}
\end{equation*}
$$

for some $k \geqslant 1$. Writing this equality as the semiconjugacy

$$
\begin{array}{ll}
\mathbb{C P}^{1} \xrightarrow{A \circ \sigma} & \mathbb{C P}^{1} \\
\downarrow^{\circ}(k-1) & \downarrow^{\circ} A^{\circ(k-1)} \\
\mathbb{C P}^{1} \xrightarrow{A} & \mathbb{C P}^{1},
\end{array}
$$

we see that to prove the theorem it is enough to show that in diagram (28), corresponding to the solution

$$
A=A, \quad X=A^{\circ(k-1)}, \quad B=A \circ \sigma
$$

of (27), the function X_{0} has degree one. The proof of the last statement is similar to the proof of Theorem 2.3 in [16] and follows from the following two facts. First, for any primitive solution A, X, B of (27), the solution $A^{\circ l}, X, B^{\circ l}, l \geqslant 1$, is also primitive (see [16], Lemma 2.5). Second, a solution A, X, B of (27) is primitive if and only if the algebraic curve

$$
A(x)-X(y)=0
$$

is irreducible (see [16], Lemma 2.4). Using these facts we see that the triple $A^{\circ(k-1)}, X_{0}, B_{0}^{\circ(k-1)}$ is a primitive solution of (27), and the algebraic curve

$$
\begin{equation*}
A^{\circ(k-1)}(x)-X_{0}(y)=0 \tag{30}
\end{equation*}
$$

is irreducible. However, the equality

$$
A^{\circ(k-1)}=X_{0} \circ U
$$

implies that the curve

$$
U(x)-y=0
$$

is a component of (30). Moreover, if $\operatorname{deg} X_{0}>1$, then this component is proper. Therefore, deg $X_{0}=1$.

The following result proves the first part of Theorem 1.3 and thus finishes the proof of this theorem.

Theorem 5.2. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Then the order of the group $\Sigma_{\infty}(A)$ is finite and bounded in terms of n.

Proof. Let us observe first that it is enough to prove the theorem under the assumption that A is not a quasi-power. Indeed, if A is a quasi-power but is not conjugate to $z^{ \pm n}$, then $A^{\circ 2}$ is not a quasi-power by Lemma 2.2. Therefore, if the theorem is true for functions that are not quasi-powers, then for any A that is not conjugate to $z^{ \pm n}$, the group $\Sigma_{\infty}\left(A^{\circ 2}\right)$ is finite and bounded in terms of n, implying by (3) that the same is true for the group $\Sigma_{\infty}(A)$.

Assume now that A is not a quasi-power. Then $G(A)$ is finite by Theorem 2.4. Let us recall that in view of equality (6) the equivalence class $[A]$ is a union of conjugacy classes. Denoting the number of these conjugacy classes by N_{A}, let us show that if N_{A} is finite, then

$$
\begin{equation*}
\left|\Sigma_{\infty}(A)\right| \leqslant|G(A)| N_{A} \tag{31}
\end{equation*}
$$

By Theorem 5.1, for any $\sigma \in \Sigma_{\infty}(A)$ the function $A \circ \sigma$ belongs to one of N_{A} conjugacy classes in the equivalence class [A]. Furthermore, if $A \circ \sigma_{0}$ and $A \circ \sigma$ belong to the same conjugacy class, then

$$
A \circ \sigma=\alpha \circ A \circ \sigma_{0} \circ \alpha^{-1}
$$

for some $\alpha \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$, implying that

$$
A \circ \sigma \circ \alpha \circ \sigma_{0}^{-1}=\alpha \circ A
$$

This is possible only if α belongs to the group $\widehat{G}(A)$, and, in addition, $\sigma \circ \alpha \circ \sigma_{0}^{-1}$ belongs to the preimage of α under homomorphism (2). Therefore, for any fixed σ_{0}, there could be at most $|\widehat{G}(A)|$ such α, and for each α there could be at most $\left|\operatorname{Ker} \gamma_{A}\right|$ elements $\sigma \in \Sigma_{\infty}(A)$ such that

$$
\gamma_{A}\left(\sigma \circ \alpha \circ \sigma_{0}^{-1}\right)=\alpha
$$

Thus, (31) follows from (9).
It was proved in [12] that N_{A} is infinite if and only if A is a flexible Lattès map. However, the proof given in [12] uses the theorem of McMullen ([9]) about isospectral rational functions, which is not effective. Therefore, the result of [12] does not imply that N_{A} is bounded in terms of n. Nevertheless, we can use the main result of [15], which yields in particular that for a given rational function B of degree $n \geqslant 2$ the number of conjugacy classes of rational functions A such that (27) holds for some rational function X is finite and bounded in terms of n, unless B is special, that is, unless B is either a Lattès map or it is conjugate to $z^{ \pm n}$ or $\pm T_{n}$. Since $A \sim A^{\prime}$ implies that A is semiconjugate to A^{\prime}, this implies that for non-special A the number N_{A} is bounded in terms of n. Moreover, it is easy to see that the same is true also for A conjugate to $z^{ \pm n}$ or $\pm T_{n}$, since any decomposition of z^{n} has the form

$$
z^{n}=\left(z^{d} \circ \mu\right) \circ\left(\mu^{-1} \circ z^{n / d}\right),
$$

where $\mu \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ and $d \mid n$, while any decomposition of T_{n} has the form

$$
T_{n}=\left(T_{d} \circ \mu\right) \circ\left(\mu^{-1} \circ T_{n / d}\right),
$$

where $\mu \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$ and $d \mid n$.

The above shows that to finish the proof of Theorem 5.2 we only must prove that the group $\Sigma_{\infty}(A)$ is finite and bounded in terms of n if A is a Lattès map. To prove the last statement, we recall that if A is a Lattès map, then there exists an orbifold $\mathcal{O}=\left(\mathbb{C P}^{1}, \nu\right)$ of zero Euler characteristic such that $A: \mathcal{O} \rightarrow \mathcal{O}$ is a covering map between orbifold (see [10], [13] for more detail). Since this implies that $A^{\circ k}: \mathcal{O} \rightarrow \mathcal{O}, k \geqslant 1$, also is a covering map (see [11], Corollary 4.1), it follows from equality (29) that $\sigma: \mathcal{O} \rightarrow \mathcal{O}$ is a covering map (see [11], Corollary 4.2 and Lemma 4.1). As σ is of degree one, the last condition simply means that σ permute points of the support of \mathcal{O}. Since the support of an orbifold $\mathcal{O}=\left(\mathbb{C P}^{1}, \nu\right)$ of zero Euler characteristic contains either three or four points, this implies that $\Sigma_{\infty}(A)$ is finite and uniformly bounded for any Lattès map A.

Proof of Theorem 1.4. If $\sigma \in \Sigma_{\infty}(A)$, then

$$
\begin{equation*}
A \circ \sigma \sim A \tag{32}
\end{equation*}
$$

by Theorem 5.1. On the other hand, since for any indecomposable function A the number N_{A} obviously is equal to one, condition (32) is equivalent to the condition that

$$
\begin{equation*}
A \circ \sigma=\beta \circ A \circ \beta^{-1} \tag{33}
\end{equation*}
$$

for some $\beta \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right)$. Clearly, equality (33) implies that β belongs to $\widehat{G}(A)$. Therefore, if $\widehat{G}(A)$ is trivial, then (32) is satisfied only if $A \circ \sigma=A$, that is, only if σ belongs to $\Sigma(A)$. Thus, $\Sigma(A)=\Sigma_{\infty}(A)$, whenever $\widehat{G}(A)$ is trivial.

Furthermore, it follows from equality (33) that $\sigma \circ \beta$ belongs to the preimage of β under homomorphism (2). On the other hand, if $G(A)=\operatorname{Aut}(A)$, this preimage consists of β only. Therefore, in this case $\sigma \circ \beta=\beta$, implying that σ is the identity map. Thus, the group $\Sigma_{\infty}(A)$ is trivial, whenever $G(A)=\operatorname{Aut}(A)$.

The following theorem implies Theorem 1.1 from the introduction.
Theorem 5.3. Let A be a rational function of degree $n \geqslant 2$. Then the orders of the groups $G\left(A^{\circ k}\right), k \geqslant 1$, are finite and uniformly bounded in terms of n only, unless A is a quasi-power. Furthermore, the orders of the groups $G\left(A^{\circ k}\right), k \geqslant 2$, are finite and uniformly bounded in terms of n only, unless A is conjugate to $z^{ \pm n}$.

Proof. If A is not a quasi-power, then by Theorem 4.4 and Theorem 5.2 the orders of the groups $\widehat{G}\left(A^{\circ k}\right), k \geqslant 1$, and $\Sigma\left(A^{\circ k}\right), k \geqslant 1$, are finite and uniformly bounded in terms of n only. Therefore, by (9), the orders of the groups $G\left(A^{\circ k}\right), k \geqslant 1$, also are finite and uniformly bounded. Similarly, the groups $G\left(A^{\circ k}\right), k \geqslant 2$, are finite and uniformly bounded in terms of n only, unless A is conjugate to $z^{ \pm n}$.
Corollary 5.4. Let A be a rational function of degree $n \geqslant 2$. Then the sequence $G\left(A^{\circ k}\right), k \geqslant 1$, contains only finitely many non-isomorphic groups.
Proof. For A not conjugate to $z^{ \pm n}$, the corollary follows from Theorem 5.3 since there exist only finitely many groups of any given order. Moreover, actually the groups $G\left(A^{\circ k}\right), k \geqslant 2$, belong to the list $A_{4}, S_{4}, A_{5}, C_{l}, D_{2 l}$, by Theorem 2.4. On the other hand, if A is conjugate to $z^{ \pm n}$, then all the groups $G\left(A^{\circ k}\right), k \geqslant 1$, consist of the transformations $z \rightarrow c z^{ \pm 1}, c \in \mathbb{C} \backslash\{0\}$.

We finish this section by two examples of calculation of the group $\Sigma_{\infty}(A)$.
Example 5.5. Let us consider the function

$$
A=x+\frac{27}{x^{3}}
$$

A calculation shows that, in addition to the critical value ∞, this function has critical values ± 4 and $\pm 4 i$, and

$$
\begin{gathered}
A \pm 4=\frac{\left(x^{2} \mp 2 x+3\right)(x \pm 3)^{2}}{x^{3}} \\
A \pm 4 i=\frac{\left(x^{2} \mp 2 i x-3\right)(\pm x+3 i)^{2}}{x^{3}}
\end{gathered}
$$

Since the above equalities imply that mult $A=3$, while at any other point of $\mathbb{C P}^{1}$ the multiplicity of A is at most two, it follows from Theorem 2.7 that $G(A)$ is a cyclic group, whose generator has zero as a fixed point. Moreover, since $G(A)$ obviously contains the transformation $\sigma=-z$, the second fixed point of this generator must be infinity. This implies easily that $G(A)$ is a cyclic group of order two, and $G(A)=\operatorname{Aut}(A)$. Finally, since mult ${ }_{0} A=3$, it follows from the chain rule that the equality $A=A_{1} \circ A_{2}$, where A_{1} and A_{2} are rational function of degree two is impossible. Therefore, A is indecomposable, and hence the group $\Sigma_{\infty}(A)$ is trivial by Theorem 1.4.

Example 5.6. Let us consider the function

$$
A=\frac{z^{2}-1}{z^{2}+1}
$$

Since A is a quasi-power, $\Sigma(A)$ is a cyclic group of order two, generated by the transformation $z \rightarrow-z$. A calculation shows that the second iterate

$$
A^{\circ 2}=-\frac{2 z^{2}}{z^{4}+1}
$$

is the function B from Example 2.10. Thus, $\Sigma\left(A^{\circ 2}\right)$ is the dihedral group D_{4}, generated by the transformation $z \rightarrow-z$ and $z \rightarrow 1 / z$. In particular, $\Sigma\left(A^{\circ 2}\right)$ is larger than $\Sigma(A)$. Moreover, since

$$
A^{\circ 3}=-\frac{\left(z^{4}-1\right)^{2}}{z^{8}+6 z^{4}+1}
$$

we see that $\Sigma\left(A^{\circ 3}\right)$ contains the dihedral group D_{8}, generated by the transformation $\mu_{1}=i z$ and $\mu_{2}=1 / z$, and hence $\Sigma\left(A^{\circ 3}\right)$ is larger than $\Sigma\left(A^{\circ 2}\right)$.

Let us show that

$$
\Sigma_{\infty}(A)=\Sigma\left(A^{\circ 3}\right)=D_{8}
$$

As in Example 2.10, we see that if $\Sigma_{\infty}(A)$ is larger than D_{8}, then either $\Sigma_{\infty}(A)=S_{4}$, or $\Sigma_{\infty}(A)$ is a dihedral group containing an element σ of order $l>4$ such that μ_{1} is an iterate of σ. The first case is impossible, for otherwise Theorem 2.3 implies that for k satisfying $\Sigma_{\infty}(A)=\Sigma\left(A^{\circ k}\right)$ the number $\operatorname{deg} A^{\circ k}=2^{k}$ is divisible by $\left|S_{4}\right|=24$. On the other hand, in the second case, the fixed points of σ are zero and infinity. Since A is indecomposable, it follows from Theorem 5.1 that to exclude the second case it is enough to show that if $\sigma=c z, c \in \mathbb{C} \backslash\{0\}$, satisfies

$$
\begin{equation*}
A \circ \sigma=\beta \circ A \circ \beta^{-1}, \quad \beta \in \operatorname{Aut}\left(\mathbb{C P}^{1}\right) \tag{34}
\end{equation*}
$$

then σ is an iterate of μ_{1}. Since critical points of the function on the left side of (34) coincide with critical points of the function on the right side, the Möbius
transformation β necessarily has the form $\beta=d z^{ \pm 1}, d \in \mathbb{C} \backslash\{0\}$. Thus, equation (34) reduces to the equations

$$
\frac{c^{2} z^{2}-1}{c^{2} z^{2}+1}=\frac{1}{d} \frac{d^{2} z^{2}-1}{d^{2} z^{2}+1}
$$

and

$$
\frac{c^{2} z^{2}-1}{c^{2} z^{2}+1}=\frac{d\left(d^{2}+z^{2}\right)}{d^{2}-z^{2}}
$$

One can check that solutions of the first equation are $d=1$ and $c= \pm 1$, while solutions of the second are $d=-1$ and $c= \pm i$. This proves the necessary statement. Notice that instead of Theorem 5.1 it is also possible to use Theorem 1.5 (see the next section).

6. Groups $G\left(A, z_{0}, z_{1}\right)$

Following [17], we say that a formal power series $f(z)=\sum_{i=1}^{\infty} a_{i} z^{i}$ having zero as a fixed point is homozygous mod l if the inequalities $a_{i} \neq 0$ and $a_{j} \neq 0$ imply the equality $i \equiv j(\bmod l)$. If f is not homozygous $\bmod l$, it is called hybrid $\bmod l$. Obviously, the condition that f is homozygous $\bmod l$ is equivalent to the condition that $f=z^{r} g\left(z^{l}\right)$ for some formal power series $g=\sum_{i=0}^{\infty} b_{i} z^{i}$ and integer r, $1 \leqslant r \leqslant l$. In particular, if f is homozygous mod l, then any iterate of f is homozygous mod l. The inverse is not true. However, the following statement proved by Reznick ([17]) holds: if a formal power series $f(z)=\sum_{i=1}^{\infty} a_{i} z^{i}$ is hybrid $\bmod l$ and $f^{\circ k}$ is homozygous mod l, then $f^{\circ k s}(z)=z$ for some integer $s \geqslant 1$. Our proof of Theorem 1.5 relies on this result.

Proof of Theorem 1.5. Without loss of generality, we can assume that $z_{0}=0$ and $z_{1}=\infty$. Let f_{A} be the Taylor series of the function A at zero. Arguing as in the proof of Theorem 2.4, we see that every element of $G(A, 0, \infty)$ has the form $z \rightarrow \varepsilon z$, where ε is a root of unity, and $G(A, 0, \infty)$ is a finite cyclic group, whose order is equal to the maximum number n such that f_{A} is homozygous mod n. Since $f_{A^{\circ k}}=f_{A}^{\circ k}$, this implies that

$$
G(A, 0, \infty) \subseteq G\left(A^{\circ k}, 0, \infty\right), \quad k \geqslant 1
$$

Moreover, if $G\left(A^{\circ k}, 0, \infty\right)$ is strictly larger than $G(A, 0, \infty)$ for some $k>1$, then there exists n_{0} such that f_{A} is hybrid $\bmod n_{0}$ but $f_{A}^{\circ k}$ is homozygous mod n_{0}. Therefore, by the Reznick theorem, the equality $f_{A}^{\circ k s}=z$ holds for some $s \geqslant 1$. However, in this case by the analytical continuation $A^{\circ k s}=z$ for all $z \in \mathbb{C P}^{1}$, in contradiction with $n \geqslant 2$. Thus, the groups $G\left(A^{\circ k}, 0, \infty\right), k \geqslant 1$, are equal.

Notice that the groups $G\left(A^{\circ k}, z_{0}, z_{1}\right), k \geqslant 1$, are equal even if A is conjugate to $z^{ \pm n}$. Indeed, for $A=z^{ \pm n}$ these groups are trivial, unless $\left\{z_{0}, z_{1}\right\}=\{0, \infty\}$, while in the last case all these groups consist of the transformations $z \rightarrow c z^{ \pm 1}, c \in \mathbb{C} \backslash\{0\}$.

Let us emphasize that since iterates $A^{\circ k}, k>1$, have in general more fixed points than A, it may happen that $G\left(A^{\circ k}, z_{0}, z_{1}\right), k>1$, is non-trivial, while $G\left(A, z_{0}, z_{1}\right)$ is not defined, so that the equality $G\left(A^{\circ k}, z_{0}, z_{1}\right)=G\left(A, z_{0}, z_{1}\right)$ does not make sense. For example, for the function

$$
A=\frac{z^{2}-1}{z^{2}+1}
$$

from Example 5.6 zero is not a fixed point for A, and hence the group $G(A, 0, \infty)$ is not defined. However, zero is a fixed point for

$$
A^{\circ 2}=-\frac{2 z^{2}}{z^{4}+1}
$$

and the group $G\left(A^{\circ 2}, 0, \infty\right)$ is a cyclic group of order four. Let us remark that Theorem 1.5 gives another proof of the fact that $\Sigma_{\infty}(A)$ cannot contain an element $\sigma=c z, c \in \mathbb{C} \backslash\{0\}$, of order $l>4$. Indeed, such σ must belong to the group $G\left(A^{\circ k}, 0, \infty\right)$ for some $k \geqslant 1$, and hence to the group $G\left(A^{\circ 2 k}, 0, \infty\right)$. However, $G\left(A^{\circ 2 k}, 0, \infty\right)$ is equal to $G\left(A^{\circ 2}, 0, \infty\right)=C_{4}$ by Theorem 1.5 applied to $A^{\circ 2}$.

Under certain conditions, Theorem 1.5 permits to estimate the order of the groups $\operatorname{Aut}_{\infty}(A)$ and $\Sigma_{\infty}(A)$ and even to describe these groups explicitly.

Theorem 6.1. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Assume that for some $k \geqslant 1$ the group $\operatorname{Aut}\left(A^{\circ k}\right)$ contains an element σ of order at least six with fixed points z_{0} and z_{1} such that z_{0} is a fixed point of $A^{\circ k}$. Then the inequality $\left|\operatorname{Aut}_{\infty}(A)\right| \leqslant 2\left|G\left(A^{\circ k}, z_{0}, z_{1}\right)\right|$ holds. Similarly, if σ as above is contained in $\Sigma\left(A^{\circ k}\right)$, then $\left|\Sigma_{\infty}(A)\right| \leqslant 2\left|G\left(A^{\circ k}, z_{0}, z_{1}\right)\right|$.

Proof. Since the maximal order of a cyclic subgroup in the groups A_{4}, S_{4}, A_{5} is five, it follows from Corollary 2.6 that if $\operatorname{Aut}\left(A^{\circ k}\right)$ contains an element σ of order $r>5$, then either $\operatorname{Aut}_{\infty}(A)=C_{s}$ or $\operatorname{Aut}_{\infty}(A)=D_{2 s}$, where $r \mid s$. Moreover, if σ_{∞} is an element of order s in $\operatorname{Aut}_{\infty}(A)$, then σ is an iterate of σ_{∞}. In particular, fixed points of σ_{∞} coincide with fixed points of σ.

To prove the theorem, we only must show that the inequality

$$
\begin{equation*}
s>\left|G\left(A^{\circ k}, z_{0}, z_{1}\right)\right| \tag{35}
\end{equation*}
$$

is impossible. Assume the inverse. Since σ_{∞} belongs to $\operatorname{Aut}\left(A^{\circ k^{\prime}}\right)$ for some $k^{\prime} \geqslant 1$, it belongs to $\operatorname{Aut}\left(A^{\circ k k^{\prime}}\right)$ and $G\left(A^{\circ k k^{\prime}}, z_{0}, z_{1}\right)$. Therefore, if (35) holds, then the group $G\left(A^{\circ k k^{\prime}}, z_{0}, z_{1}\right)$ contains an element of order greater than $\left|G\left(A^{\circ k}, z_{0}, z_{1}\right)\right|$, in contradiction with the equality

$$
G\left(A^{\circ k k^{\prime}}, z_{0}, z_{1}\right)=G\left(A^{\circ k}, z_{0}, z_{1}\right)
$$

provided by Theorem 1.5 applied to $G\left(A^{\circ k}\right)$. The proof of the inequality for $\left|\Sigma_{\infty}(A)\right|$ is similar.

Example 6.2. Let us consider the function

$$
A=z \frac{z^{6}-2}{2 z^{6}-1}
$$

It is easy to see that $\operatorname{Aut}(A)$ contains the dihedral group D_{12} generated by the transformations

$$
z \rightarrow e^{\frac{2 \pi i}{6}} z, \quad z \rightarrow 1 / z
$$

Since zero is a fixed point of A and $G(A, 0, \infty)=C_{6}$, it follows from Theorem 6.1 that

$$
\operatorname{Aut}_{\infty}(A)=\operatorname{Aut}(A)=D_{12}
$$

Although the group $\operatorname{Aut}\left(A^{\circ k}\right)$ does not necessarily contain an element that belongs to $G\left(A^{\circ k}, z_{0}, z_{1}\right)$, it always contains an element that belongs to $G\left(A^{\circ 2 k}, z_{0}, z_{1}\right)$. More generally, the following statement holds.

Lemma 6.3. Let A be a rational function of degree $n \geqslant 2$, and $\sigma \notin \Sigma\left(A^{\circ k}\right) a$ Möbius transformation such that the equality

$$
\begin{equation*}
A^{\circ k} \circ \sigma=\sigma^{\circ l} \circ A^{\circ k} \tag{36}
\end{equation*}
$$

holds for some $l \geqslant 1$. Then at least one of the fixed points z_{0}, z_{1} of σ is a fixed point of $A^{\circ 2 k}$, and if z_{0} is such a point, then $\sigma \in G\left(A^{\circ 2 k}, z_{0}, z_{1}\right)$.

Proof. Clearly, equality (36) implies the equalities

$$
\sigma^{\circ l}\left(A^{\circ k}\left(z_{0}\right)\right)=A^{\circ k}\left(z_{0}\right), \quad \sigma^{\circ l}\left(A^{\circ k}\left(z_{1}\right)\right)=A^{\circ k}\left(z_{1}\right)
$$

However, since $\sigma^{\circ l}$ is not the identity map, it has only two fixed points z_{0}, z_{1}. Therefore, $A^{\circ k}\left\{z_{0}, z_{1}\right\} \subseteq\left\{z_{0}, z_{1}\right\}$, implying that at least one of the points z_{0}, z_{1} is a fixed point of $A^{\circ 2 k}$. Finally, if z_{0} is such a point, then $\sigma \in G\left(A^{\circ 2 k}, z_{0}, z_{1}\right)$.

Combining Theorem 6.1 with Lemma 6.3 we obtain the following result.
Theorem 6.4. Let A be a rational function of degree $n \geqslant 2$ that is not conjugate to $z^{ \pm n}$. Assume that for some $k \geqslant 1$ the group $\operatorname{Aut}\left(A^{\circ k}\right)$ contains an element σ of order at least six with fixed points z_{0}, z_{1}. Then $\left|\operatorname{Aut}_{\infty}(A)\right| \leqslant 2\left|G\left(A^{\circ 2 k}, z_{0}, z_{1}\right)\right|$, where z_{0} is a fixed point of σ that is also a fixed point of $A^{\circ 2 k}$.

References

[1] C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962.
[2] P. Doyle, C. McMullen, Solving the quintic by iteration, Acta Math. 163 (1989), no. 3-4, 151-180.
[3] A. Freire, A. Lopes, R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45-62.
[4] F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, New York: Dover Publications, (1956).
[5] G. Levin, Symmetries on Julia sets, Math. Notes 48 (1990), no. 5-6, 1126-1131.
[6] G. Levin, Letter to the editors, Math. Notes 69 (2001), no. 3-4, 432-33.
[7] G. Levin, F. Przytycki, When do two rational functions have the same Julia set?, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2179-2190.
[8] M. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351-385.
[9] C. McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of Math., 125, No. 3 (1987), 467-493.
[10] J. Milnor, On Lattès maps, Dynamics on the Riemann Sphere. Eds. P. Hjorth and C. L. Petersen. A Bodil Branner Festschrift, European Mathematical Society, 2006, pp. 9-43.
[11] F. Pakovich, On semiconjugate rational functions, Geom. Funct. Anal., 26 (2016), 1217-1243.
[12] F. Pakovich, Recomposing rational functions, Int. Math. Res. Not., 2019, no. 7, 1921-1935.
[13] F. Pakovich, On generalized Latès maps, J. Anal. Math., 142 (2020), no. 1, 1-39.
[14] F. Pakovich, On rational functions sharing the measure of maximal entropy, Arnold Math. J., 6, 387-396 (2020).
[15] F. Pakovich, Finiteness theorems for commuting and semiconjugate rational functions, Conform. Geom. Dyn., 24 (2020), 202-229.
[16] F. Pakovich, Commuting rational functions revisited, Ergodic Theory Dynam. Systems, 41 (2021), no. 1, 295-320.
[17] B. Reznick, When is the iterate of a formal power series odd?, J. Austral. Math. Soc. Ser. A 28 (1979), no. 1, 62-66.
[18] H. Ye, Rational functions with identical measure of maximal entropy, Adv. Math. 268 (2015), 373-395.

Department of Mathematics, Ben Gurion University of the Negev, Israel
Email address: pakovich@math.bgu.ac.il

[^0]: This research was supported by ISF Grant No. 1092/22.

