ON SYMMETRIES OF ITERATES OF RATIONAL FUNCTIONS

FEDOR PAKOVICH

ABSTRACT. Let A be a rational function of degree $n \geq 2$. Let us denote by G(A) the group of Möbius transformations σ such that $A \circ \sigma = \nu_{\sigma} \circ A$ for some Möbius transformations ν_{σ} , and by $\Sigma(A)$ and $\operatorname{Aut}(A)$ the subgroups of G(A) consisting of σ such that $A \circ \sigma = A$ and $A \circ \sigma = \sigma \circ A$, correspondingly. In this paper, we study sequences of the above groups arising from iterating A. In particular, we show that if A is not conjugate to $z^{\pm n}$, then the orders of the groups $G(A^{\circ k})$, $k \geq 2$, are finite and uniformly bounded in terms of n only. We also prove a number of results about the groups $\Sigma_{\infty}(A) = \bigcup_{k=1}^{\infty} \Sigma(A^{\circ k})$ and $\operatorname{Aut}_{\infty}(A) = \bigcup_{k=1}^{\infty} \operatorname{Aut}(A^{\circ k})$, which are especially interesting from the dynamical perspective.

1. Introduction

Let A be a rational function of degree $n \ge 2$. In this paper, we study a variety of different subgroups of $\operatorname{Aut}(\mathbb{CP}^1)$ related to A, and more generally to a dynamical system defined by iterating A. Specifically, let us define $\Sigma(A)$ and $\operatorname{Aut}(A)$ as the groups of Möbius transformations σ such that $A \circ \sigma = A$ and $A \circ \sigma = \sigma \circ A$, correspondingly. Notice that elements of $\Sigma(A)$ permute points of any fiber of A, and more generally of any fiber of $A^{\circ k}$, $k \ge 1$, while elements of $\operatorname{Aut}(A)$ permute fixed points of $A^{\circ k}$, $k \ge 1$. Since any Möbius transformation is defined by its values at any three points, this implies in particular that the groups $\Sigma(A)$ and $\operatorname{Aut}(A)$ are finite and therefore belong to the well-known list A_4 , A_5 , C_l , D_{2l} of finite subgroups of $\operatorname{Aut}(\mathbb{CP}^1)$.

The both groups $\Sigma(A)$ and $\operatorname{Aut}(A)$ are subgroups of the group G(A) defined as the group of Möbius transformations σ such that

$$(1) A \circ \sigma = \nu_{\sigma} \circ A$$

for some Möbius transformations ν_{σ} . It is easy to see that G(A) is indeed a group, and that ν_{σ} is defined in a unique way by σ . Furthermore, the map

$$\gamma_A: \sigma \to \nu_\sigma$$

is a homomorphism from G(A) to the group $\operatorname{Aut}(\mathbb{CP}^1)$, whose kernel coincides with $\Sigma(A)$. We will denote the image of γ_A by $\widehat{G}(A)$. It was shown in the paper [15] that unless

$$A = \alpha \circ z^n \circ \beta$$

for some $\alpha, \beta \in Aut(\mathbb{CP}^1)$ the group G(A) is also finite and its order is bounded in terms of degree of A.

This research was supported by ISF Grant No. 1092/22.

In this paper, we study the dynamical analogues of the groups $\Sigma(A)$ and $\operatorname{Aut}(A)$ defined by the formulas

$$\Sigma_{\infty}(A) = \bigcup_{k=1}^{\infty} \Sigma(A^{\circ k}), \quad \operatorname{Aut}_{\infty}(A) = \bigcup_{k=1}^{\infty} \operatorname{Aut}(A^{\circ k}).$$

Since

(3)
$$\Sigma(A) \subseteq \Sigma(A^{\circ 2}) \subseteq \Sigma(A^{\circ 3}) \subseteq \dots \subseteq \Sigma(A^{\circ k}) \subseteq \dots,$$

and

$$\operatorname{Aut}(A^{\circ k}) \subseteq \operatorname{Aut}(A^{\circ r}), \quad \operatorname{Aut}(A^{\circ l}) \subseteq \operatorname{Aut}(A^{\circ r})$$

for any common multiple r of k and l, the sets $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ are groups. While it is not clear a priori that the groups $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ are finite, for A not conjugated to $z^{\pm n}$ their finiteness can be deduced from the theorem of Levin ([5], [6]) about rational functions sharing the measure of maximal entropy. However, the Levin theorem does not permit to describe the groups $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ or to estimate their orders, and the main goal of this paper is to prove some results in this direction. More generally, we study the totality of the groups $G(A^{\circ k})$, $k \ge 1$, defined by iterating A.

Our main result about the groups $G(A^{\circ k})$, $k \ge 1$, can be formulated as follows.

Theorem 1.1. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Then the orders of the groups $G(A^{\circ k})$, $k \ge 2$, are finite and uniformly bounded in terms of n only.

In addition to Theorem 1.1, we prove a number of more precise results about the groups $\Sigma_{\infty}(A)$ and $\operatorname{Aut}_{\infty}(A)$ allowing us in certain cases to calculate these groups explicitly. For a rational function A, let us denote by c(A) the set of its critical values. Our main result concerning the groups $\operatorname{Aut}_{\infty}(A)$ is following.

Theorem 1.2. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Then the group $\operatorname{Aut}_{\infty}(A)$ is finite and its order is bounded in terms of n only. Moreover, every $\nu \in \operatorname{Aut}_{\infty}(A)$ maps the set c(A) to the set $c(A^{\circ 2})$.

Notice that since Möbius transformations ν such that

(4)
$$\nu(c(A)) \subseteq c(A^{\circ 2})$$

can be described explicitly, Theorem 1.2 provides us with a concrete subset of $\operatorname{Aut}(\mathbb{CP}^1)$ containing the group $\operatorname{Aut}_{\infty}(A)$.

To formulate our main results concerning groups $\Sigma(A)$, let us introduce some definitions. Let A be a rational function. Then a rational function \widetilde{A} is called an elementary transformation of A if there exist rational functions U and V such that

(5)
$$A = U \circ V \quad \text{and} \quad \widetilde{A} = V \circ U.$$

We say that rational functions A and A' are equivalent and write $A \sim A'$ if there exists a chain of elementary transformations between A and A'. Since for any Möbius transformation μ the equality

$$A = (A \circ \mu^{-1}) \circ \mu$$

holds, the equivalence class [A] of a rational function A is a union of conjugacy classes. Moreover, by the results of the papers [12], [15], the number of conjugacy classes in [A] is finite, unless A is a flexible Lattès map.

In this notation, our main result about the groups $\Sigma_{\infty}(A)$ is following.

Theorem 1.3. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Then the order of the group $\Sigma_{\infty}(A)$ is finite and bounded in terms of n only. Moreover, for every $\sigma \in \Sigma_{\infty}(A)$ the relation $A \circ \sigma \sim A$ holds.

Notice that in some cases Theorem 1.3 permits to describe the group $\Sigma_{\infty}(A)$ completely. Specifically, assume that A is indecomposable, that is, cannot be represented as a composition of two rational functions of degree at least two. In this case, the number of conjugacy classes in the equivalence class [A] obviously is equal to one, and Theorem 1.3 yields the following statement.

Theorem 1.4. Let A be an indecomposable rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Then $\Sigma_{\infty}(A) = \Sigma(A)$, whenever the group $\widehat{G}(A)$ is trivial. Moreover, the group $\Sigma_{\infty}(A)$ is trivial, whenever $G(A) = \operatorname{Aut}(A)$.

Notice that Theorem 1.4 implies in particular that if A is indecomposable and the group G(A) is trivial, then $\Sigma_{\infty}(A)$ is also trivial.

Finally, along with the groups $G(A^{\circ k})$, $k \ge 1$, we consider their "local" versions. Specifically, let $z_0 \in \mathbb{CP}^1$ be a fixed point of A. For a point $z_1 \in \mathbb{CP}^1$ distinct from z_0 , we define $G(A, z_0, z_1)$ as the subgroup of G(A) consisting of Möbius transformations σ such that $\sigma(z_0) = z_0$ and $\sigma(z_1) = z_1$. For these groups, we prove the following statement.

Theorem 1.5. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Assume that $z_0 \in \mathbb{CP}^1$ is a fixed point of A, and $z_1 \in \mathbb{CP}^1$ is a point distinct from z_0 . Then $G(A^{\circ k}, z_0, z_1)$, $k \ge 1$, are finite cyclic groups equal to each other.

Notice that every element $\sigma \in \text{Aut}(A^{\circ k})$, $k \ge 1$, belongs to $G(A^{\circ 2k}, z_0, z_1)$ for some z_0, z_1 . Indeed, the equality

$$A^{\circ k} \circ \sigma = \sigma \circ A^{\circ k}, \quad k \geqslant 1,$$

implies that $A^{\circ k}$ sends the set of fixed points of σ to itself. Therefore, at least one of these points z_0 , z_1 is a fixed point of $A^{\circ 2k}$, and if z_0 is such a point, then $\sigma \in G(A^{\circ 2k}, z_0, z_1)$. In view of this relation between $\operatorname{Aut}(A^{\circ k})$ and $G(A^{\circ 2k}, z_0, z_1)$, Theorem 1.5 allows us in some cases to estimate the order of the group $\operatorname{Aut}_{\infty}(A)$ and even to describe this group explicitly.

The paper is organized as follows. In the second section, we establish basic properties of the group G(A) and provide a method for its calculation. In the third section, we briefly discuss relations between the groups $\Sigma_{\infty}(A)$, $\operatorname{Aut}_{\infty}(A)$ and the measure of maximal entropy for A. In particular, we deduce the finiteness of these groups from the results of Levin ([5], [6]).

In the fourth section, we prove Theorem 1.2. Moreover, we prove that (4) holds for any Möbius transformation ν that belongs to $\hat{G}(A^{\circ k})$ for some $k \geq 1$. In the fifth section, using results about semiconjugate rational functions from the papers [11], [15], we prove Theorem 1.3 and Theorem 1.4. We also prove a slightly more general version of Theorem 1.1. Finally, in the sixth section, we deduce Theorem 1.5 from the result of Reznick ([17]) about iterates of formal power series, and provide some applications of Theorem 1.5 concerning the groups $\operatorname{Aut}_{\infty}(A)$ and $\Sigma_{\infty}(A)$.

2. Groups G(A)

Let A be a rational function of degree $n \ge 2$, and G(A), $\widehat{G}(A)$, $\Sigma(A)$, Aut(A) the groups defined in the introduction. Notice that if rational functions A and A' are related by the equality

$$\alpha \circ A \circ \beta = A'$$

for some $\alpha, \beta \in Aut(\mathbb{CP}^1)$, then

(7)
$$G(A') = \beta^{-1} \circ G(A) \circ \beta, \qquad \widehat{G}(A') = \alpha \circ \widehat{G}(A) \circ \alpha^{-1}.$$

In particular, the groups G(A) and G(A') are isomorphic. Notice also that since

(8)
$$\widehat{G}(A) \cong G(A)/\Sigma(A),$$

the equality

(9)
$$|G(A)| = |\widehat{G}(A)||\Sigma(A)|$$

holds whenever the groups involved are finite.

Lemma 2.1. Let A be a rational function of degree $n \ge 2$. Then the following statements are true.

- i) For every $z \in \mathbb{CP}^1$ and $\sigma \in G(A)$ the multiplicity of A at z is equal to the multiplicity of A at $\sigma(z)$.
- ii) For every $c \in \mathbb{CP}^1$ and $\sigma \in G(A)$ the fiber $A^{-1}\{c\}$ is mapped by σ to the fiber $A^{-1}(\nu_{\sigma}(c))$.
- iii) Every $\nu \in \widehat{G}(A)$ maps c(A) to c(A).

Proof. Since (1) implies that

$$\operatorname{mult}_{\sigma(z)} A \cdot \operatorname{mult}_{z} \sigma = \operatorname{mult}_{A(z)} \nu_{\sigma} \cdot \operatorname{mult}_{z} A$$

the first statement follows from the fact that σ and ν_{σ} are one-to-one.

Further, it is clear that (1) implies

$$\sigma^{-1}(A^{-1}\{c\}) = A^{-1}(\nu_{\sigma}^{-1}\{c\}).$$

Changing now σ^{-1} to σ and taking into account that $\nu_{\sigma}^{-1} = \nu_{\sigma^{-1}}$, we obtain the second statement.

Finally, the third statement follows from the second one, taking into account that

$$|A^{-1}\{c\}| = |A^{-1}\{\nu_{\sigma}(c)\}|$$

since σ is one-to-one, and that c is a critical value of A if and only $|A^{-1}\{c\}| < n$. \square We say that a rational function A of degree $n \ge 2$ is a quasi-power if there exist $\alpha, \beta \in \operatorname{Aut}(\mathbb{CP}^1)$ such that

$$A = \alpha \circ z^n \circ \beta.$$

It is easy to see using Lemma 2.1 that the group $G(z^n)$ consists of the transformations $z \to cz^{\pm 1}$, $c \in \mathbb{C} \setminus \{0\}$. Therefore, by (7), for any quasi-power A the groups G(A) and $\hat{G}(A)$ are infinite.

Lemma 2.2. A rational function A of degree $n \ge 2$ is a quasi-power if and only if it has only two critical values. If A is a quasi-power, then $A^{\circ 2}$ is a quasi-power if and only if A is conjugate to $z^{\pm n}$.

Proof. The first part of the lemma is well-known and follows easily from the Riemann-Hurwitz formula. To prove the second, we observe that the chain rule implies that the function

$$A^{\circ 2} = \alpha \circ z^n \circ \beta \circ \alpha \circ z^n \circ \beta$$

has only two critical values if and only if $\beta \circ \alpha$ maps the set $\{0, \infty\}$ to itself. Therefore, $A^{\circ 2}$ is a quasi-power if and only if $\beta \circ \alpha = cz^{\pm 1}$, $c \in \mathbb{C} \setminus \{0\}$, that is, if and only if

$$A = \alpha \circ z^n \circ \beta = \alpha \circ z^n \circ cz^{\pm 1} \circ \alpha^{-1} = \alpha \circ c^n z^{\pm n} \circ \alpha^{-1}.$$

Finally, it is clear that the last condition is equivalent to the condition that A is conjugate to $z^{\pm n}$.

Let G be a finite subgroup of $\operatorname{Aut}(\mathbb{CP}^1)$. We recall that a rational function θ_G is called an *invariant function* for G if the equality $\theta_G(x) = \theta_G(y)$ holds for $x,y \in \mathbb{CP}^1$ if and only if there exists $\sigma \in G$ such that $\sigma(x) = y$. Such a function always exists and is defined in a unique way up to the transformation $\theta_G \to \mu \circ \theta_G$, where $\mu \in \operatorname{Aut}(\mathbb{CP}^1)$. Obviously, θ_G has degree equal to the order of G. Invariant functions for finite subgroups of $\operatorname{Aut}(\mathbb{CP}^1)$ were first found by Klein in his book [4].

Theorem 2.3. Let A be a rational function of degree $n \ge 2$. Then $\Sigma(A)$ is a finite group and $|\Sigma(A)|$ is a divisor of n. Moreover, $|\Sigma(A)| = n$ if and only if A is an invariant function for $\Sigma(A)$.

Proof. Since for a finite subgroup G of $\operatorname{Aut}(\mathbb{CP}^1)$ the set of rational functions F such that $F \circ \sigma = F$ for every $\sigma \in G$ is a subfield of $\mathbb{C}(z)$, it follows easily from the Lüroth theorem that any such a function F is a rational function in θ_G . Thus, $\deg F$ is divisible by $\deg \theta_G = |G|$. In particular, setting $G = \Sigma(A)$, we see that the degree of A is divisible by $|\Sigma(A)|$, and $\deg A = |\Sigma(A)|$ if and only if A is an invariant function for $\Sigma(A)$.

The existence of invariant functions implies that for every finite subgroup G of $\operatorname{Aut}(\mathbb{CP}^1)$ there exist rational functions for which $\Sigma(A)=G$. Similarly, for every finite subgroup G of $\operatorname{Aut}(\mathbb{CP}^1)$ there exist rational functions for which $\operatorname{Aut}(A)=G$. A description of such functions in terms of homogenous invariant polynomials for G was obtained by Doyle and McMullen in [2]. Notice that rational functions with non-trivial automorphism groups are closely related to generalized Lattès maps (see [13] for more detail).

The following result was proved in [15]. For the reader convenience we provide a simpler proof.

Theorem 2.4. Let A be a rational function of degree $n \ge 2$ that is not a quasi-power. Then the group G(A) is isomorphic to one of the five finite rotation groups of the sphere A_4 , A_5 , C_1 , D_{2l} , and the order of any element of G(A) does not exceed n. In particular, $|G(A)| \le \max\{60, 2n\}$.

Proof. Any element of the group $\operatorname{Aut}(\mathbb{CP}^1) \cong \operatorname{PSL}_2(\mathbb{C})$ is conjugate either to $z \to z+1$ or to $z \to \lambda z$ for some $\lambda \in \mathbb{C}\setminus\{0\}$. Thus, making the change

$$A \to \mu_1 \circ A \circ \mu_2, \quad \sigma \to \mu_2^{-1} \circ \sigma \circ \mu_2, \quad \nu_\sigma \to \mu_1 \circ \nu_\sigma \circ \mu_1^{-1}$$

for convenient μ_1 , $\mu_2 \in \text{Aut}(\mathbb{CP}^1)$, without loss of generality we may assume that σ and ν_{σ} in (1) have one of the two forms above.

We observe first that the equality

(10)
$$A(z+1) = \lambda A(z), \qquad \lambda \in \mathbb{C} \setminus \{0\},$$

is impossible. Indeed, if A has a finite pole, then (10) implies that A has infinitely many poles. On the other hand, if A does not have finite poles, then A has a finite zero, and (10) implies that A has infinitely many zeroes. Similarly, the equality

(11)
$$A(z+1) = A(z) + 1$$

is impossible if A has a finite pole. On the other hand, if A is a polynomial of degree $n \ge 2$, then we obtain a contradiction comparing the coefficients of z^{n-1} on the left and the right sides of equality (11).

For the argument below, instead of considering A as a ratio of two polynomials, it is more convenient to assume that A is represented by its convergent Laurent series at zero or infinity. Comparing for such a representation the free terms on the left and the right sides of the equality

$$A(\lambda z) = A(z) + 1, \quad \lambda \in \mathbb{C} \setminus \{0\},$$

we conclude that this equality is impossible either. Thus, equality (1) for a non-identity σ reduces to the equality

(12)
$$A(\lambda_1 z) = \lambda_2 A(z), \quad \lambda_1 \in \mathbb{C} \setminus \{0, 1\}, \quad \lambda_2 \in \mathbb{C} \setminus \{0\}.$$

Comparing now coefficients on the left and the right sides of (12) and taking into account that $A \neq az^{\pm n}$, $a \in \mathbb{C}$, by the assumption, we conclude that λ_1 is a root of unity. Furthermore, if d is the order of λ_1 , then $\lambda_2 = \lambda_1^r$ for some $0 \leq r \leq d-1$, implying that A/z^r is a rational function in z^d . On the other hand, it is easy to see that if $A = z^r R(z^d)$, where $R \in \mathbb{C}(z)$ and $0 \leq r \leq d-1$, then $d \leq n$, unless either $R \in \mathbb{C}\setminus\{0\}$ or R = a/z for some $a \in \mathbb{C}\setminus\{0\}$. Since for such R the function A is a quasi-power, we conclude that the order of λ_1 and hence the order of any element of G(A) does not exceed n.

To finish the proof we only must show that G(A) is finite. By Lemma 2.2, A has at least three critical values. On the other hand, by Lemma 2.1, iii), every $\nu \in \widehat{G}(A)$ maps c(A) to c(A). Since any Möbius transformation is defined by its values at any three points, this implies that $\widehat{G}(A)$ is finite. Since $\Sigma(A)$ is finite by Theorem 2.3, this implies that G(A) is finite because of the isomorphism (8).

Remark 2.5. Using some non-trivial group-theoretic results about subgroups of $GL_k(\mathbb{C})$, one can deduce the finiteness of G(A) directly from the fact that the order of any element of G(A) does not exceed n. Namely, the proof given in the paper [15] uses the Schur theorem (see e.g. [1], (36.2)), which states that any finitely generated periodic subgroup of $GL_k(\mathbb{C})$ has finite order. Alternatively, one can use the Burnside theorem (see e.g. [1], (36.1)), which states that any subgroup of $GL_k(\mathbb{C})$ of bounded period is finite. Indeed, assume that G(A) is infinite. Then its lifting $\overline{G(A)} \subset SL_2(\mathbb{C}) \subset GL_2(\mathbb{C})$ is also infinite. On the other hand, if the order of any element of G(A) is bounded by N, then the order of any element of $\overline{G(A)}$ is bounded by 2N. The contradiction obtained proves the finiteness of G(A).

Corollary 2.6. Let A be a rational function of degree $n \ge 2$. Then $\Sigma(A)$ and $\operatorname{Aut}(A)$ are finite groups whose order does not exceed $\max\{60, 2n\}$.

Proof. If A is a not a quasi-power, then the corollary follows from Theorem 2.4. On the other hand, it is easy to see that if A is a quasi-power, then the corresponding groups are cyclic groups of order n and n-1 correspondingly.

Let us mention the following specification of Theorem 2.4.

Theorem 2.7. Let A be a rational function of degree $n \ge 2$. Assume that there exists a point $z_0 \in \mathbb{CP}^1$ such that the multiplicity of A at z_0 is distinct from the multiplicity of A at any other point $z \in \mathbb{CP}^1$. Then G(A) is a finite cyclic group, and z_0 is a fixed point of its generator.

Proof. It follows from the assumption that A is not a quasi-power. Therefore, G(A) is finite. Moreover, every element of G(A) fixes z_0 by Lemma 2.1, i). On the other hand, a unique finite subgroup of $\operatorname{Aut}(\mathbb{CP}^1)$ whose elements share a fixed point is cyclic.

In turn, Theorem 2.7 implies the following well-known corollary.

Corollary 2.8. Let P be a polynomial of degree $n \ge 2$ that is not a quasi-power. Then G(P) is a finite cyclic group generated by a polynomial.

Proof. Since P is a not a quasi-power, the multiplicity of P at infinity is distinct from the multiplicity of P at any other point of \mathbb{CP}^1 . Moreover, since every element of G(P) fixes infinity, G(P) consist of polynomials.

Notice that functions A of degree n with |G(A)| = 2n do exist. Indeed, it is easy to see that for any function of the from

$$A = \frac{z^n - a}{az^n - 1}, \quad a \in \mathbb{C} \setminus \{0\},\$$

the group G(A) contains the dihedral group D_{2n} , generated by

$$z \to \frac{1}{z}, \qquad z \to \varepsilon_n z,$$

where $\varepsilon_n = e^{\frac{2\pi i}{n}}$. Thus, for *n* big enough, $G(A) = D_{2n}$, by Theorem 2.4. On the other hand, for small *n*, functions *A* of degree *n* with |G(A)| > 2n do exist as well (see for instance Example 2.10 below).

Lemma 2.1 provides us with a method for practical calculation of G(A), at least if the degree of A is small enough. We illustrate it with the following example.

Example 2.9. Let us consider the function

$$A = \frac{1}{8} \frac{z^4 + 8z^3 + 8z - 8}{z - 1}.$$

One can check that A has three critical values 1, 9, and ∞ , and that

$$A-1=rac{1}{8}rac{z^3\left(z+8
ight)}{z-1}, \qquad A-9=rac{1}{8}rac{\left(z^2+4\,z-8
ight)^2}{z-1}.$$

Since the multiplicities of A at the preimages of 1, 9, and ∞ are

$$\mathrm{mult}_0 A = 3, \quad \mathrm{mult}_{-8} A = 1, \quad \mathrm{mult}_{-2+2\sqrt{3}} A = 2, \quad \mathrm{mult}_{-2-2\sqrt{3}} A = 2,$$

and

$$\operatorname{mult}_{\infty} A = 3$$
, $\operatorname{mult}_{1} A = 1$,

Lemma 2.1 implies that for any $\sigma \in G(A)$ either

(13)
$$\sigma(0) = 0, \quad \sigma(\infty) = \infty, \quad \sigma(-8) = -8, \quad \sigma(1) = 1,$$

or

(14)
$$\sigma(0) = \infty, \ \sigma(\infty) = 0, \ \sigma(-8) = 1, \ \sigma(1) = -8.$$

Moreover, in addition, either

(15)
$$\sigma(-2+2\sqrt{3}) = -2-2\sqrt{3}, \quad \sigma(-2-2\sqrt{3}) = -2+2\sqrt{3},$$

or

$$\sigma(-2+2\sqrt{3}) = -2+2\sqrt{3}, \quad \sigma(-2-2\sqrt{3}) = -2-2\sqrt{3}.$$

Clearly, condition (13) implies that $\sigma = z$, while the unique transformation satisfying (14) is

$$\sigma = -8/z,$$

and this transformation satisfies (15). Furthermore, the corresponding ν_{σ} must satisfy

$$\nu_{\sigma}(1) = \infty, \quad \nu_{\sigma}(\infty) = 1, \quad \nu_{\sigma}(9) = 9,$$

implying that

(17)
$$\nu_{\sigma} = \frac{z+63}{z-1}.$$

Therefore, (1) can hold only for σ and ν_{σ} given by formulas (16) and (17), and a direct calculation shows that (1) is indeed satisfied. Thus, the group G(A) is a cyclic group of order two.

Notice that to verify whether a given Möbius transformation σ belongs to G(A) one can use the Schwarz derivative. Let us recall that for a function f meromorphic on a domain $D \subset \mathbb{C}$ the Schwarz derivative is defined by

$$S(f)(z) = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2.$$

The characteristic property of the Schwarz derivative is that for two functions f and g meromorphic on D the equality S(f)(z) = S(g)(z) holds if and only if $g = \nu \circ f$ for some Möbius transformation ν . Thus, a Möbius transformation σ belongs to G(A) if and only if

$$S(A)(z) = S(A \circ \sigma)(z).$$

We finish this section by another example of calculation of G(A).

Example 2.10. Let us consider the function

$$B = -\frac{2z^2}{z^4 + 1} = -\frac{2}{z^2 + \frac{1}{z^2}}.$$

It is easy to see that $\Sigma(B)$ contains the transformations $z \to -z$ and $z \to 1/z$, which generate the Klein four-group $V_4 = D_4$, implying that $\Sigma(B) = D_4$ by Theorem 2.3. Furthermore, it is clear that G(B) contains the transformation $z \to iz$, implying that G(B) contains D_8 .

The groups A_4 , A_5 , and C_l do not contain D_8 . Therefore, if D_8 is a proper subgroup of G(B), then either $G(B) = S_4$, or G(B) is a dihedral group containing an element σ of order k > 4, whose fixed points coincide with fixed points of $z \to iz$. The second case is impossible, since any Möbius transformation σ fixing 0 and ∞ has the form cz, $c \in \mathbb{C}\setminus\{0\}$, and it is easy to see that such σ belongs to G(B) if and only if it is a power of $z \to iz$. On the other hand, a direct calculation shows that for the transformation $\mu = \frac{z+i}{z-i}$, generating together with $z \to iz$ and $z \to 1/z$ the group S_4 , equality (1) holds for $\nu = \frac{-z+1}{-3z-1}$. Thus, $G(B) \cong S_4$.

3. Groups $\Sigma_{\infty}(A)$, $\operatorname{Aut}_{\infty}(A)$ and the measure of maximal entropy

Let us recall that by the results of Freire, Lopes, Mañé ([3]) and Lyubich ([8]), for every rational function A of degree $n \ge 2$ there exists a unique probability measure μ_A on \mathbb{CP}^1 , which is invariant under A, has support equal to the Julia set J_A , and achieves maximal entropy $\log n$ among all A-invariant probability measures.

The measure μ_A can be described as follows. For $a \in \mathbb{CP}^1$ let $z_i^k(a)$, $i = 1, \ldots, n^k$, be the roots of the equation $A^{\circ k}(z) = a$ counted with multiplicity, and $\mu_{A,k}(a)$ the measure defined by

(18)
$$\mu_{A,k}(a) = \frac{1}{n^k} \sum_{i=1}^{n^k} \delta_{z_i^k(a)}.$$

Then for every $a \in \mathbb{CP}^1$ with two possible exceptions, the sequence $\mu_{A,k}(a)$, $k \ge 1$, converges in the weak topology to μ_A . Notice that this description of μ_A implies that $\mu_A = \mu_B$ whenever A and B share an iterate.

The measure μ_A is characterized by the balancedness property that

$$\mu_A(A(S)) = \mu_A(S)\deg A$$

for any Borel set S on which A is injective. Notice that for rational functions A and B the property to have the same measure of maximal entropy can be expressed also in algebraic terms (see [7]), leading to characterizations of such functions in terms of functional equations (see [7], [14], [18]).

The relations between the groups $\Sigma_{\infty}(A)$, $\operatorname{Aut}_{\infty}(A)$ and the measure of maximal entropy are described by the following two statements.

Lemma 3.1. Let A be a rational function of degree $n \ge 2$. Then $\sigma \in \operatorname{Aut}_{\infty}(A)$ if and only if A and $\sigma^{-1} \circ A \circ \sigma$ have a common iterate. In particular, if $\sigma \in \operatorname{Aut}_{\infty}(A)$, then A and $\sigma^{-1} \circ A \circ \sigma$ share the measure of maximal entropy.

Proof. The proof is trivial, given that rational functions sharing an iterate share a measure of maximal entropy. \Box

Lemma 3.2. Let A be a rational function of degree $n \ge 2$. Then for every $\sigma \in \Sigma_{\infty}(A)$ the functions A and $A \circ \sigma$ share the measure of maximal entropy.

Proof. The equality

$$A^{\circ l} = A^{\circ l} \circ \sigma, \quad l \geqslant 1,$$

implies that for any $k \ge l$ and $a \in \mathbb{CP}^1$ the transformation σ maps the set of roots of the equation $A^{\circ k}(z) = a$ to itself. Thus, for any set $S \subset \mathbb{CP}^1$ we have

$$|S\cap A^{-k}(a)|=|\sigma(S)\cap A^{-k}(a)|,\quad k\geqslant l,\quad a\in\mathbb{CP}^1,$$

implying that any $\sigma \in \Sigma_{\infty}(A)$ is μ_A -invariant since μ_A is a limit of (18).

Let now S be a Borel set on which $A\circ\sigma$ is injective. Then A is injective on $\sigma(S)$, implying that

$$\mu_A((A \circ \sigma)(S)) = \mu_A(A(\sigma(S))) = n\mu_A(\sigma(S)) = n\mu_A(S).$$

Thus, μ_A is the balanced measure for $A \circ \sigma$, and hence $\mu_A = \mu_{A \circ \sigma}$.

It was proved by Levin ([5], [6]) that for any rational function A of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$ there exist at most finitely many rational functions B of any given degree $d \ge 2$ sharing the measure of maximal entropy with A. Levin's theorem combined with Lemma 3.1 and Lemma 3.2 implies the following result.

Theorem 3.3. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Then the groups $\operatorname{Aut}_{\infty}(A)$ and $\Sigma_{\infty}(A)$ are finite.

Proof. Since $\sigma \in \operatorname{Aut}_{\infty}(A)$ implies that A and $\sigma^{-1} \circ A \circ \sigma$ share the measure of maximal entropy by Lemma 3.1, it follows from Levin's theorem that the set of functions

(19)
$$\sigma^{-1} \circ A \circ \sigma, \quad \sigma \in \operatorname{Aut}_{\infty}(A),$$

is finite. On the other hand, the equality

$$\sigma^{-1} \circ A \circ \sigma = \sigma'^{-1} \circ A \circ \sigma', \qquad \sigma' \in \operatorname{Aut}(\mathbb{CP}^1),$$

implies that $\sigma' \circ \sigma^{-1} \in \operatorname{Aut}(A)$. Thus, the finiteness of set (19) implies that there exist $\sigma_1, \sigma_2, \ldots, \sigma_l$ such that any $\sigma' \in \operatorname{Aut}_{\infty}(A)$ has the form

$$\sigma' = \hat{\sigma} \circ \sigma_k$$

for some $\hat{\sigma} \in \text{Aut}(A)$ and $k, 1 \leq k \leq l$. Since Aut(A) is finite, this implies that $\text{Aut}_{\infty}(A)$ is also finite.

Similarly, it follows from Lemma 3.2 and Levin's theorem that the set of functions

$$A \circ \sigma$$
, $\sigma \in \Sigma_{\infty}(A)$,

is finite, implying the finiteness of $\Sigma_{\infty}(A)$ since the equality

$$A \circ \sigma = A \circ \sigma'$$

yields that $\sigma' \circ \sigma^{-1} \in \Sigma(A)$.

4. Groups
$$\widehat{G}(A^{\circ k})$$
 and $\operatorname{Aut}_{\infty}(A)$

Let A be a rational function of degree $n \ge 2$. We define the set S(A) as the union

$$S(A) = \bigcup_{i=1}^{\infty} \widehat{G}(A^{\circ k}),$$

that is, as the set of Möbius transformation ν such that the equality

(20)
$$\nu \circ A^{\circ k} = A^{\circ k} \circ \mu$$

holds for some Möbius transformation μ and $k \ge 1$. The next several results provide a characterization of elements of S(A) and show that S(A) is finite and bounded in terms of n, unless A is a quasi-power.

We start from the following statement.

Theorem 4.1. Let A_1, A_2, \ldots, A_k and B_1, B_2, \ldots, B_k , $k \ge 2$, be rational functions of degree $n \ge 2$ such that

$$(21) A_1 \circ A_2 \circ \cdots \circ A_k = B_1 \circ B_2 \circ \cdots \circ B_k.$$

Then $c(A_1) \subseteq c(B_1 \circ B_2)$.

Proof. Let f be a rational function of degree d, and $T \subset \mathbb{CP}^1$ a finite set. It is clear that the cardinality of the preimage $f^{-1}(T)$ satisfies the upper bound

$$|f^{-1}(T)| \le |T|d.$$

To obtain the lower bound, we observe that the Riemann-Hurwitz formula

$$2d - 2 = \sum_{z \in \mathbb{CP}^1} (\text{mult}_z f - 1)$$

implies that

$$\sum_{z \in f^{-1}(T)} (\operatorname{mult}_z f - 1) \leqslant 2d - 2.$$

Therefore,

(23)
$$|f^{-1}(T)| = \sum_{z \in f^{-1}\{T\}} 1 \geqslant \sum_{z \in f^{-1}\{T\}} \operatorname{mult}_z f - 2d + 2 = (|T| - 2)d + 2.$$

Let us denote by F the rational function defined by any of the parts of equality (21). Assume that c is a critical value of A_1 such that $c \notin c(B_1 \circ B_2)$. Clearly,

$$|F^{-1}\{c\}| = |(A_2 \circ \cdots \circ A_k)^{-1}(A_1^{-1}\{c\})|.$$

Therefore, since $c \in c(A_1)$ implies that $|A_1^{-1}\{c\}| \le n-1$, it follows from (22) that

$$|F^{-1}\{c\}| \le (n-1)n^{k-1}.$$

On the other hand,

$$|F^{-1}\{c\}| = |(B_3 \circ \cdots \circ B_k)^{-1}((B_1 \circ B_2)^{-1}\{c\})|.$$

Since the condition $c \notin c(B_1 \circ B_2)$ is equivalent to the equality $|(B_1 \circ B_2)^{-1}\{c\}| = n^2$, this implies by (23) that

(25)
$$|F^{-1}\{c\}| \ge (n^2 - 2)n^{k-2} + 2$$

It follows now from (24) and (25) that

$$(n^2 - 2)n^{k-2} + 2 \le (n-1)n^{k-1},$$

or equivalently that $n^{k-1} + 2 \le 2n^{k-2}$. However, this leads to a contradiction since $n \ge 2$ implies that $n^{k-1} + 2 \ge 2n^{k-2} + 2$. Therefore, $c(A_1) \subseteq c(B_1 \circ B_2)$.

Theorem 4.1 implies the following statement.

Theorem 4.2. Let A be a rational function of degree $n \ge 2$. Then for every $\nu \in S(A)$ the inclusion $\nu(c(A)) \subseteq c(A^{\circ 2})$ holds.

Proof. Let ν be an element of S(A). In case $\nu \in \widehat{G}(A)$, the statement of the theorem follows from Lemma 2.1, iii), since $c(A) \subseteq c(A^{\circ 2})$ by the chain rule. Similarly, if ν belongs to $\widehat{G}(A^{\circ 2})$, then $\nu(c(A^{\circ 2})) = c(A^{\circ 2})$, implying that

$$\nu \big(c(A)\big) \subseteq \nu \big(c(A^{\circ 2})\big) = c(A^{\circ 2}).$$

Therefore, we may assume that $\nu \in \widehat{G}(A^{\circ k})$ for some $k \geq 3$. Since equality (20) has the form (21) with

$$A_1 = \nu \circ A, \qquad A_2 = A_3 = \dots = A_k = A,$$

and

$$B_1 = B_2 = \dots = B_{k-1} = A, \qquad B_k = A \circ \mu,$$

applying Theorem 4.1 we conclude that $c(\nu \circ A) \subseteq c(A^{\circ 2})$. Taking into account that for any rational function A the equality

$$c(\nu \circ A) = \nu(c(A))$$

holds, this implies that $\nu(c(A)) \subseteq c(A^{\circ 2})$.

Theorem 4.3. Let A be a rational function of degree $n \ge 2$. Then the set S(A) is finite and bounded in terms of n, unless A is a quasi-power. Furthermore, the set $\bigcup_{i=2}^{\infty} \hat{G}(A^{\circ k})$ is finite and bounded in terms of n, unless A is conjugate to $z^{\pm n}$.

Proof. Since any Möbius transformation is defined by its values at any three points, the condition $\nu(c(A)) \subseteq c(A^{\circ 2})$ is satisfied only for finitely many Möbius transformations whenever A has at least three critical values. Thus, the finiteness of S(A) in case A is not a quasi-power follows from the first part of Lemma 2.2. Moreover, since |c(A)| and $|c(A^{\circ 2})|$ are bounded in terms of n, the set S(A) is also bounded in terms of n.

Further, if A is not conjugate to $z^{\pm n}$, then its second iterate $A^{\circ 2}$ is not a quasipower by the second part of Lemma 2.2. To prove the finiteness of $\bigcup_{i=2}^{\infty} \widehat{G}(A^{\circ k})$ in this case, it is enough to show that for every $\nu \in \widehat{G}(A^{\circ k})$, $k \geq 2$, the inclusion

(26)
$$\nu(c(A^{\circ 2})) \subseteq c(A^{\circ 4})$$

holds, and this can be done by a modification of the proof of Theorem 4.2. Indeed, equality (20) implies the equality

$$\nu \circ A^{\circ 2k} = A^{\circ k} \circ \mu \circ A^{\circ k}$$

which can be rewritten for $k \ge 4$ in the form (21) with

$$A_1 = \nu \circ A^{\circ 2}, \qquad A_2 = A_3 = \dots = A_k = A^{\circ 2},$$

and

$$B_1 = \dots = B_{\frac{k}{2}} = A^{\circ 2}, \quad B_{\frac{k}{2}+1} = \mu \circ A^{\circ 2}, \quad B_{\frac{k}{2}+2} = \dots = B_k = A^{\circ 2},$$

if k is even, or

$$B_1 = \dots = B_{\frac{k-1}{2}} = A^{\circ 2}, \quad B_{\frac{k-1}{2}+1} = A \circ \mu \circ A, \quad B_{\frac{k-1}{2}+2} = \dots = B_k = A^{\circ 2},$$

if k is odd. Therefore, if ν belongs to $\widehat{G}(A^{\circ k})$ for some $k \geq 4$, then applying Theorem 4.1, we conclude that (26) holds. On the other hand, if ν belongs to $\widehat{G}(A^{\circ 2})$, then $\nu(c(A^{\circ 2})) = c(A^{\circ 2})$, by Lemma 2.1, iii), implying (26) by the chain rule. Similarly, if ν belongs to $\widehat{G}(A^{\circ 3})$, then $\nu(c(A^{\circ 3})) = c(A^{\circ 3})$, implying that

$$\nu \left(c(A^{\circ 2}) \right) \subseteq \nu \left(c(A^{\circ 3}) \right) = c(A^{\circ 3}) \subseteq c(A^{\circ 4}). \qquad \qquad \Box$$

Theorem 4.3 implies the following result.

Theorem 4.4. Let A be a rational function of degree $n \ge 2$. Then the orders of the groups $\hat{G}(A^{\circ k})$, $k \ge 1$, are finite and uniformly bounded in terms of n only, unless A is a quasi-power. Furthermore, the orders of the groups $\hat{G}(A^{\circ k})$, $k \ge 2$, are finite and uniformly bounded in terms of n only, unless A is conjugate to $z^{\pm n}$.

Proof. The theorem is a direct corollary of Theorem 4.3.

Finally, Theorem 4.2 and Theorem 4.3 imply Theorem 1.2 from the introduction.

Proof of Theorem 1.2. The boundedness of the set $\bigcup_{i=2}^{\infty} \operatorname{Aut}(A^{\circ k})$ in terms of n for A that is not conjugate to z^n follows from Theorem 4.3. On the other hand, $\operatorname{Aut}(A)$ is finite and bounded in terms of n by Corollary 2.6. This proves the first part of the theorem. Finally, since the set S(A) contains the group $\operatorname{Aut}_{\infty}(A)$, the second part of the theorem follows from Theorem 4.2 (the assumption that A is not conjugate to z^n is actually redundant).

5. Groups
$$\Sigma_{\infty}(A)$$
 and $G(A^{\circ k})$

Let A and B be rational functions of degree at least two. We recall that the function B is said to be semiconjugate to the function A if there exists a non-constant rational function X such that the equality

$$(27) A \circ X = X \circ B$$

holds. Usually, we will write this condition in the form of a commuting diagram

$$\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{B} & \mathbb{CP}^1 \\
X \downarrow & & \downarrow X \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1.
\end{array}$$

The simplest examples of semiconjugate rational functions are provided by equivalent rational functions defined in the introduction. Indeed, it follows from equalities (5) that the diagrams

$$\begin{array}{cccc} \mathbb{CP}^1 & \stackrel{A}{\longrightarrow} \mathbb{CP}^1 & & \mathbb{CP}^1 & \stackrel{\widetilde{A}}{\longrightarrow} \mathbb{CP}^1 \\ V & & \downarrow V & & \downarrow U & & \downarrow U \\ \mathbb{CP}^1 & \stackrel{\widetilde{A}}{\longrightarrow} \mathbb{CP}^1 & & \mathbb{CP}^1 & \stackrel{A}{\longrightarrow} \mathbb{CP}^1 \end{array}$$

commutes, implying inductively that if A is equivalent to B, then A is semiconjugate to B, and B is semiconjugate to A.

A comprehensive description of semiconjugate rational functions was obtained in the papers [11], [12], [13]. In particular, it was shown in [11] that solutions A, X, B of (27) satisfying $\mathbb{C}(X, B) = \mathbb{C}(z)$, called *primitive*, can be described in terms of group actions on \mathbb{CP}^1 or \mathbb{C} , implying strong restrictions on a possible form of A, B and X. On the other hand, an arbitrary solution of equation (27) can be reduced to a primitive one by a sequence of elementary transformations as follows. By the Lüroth theorem, the field $\mathbb{C}(X, B)$ is generated by some rational function W. Therefore, if $\mathbb{C}(X, B) \neq \mathbb{C}(z)$, then there exists a rational function W of degree greater than one such that

$$B = \widetilde{B} \circ W, \quad X = \widetilde{X} \circ W$$

for some rational functions \widetilde{X} and \widetilde{B} satisfying $\mathbb{C}(\widetilde{X},\widetilde{B}) = \mathbb{C}(z)$. Moreover, it is easy to see that the diagram

$$\begin{array}{ccc}
\mathbb{CP}^1 & \xrightarrow{B} & \mathbb{CP}^1 \\
W \downarrow & & \downarrow W \\
\mathbb{CP}^1 & \xrightarrow{W \circ \tilde{B}} & \mathbb{CP}^1 \\
\widetilde{X} \downarrow & & \downarrow \widetilde{X} \\
\mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1
\end{array}$$

commutes. Thus, the triple $A, \widetilde{X}, W \circ \widetilde{B}$ is another solution of (27). This new solution is not necessarily primitive, however $\deg \widetilde{X} < \deg X$. Therefore, continuing in this way, after a finite number of similar transformations we will arrive to a primitive solution. In more detail, the above argument shows that for any rational

functions A, X, B satisfying (27) there exist rational functions X_0, B_0, U such that $X = X_0 \circ U$, the diagram

(28)
$$\begin{array}{ccc}
\mathbb{CP}^{1} & \xrightarrow{B} & \mathbb{CP}^{1} \\
U \downarrow & & \downarrow U \\
\mathbb{CP}^{1} & \xrightarrow{B_{0}} & \mathbb{CP}^{1} \\
X_{0} \downarrow & & \downarrow X_{0} \\
\mathbb{CP}^{1} & \xrightarrow{A} & \mathbb{CP}^{1}
\end{array}$$

commutes, the triple A, X_0, B_0 is a primitive solution of (27), and $B_0 \sim B$.

The following theorem is essentially the second part of Theorem 1.3 from the introduction but without the assumption that A is not conjugate to z^n , which is redundant in this case.

Theorem 5.1. Let A be a rational function of degree $n \ge 2$. Then for every $\sigma \in \Sigma_{\infty}(A)$ the relation $A \circ \sigma \sim A$ holds.

Proof. Let σ be an element of $\Sigma_{\infty}(A)$. Then

$$(29) A^{\circ k} = A^{\circ k} \circ \sigma$$

for some $k \ge 1$. Writing this equality as the semiconjugacy

$$\begin{array}{ccc} \mathbb{CP}^1 & \xrightarrow{A \circ \sigma} & \mathbb{CP}^1 \\ & \downarrow_{A^{\circ(k-1)}} & & \downarrow_{A^{\circ(k-1)}} \\ \mathbb{CP}^1 & \xrightarrow{A} & \mathbb{CP}^1 \end{array},$$

we see that to prove the theorem it is enough to show that in diagram (28), corresponding to the solution

$$A = A$$
, $X = A^{\circ(k-1)}$, $B = A \circ \sigma$

of (27), the function X_0 has degree one. The proof of the last statement is similar to the proof of Theorem 2.3 in [16] and follows from the following two facts. First, for any primitive solution A, X, B of (27), the solution $A^{\circ l}, X, B^{\circ l}, l \geq 1$, is also primitive (see [16], Lemma 2.5). Second, a solution A, X, B of (27) is primitive if and only if the algebraic curve

$$A(x) - X(y) = 0$$

is irreducible (see [16], Lemma 2.4). Using these facts we see that the triple $A^{\circ(k-1)}, X_0, B_0^{\circ(k-1)}$ is a primitive solution of (27), and the algebraic curve

(30)
$$A^{\circ(k-1)}(x) - X_0(y) = 0$$

is irreducible. However, the equality

$$A^{\circ(k-1)} = X_0 \circ U,$$

implies that the curve

$$U(x) - y = 0$$

is a component of (30). Moreover, if $\deg X_0 > 1$, then this component is proper. Therefore, $\deg X_0 = 1$.

The following result proves the first part of Theorem 1.3 and thus finishes the proof of this theorem.

Theorem 5.2. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Then the order of the group $\Sigma_{\infty}(A)$ is finite and bounded in terms of n.

Proof. Let us observe first that it is enough to prove the theorem under the assumption that A is not a quasi-power. Indeed, if A is a quasi-power but is not conjugate to $z^{\pm n}$, then $A^{\circ 2}$ is not a quasi-power by Lemma 2.2. Therefore, if the theorem is true for functions that are not quasi-powers, then for any A that is not conjugate to $z^{\pm n}$, the group $\Sigma_{\infty}(A^{\circ 2})$ is finite and bounded in terms of n, implying by (3) that the same is true for the group $\Sigma_{\infty}(A)$.

Assume now that A is not a quasi-power. Then G(A) is finite by Theorem 2.4. Let us recall that in view of equality (6) the equivalence class [A] is a union of conjugacy classes. Denoting the number of these conjugacy classes by N_A , let us show that if N_A is finite, then

$$|\Sigma_{\infty}(A)| \le |G(A)|N_A.$$

By Theorem 5.1, for any $\sigma \in \Sigma_{\infty}(A)$ the function $A \circ \sigma$ belongs to one of N_A conjugacy classes in the equivalence class [A]. Furthermore, if $A \circ \sigma_0$ and $A \circ \sigma$ belong to the same conjugacy class, then

$$A \circ \sigma = \alpha \circ A \circ \sigma_0 \circ \alpha^{-1}$$

for some $\alpha \in Aut(\mathbb{CP}^1)$, implying that

$$A \circ \sigma \circ \alpha \circ \sigma_0^{-1} = \alpha \circ A.$$

This is possible only if α belongs to the group $\widehat{G}(A)$, and, in addition, $\sigma \circ \alpha \circ \sigma_0^{-1}$ belongs to the preimage of α under homomorphism (2). Therefore, for any fixed σ_0 , there could be at most $|\widehat{G}(A)|$ such α , and for each α there could be at most $|\operatorname{Ker} \gamma_A|$ elements $\sigma \in \Sigma_{\infty}(A)$ such that

$$\gamma_A(\sigma \circ \alpha \circ \sigma_0^{-1}) = \alpha.$$

Thus, (31) follows from (9).

It was proved in [12] that N_A is infinite if and only if A is a flexible Lattès map. However, the proof given in [12] uses the theorem of McMullen ([9]) about isospectral rational functions, which is not effective. Therefore, the result of [12] does not imply that N_A is bounded in terms of n. Nevertheless, we can use the main result of [15], which yields in particular that for a given rational function B of degree $n \ge 2$ the number of conjugacy classes of rational functions A such that (27) holds for some rational function X is finite and bounded in terms of n, unless B is special, that is, unless B is either a Lattès map or it is conjugate to $z^{\pm n}$ or $\pm T_n$. Since $A \sim A'$ implies that A is semiconjugate to A', this implies that for non-special A the number N_A is bounded in terms of n. Moreover, it is easy to see that the same is true also for A conjugate to $z^{\pm n}$ or $\pm T_n$, since any decomposition of z^n has the form

$$z^n = (z^d \circ \mu) \circ (\mu^{-1} \circ z^{n/d}),$$

where $\mu \in \operatorname{Aut}(\mathbb{CP}^1)$ and d|n, while any decomposition of T_n has the form

$$T_n = (T_d \circ \mu) \circ (\mu^{-1} \circ T_{n/d}),$$

where $\mu \in \operatorname{Aut}(\mathbb{CP}^1)$ and d|n.

The above shows that to finish the proof of Theorem 5.2 we only must prove that the group $\Sigma_{\infty}(A)$ is finite and bounded in terms of n if A is a Lattès map. To prove the last statement, we recall that if A is a Lattès map, then there exists an orbifold $\mathcal{O} = (\mathbb{CP}^1, \nu)$ of zero Euler characteristic such that $A: \mathcal{O} \to \mathcal{O}$ is a covering map between orbifold (see [10], [13] for more detail). Since this implies that $A^{\circ k}: \mathcal{O} \to \mathcal{O}$, $k \ge 1$, also is a covering map (see [11], Corollary 4.1), it follows from equality (29) that $\sigma: \mathcal{O} \to \mathcal{O}$ is a covering map (see [11], Corollary 4.2 and Lemma 4.1). As σ is of degree one, the last condition simply means that σ permute points of the support of \mathcal{O} . Since the support of an orbifold $\mathcal{O} = (\mathbb{CP}^1, \nu)$ of zero Euler characteristic contains either three or four points, this implies that $\Sigma_{\infty}(A)$ is finite and uniformly bounded for any Lattès map A.

Proof of Theorem 1.4. If $\sigma \in \Sigma_{\infty}(A)$, then

$$(32) A \circ \sigma \sim A,$$

by Theorem 5.1. On the other hand, since for any indecomposable function A the number N_A obviously is equal to one, condition (32) is equivalent to the condition that

$$(33) A \circ \sigma = \beta \circ A \circ \beta^{-1}$$

for some $\beta \in \text{Aut}(\mathbb{CP}^1)$. Clearly, equality (33) implies that β belongs to $\widehat{G}(A)$. Therefore, if $\widehat{G}(A)$ is trivial, then (32) is satisfied only if $A \circ \sigma = A$, that is, only if σ belongs to $\Sigma(A)$. Thus, $\Sigma(A) = \Sigma_{\infty}(A)$, whenever $\widehat{G}(A)$ is trivial.

Furthermore, it follows from equality (33) that $\sigma \circ \beta$ belongs to the preimage of β under homomorphism (2). On the other hand, if $G(A) = \operatorname{Aut}(A)$, this preimage consists of β only. Therefore, in this case $\sigma \circ \beta = \beta$, implying that σ is the identity map. Thus, the group $\Sigma_{\infty}(A)$ is trivial, whenever $G(A) = \operatorname{Aut}(A)$.

The following theorem implies Theorem 1.1 from the introduction.

Theorem 5.3. Let A be a rational function of degree $n \ge 2$. Then the orders of the groups $G(A^{\circ k})$, $k \ge 1$, are finite and uniformly bounded in terms of n only, unless A is a quasi-power. Furthermore, the orders of the groups $G(A^{\circ k})$, $k \ge 2$, are finite and uniformly bounded in terms of n only, unless A is conjugate to $z^{\pm n}$.

Proof. If A is not a quasi-power, then by Theorem 4.4 and Theorem 5.2 the orders of the groups $\hat{G}(A^{\circ k})$, $k \ge 1$, and $\Sigma(A^{\circ k})$, $k \ge 1$, are finite and uniformly bounded in terms of n only. Therefore, by (9), the orders of the groups $G(A^{\circ k})$, $k \ge 1$, also are finite and uniformly bounded. Similarly, the groups $G(A^{\circ k})$, $k \ge 2$, are finite and uniformly bounded in terms of n only, unless A is conjugate to $z^{\pm n}$.

Corollary 5.4. Let A be a rational function of degree $n \ge 2$. Then the sequence $G(A^{\circ k})$, $k \ge 1$, contains only finitely many non-isomorphic groups.

Proof. For A not conjugate to $z^{\pm n}$, the corollary follows from Theorem 5.3 since there exist only finitely many groups of any given order. Moreover, actually the groups $G(A^{\circ k})$, $k \geq 2$, belong to the list A_4 , S_4 , A_5 , C_l , D_{2l} , by Theorem 2.4. On the other hand, if A is conjugate to $z^{\pm n}$, then all the groups $G(A^{\circ k})$, $k \geq 1$, consist of the transformations $z \to cz^{\pm 1}$, $c \in \mathbb{C} \setminus \{0\}$.

We finish this section by two examples of calculation of the group $\Sigma_{\infty}(A)$.

Example 5.5. Let us consider the function

$$A = x + \frac{27}{x^3}.$$

A calculation shows that, in addition to the critical value ∞ , this function has critical values ± 4 and $\pm 4i$, and

$$A \pm 4 = \frac{(x^2 \mp 2x + 3)(x \pm 3)^2}{x^3},$$

$$A \pm 4i = \frac{\left(x^2 \mp 2 ix - 3\right) \left(\pm x + 3 i\right)^2}{x^3}.$$

Since the above equalities imply that $\operatorname{mult}_0 A = 3$, while at any other point of \mathbb{CP}^1 the multiplicity of A is at most two, it follows from Theorem 2.7 that G(A) is a cyclic group, whose generator has zero as a fixed point. Moreover, since G(A) obviously contains the transformation $\sigma = -z$, the second fixed point of this generator must be infinity. This implies easily that G(A) is a cyclic group of order two, and $G(A) = \operatorname{Aut}(A)$. Finally, since $\operatorname{mult}_0 A = 3$, it follows from the chain rule that the equality $A = A_1 \circ A_2$, where A_1 and A_2 are rational function of degree two is impossible. Therefore, A is indecomposable, and hence the group $\Sigma_{\infty}(A)$ is trivial by Theorem 1.4.

Example 5.6. Let us consider the function

$$A = \frac{z^2 - 1}{z^2 + 1}.$$

Since A is a quasi-power, $\Sigma(A)$ is a cyclic group of order two, generated by the transformation $z \to -z$. A calculation shows that the second iterate

$$A^{\circ 2} = -\frac{2z^2}{z^4 + 1}$$

is the function B from Example 2.10. Thus, $\Sigma(A^{\circ 2})$ is the dihedral group D_4 , generated by the transformation $z \to -z$ and $z \to 1/z$. In particular, $\Sigma(A^{\circ 2})$ is larger than $\Sigma(A)$. Moreover, since

$$A^{\circ 3} = -\frac{\left(z^4 - 1\right)^2}{z^8 + 6z^4 + 1},$$

we see that $\Sigma(A^{\circ 3})$ contains the dihedral group D_8 , generated by the transformation $\mu_1 = iz$ and $\mu_2 = 1/z$, and hence $\Sigma(A^{\circ 3})$ is larger than $\Sigma(A^{\circ 2})$.

Let us show that

$$\Sigma_{\infty}(A) = \Sigma(A^{\circ 3}) = D_8.$$

As in Example 2.10, we see that if $\Sigma_{\infty}(A)$ is larger than D_8 , then either $\Sigma_{\infty}(A) = S_4$, or $\Sigma_{\infty}(A)$ is a dihedral group containing an element σ of order l > 4 such that μ_1 is an iterate of σ . The first case is impossible, for otherwise Theorem 2.3 implies that for k satisfying $\Sigma_{\infty}(A) = \Sigma(A^{\circ k})$ the number deg $A^{\circ k} = 2^k$ is divisible by $|S_4| = 24$. On the other hand, in the second case, the fixed points of σ are zero and infinity. Since A is indecomposable, it follows from Theorem 5.1 that to exclude the second case it is enough to show that if $\sigma = cz$, $c \in \mathbb{C} \setminus \{0\}$, satisfies

(34)
$$A \circ \sigma = \beta \circ A \circ \beta^{-1}, \quad \beta \in \operatorname{Aut}(\mathbb{CP}^1),$$

then σ is an iterate of μ_1 . Since critical points of the function on the left side of (34) coincide with critical points of the function on the right side, the Möbius

transformation β necessarily has the form $\beta = dz^{\pm 1}$, $d \in \mathbb{C} \setminus \{0\}$. Thus, equation (34) reduces to the equations

$$\frac{c^2z^2-1}{c^2z^2+1} = \frac{1}{d}\frac{d^2z^2-1}{d^2z^2+1},$$

and

$$\frac{c^2z^2 - 1}{c^2z^2 + 1} = \frac{d(d^2 + z^2)}{d^2 - z^2}.$$

One can check that solutions of the first equation are d=1 and $c=\pm 1$, while solutions of the second are d=-1 and $c=\pm i$. This proves the necessary statement. Notice that instead of Theorem 5.1 it is also possible to use Theorem 1.5 (see the next section).

6. Groups
$$G(A, z_0, z_1)$$

Following [17], we say that a formal power series $f(z) = \sum_{i=1}^{\infty} a_i z^i$ having zero as a fixed point is $homozygous \mod l$ if the inequalities $a_i \neq 0$ and $a_j \neq 0$ imply the equality $i \equiv j \pmod{l}$. If f is not homozygous mod l, it is called $hybrid \mod l$. Obviously, the condition that f is homozygous mod l is equivalent to the condition that $f = z^r g(z^l)$ for some formal power series $g = \sum_{i=0}^{\infty} b_i z^i$ and integer r, $1 \leq r \leq l$. In particular, if f is homozygous mod l, then any iterate of f is homozygous mod l. The inverse is not true. However, the following statement proved by Reznick ([17]) holds: if a formal power series $f(z) = \sum_{i=1}^{\infty} a_i z^i$ is hybrid mod l and $f^{\circ k}$ is homozygous mod l, then $f^{\circ ks}(z) = z$ for some integer $s \geq 1$. Our proof of Theorem 1.5 relies on this result.

Proof of Theorem 1.5. Without loss of generality, we can assume that $z_0 = 0$ and $z_1 = \infty$. Let f_A be the Taylor series of the function A at zero. Arguing as in the proof of Theorem 2.4, we see that every element of $G(A,0,\infty)$ has the form $z \to \varepsilon z$, where ε is a root of unity, and $G(A,0,\infty)$ is a finite cyclic group, whose order is equal to the maximum number n such that f_A is homozygous mod n. Since $f_{A^{\circ k}} = f_A^{\circ k}$, this implies that

$$G(A, 0, \infty) \subseteq G(A^{\circ k}, 0, \infty), \quad k \geqslant 1.$$

Moreover, if $G(A^{\circ k}, 0, \infty)$ is strictly larger than $G(A, 0, \infty)$ for some k > 1, then there exists n_0 such that f_A is hybrid mod n_0 but $f_A^{\circ k}$ is homozygous mod n_0 . Therefore, by the Reznick theorem, the equality $f_A^{\circ ks} = z$ holds for some $s \ge 1$. However, in this case by the analytical continuation $A^{\circ ks} = z$ for all $z \in \mathbb{CP}^1$, in contradiction with $n \ge 2$. Thus, the groups $G(A^{\circ k}, 0, \infty)$, $k \ge 1$, are equal. \square

Notice that the groups $G(A^{\circ k}, z_0, z_1)$, $k \ge 1$, are equal even if A is conjugate to $z^{\pm n}$. Indeed, for $A = z^{\pm n}$ these groups are trivial, unless $\{z_0, z_1\} = \{0, \infty\}$, while in the last case all these groups consist of the transformations $z \to cz^{\pm 1}$, $c \in \mathbb{C} \setminus \{0\}$.

Let us emphasize that since iterates $A^{\circ k}$, k > 1, have in general more fixed points than A, it may happen that $G(A^{\circ k}, z_0, z_1)$, k > 1, is non-trivial, while $G(A, z_0, z_1)$ is not defined, so that the equality $G(A^{\circ k}, z_0, z_1) = G(A, z_0, z_1)$ does not make sense. For example, for the function

$$A = \frac{z^2 - 1}{z^2 + 1}$$

from Example 5.6 zero is not a fixed point for A, and hence the group $G(A, 0, \infty)$ is not defined. However, zero is a fixed point for

$$A^{\circ 2} = -\frac{2z^2}{z^4 + 1},$$

and the group $G(A^{\circ 2}, 0, \infty)$ is a cyclic group of order four. Let us remark that Theorem 1.5 gives another proof of the fact that $\Sigma_{\infty}(A)$ cannot contain an element $\sigma = cz$, $c \in \mathbb{C}\setminus\{0\}$, of order l > 4. Indeed, such σ must belong to the group $G(A^{\circ k}, 0, \infty)$ for some $k \geq 1$, and hence to the group $G(A^{\circ 2k}, 0, \infty)$. However, $G(A^{\circ 2k}, 0, \infty)$ is equal to $G(A^{\circ 2}, 0, \infty) = C_4$ by Theorem 1.5 applied to $A^{\circ 2}$.

Under certain conditions, Theorem 1.5 permits to estimate the order of the groups $\operatorname{Aut}_{\infty}(A)$ and $\Sigma_{\infty}(A)$ and even to describe these groups explicitly.

Theorem 6.1. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Assume that for some $k \ge 1$ the group $\operatorname{Aut}(A^{\circ k})$ contains an element σ of order at least six with fixed points z_0 and z_1 such that z_0 is a fixed point of $A^{\circ k}$. Then the inequality $|\operatorname{Aut}_{\infty}(A)| \le 2|G(A^{\circ k}, z_0, z_1)|$ holds. Similarly, if σ as above is contained in $\Sigma(A^{\circ k})$, then $|\Sigma_{\infty}(A)| \le 2|G(A^{\circ k}, z_0, z_1)|$.

Proof. Since the maximal order of a cyclic subgroup in the groups A_4 , S_4 , A_5 is five, it follows from Corollary 2.6 that if $\operatorname{Aut}(A^{\circ k})$ contains an element σ of order r > 5, then either $\operatorname{Aut}_{\infty}(A) = C_s$ or $\operatorname{Aut}_{\infty}(A) = D_{2s}$, where r|s. Moreover, if σ_{∞} is an element of order s in $\operatorname{Aut}_{\infty}(A)$, then σ is an iterate of σ_{∞} . In particular, fixed points of σ_{∞} coincide with fixed points of σ .

To prove the theorem, we only must show that the inequality

$$(35) s > |G(A^{\circ k}, z_0, z_1)|$$

is impossible. Assume the inverse. Since σ_{∞} belongs to $\operatorname{Aut}(A^{\circ k'})$ for some $k' \geq 1$, it belongs to $\operatorname{Aut}(A^{\circ kk'})$ and $G(A^{\circ kk'}, z_0, z_1)$. Therefore, if (35) holds, then the group $G(A^{\circ kk'}, z_0, z_1)$ contains an element of order greater than $|G(A^{\circ k}, z_0, z_1)|$, in contradiction with the equality

$$G(A^{\circ kk'}, z_0, z_1) = G(A^{\circ k}, z_0, z_1),$$

provided by Theorem 1.5 applied to $G(A^{\circ k})$. The proof of the inequality for $|\Sigma_{\infty}(A)|$ is similar.

Example 6.2. Let us consider the function

$$A = z \frac{z^6 - 2}{2z^6 - 1}.$$

It is easy to see that Aut(A) contains the dihedral group D_{12} generated by the transformations

$$z \to e^{\frac{2\pi i}{6}}z, \quad z \to 1/z.$$

Since zero is a fixed point of A and $G(A,0,\infty)=C_6$, it follows from Theorem 6.1 that

$$\operatorname{Aut}_{\infty}(A) = \operatorname{Aut}(A) = D_{12}.$$

Although the group $\operatorname{Aut}(A^{\circ k})$ does not necessarily contain an element that belongs to $G(A^{\circ k}, z_0, z_1)$, it always contains an element that belongs to $G(A^{\circ 2k}, z_0, z_1)$. More generally, the following statement holds.

Lemma 6.3. Let A be a rational function of degree $n \ge 2$, and $\sigma \notin \Sigma(A^{\circ k})$ a Möbius transformation such that the equality

$$(36) A^{\circ k} \circ \sigma = \sigma^{\circ l} \circ A^{\circ k},$$

holds for some $l \ge 1$. Then at least one of the fixed points z_0 , z_1 of σ is a fixed point of $A^{\circ 2k}$, and if z_0 is such a point, then $\sigma \in G(A^{\circ 2k}, z_0, z_1)$.

Proof. Clearly, equality (36) implies the equalities

$$\sigma^{\circ l}(A^{\circ k}(z_0)) = A^{\circ k}(z_0), \quad \sigma^{\circ l}(A^{\circ k}(z_1)) = A^{\circ k}(z_1).$$

However, since $\sigma^{\circ l}$ is not the identity map, it has only two fixed points z_0, z_1 . Therefore, $A^{\circ k}\{z_0, z_1\} \subseteq \{z_0, z_1\}$, implying that at least one of the points z_0, z_1 is a fixed point of $A^{\circ 2k}$. Finally, if z_0 is such a point, then $\sigma \in G(A^{\circ 2k}, z_0, z_1)$. \square Combining Theorem 6.1 with Lemma 6.3 we obtain the following result.

Theorem 6.4. Let A be a rational function of degree $n \ge 2$ that is not conjugate to $z^{\pm n}$. Assume that for some $k \ge 1$ the group $\operatorname{Aut}(A^{\circ k})$ contains an element σ of order at least six with fixed points z_0, z_1 . Then $|\operatorname{Aut}_{\infty}(A)| \le 2|G(A^{\circ 2k}, z_0, z_1)|$, where z_0 is a fixed point of σ that is also a fixed point of $A^{\circ 2k}$.

References

- [1] C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. 11, Interscience, New York, 1962.
- [2] P. Doyle, C. McMullen, Solving the quintic by iteration, Acta Math. 163 (1989), no. 3-4, 151-180.
- [3] A. Freire, A. Lopes, R. Mañé, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 45-62.
- [4] F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, New York: Dover Publications, (1956).
- [5] G. Levin, Symmetries on Julia sets, Math. Notes 48 (1990), no. 5-6, 1126-1131.
- [6] G. Levin, Letter to the editors, Math. Notes 69 (2001), no. 3-4, 432-33.
- [7] G. Levin, F. Przytycki, When do two rational functions have the same Julia set?, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2179-2190.
- [8] M. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), no. 3, 351-385.
- [9] C. McMullen, Families of rational maps and iterative root-finding algorithms, Ann. of Math., 125, No. 3 (1987), 467-493.
- [10] J. Milnor, On Lattès maps, Dynamics on the Riemann Sphere. Eds. P. Hjorth and C. L. Petersen. A Bodil Branner Festschrift, European Mathematical Society, 2006, pp. 9-43.
- [11] F. Pakovich, On semiconjugate rational functions, Geom. Funct. Anal., 26 (2016), 1217-1243.
- [12] F. Pakovich, Recomposing rational functions, Int. Math. Res. Not., 2019, no. 7, 1921-1935.
- [13] F. Pakovich, On generalized Latès maps, J. Anal. Math., 142 (2020), no. 1, 1-39.
- [14] F. Pakovich, On rational functions sharing the measure of maximal entropy, Arnold Math. J., 6, 387–396 (2020).
- [15] F. Pakovich, Finiteness theorems for commuting and semiconjugate rational functions, Conform. Geom. Dyn., 24 (2020), 202-229.
- [16] F. Pakovich, Commuting rational functions revisited, Ergodic Theory Dynam. Systems, 41 (2021), no. 1, 295 - 320.
- [17] B. Reznick, When is the iterate of a formal power series odd?, J. Austral. Math. Soc. Ser. A 28 (1979), no. 1, 62-66.
- [18] H. Ye, Rational functions with identical measure of maximal entropy, Adv. Math. 268 (2015), 373-395.

DEPARTMENT OF MATHEMATICS, BEN GURION UNIVERSITY OF THE NEGEV, ISRAEL Email address: pakovich@math.bgu.ac.il