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ON SYMMETRIES OF ITERATES OF RATIONAL FUNCTIONS

FEDOR PAKOVICH

Abstract. Let A be a rational function of degree n ě 2. Let us denote by
GpAq the group of Möbius transformations σ such that A˝σ “ νσ ˝A for some
Möbius transformations νσ, and by ΣpAq and AutpAq the subgroups of GpAq
consisting of σ such that A˝σ “ A and A˝σ “ σ ˝A, correspondingly. In this
paper, we study sequences of the above groups arising from iterating A. In
particular, we show that if A is not conjugate to z˘n, then the orders of the
groups GpA˝kq, k ě 2, are finite and uniformly bounded in terms of n only.
We also prove a number of results about the groups Σ8pAq “ Y8

k“1
ΣpA˝kq

and Aut8pAq “ Y8
k“1

AutpA˝kq, which are especially interesting from the
dynamical perspective.

1. Introduction

Let A be a rational function of degree n ě 2. In this paper, we study a variety of
different subgroups of AutpCP1q related to A, and more generally to a dynamical
system defined by iterating A. Specifically, let us define ΣpAq and AutpAq as the
groups of Möbius transformations σ such that A ˝ σ “ A and A ˝ σ “ σ ˝ A,

correspondingly. Notice that elements of ΣpAq permute points of any fiber of A,
and more generally of any fiber of A˝k, k ě 1, while elements of AutpAq permute
fixed points of A˝k, k ě 1. Since any Möbius transformation is defined by its values
at any three points, this implies in particular that the groups ΣpAq and AutpAq
are finite and therefore belong to the well-known list A4, S4, A5, Cl, D2l of finite
subgroups of AutpCP1q.

The both groups ΣpAq and AutpAq are subgroups of the group GpAq defined as
the group of Möbius transformations σ such that

(1) A ˝ σ “ νσ ˝ A

for some Möbius transformations νσ. It is easy to see that GpAq is indeed a group,
and that νσ is defined in a unique way by σ. Furthermore, the map

(2) γA : σ Ñ νσ

is a homomorphism from GpAq to the group AutpCP1q, whose kernel coincides with
ΣpAq. We will denote the image of γA by pGpAq. It was shown in the paper [15] that
unless

A “ α ˝ zn ˝ β

for some α, β P AutpCP1q the group GpAq is also finite and its order is bounded in
terms of degree of A.
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In this paper, we study the dynamical analogues of the groups ΣpAq and AutpAq
defined by the formulas

Σ8pAq “
8ď

k“1

ΣpA˝kq, Aut8pAq “
8ď

k“1

AutpA˝kq.

Since

(3) ΣpAq Ď ΣpA˝2q Ď ΣpA˝3q Ď . . . Ď ΣpA˝kq Ď . . . ,

and

AutpA˝kq Ď AutpA˝rq, AutpA˝lq Ď AutpA˝rq
for any common multiple r of k and l, the sets Σ8pAq and Aut8pAq are groups.
While it is not clear a priori that the groups Σ8pAq and Aut8pAq are finite, for A
not conjugated to z˘n their finiteness can be deduced from the theorem of Levin
([5], [6]) about rational functions sharing the measure of maximal entropy. However,
the Levin theorem does not permit to describe the groups Σ8pAq and Aut8pAq or
to estimate their orders, and the main goal of this paper is to prove some results in
this direction. More generally, we study the totality of the groups GpA˝kq, k ě 1,
defined by iterating A.

Our main result about the groups GpA˝kq, k ě 1, can be formulated as follows.

Theorem 1.1. Let A be a rational function of degree n ě 2 that is not conjugate to
z˘n. Then the orders of the groups GpA˝kq, k ě 2, are finite and uniformly bounded
in terms of n only.

In addition to Theorem 1.1, we prove a number of more precise results about the
groups Σ8pAq and Aut8pAq allowing us in certain cases to calculate these groups
explicitly. For a rational function A, let us denote by cpAq the set of its critical
values. Our main result concerning the groups Aut8pAq is following.

Theorem 1.2. Let A be a rational function of degree n ě 2 that is not conjugate
to z˘n. Then the group Aut8pAq is finite and its order is bounded in terms of n
only. Moreover, every ν P Aut8pAq maps the set cpAq to the set cpA˝2q.

Notice that since Möbius transformations ν such that

(4) ν
`
cpAq

˘
Ď cpA˝2q

can be described explicitly, Theorem 1.2 provides us with a concrete subset of
AutpCP1q containing the group Aut8pAq.

To formulate our main results concerning groups ΣpAq, let us introduce some

definitions. Let A be a rational function. Then a rational function rA is called an
elementary transformation of A if there exist rational functions U and V such that

(5) A “ U ˝ V and rA “ V ˝ U.

We say that rational functions A and A1 are equivalent and write A „ A1 if there
exists a chain of elementary transformations between A and A1. Since for any
Möbius transformation µ the equality

(6) A “ pA ˝ µ´1q ˝ µ

holds, the equivalence class rAs of a rational function A is a union of conjugacy
classes. Moreover, by the results of the papers [12], [15], the number of conjugacy
classes in rAs is finite, unless A is a flexible Lattès map.



ON SYMMETRIES OF ITERATES OF RATIONAL FUNCTIONS 3

In this notation, our main result about the groups Σ8pAq is following.

Theorem 1.3. Let A be a rational function of degree n ě 2 that is not conjugate to
z˘n. Then the order of the group Σ8pAq is finite and bounded in terms of n only.
Moreover, for every σ P Σ8pAq the relation A ˝ σ „ A holds.

Notice that in some cases Theorem 1.3 permits to describe the group Σ8pAq
completely. Specifically, assume that A is indecomposable, that is, cannot be rep-
resented as a composition of two rational functions of degree at least two. In this
case, the number of conjugacy classes in the equivalence class rAs obviously is equal
to one, and Theorem 1.3 yields the following statement.

Theorem 1.4. Let A be an indecomposable rational function of degree n ě 2 that

is not conjugate to z˘n. Then Σ8pAq “ ΣpAq, whenever the group pGpAq is trivial.
Moreover, the group Σ8pAq is trivial, whenever GpAq “ AutpAq.

Notice that Theorem 1.4 implies in particular that if A is indecomposable and
the group GpAq is trivial, then Σ8pAq is also trivial.

Finally, along with the groups GpA˝kq, k ě 1, we consider their “local” versions.
Specifically, let z0 P CP1 be a fixed point of A. For a point z1 P CP1 distinct from z0,
we define GpA, z0, z1q as the subgroup of GpAq consisting of Möbius transformations
σ such that σpz0q “ z0 and σpz1q “ z1. For these groups, we prove the following
statement.

Theorem 1.5. Let A be a rational function of degree n ě 2 that is not conjugate
to z˘n. Assume that z0 P CP1 is a fixed point of A, and z1 P CP1 is a point distinct
from z0. Then GpA˝k, z0, z1q, k ě 1, are finite cyclic groups equal to each other.

Notice that every element σ P AutpA˝kq, k ě 1, belongs to GpA˝2k, z0, z1q for
some z0, z1. Indeed, the equality

A˝k ˝ σ “ σ ˝ A˝k, k ě 1,

implies that A˝k sends the set of fixed points of σ to itself. Therefore, at least
one of these points z0, z1 is a fixed point of A˝2k, and if z0 is such a point, then
σ P GpA˝2k, z0, z1q. In view of this relation between AutpA˝kq and GpA˝2k, z0, z1q,
Theorem 1.5 allows us in some cases to estimate the order of the group Aut8pAq
and even to describe this group explicitly.

The paper is organized as follows. In the second section, we establish basic
properties of the group GpAq and provide a method for its calculation. In the third
section, we briefly discuss relations between the groups Σ8pAq, Aut8pAq and the
measure of maximal entropy for A. In particular, we deduce the finiteness of these
groups from the results of Levin ([5], [6]).

In the fourth section, we prove Theorem 1.2. Moreover, we prove that (4) holds

for any Möbius transformation ν that belongs to pGpA˝kq for some k ě 1. In the fifth
section, using results about semiconjugate rational functions from the papers [11],
[15], we prove Theorem 1.3 and Theorem 1.4. We also prove a slightly more general
version of Theorem 1.1. Finally, in the sixth section, we deduce Theorem 1.5 from
the result of Reznick ([17]) about iterates of formal power series, and provide some
applications of Theorem 1.5 concerning the groups Aut8pAq and Σ8pAq.
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2. Groups GpAq

Let A be a rational function of degree n ě 2, and GpAq, pGpAq, ΣpAq, AutpAq
the groups defined in the introduction. Notice that if rational functions A and A1

are related by the equality

α ˝ A ˝ β “ A1

for some α, β P AutpCP1q, then

(7) GpA1q “ β´1 ˝ GpAq ˝ β, pGpA1q “ α ˝ pGpAq ˝ α´1.

In particular, the groups GpAq and GpA1q are isomorphic. Notice also that since

(8) pGpAq – GpAq{ΣpAq,
the equality

(9) |GpAq| “ | pGpAq||ΣpAq|
holds whenever the groups involved are finite.

Lemma 2.1. Let A be a rational function of degree n ě 2. Then the following
statements are true.

i) For every z P CP1 and σ P GpAq the multiplicity of A at z is equal to the
multiplicity of A at σpzq.

ii) For every c P CP1 and σ P GpAq the fiber A´1tcu is mapped by σ to the
fiber A´1pνσpcqq.

iii) Every ν P pGpAq maps cpAq to cpAq.

Proof. Since (1) implies that

multσpzqA ¨ multzσ “ multApzqνσ ¨ multzA

the first statement follows from the fact that σ and νσ are one-to-one.
Further, it is clear that (1) implies

σ´1pA´1tcuq “ A´1pν´1

σ tcuq.
Changing now σ´1 to σ and taking into account that ν´1

σ “ νσ´1 , we obtain the
second statement.

Finally, the third statement follows from the second one, taking into account
that

|A´1tcu| “ |A´1tνσpcqu|
since σ is one-to-one, and that c is a critical value of A if and only |A´1tcu| ă n. �

We say that a rational function A of degree n ě 2 is a quasi-power if there exist
α, β P AutpCP1q such that

A “ α ˝ zn ˝ β.

It is easy to see using Lemma 2.1 that the group Gpznq consists of the transforma-
tions z Ñ cz˘1, c P Czt0u. Therefore, by (7), for any quasi-power A the groups

GpAq and pGpAq are infinite.

Lemma 2.2. A rational function A of degree n ě 2 is a quasi-power if and only if
it has only two critical values. If A is a quasi-power, then A˝2 is a quasi-power if
and only if A is conjugate to z˘n.
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Proof. The first part of the lemma is well-known and follows easily from the
Riemann-Hurwitz formula. To prove the second, we observe that the chain rule
implies that the function

A˝2 “ α ˝ zn ˝ β ˝ α ˝ zn ˝ β

has only two critical values if and only if β˝αmaps the set t0,8u to itself. Therefore,
A˝2 is a quasi-power if and only if β ˝ α “ cz˘1, c P Czt0u, that is, if and only if

A “ α ˝ zn ˝ β “ α ˝ zn ˝ cz˘1 ˝ α´1 “ α ˝ cnz˘n ˝ α´1.

Finally, it is clear that the last condition is equivalent to the condition that A is
conjugate to z˘n. �

Let G be a finite subgroup of AutpCP1q. We recall that a rational function
θG is called an invariant function for G if the equality θGpxq “ θGpyq holds for
x, y P CP1 if and only if there exists σ P G such that σpxq “ y. Such a function
always exists and is defined in a unique way up to the transformation θG Ñ µ ˝ θG,
where µ P AutpCP1q. Obviously, θG has degree equal to the order of G. Invariant
functions for finite subgroups of AutpCP1q were first found by Klein in his book [4].

Theorem 2.3. Let A be a rational function of degree n ě 2. Then ΣpAq is a finite
group and |ΣpAq| is a divisor of n. Moreover, |ΣpAq| “ n if and only if A is an
invariant function for ΣpAq.
Proof. Since for a finite subgroup G of AutpCP1q the set of rational functions F

such that F ˝ σ “ F for every σ P G is a subfield of Cpzq, it follows easily from
the Lüroth theorem that any such a function F is a rational function in θG. Thus,
degF is divisible by deg θG “ |G|. In particular, setting G “ ΣpAq, we see that
the degree of A is divisible by |ΣpAq|, and degA “ |ΣpAq| if and only if A is an
invariant function for ΣpAq. �

The existence of invariant functions implies that for every finite subgroup G of
AutpCP1q there exist rational functions for which ΣpAq “ G. Similarly, for every
finite subgroup G of AutpCP1q there exist rational functions for which AutpAq “ G.
A description of such functions in terms of homogenous invariant polynomials for
G was obtained by Doyle and McMullen in [2]. Notice that rational functions with
non-trivial automorphism groups are closely related to generalized Lattès maps (see
[13] for more detail).

The following result was proved in [15]. For the reader convenience we provide
a simpler proof.

Theorem 2.4. Let A be a rational function of degree n ě 2 that is not a quasi-
power. Then the group GpAq is isomorphic to one of the five finite rotation groups
of the sphere A4, S4, A5, Cl, D2l, and the order of any element of GpAq does not
exceed n. In particular, |GpAq| ď maxt60, 2nu.
Proof. Any element of the group AutpCP1q – PSL2pCq is conjugate either to
z Ñ z ` 1 or to z Ñ λz for some λ P Czt0u. Thus, making the change

A Ñ µ1 ˝ A ˝ µ2, σ Ñ µ´1

2
˝ σ ˝ µ2, νσ Ñ µ1 ˝ νσ ˝ µ´1

1

for convenient µ1, µ2 P AutpCP1q, without loss of generality we may assume that
σ and νσ in (1) have one of the two forms above.

We observe first that the equality

(10) Apz ` 1q “ λApzq, λ P Czt0u,
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is impossible. Indeed, if A has a finite pole, then (10) implies that A has infinitely
many poles. On the other hand, if A does not have finite poles, then A has a finite
zero, and (10) implies that A has infinitely many zeroes. Similarly, the equality

(11) Apz ` 1q “ Apzq ` 1

is impossible if A has a finite pole. On the other hand, if A is a polynomial of
degree n ě 2, then we obtain a contradiction comparing the coefficients of zn´1 on
the left and the right sides of equality (11).

For the argument below, instead of considering A as a ratio of two polynomials,
it is more convenient to assume that A is represented by its convergent Laurent
series at zero or infinity. Comparing for such a representation the free terms on the
left and the right sides of the equality

Apλzq “ Apzq ` 1, λ P Czt0u,
we conclude that this equality is impossible either. Thus, equality (1) for a non-
identity σ reduces to the equality

(12) Apλ1zq “ λ2Apzq, λ1 P Czt0, 1u, λ2 P Czt0u.
Comparing now coefficients on the left and the right sides of (12) and taking into
account that A ‰ az˘n, a P C, by the assumption, we conclude that λ1 is a root of
unity. Furthermore, if d is the order of λ1, then λ2 “ λr

1 for some 0 ď r ď d ´ 1,
implying that A{zr is a rational function in zd. On the other hand, it is easy to see
that if A “ zrRpzdq, where R P Cpzq and 0 ď r ď d ´ 1, then d ď n, unless either
R P Czt0u or R “ a{z for some a P Czt0u. Since for such R the function A is a
quasi-power, we conclude that the order of λ1 and hence the order of any element
of GpAq does not exceed n.

To finish the proof we only must show that GpAq is finite. By Lemma 2.2, A has

at least three critical values. On the other hand, by Lemma 2.1, iii), every ν P pGpAq
maps cpAq to cpAq. Since any Möbius transformation is defined by its values at any

three points, this implies that pGpAq is finite. Since ΣpAq is finite by Theorem 2.3,
this implies that GpAq is finite because of the isomorphism (8). �

Remark 2.5. Using some non-trivial group-theoretic results about subgroups of
GLkpCq, one can deduce the finiteness of GpAq directly from the fact that the order
of any element of GpAq does not exceed n. Namely, the proof given in the paper
[15] uses the Schur theorem (see e.g. [1], (36.2)), which states that any finitely
generated periodic subgroup of GLkpCq has finite order. Alternatively, one can
use the Burnside theorem (see e.g. [1], (36.1)), which states that any subgroup of
GLkpCq of bounded period is finite. Indeed, assume that GpAq is infinite. Then its

lifting GpAq Ă SL2pCq Ă GL2pCq is also infinite. On the other hand, if the order

of any element of GpAq is bounded by N , then the order of any element of GpAq is
bounded by 2N . The contradiction obtained proves the finiteness of GpAq.
Corollary 2.6. Let A be a rational function of degree n ě 2. Then ΣpAq and
AutpAq are finite groups whose order does not exceed maxt60, 2nu.
Proof. If A is a not a quasi-power, then the corollary follows from Theorem 2.4. On
the other hand, it is easy to see that if A is a quasi-power, then the corresponding
groups are cyclic groups of order n and n ´ 1 correspondingly. �

Let us mention the following specification of Theorem 2.4.
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Theorem 2.7. Let A be a rational function of degree n ě 2. Assume that there
exists a point z0 P CP1 such that the multiplicity of A at z0 is distinct from the
multiplicity of A at any other point z P CP1. Then GpAq is a finite cyclic group,
and z0 is a fixed point of its generator.

Proof. It follows from the assumption that A is not a quasi-power. Therefore, GpAq
is finite. Moreover, every element of GpAq fixes z0 by Lemma 2.1, i). On the other
hand, a unique finite subgroup of AutpCP1q whose elements share a fixed point is
cyclic. �

In turn, Theorem 2.7 implies the following well-known corollary.

Corollary 2.8. Let P be a polynomial of degree n ě 2 that is not a quasi-power.
Then GpP q is a finite cyclic group generated by a polynomial.

Proof. Since P is a not a quasi-power, the multiplicity of P at infinity is distinct
from the multiplicity of P at any other point of CP1. Moreover, since every element
of GpP q fixes infinity, GpP q consist of polynomials. �

Notice that functions A of degree n with |GpAq| “ 2n do exist. Indeed, it is easy
to see that for any function of the from

A “ zn ´ a

azn ´ 1
, a P Czt0u,

the group GpAq contains the dihedral group D2n, generated by

z Ñ 1

z
, z Ñ εnz,

where εn “ e
2πi

n . Thus, for n big enough, GpAq “ D2n, by Theorem 2.4. On the
other hand, for small n, functions A of degree n with |GpAq| ą 2n do exist as well
(see for instance Example 2.10 below).

Lemma 2.1 provides us with a method for practical calculation of GpAq, at least
if the degree of A is small enough. We illustrate it with the following example.

Example 2.9. Let us consider the function

A “ 1

8

z4 ` 8 z3 ` 8 z ´ 8

z ´ 1
.

One can check that A has three critical values 1, 9, and 8, and that

A ´ 1 “ 1

8

z3 pz ` 8q
z ´ 1

, A ´ 9 “ 1

8

`
z2 ` 4 z ´ 8

˘2

z ´ 1
.

Since the multiplicities of A at the preimages of 1, 9, and 8 are

mult0A “ 3, mult´8A “ 1, mult´2`2
?
3
A “ 2, mult´2´2

?
3
A “ 2,

and
mult8A “ 3, mult1A “ 1,

Lemma 2.1 implies that for any σ P GpAq either

(13) σp0q “ 0, σp8q “ 8, σp´8q “ ´8, σp1q “ 1,

or

(14) σp0q “ 8, σp8q “ 0, σp´8q “ 1, σp1q “ ´8.

Moreover, in addition, either

(15) σp´2 ` 2
?
3q “ ´2 ´ 2

?
3, σp´2 ´ 2

?
3q “ ´2 ` 2

?
3,
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or

σp´2 ` 2
?
3q “ ´2 ` 2

?
3, σp´2 ´ 2

?
3q “ ´2 ´ 2

?
3.

Clearly, condition (13) implies that σ “ z, while the unique transformation
satisfying (14) is

(16) σ “ ´8{z,

and this transformation satisfies (15). Furthermore, the corresponding νσ must
satisfy

νσp1q “ 8, νσp8q “ 1, νσp9q “ 9,

implying that

(17) νσ “ z ` 63

z ´ 1
.

Therefore, (1) can hold only for σ and νσ given by formulas (16) and (17), and
a direct calculation shows that (1) is indeed satisfied. Thus, the group GpAq is a
cyclic group of order two.

Notice that to verify whether a given Möbius transformation σ belongs to GpAq
one can use the Schwarz derivative. Let us recall that for a function f meromorphic
on a domain D Ă C the Schwarz derivative is defined by

Spfqpzq “ f3

f 1
´ 3

2

ˆ
f2

f 1

˙2

.

The characteristic property of the Schwarz derivative is that for two functions f and
g meromorphic on D the equality Spfqpzq “ Spgqpzq holds if and only if g “ ν ˝ f

for some Möbius transformation ν. Thus, a Möbius transformation σ belongs to
GpAq if and only if

SpAqpzq “ SpA ˝ σqpzq.
We finish this section by another example of calculation of GpAq.

Example 2.10. Let us consider the function

B “ ´ 2z2

z4 ` 1
“ ´ 2

z2 ` 1

z2

.

It is easy to see that ΣpBq contains the transformations z Ñ ´z and z Ñ 1{z, which
generate the Klein four-group V4 “ D4, implying that ΣpBq “ D4 by Theorem 2.3.
Furthermore, it is clear that GpBq contains the transformation z Ñ iz, implying
that GpBq contains D8.

The groups A4, A5, and Cl do not contain D8. Therefore, if D8 is a proper
subgroup of GpBq, then either GpBq “ S4, or GpBq is a dihedral group containing
an element σ of order k ą 4, whose fixed points coincide with fixed points of z Ñ iz.
The second case is impossible, since any Möbius transformation σ fixing 0 and 8
has the form cz, c P Czt0u, and it is easy to see that such σ belongs to GpBq if and
only if it is a power of z Ñ iz. On the other hand, a direct calculation shows that
for the transformation µ “ z`i

z´i
, generating together with z Ñ iz and z Ñ 1{z the

group S4, equality (1) holds for ν “ ´z`1

´3 z´1
. Thus, GpBq – S4.
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3. Groups Σ8pAq, Aut8pAq and the measure of maximal entropy

Let us recall that by the results of Freire, Lopes, Mañé ([3]) and Lyubich ([8]), for
every rational function A of degree n ě 2 there exists a unique probability measure
µA on CP1, which is invariant under A, has support equal to the Julia set JA, and
achieves maximal entropy logn among all A-invariant probability measures.

The measure µA can be described as follows. For a P CP1 let zki paq, i “ 1, . . . , nk,

be the roots of the equation A˝kpzq “ a counted with multiplicity, and µA,kpaq the
measure defined by

(18) µA,kpaq “ 1

nk

nkÿ

i“1

δzk

i
paq.

Then for every a P CP1 with two possible exceptions, the sequence µA,kpaq, k ě 1,
converges in the weak topology to µA. Notice that this description of µA implies
that µA “ µB whenever A and B share an iterate.

The measure µA is characterized by the balancedness property that

µApApSqq “ µApSqdegA
for any Borel set S on which A is injective. Notice that for rational functions A

and B the property to have the same measure of maximal entropy can be expressed
also in algebraic terms (see [7]), leading to characterizations of such functions in
terms of functional equations (see [7], [14], [18]).

The relations between the groups Σ8pAq, Aut8pAq and the measure of maximal
entropy are described by the following two statements.

Lemma 3.1. Let A be a rational function of degree n ě 2. Then σ P Aut8pAq if
and only if A and σ´1˝A˝σ have a common iterate. In particular, if σ P Aut8pAq,
then A and σ´1 ˝ A ˝ σ share the measure of maximal entropy.

Proof. The proof is trivial, given that rational functions sharing an iterate share a
measure of maximal entropy. �

Lemma 3.2. Let A be a rational function of degree n ě 2. Then for every
σ P Σ8pAq the functions A and A ˝ σ share the measure of maximal entropy.

Proof. The equality

A˝l “ A˝l ˝ σ, l ě 1,

implies that for any k ě l and a P CP1 the transformation σ maps the set of roots
of the equation A˝kpzq “ a to itself. Thus, for any set S Ă CP

1 we have

|S X A´kpaq| “ |σpSq X A´kpaq|, k ě l, a P CP
1,

implying that any σ P Σ8pAq is µA-invariant since µA is a limit of (18).
Let now S be a Borel set on which A ˝ σ is injective. Then A is injective on

σpSq, implying that

µA

`
pA ˝ σqpSq

˘
“ µA

`
ApσpSq

˘
“ nµA

`
σpSq

˘
“ nµApSq.

Thus, µA is the balanced measure for A ˝ σ, and hence µA “ µA˝σ. �

It was proved by Levin ([5], [6]) that for any rational function A of degree n ě 2
that is not conjugate to z˘n there exist at most finitely many rational functions B
of any given degree d ě 2 sharing the measure of maximal entropy with A. Levin’s
theorem combined with Lemma 3.1 and Lemma 3.2 implies the following result.
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Theorem 3.3. Let A be a rational function of degree n ě 2 that is not conjugate
to z˘n. Then the groups Aut8pAq and Σ8pAq are finite.

Proof. Since σ P Aut8pAq implies that A and σ´1 ˝ A ˝ σ share the measure of
maximal entropy by Lemma 3.1, it follows from Levin’s theorem that the set of
functions

(19) σ´1 ˝ A ˝ σ, σ P Aut8pAq,
is finite. On the other hand, the equality

σ´1 ˝ A ˝ σ “ σ1´1 ˝ A ˝ σ1, σ1 P AutpCP1q,
implies that σ1 ˝ σ´1 P AutpAq. Thus, the finiteness of set (19) implies that there
exist σ1, σ2, . . . , σl such that any σ1 P Aut8pAq has the form

σ1 “ pσ ˝ σk,

for some pσ P AutpAq and k, 1 ď k ď l. Since AutpAq is finite, this implies that
Aut8pAq is also finite.

Similarly, it follows from Lemma 3.2 and Levin’s theorem that the set of functions

A ˝ σ, σ P Σ8pAq,
is finite, implying the finiteness of Σ8pAq since the equality

A ˝ σ “ A ˝ σ1

yields that σ1 ˝ σ´1 P ΣpAq. �

4. Groups pGpA˝kq and Aut8pAq
Let A be a rational function of degree n ě 2. We define the set SpAq as the

union

SpAq “
8ď

i“1

pGpA˝kq,

that is, as the set of Möbius transformation ν such that the equality

(20) ν ˝ A˝k “ A˝k ˝ µ

holds for some Möbius transformation µ and k ě 1. The next several results provide
a characterization of elements of SpAq and show that SpAq is finite and bounded
in terms of n, unless A is a quasi-power.

We start from the following statement.

Theorem 4.1. Let A1, A2, . . . , Ak and B1, B2, . . . , Bk, k ě 2, be rational functions
of degree n ě 2 such that

(21) A1 ˝ A2 ˝ ¨ ¨ ¨ ˝ Ak “ B1 ˝ B2 ˝ ¨ ¨ ¨ ˝ Bk.

Then cpA1q Ď cpB1 ˝ B2q.
Proof. Let f be a rational function of degree d, and T Ă CP

1 a finite set. It is clear
that the cardinality of the preimage f´1pT q satisfies the upper bound

(22) |f´1pT q| ď |T |d.
To obtain the lower bound, we observe that the Riemann-Hurwitz formula

2d ´ 2 “
ÿ

zPCP1

pmultzf ´ 1q
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implies that ÿ

zPf´1pT q

pmultzf ´ 1q ď 2d ´ 2.

Therefore,

(23) |f´1pT q| “
ÿ

zPf´1tTu

1 ě
ÿ

zPf´1tTu

multzf ´ 2d ` 2 “ p|T | ´ 2qd ` 2.

Let us denote by F the rational function defined by any of the parts of equality
(21). Assume that c is a critical value of A1 such that c R cpB1 ˝ B2q. Clearly,

|F´1tcu| “ |pA2 ˝ ¨ ¨ ¨ ˝ Akq´1pA´1

1
tcuq|.

Therefore, since c P cpA1q implies that |A´1

1
tcu| ď n ´ 1, it follows from (22) that

(24) |F´1tcu| ď pn ´ 1qnk´1.

On the other hand,

|F´1tcu| “ |pB3 ˝ ¨ ¨ ¨ ˝ Bkq´1ppB1 ˝ B2q´1tcuq|.
Since the condition c R cpB1˝B2q is equivalent to the equality |pB1˝B2q´1tcu| “ n2,

this implies by (23) that

(25) |F´1tcu| ě pn2 ´ 2qnk´2 ` 2.

It follows now from (24) and (25) that

pn2 ´ 2qnk´2 ` 2 ď pn ´ 1qnk´1,

or equivalently that nk´1 ` 2 ď 2nk´2. However, this leads to a contradiction since
n ě 2 implies that nk´1 ` 2 ě 2nk´2 ` 2. Therefore, cpA1q Ď cpB1 ˝ B2q. �

Theorem 4.1 implies the following statement.

Theorem 4.2. Let A be a rational function of degree n ě 2. Then for every
ν P SpAq the inclusion ν

`
cpAq

˘
Ď cpA˝2q holds.

Proof. Let ν be an element of SpAq. In case ν P pGpAq, the statement of the theorem
follows from Lemma 2.1, iii), since cpAq Ď cpA˝2q by the chain rule. Similarly, if ν

belongs to pGpA˝2q, then ν
`
cpA˝2q

˘
“ cpA˝2q, implying that

ν
`
cpAq

˘
Ď ν

`
cpA˝2q

˘
“ cpA˝2q.

Therefore, we may assume that ν P pGpA˝kq for some k ě 3. Since equality (20) has
the form (21) with

A1 “ ν ˝ A, A2 “ A3 “ ¨ ¨ ¨ “ Ak “ A,

and
B1 “ B2 “ ¨ ¨ ¨ “ Bk´1 “ A, Bk “ A ˝ µ,

applying Theorem 4.1 we conclude that cpν ˝ Aq Ď cpA˝2q. Taking into account
that for any rational function A the equality

cpν ˝ Aq “ ν
`
cpAq

˘

holds, this implies that ν
`
cpAq

˘
Ď cpA˝2q. �

Theorem 4.3. Let A be a rational function of degree n ě 2. Then the set SpAq is
finite and bounded in terms of n, unless A is a quasi-power. Furthermore, the setŤ8

i“2
pGpA˝kq is finite and bounded in terms of n, unless A is conjugate to z˘n.
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Proof. Since any Möbius transformation is defined by its values at any three points,
the condition ν

`
cpAq

˘
Ď cpA˝2q is satisfied only for finitely many Möbius transfor-

mations whenever A has at least three critical values. Thus, the finiteness of SpAq
in case A is not a quasi-power follows from the first part of Lemma 2.2. Moreover,
since |cpAq| and |cpA˝2q| are bounded in terms of n, the set SpAq is also bounded
in terms of n.

Further, if A is not conjugate to z˘n, then its second iterate A˝2 is not a quasi-

power by the second part of Lemma 2.2. To prove the finiteness of
Ť8

i“2
pGpA˝kq in

this case, it is enough to show that for every ν P pGpA˝kq, k ě 2, the inclusion

(26) ν
`
cpA˝2q

˘
Ď cpA˝4q

holds, and this can be done by a modification of the proof of Theorem 4.2. Indeed,
equality (20) implies the equality

ν ˝ A˝2k “ A˝k ˝ µ ˝ A˝k

which can be rewritten for k ě 4 in the form (21) with

A1 “ ν ˝ A˝2, A2 “ A3 “ ¨ ¨ ¨ “ Ak “ A˝2,

and

B1 “ ¨ ¨ ¨ “ B k

2

“ A˝2, B k

2
`1

“ µ ˝ A˝2, B k

2
`2

“ ¨ ¨ ¨ “ Bk “ A˝2,

if k is even, or

B1 “ ¨ ¨ ¨ “ B k´1

2

“ A˝2, B k´1

2
`1

“ A ˝ µ ˝ A, B k´1

2
`2

“ ¨ ¨ ¨ “ Bk “ A˝2,

if k is odd. Therefore, if ν belongs to pGpA˝kq for some k ě 4, then applying
Theorem 4.1, we conclude that (26) holds. On the other hand, if ν belongs to
pGpA˝2q, then ν

`
cpA˝2q

˘
“ cpA˝2q, by Lemma 2.1, iii), implying (26) by the chain

rule. Similarly, if ν belongs to pGpA˝3q, then ν
`
cpA˝3q

˘
“ cpA˝3q, implying that

ν
`
cpA˝2q

˘
Ď ν

`
cpA˝3q

˘
“ cpA˝3q Ď cpA˝4q. l

Theorem 4.3 implies the following result.

Theorem 4.4. Let A be a rational function of degree n ě 2. Then the orders of

the groups pGpA˝kq, k ě 1, are finite and uniformly bounded in terms of n only,

unless A is a quasi-power. Furthermore, the orders of the groups pGpA˝kq, k ě 2,
are finite and uniformly bounded in terms of n only, unless A is conjugate to z˘n.

Proof. The theorem is a direct corollary of Theorem 4.3. �

Finally, Theorem 4.2 and Theorem 4.3 imply Theorem 1.2 from the introduction.

Proof of Theorem 1.2. The boundedness of the set
Ť8

i“2
AutpA˝kq in terms of n

for A that is not conjugate to zn follows from Theorem 4.3. On the other hand,
AutpAq is finite and bounded in terms of n by Corollary 2.6. This proves the first
part of the theorem. Finally, since the set SpAq contains the group Aut8pAq, the
second part of the theorem follows from Theorem 4.2 (the assumption that A is not
conjugate to zn is actually redundant). �
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5. Groups Σ8pAq and GpA˝kq
Let A and B be rational functions of degree at least two. We recall that the

function B is said to be semiconjugate to the function A if there exists a non-
constant rational function X such that the equality

(27) A ˝ X “ X ˝ B

holds. Usually, we will write this condition in the form of a commuting diagram

CP1 BÝÝÝÝÑ CP1

X

§§đ
§§đX

CP1 AÝÝÝÝÑ CP1.

The simplest examples of semiconjugate rational functions are provided by equiva-
lent rational functions defined in the introduction. Indeed, it follows from equalities
(5) that the diagrams

CP1 AÝÝÝÝÑ CP1

V

§§đ
§§đV

CP1
rAÝÝÝÝÑ CP1

CP1
rAÝÝÝÝÑ CP1

U

§§đ
§§đU

CP1 AÝÝÝÝÑ CP1

commutes, implying inductively that if A is equivalent to B, then A is semiconjugate
to B, and B is semiconjugate to A.

A comprehensive description of semiconjugate rational functions was obtained
in the papers [11], [12], [13]. In particular, it was shown in [11] that solutions
A,X,B of (27) satisfying CpX,Bq “ Cpzq, called primitive, can be described in
terms of group actions on CP1 or C, implying strong restrictions on a possible form
of A, B and X . On the other hand, an arbitrary solution of equation (27) can be
reduced to a primitive one by a sequence of elementary transformations as follows.
By the Lüroth theorem, the field CpX,Bq is generated by some rational function
W . Therefore, if CpX,Bq ‰ Cpzq, then there exists a rational function W of degree
greater than one such that

B “ rB ˝ W, X “ rX ˝ W

for some rational functions rX and rB satisfying Cp rX, rBq “ Cpzq. Moreover, it is
easy to see that the diagram

CP1 BÝÝÝÝÑ CP1

W

§§đ
§§đW

CP1 W˝ rBÝÝÝÝÑ CP1

ĂX
§§đ

§§đĂX

CP
1 AÝÝÝÝÑ CP

1

commutes. Thus, the triple A, rX,W ˝ rB is another solution of (27). This new

solution is not necessarily primitive, however deg rX ă degX . Therefore, continuing
in this way, after a finite number of similar transformations we will arrive to a
primitive solution. In more detail, the above argument shows that for any rational
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functions A,X,B satisfying (27) there exist rational functions X0, B0, U such that
X “ X0 ˝ U, the diagram

(28)

CP1 BÝÝÝÝÑ CP1

U

§§đ
§§đU

CP1 B0ÝÝÝÝÑ CP1

X0

§§đ
§§đX0

CP1 AÝÝÝÝÑ CP1

commutes, the triple A,X0, B0 is a primitive solution of (27), and B0 „ B.
The following theorem is essentially the second part of Theorem 1.3 from the

introduction but without the assumption that A is not conjugate to zn, which is
redundant in this case.

Theorem 5.1. Let A be a rational function of degree n ě 2. Then for every
σ P Σ8pAq the relation A ˝ σ „ A holds.

Proof. Let σ be an element of Σ8pAq. Then
(29) A˝k “ A˝k ˝ σ

for some k ě 1. Writing this equality as the semiconjugacy

CP1 A˝σÝÝÝÝÑ CP1

§§đA˝pk´1q

§§đA˝pk´1q

CP1 AÝÝÝÝÑ CP1 ,

we see that to prove the theorem it is enough to show that in diagram (28), corre-
sponding to the solution

A “ A, X “ A˝pk´1q, B “ A ˝ σ

of (27), the function X0 has degree one. The proof of the last statement is similar
to the proof of Theorem 2.3 in [16] and follows from the following two facts. First,
for any primitive solution A,X,B of (27), the solution A˝l, X,B˝l, l ě 1, is also
primitive (see [16], Lemma 2.5). Second, a solution A,X,B of (27) is primitive if
and only if the algebraic curve

Apxq ´ Xpyq “ 0

is irreducible (see [16], Lemma 2.4). Using these facts we see that the triple

A˝pk´1q, X0, B
˝pk´1q
0

is a primitive solution of (27), and the algebraic curve

(30) A˝pk´1qpxq ´ X0pyq “ 0

is irreducible. However, the equality

A˝pk´1q “ X0 ˝ U,

implies that the curve

Upxq ´ y “ 0

is a component of (30). Moreover, if degX0 ą 1, then this component is proper.
Therefore, degX0 “ 1. �
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The following result proves the first part of Theorem 1.3 and thus finishes the
proof of this theorem.

Theorem 5.2. Let A be a rational function of degree n ě 2 that is not conjugate
to z˘n. Then the order of the group Σ8pAq is finite and bounded in terms of n.

Proof. Let us observe first that it is enough to prove the theorem under the as-
sumption that A is not a quasi-power. Indeed, if A is a quasi-power but is not
conjugate to z˘n, then A˝2 is not a quasi-power by Lemma 2.2. Therefore, if the
theorem is true for functions that are not quasi-powers, then for any A that is not
conjugate to z˘n, the group Σ8pA˝2q is finite and bounded in terms of n, implying
by (3) that the same is true for the group Σ8pAq.

Assume now that A is not a quasi-power. Then GpAq is finite by Theorem 2.4.
Let us recall that in view of equality (6) the equivalence class rAs is a union of
conjugacy classes. Denoting the number of these conjugacy classes by NA, let us
show that if NA is finite, then

(31) |Σ8pAq| ď |GpAq|NA.

By Theorem 5.1, for any σ P Σ8pAq the function A ˝ σ belongs to one of NA

conjugacy classes in the equivalence class rAs. Furthermore, if A ˝ σ0 and A ˝ σ

belong to the same conjugacy class, then

A ˝ σ “ α ˝ A ˝ σ0 ˝ α´1

for some α P AutpCP1q, implying that

A ˝ σ ˝ α ˝ σ´1

0
“ α ˝ A.

This is possible only if α belongs to the group pGpAq, and, in addition, σ ˝ α ˝ σ´1

0

belongs to the preimage of α under homomorphism (2). Therefore, for any fixed

σ0, there could be at most | pGpAq| such α, and for each α there could be at most
|KerγA| elements σ P Σ8pAq such that

γApσ ˝ α ˝ σ´1

0
q “ α.

Thus, (31) follows from (9).
It was proved in [12] that NA is infinite if and only if A is a flexible Lattès

map. However, the proof given in [12] uses the theorem of McMullen ([9]) about
isospectral rational functions, which is not effective. Therefore, the result of [12]
does not imply that NA is bounded in terms of n. Nevertheless, we can use the
main result of [15], which yields in particular that for a given rational function B

of degree n ě 2 the number of conjugacy classes of rational functions A such that
(27) holds for some rational function X is finite and bounded in terms of n, unless
B is special, that is, unless B is either a Lattès map or it is conjugate to z˘n or
˘Tn. Since A „ A1 implies that A is semiconjugate to A1, this implies that for
non-special A the number NA is bounded in terms of n. Moreover, it is easy to see
that the same is true also for A conjugate to z˘n or ˘Tn, since any decomposition
of zn has the form

zn “ pzd ˝ µq ˝ pµ´1 ˝ zn{dq,
where µ P AutpCP1q and d|n, while any decomposition of Tn has the form

Tn “ pTd ˝ µq ˝ pµ´1 ˝ Tn{dq,
where µ P AutpCP1q and d|n.
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The above shows that to finish the proof of Theorem 5.2 we only must prove
that the group Σ8pAq is finite and bounded in terms of n if A is a Lattès map.
To prove the last statement, we recall that if A is a Lattès map, then there exists
an orbifold O “ pCP1, νq of zero Euler characteristic such that A : O Ñ O is a
covering map between orbifold (see [10], [13] for more detail). Since this implies
that A˝k : O Ñ O, k ě 1, also is a covering map (see [11], Corollary 4.1), it follows
from equality (29) that σ : O Ñ O is a covering map (see [11], Corollary 4.2 and
Lemma 4.1). As σ is of degree one, the last condition simply means that σ permute
points of the support of O. Since the support of an orbifold O “ pCP1, νq of zero
Euler characteristic contains either three or four points, this implies that Σ8pAq is
finite and uniformly bounded for any Lattès map A. �

Proof of Theorem 1.4. If σ P Σ8pAq, then
(32) A ˝ σ „ A,

by Theorem 5.1. On the other hand, since for any indecomposable function A the
number NA obviously is equal to one, condition (32) is equivalent to the condition
that

(33) A ˝ σ “ β ˝ A ˝ β´1

for some β P AutpCP1q. Clearly, equality (33) implies that β belongs to pGpAq.
Therefore, if pGpAq is trivial, then (32) is satisfied only if A ˝ σ “ A, that is, only if

σ belongs to ΣpAq. Thus, ΣpAq “ Σ8pAq, whenever pGpAq is trivial.
Furthermore, it follows from equality (33) that σ ˝ β belongs to the preimage of

β under homomorphism (2). On the other hand, if GpAq “ AutpAq, this preimage
consists of β only. Therefore, in this case σ ˝ β “ β, implying that σ is the identity
map. Thus, the group Σ8pAq is trivial, whenever GpAq “ AutpAq. �

The following theorem implies Theorem 1.1 from the introduction.

Theorem 5.3. Let A be a rational function of degree n ě 2. Then the orders of
the groups GpA˝kq, k ě 1, are finite and uniformly bounded in terms of n only,
unless A is a quasi-power. Furthermore, the orders of the groups GpA˝kq, k ě 2,
are finite and uniformly bounded in terms of n only, unless A is conjugate to z˘n.

Proof. If A is not a quasi-power, then by Theorem 4.4 and Theorem 5.2 the orders

of the groups pGpA˝kq, k ě 1, and ΣpA˝kq, k ě 1, are finite and uniformly bounded
in terms of n only. Therefore, by (9), the orders of the groups GpA˝kq, k ě 1, also
are finite and uniformly bounded. Similarly, the groups GpA˝kq, k ě 2, are finite
and uniformly bounded in terms of n only, unless A is conjugate to z˘n. �

Corollary 5.4. Let A be a rational function of degree n ě 2. Then the sequence
GpA˝kq, k ě 1, contains only finitely many non-isomorphic groups.

Proof. For A not conjugate to z˘n, the corollary follows from Theorem 5.3 since
there exist only finitely many groups of any given order. Moreover, actually the
groups GpA˝kq, k ě 2, belong to the list A4, S4, A5, Cl, D2l, by Theorem 2.4. On
the other hand, if A is conjugate to z˘n, then all the groups GpA˝kq, k ě 1, consist
of the transformations z Ñ cz˘1, c P Czt0u. �

We finish this section by two examples of calculation of the group Σ8pAq.
Example 5.5. Let us consider the function

A “ x ` 27

x3
.
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A calculation shows that, in addition to the critical value 8, this function has
critical values ˘4 and ˘4i, and

A ˘ 4 “
`
x2 ¯ 2 x ` 3

˘
px ˘ 3q2

x3
,

A ˘ 4i “
`
x2 ¯ 2 ix ´ 3

˘
p˘x ` 3 iq2

x3
.

Since the above equalities imply that mult0A “ 3, while at any other point of CP1

the multiplicity of A is at most two, it follows from Theorem 2.7 that GpAq is a cyclic
group, whose generator has zero as a fixed point. Moreover, since GpAq obviously
contains the transformation σ “ ´z, the second fixed point of this generator must
be infinity. This implies easily that GpAq is a cyclic group of order two, and
GpAq “ AutpAq. Finally, since mult0A “ 3, it follows from the chain rule that
the equality A “ A1 ˝ A2, where A1 and A2 are rational function of degree two is
impossible. Therefore, A is indecomposable, and hence the group Σ8pAq is trivial
by Theorem 1.4.

Example 5.6. Let us consider the function

A “ z2 ´ 1

z2 ` 1
.

Since A is a quasi-power, ΣpAq is a cyclic group of order two, generated by the
transformation z Ñ ´z. A calculation shows that the second iterate

A˝2 “ ´ 2z2

z4 ` 1

is the function B from Example 2.10. Thus, ΣpA˝2q is the dihedral group D4,
generated by the transformation z Ñ ´z and z Ñ 1{z. In particular, ΣpA˝2q is
larger than ΣpAq. Moreover, since

A˝3 “ ´
`
z4 ´ 1

˘2

z8 ` 6 z4 ` 1
,

we see that ΣpA˝3q contains the dihedral groupD8, generated by the transformation
µ1 “ iz and µ2 “ 1{z, and hence ΣpA˝3q is larger than ΣpA˝2q.

Let us show that

Σ8pAq “ ΣpA˝3q “ D8.

As in Example 2.10, we see that if Σ8pAq is larger thanD8, then either Σ8pAq “ S4,
or Σ8pAq is a dihedral group containing an element σ of order l ą 4 such that µ1 is
an iterate of σ. The first case is impossible, for otherwise Theorem 2.3 implies that
for k satisfying Σ8pAq “ ΣpA˝kq the number degA˝k “ 2k is divisible by |S4| “ 24.
On the other hand, in the second case, the fixed points of σ are zero and infinity.
Since A is indecomposable, it follows from Theorem 5.1 that to exclude the second
case it is enough to show that if σ “ cz, c P Czt0u, satisfies

(34) A ˝ σ “ β ˝ A ˝ β´1, β P AutpCP1q,

then σ is an iterate of µ1. Since critical points of the function on the left side
of (34) coincide with critical points of the function on the right side, the Möbius
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transformation β necessarily has the form β “ dz˘1, d P Czt0u. Thus, equation
(34) reduces to the equations

c2z2 ´ 1

c2z2 ` 1
“ 1

d

d2z2 ´ 1

d2z2 ` 1
,

and

c2z2 ´ 1

c2z2 ` 1
“ d

`
d2 ` z2

˘

d2 ´ z2
.

One can check that solutions of the first equation are d “ 1 and c “ ˘1, while
solutions of the second are d “ ´1 and c “ ˘i. This proves the necessary statement.
Notice that instead of Theorem 5.1 it is also possible to use Theorem 1.5 (see the
next section).

6. Groups GpA, z0, z1q
Following [17], we say that a formal power series fpzq “ ř8

i“1
aiz

i having zero
as a fixed point is homozygous mod l if the inequalities ai ‰ 0 and aj ‰ 0 imply
the equality i ” jpmod lq. If f is not homozygous mod l, it is called hybrid mod l.

Obviously, the condition that f is homozygous mod l is equivalent to the condi-
tion that f “ zrgpzlq for some formal power series g “ ř8

i“0
biz

i and integer r,

1 ď r ď l. In particular, if f is homozygous mod l, then any iterate of f is homozy-
gous mod l. The inverse is not true. However, the following statement proved by
Reznick ([17]) holds: if a formal power series fpzq “ ř8

i“1
aiz

i is hybrid mod l and

f˝k is homozygous mod l, then f˝kspzq “ z for some integer s ě 1. Our proof of
Theorem 1.5 relies on this result.

Proof of Theorem 1.5. Without loss of generality, we can assume that z0 “ 0 and
z1 “ 8. Let fA be the Taylor series of the function A at zero. Arguing as in
the proof of Theorem 2.4, we see that every element of GpA, 0,8q has the form
z Ñ εz, where ε is a root of unity, and GpA, 0,8q is a finite cyclic group, whose
order is equal to the maximum number n such that fA is homozygous mod n. Since
fA˝k “ f˝k

A , this implies that

GpA, 0,8q Ď GpA˝k, 0,8q, k ě 1.

Moreover, if GpA˝k, 0,8q is strictly larger than GpA, 0,8q for some k ą 1, then
there exists n0 such that fA is hybrid mod n0 but f˝k

A is homozygous mod n0.
Therefore, by the Reznick theorem, the equality f˝ks

A “ z holds for some s ě 1.
However, in this case by the analytical continuation A˝ks “ z for all z P CP1, in
contradiction with n ě 2. Thus, the groups GpA˝k, 0,8q, k ě 1, are equal. �

Notice that the groups GpA˝k, z0, z1q, k ě 1, are equal even if A is conjugate to
z˘n. Indeed, for A “ z˘n these groups are trivial, unless tz0, z1u “ t0,8u, while
in the last case all these groups consist of the transformations z Ñ cz˘1, c P Czt0u.

Let us emphasize that since iterates A˝k, k ą 1, have in general more fixed points
than A, it may happen that GpA˝k, z0, z1q, k ą 1, is non-trivial, while GpA, z0, z1q
is not defined, so that the equality GpA˝k, z0, z1q “ GpA, z0, z1q does not make
sense. For example, for the function

A “ z2 ´ 1

z2 ` 1
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from Example 5.6 zero is not a fixed point for A, and hence the group GpA, 0,8q
is not defined. However, zero is a fixed point for

A˝2 “ ´ 2z2

z4 ` 1
,

and the group GpA˝2, 0,8q is a cyclic group of order four. Let us remark that
Theorem 1.5 gives another proof of the fact that Σ8pAq cannot contain an element
σ “ cz, c P Czt0u, of order l ą 4. Indeed, such σ must belong to the group
GpA˝k, 0,8q for some k ě 1, and hence to the group GpA˝2k, 0,8q. However,
GpA˝2k, 0,8q is equal to GpA˝2, 0,8q “ C4 by Theorem 1.5 applied to A˝2.

Under certain conditions, Theorem 1.5 permits to estimate the order of the
groups Aut8pAq and Σ8pAq and even to describe these groups explicitly.

Theorem 6.1. Let A be a rational function of degree n ě 2 that is not conjugate
to z˘n. Assume that for some k ě 1 the group AutpA˝kq contains an element σ of
order at least six with fixed points z0 and z1 such that z0 is a fixed point of A˝k.
Then the inequality |Aut8pAq| ď 2|GpA˝k, z0, z1q| holds. Similarly, if σ as above is
contained in ΣpA˝kq, then |Σ8pAq| ď 2|GpA˝k, z0, z1q|.

Proof. Since the maximal order of a cyclic subgroup in the groups A4, S4, A5 is
five, it follows from Corollary 2.6 that if AutpA˝kq contains an element σ of order
r ą 5, then either Aut8pAq “ Cs or Aut8pAq “ D2s, where r|s. Moreover, if σ8 is
an element of order s in Aut8pAq, then σ is an iterate of σ8. In particular, fixed
points of σ8 coincide with fixed points of σ.

To prove the theorem, we only must show that the inequality

(35) s ą |GpA˝k, z0, z1q|

is impossible. Assume the inverse. Since σ8 belongs to AutpA˝k1 q for some k1 ě 1,

it belongs to AutpA˝kk1 q and GpA˝kk1

, z0, z1q. Therefore, if (35) holds, then the

group GpA˝kk1

, z0, z1q contains an element of order greater than |GpA˝k, z0, z1q|, in
contradiction with the equality

GpA˝kk1

, z0, z1q “ GpA˝k, z0, z1q,
provided by Theorem 1.5 applied to GpA˝kq. The proof of the inequality for |Σ8pAq|
is similar. �

Example 6.2. Let us consider the function

A “ z
z6 ´ 2

2z6 ´ 1
.

It is easy to see that AutpAq contains the dihedral group D12 generated by the
transformations

z Ñ e
2πi

6 z, z Ñ 1{z.
Since zero is a fixed point of A and GpA, 0,8q “ C6, it follows from Theorem 6.1
that

Aut8pAq “ AutpAq “ D12.

Although the group AutpA˝kq does not necessarily contain an element that be-
longs toGpA˝k, z0, z1q, it always contains an element that belongs to GpA˝2k, z0, z1q.
More generally, the following statement holds.
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Lemma 6.3. Let A be a rational function of degree n ě 2, and σ R ΣpA˝kq a
Möbius transformation such that the equality

(36) A˝k ˝ σ “ σ˝l ˝ A˝k,

holds for some l ě 1. Then at least one of the fixed points z0, z1 of σ is a fixed point
of A˝2k, and if z0 is such a point, then σ P GpA˝2k, z0, z1q.
Proof. Clearly, equality (36) implies the equalities

σ˝lpA˝kpz0qq “ A˝kpz0q, σ˝lpA˝kpz1qq “ A˝kpz1q.
However, since σ˝l is not the identity map, it has only two fixed points z0, z1.
Therefore, A˝ktz0, z1u Ď tz0, z1u, implying that at least one of the points z0, z1 is
a fixed point of A˝2k. Finally, if z0 is such a point, then σ P GpA˝2k, z0, z1q. �

Combining Theorem 6.1 with Lemma 6.3 we obtain the following result.

Theorem 6.4. Let A be a rational function of degree n ě 2 that is not conjugate
to z˘n. Assume that for some k ě 1 the group AutpA˝kq contains an element σ

of order at least six with fixed points z0, z1. Then |Aut8pAq| ď 2|GpA˝2k, z0, z1q|,
where z0 is a fixed point of σ that is also a fixed point of A˝2k. �
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