Commuting rational functions revisited

FEDOR PAKOVICH ${ }^{\bullet}$
Department of Mathematics, Ben Gurion University, P.O. Box 653, Beer Sheva, 8410501, Israel (e-mail: pakovich@math.bgu.ac.il)

(Received 15 February 2019 and accepted in revised form 12 June 2019)

Abstract

Let B be a rational function of degree at least two that is neither a Lattès map nor conjugate to $z^{ \pm n}$ or $\pm T_{n}$. We provide a method for describing the set C_{B} consisting of all rational functions commuting with B. Specifically, we define an equivalence relation $\underset{B}{\sim}$ on C_{B} such that the quotient $C_{B} / \underset{B}{\sim}$ possesses the structure of a finite group G_{B}, and describe generators of G_{B} in terms of the fundamental group of a special graph associated with B.

Key words: commuting rational functions, the Ritt theorem, common iterates 2010 Mathematics Subject Classification: 30D05 (Primary); 37F10 (Secondary)

1. Introduction

In this paper, we study commuting rational functions, that is rational solutions of the functional equation

$$
\begin{equation*}
B \circ X=X \circ B \tag{1}
\end{equation*}
$$

More precisely, we fix a function $B \in \mathbb{C}(z)$ of degree at least two and study the set C_{B} consisting of all $X \in \mathbb{C}(z)$ such that (1) holds.

Functional equation (1) has been investigated previously by Julia [3] and Fatou [2]. In particular, they showed that commuting rational functions X and B of degree at least two have the same Julia set $J=J(X)=J(B)$. Using Poincaré functions, Julia and Fatou proved that if X and B have no iterate in common and $J \neq \mathbb{C P}^{1}$, then, up to a conjugacy, X and B are either powers or Chebyshev polynomials. The assumption $J \neq \mathbb{C P}^{1}$ was removed by Ritt [13], who used a topological-algebraic method. Ritt proved that solutions of (1) having no iterate in common reduce to powers, to Chebyshev polynomials, or to Lattès maps. A proof of the Ritt theorem based on modern dynamical methods was given by Eremenko [1].

All the above results assume that X and B have no iterate in common. However, commuting rational functions X and B such that

$$
\begin{equation*}
B^{\circ l}=X^{\circ k} \tag{2}
\end{equation*}
$$

for some $l, k \geq 1$ also exist. The simplest examples of such functions can be obtained by setting

$$
X=R^{\circ l_{1}}, \quad B=R^{o l_{2}}
$$

where R is an arbitrary rational function and $l_{1}, l_{2} \geq 1$. More generally, denoting by $\operatorname{Aut}(R)$ the group of Möbius transformations commuting with R, we can set

$$
\begin{equation*}
X=\mu_{1} \circ R^{\circ l_{1}}, \quad B=\mu_{2} \circ R^{\circ l_{2}} \tag{3}
\end{equation*}
$$

where μ_{1} and μ_{2} are elements of $\operatorname{Aut}(R)$ commuting between themselves. However, it has been shown already by Ritt [13] that commuting rational functions satisfying (2) are not exhausted by functions of the form (3). Although Ritt's method provides some insight into the structure of commuting rational functions X and B satisfying (2), it does not permit the description of this class of functions in an explicit way, and Ritt concluded his paper by saying: 'we think that the example given above makes it conceivable that no great order may reign in this class'.

Functional equation (1) is a particular case of the functional equation

$$
\begin{equation*}
A \circ X=X \circ B \tag{4}
\end{equation*}
$$

where A and B are rational functions of degree at least two. In case that (4) is satisfied for some rational function X of degree at least two, the function B is called semiconjugate to the function A. Semiconjugate rational functions were investigated in the recent papers [5, 6, 8-10]. In particular, it was shown in [6] that solutions of (4) satisfying $\mathbb{C}(X, B)=$ $\mathbb{C}(z)$, called primitive, can be described in terms of group actions on $\mathbb{C P}^{1}$ or \mathbb{C}, implying strong restrictions on a possible form of A, B and X. Any solution of (4) reduces to a primitive one by a certain iterative process, and the quantitative aspects of this reduction were studied in [5]. In particular, it was shown in [5] that if a rational function B is not special, that is, if B is neither a Lattès map nor conjugate to $z^{ \pm n}$ or $\pm T_{n}$, then solutions of equations (1) and (4) obey some finiteness conditions.

Specifically, with regards to equation (1), it was shown in [5] that if B is not special, then there exist finitely many rational functions $X_{1}, X_{2}, \ldots, X_{r}$ such that X commutes with B if and only if

$$
X=X_{j} \circ B^{\circ k}
$$

for some $j, 1 \leq j \leq r$, and $k \geq 0$. Moreover, the number r and the degrees of X_{j}, $1 \leq j \leq r$, can be bounded by numbers depending on $\operatorname{deg} B$ only. Note that this result immediately implies the Ritt theorem. Indeed, if X commutes with B, then any iterate $X^{\circ l}, l \geq 1$, does. Thus, by the Dirichlet box principle, there exist distinct l_{1}, l_{2} such that

$$
X^{\circ l_{1}}=X_{j} \circ B^{\circ k_{1}}, \quad X^{\circ l_{2}}=X_{j} \circ B^{\circ k_{2}}
$$

for the same j and some $k_{1}, k_{2} \geq 0$. Therefore, if, say, $l_{2}>l_{1}$, then

$$
X^{\circ l_{2}}=X^{\circ l_{1}} \circ B^{\circ k_{2}-k_{1}},
$$

implying that (2) holds for $l=l_{2}-l_{1}$ and $k=k_{2}-k_{1}$, since X and B commute.

In this paper, we provide a method for describing the set C_{B} for non-special B. For such B, essentially all the information about C_{B} provided by the Ritt method reduces to the fact that any element of C_{B} has a common iterate with B. Thus, new approaches and techniques are needed, and we develop them in this paper. Our main results are as follows. First, for any non-special rational function B, we define an equivalence relation $\underset{B}{\sim}$ on the set C_{B} such that the quotient $C_{B} / \underset{B}{\sim}$ possesses the structure of a finite group G_{B}. Second, we describe generators of this group in terms of the fundamental group of a special graph associated with B, providing a method for describing C_{B}. Finally, we calculate G_{B} for several classes of rational functions. Note that our method of describing C_{B} reduces the problem to the easier problem of finding all functional decompositions $F=U \circ V$ for finitely many rational functions F.

In more detail, for a non-special rational function B, we define an equivalence relation $\underset{B}{\sim}$ on the set C_{B}, setting $A_{1} \underset{B}{\sim} A_{2}$ if

$$
A_{1} \circ B^{\circ l_{1}}=A_{2} \circ B^{\circ l_{2}}
$$

for some $l_{1} \geq 0, l_{2} \geq 0$, and show that the multiplication of classes induced by the functional composition of their representatives provides $C_{B} / \underset{B}{\sim}$ with the structure of a finite group G_{B}. The group structure on $C_{B} / \underset{B}{\sim}$ offers a new look at the problem of describing C_{B}, and permits the characterization of properties of C_{B} in group theoretic terms. For example, the group G_{B} is trivial if and only if any element of C_{B} is an iterate of B, while G_{B} is isomorphic to $\operatorname{Aut}(B)$ if and only if any element of C_{B} can be represented in the form $X=\mu \circ B^{k}$, where $\mu \in \operatorname{Aut}(B)$ and $k \geq 0$.

We describe generators of G_{B} using a special finite graph Γ_{B} defined as follows. Let B be a rational function. We say that a rational function \widehat{B} is an elementary transformation of B if there exist rational functions U and V such that $B=V \circ U$ and $\widehat{B}=U \circ V$. We say that rational functions B and A are equivalent and write $A \sim B$ if there exists a chain of elementary transformations between B and A (this equivalence relation should not be confused with the previous one where the subscript B is used). Since for any Möbius transformation μ the equality

$$
B=\left(B \circ \mu^{-1}\right) \circ \mu
$$

holds, the equivalence class $[B]$ of a rational function B is a union of conjugacy classes. Moreover, by the result of [9], the class $[B]$ consists of finitely many conjugacy classes, unless B is a flexible Lattès map. The graph Γ_{B} is defined as a multigraph whose vertices are in a one-to-one correspondence with some fixed representatives B_{i} of conjugacy classes in $[B]$, and whose multiple edges connecting the vertices corresponding to B_{i} to B_{j} are in a one-to-one correspondence with solutions of the system

$$
B_{i}=V \circ U, \quad B_{j}=U \circ V
$$

in rational functions. In these terms, the main result of the paper about the group G_{B} is a construction of a group epimorphism from the fundamental group of the graph Γ_{B} to the group G_{B}.

The paper is organized as follows. In $\S 2$, we describe the set C_{B} in terms of elementary transformations. In $\S 3$, we define the group G_{B}. In $\S \S 4$ and 5 , we define the graph Γ_{B}
and construct a group epimorphism from $\pi_{1}\left(\Gamma_{B}\right)$ to G_{B}. We also show that if $A \sim B$, then the groups G_{A} and G_{B} are isomorphic. Note that this implies, in particular, that if A is a rational function such that the $\operatorname{group} \operatorname{Aut}(A)$ is non-trivial, then for any rational function $B \sim A$ the group G_{B} is also non-trivial, even though $\operatorname{Aut}(B)$ can be trivial. In the last case, functions of degree one in C_{A} give rise to functions of higher degree in C_{B} through the isomorphism $G_{A} \cong G_{B}$.

In §6, we calculate the group G_{B} for certain classes of rational functions, and consider some examples. Specifically, we show that for a wide class of rational functions, which we call generically decomposable, G_{B} is isomorphic to $\operatorname{Aut}(B)$. We also show that for a polynomial B the group G_{B} is metacyclic. Finally, we discuss in detail the example of commuting rational functions B and X satisfying condition (2) from the paper of Ritt [13]. In particular, we calculate the group G_{B} that turns out to be a cyclic group of order three. We also provide a different example of this kind.

2. The set C_{B} and elementary transformations

Let B be a rational function of degree at least two. We denote by C_{B} the set of all rational functions commuting with B.

Lemma 2.1. The set C_{B} is closed with respect to the operation of composition, that is, $A_{1}, A_{2} \in C_{B}$ implies $A_{1} \circ A_{2} \in C_{B}$. Furthermore, if $A \circ U \in C_{B}$ and $U \in C_{B}$, then $A \in C_{B}$.

Proof. Indeed, if $A_{1}, A_{2} \in C_{B}$, then

$$
A_{1} \circ A_{2} \circ B=A_{1} \circ B \circ A_{2}=B \circ A_{1} \circ A_{2} .
$$

On the other hand, if $A \circ U \in C_{B}$ and $U \in C_{B}$, then

$$
B \circ A \circ U=A \circ U \circ B=A \circ B \circ U,
$$

implying that

$$
B \circ A=A \circ B .
$$

We emphasize that we allow to elements of C_{B} to have degree one, that is to be Möbius transformations. All Möbius transformations commuting with B obviously form a group denoted by $\operatorname{Aut}(B)$ and called the symmetry group of B. Since any $\mu \in \operatorname{Aut}(B)$ maps periodic points of B of order $l \geq 1$ to themselves, and any Möbius transformation is defined by its values at any three points, the symmetry group of any rational function is finite. In particular, $\operatorname{Aut}(B)$ is one of the five well-known finite rotation groups of the sphere: A_{4}, $S_{4}, A_{5}, C_{n}, D_{2 n}$. Note that the property of $\mu \in \operatorname{Aut}(B)$ to map periodic points of B to periodic points can be used for a practical description of $\operatorname{Aut}(B)$.

Let B be a rational function. A rational function \widehat{B} is called an elementary transformation of B if there exist rational functions U and V such that $B=V \circ U$ and $\widehat{B}=U \circ V$. We say that rational functions B and A are equivalent and write $A \sim B$ if there exists a chain of elementary transformations between B and A. Since for any Möbius transformation μ the equality

$$
B=\left(B \circ \mu^{-1}\right) \circ \mu
$$

holds, the equivalence class $[B]$ of a rational function B is a union of conjugacy classes. Thus, the relation \sim can be considered as a weaker form of the classical conjugacy relation. The equivalence class $[B]$ contains infinitely many conjugacy classes if and only if B is a flexible Lattès map [9].

The following lemma is obtained by a direct calculation (see [10, Lemma 3.1]).
Lemma 2.2. Let

$$
\begin{equation*}
L: B \rightarrow B_{1} \rightarrow B_{2} \rightarrow \cdots \rightarrow B_{s} \tag{5}
\end{equation*}
$$

be a sequence of elementary transformations, and $U_{i}, V_{i}, 1 \leq i \leq s$, rational functions such that

$$
B=V_{1} \circ U_{1}, \quad B_{i}=U_{i} \circ V_{i}, \quad 1 \leq i \leq s,
$$

and

$$
U_{i} \circ V_{i}=V_{i+1} \circ U_{i+1}, \quad 1 \leq i \leq s-1 .
$$

Then the functions

$$
\begin{equation*}
U=U_{s} \circ U_{s-1} \circ \cdots \circ U_{1}, \quad V=V_{1} \circ \cdots \circ V_{s-1} \circ V_{s} \tag{6}
\end{equation*}
$$

make the diagram

commutative and satisfy the equalities

$$
V \circ U=B^{\circ s}, \quad U \circ V=B_{s}^{\circ s} .
$$

It follows from Lemma 2.2, that any sequence of elementary transformations (5) such that $B_{s}=B$ gives rise to a rational function U commuting with B, and the main result of this section states that for non-special B any element of C_{B} can be obtained in this way.

Theorem 2.3. Let B be a non-special rational function of degree at least two. Then a rational function X belongs to C_{B} if and only if there exists a sequence of elementary transformation (5) such that $B_{s}=B$ and $X=U_{s} \circ U_{s-1} \circ \cdots \circ U_{1}$.

The proof of Theorem 2.3 uses the following two lemmas which are particular cases of [6, Lemma 2.1] and [5, Theorem 2.18], respectively. For the reader's convenience, we provide short independent proofs. We recall that a solution A, X, B of (4) is called primitive if $\mathbb{C}(X, B)=\mathbb{C}(z)$. We also mention that for an arbitrary solution A, X, B of (4) the equality

$$
\begin{equation*}
\operatorname{deg} A=\operatorname{deg} B \tag{7}
\end{equation*}
$$

holds.

Lemma 2.4. A solution A, X, B of (4) is primitive if and only if the algebraic curve

$$
\begin{equation*}
A(x)-X(y)=0 \tag{8}
\end{equation*}
$$

is irreducible.
Proof. By the Lüroth theorem, there exists a rational function W such that $\mathbb{C}(X, B)=$ $\mathbb{C}(W)$, implying that the equalities

$$
\begin{equation*}
X=X^{\prime} \circ W, \quad B=B^{\prime} \circ W \tag{9}
\end{equation*}
$$

hold for some rational functions X^{\prime} and B^{\prime} with $\mathbb{C}\left(X^{\prime}, B^{\prime}\right)=\mathbb{C}(z)$. Clearly, $x=X^{\prime}(t)$, $y=B^{\prime}(t)$ is a generically one-to-one parametrization of some irreducible component

$$
C: F(x, y)=0
$$

of (8). Furthermore, since the degree of the projection of C on x (respectively, y) is equal to $\operatorname{deg} X^{\prime}$ (respectively, $\operatorname{deg} B^{\prime}$) the equalities

$$
\begin{equation*}
\operatorname{deg}_{x} F=\operatorname{deg} B^{\prime}, \quad \operatorname{deg}_{y} F=\operatorname{deg} X^{\prime} \tag{10}
\end{equation*}
$$

hold. If $\mathbb{C}(X, B)=\mathbb{C}(z)$, then deg $W=1$, and it follows from equalities (9), (10), and (7) that the curve C coincides with curve (8), implying that (8) is irreducible. On the other hand, if $\mathbb{C}(X, B) \neq \mathbb{C}(z)$, then $\operatorname{deg} W>1$, and equalities (9), (10), and (7) imply that C is a proper component of (8).

Lemma 2.5. Let A, X, B be a primitive solution of (4). Then for any $l \geq 1$, the solution $A^{\circ}, X, B^{\circ l}$ is also primitive.

Proof. The proof is by induction on l. For $l=1$, the lemma is trivially true. Assume that it is true for all $k \leq l$. By Lemma 2.4, this implies that the algebraic curve

$$
C_{k}: A^{\circ k}(x)-X(y)=0
$$

is irreducible for all $k \leq l$, and

$$
R_{k}: x=X(t), \quad y=B^{\circ k}(t)
$$

is its generically one-to-one parametrization.
Let P_{1}, P_{2} be arbitrary rational functions satisfying the equality

$$
\begin{equation*}
A^{\circ(l+1)} \circ P_{1}=X \circ P_{2} . \tag{11}
\end{equation*}
$$

Since the curve C_{l} is irreducible and R_{l} is its generically one-to-one parametrization, the equality

$$
A^{\circ(l+1)} \circ P_{1}=A^{\circ l} \circ\left(A \circ P_{1}\right)=X \circ P_{2}
$$

implies that

$$
A \circ P_{1}=X \circ W, \quad P_{2}=B^{\circ l} \circ W
$$

for some $W \in \mathbb{C}(z)$. Furthermore, since the curve C_{1} is also irreducible, it follows from the first of these equalities that

$$
P_{1}=X \circ U, \quad W=B \circ U
$$

for some $U \in \mathbb{C}(z)$. Thus, any pair of rational functions P_{1}, P_{2} satisfying (11) has the form

$$
P_{1}=X \circ U, \quad P_{2}=B^{\circ(l+1)} \circ U
$$

for some $U \in \mathbb{C}(z)$. In particular, this implies that if the equalities

$$
\begin{equation*}
X=P_{1} \circ W, \quad B^{\circ(l+1)}=P_{2} \circ W \tag{12}
\end{equation*}
$$

hold for some $P_{1}, P_{2}, W \in \mathbb{C}(z)$, then $\operatorname{deg} W=1$, since P_{1}, P_{2} in (12) satisfy (11). Therefore, $\mathbb{C}\left(X, B^{\circ(l+1)}\right)=\mathbb{C}(z)$, that is, $A^{\circ(l+1)}, X, B^{\circ(l+1)}$ is a primitive solution.

Proof of Theorem 2.3. The sufficiency follows from Lemma 2.2. In the other direction, assume that $X \in C_{B}$. If X is a Möbius transformation, then the sequence

$$
B=\left(B \circ X^{-1}\right) \circ X \rightarrow X \circ\left(B \circ X^{-1}\right)=B
$$

is as required. Thus, assume that $\operatorname{deg} X \geq 2$.
We observe first that there exist a sequence (5) and a commutative diagram

such that U is defined by (6), the equality $X=X_{0} \circ U$ holds, and the triple B, X_{0}, B_{s} is a primitive solution of (4). Indeed, if B, X, B is a primitive solution of (4), we can set $U=z, X_{0}=X$, and $B_{s}=B$. Otherwise, $\mathbb{C}(X, B)=\mathbb{C}(W)$ for some W with deg $W>1$, and substituting equalities (9) in (4) we see that the diagram

commutes. If the solution $B, X^{\prime}, W \circ B^{\prime}$ of (4) is primitive, we are done. Otherwise, we can apply the above transformation to this solution. Since $\operatorname{deg} X^{\prime}<\operatorname{deg} X$, it is clear that after a finite number of steps we obtain a sequence of elementary transformations (5) and functions U, X_{0}, and B_{s} as required.

To prove Theorem 2.3, we only must show that $\operatorname{deg} X_{0}=1$. Indeed, in this case changing U_{s} to $X_{0} \circ U_{s}$ and B_{s} to $X_{0} \circ B_{s} \circ X_{0}^{-1}$, without loss of generality we may assume that $X_{0}=z$, so that $B_{s}=B$ and (5) is the sequence required. Assume, in contrast, that deg $X_{0}>1$. By Lemma 2.5, for any $l \geq 1$ the triple $B^{\circ l}, X_{0}, B_{s}^{\circ l}$ is a primitive solution
of (4). On the other hand, by the Ritt theorem, there exist k and l such that equality (2) holds. Thus,

$$
B^{\circ l}=X^{\circ k}=X_{0} \circ\left(U \circ X^{\circ k-1}\right),
$$

implying that the curve

$$
\left(U \circ X^{\circ k-1}\right)(x)-y=0
$$

is a component of the curve

$$
B^{\circ l}(x)-X_{0}(y)=0
$$

Moreover, this component is proper because deg $X_{0}>1$. Since, by Lemma 2.4, this contradicts the fact that $B^{\circ l}, X_{0}, B_{s}^{\circ l}$ is a primitive solution of (4), we conclude that $\operatorname{deg} X_{0}=1$.

3. The group G_{B}

Define an equivalence relation $\underset{B}{\sim}$ on the set C_{B}, setting $A_{1} \underset{B}{\sim} A_{2}$ if

$$
\begin{equation*}
A_{1} \circ B^{\circ l_{1}}=A_{2} \circ B^{\circ l_{2}} \tag{13}
\end{equation*}
$$

for some $l_{1} \geq 0, l_{2} \geq 0$ (in order to distinguish this relation from the relation \sim introduced in the previous section we use the subscript B). It is easy to see that $\underset{B}{\sim}$ is really an equivalence relation. Indeed, $\underset{B}{\sim}$ is clearly reflexive and symmetric. Furthermore, if equalities (13) and

$$
A_{2} \circ B^{\circ n_{1}}=A_{3} \circ B^{\circ n_{2}}
$$

hold, and $n_{1} \geq l_{2}$, then

$$
A_{1} \circ B^{\circ\left(l_{1}+n_{1}-l_{2}\right)}=A_{2} \circ B^{\circ n_{1}}=A_{3} \circ B^{\circ n_{2}}
$$

implying that $A_{1} \underset{B}{\sim} A_{3}$. Similarly, if $l_{2} \geq n_{1}$, then

$$
A_{3} \circ B^{\circ\left(n_{2}+l_{2}-n_{1}\right)}=A_{2} \circ B^{\circ l_{2}}=A_{1} \circ B^{\circ l_{1}}
$$

Lemma 3.1. Let \mathbf{A} be an equivalence class of $\underset{B}{\sim}$. For any $n \geq 1$, the class \mathbf{A} contains at most one rational function of degree n. Furthermore, if $A_{0} \in \mathbf{A}$ is a function of minimal possible degree, then any $A \in \mathbf{A}$ has the form $A=A_{0} \circ B^{\circ l}, l \geq 1$. Alternatively, the function A_{0} can be described as a unique function in \mathbf{A} that is not a rational function in B.

Proof. If deg $A_{1}=\operatorname{deg} A_{2}$ in (13), then $l_{1}=l_{2}$, implying that $A_{1}=A_{2}$. Furthermore, if

$$
\begin{equation*}
A \circ B^{\circ l_{1}}=A_{0} \circ B^{\circ l_{2}} \tag{14}
\end{equation*}
$$

and $l_{1}>l_{2}$, then

$$
A_{0}=A \circ B^{\circ\left(l_{1}-l_{2}\right)}
$$

implying that $\operatorname{deg} A<\operatorname{deg} A_{0}$ in contradiction with the assumption. Therefore, $l_{1} \leq l_{2}$ and, hence,

$$
A=A_{0} \circ B^{\circ\left(l_{2}-l_{1}\right)} .
$$

Moreover, A_{0} is not a rational function in B, since if $A_{0}=A^{\prime} \circ B$, then A^{\prime} commutes with B by Lemma 2.1, implying that $A^{\prime} \underset{B}{\sim} A_{0}$ and $\operatorname{deg} A^{\prime}<\operatorname{deg} A_{0}$. On the other hand, if A is an other function in the class \mathbf{A} that is not a rational function in B, then (14) implies that $l_{1}=l_{2}$ and $A=A_{0}$.

For a rational function B, we denote by G_{B} the set of equivalence classes of $\underset{B}{\sim}$ on C_{B}. We define a binary operation on the set G_{B} as follows. If \mathbf{A}_{1} and \mathbf{A}_{2} are equivalence classes of $\underset{B}{\sim}$, and $A_{1} \in \mathbf{A}_{1}$ and $A_{2} \in \mathbf{A}_{2}$ are their representatives, then $\mathbf{A}_{1} \cdot \mathbf{A}_{2}$ is defined as the equivalence class containing $A_{1} \circ A_{2}$. It is easy to see that this operation is well defined. Indeed, assume that $A_{1} \underset{B}{\sim} A_{1}^{\prime}$ and $A_{2} \underset{B}{\sim} A_{2}^{\prime}$. Then

$$
A_{1} \circ B^{\circ l_{1}}=A_{1}^{\prime} \circ B^{\circ l_{1}^{\prime}}
$$

and

$$
A_{2} \circ B^{\circ l_{2}}=A_{2}^{\prime} \circ B^{\circ l_{2}^{\prime}},
$$

implying that

$$
\begin{equation*}
A_{1} \circ B^{\circ l_{1}} \circ A_{2} \circ B^{\circ l_{2}}=A_{1}^{\prime} \circ B^{\circ l_{1}^{\prime}} \circ A_{2}^{\prime} \circ B^{\circ l_{2}^{\prime}} . \tag{15}
\end{equation*}
$$

Since $A_{1}, A_{2} \in C_{B}$, equality (15) implies that

$$
A_{1} \circ A_{2} \circ B^{\circ\left(l_{1}+l_{2}\right)}=A_{1}^{\prime} \circ A_{2}^{\prime} \circ B^{\circ\left(l_{1}^{\prime}+l_{2}^{\prime}\right)},
$$

and, hence,

$$
A_{1} \circ A_{2} \underset{B}{\sim} A_{1}^{\prime} \circ A_{2}^{\prime} .
$$

THEOREM 3.2. The set G_{B} equipped with the operation \cdot is a finite group.
Proof. By definition, if $A_{i} \in \mathbf{A}_{i}, 1 \leq i \leq 3$, then $\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2}\right) \cdot \mathbf{A}_{3}$ and $\mathbf{A}_{1} \cdot\left(\mathbf{A}_{2} \cdot \mathbf{A}_{3}\right)$ are classes containing the functions $\left(A_{1} \circ A_{2}\right) \circ A_{3}$ and $A_{1} \circ\left(A_{2} \circ A_{3}\right)$, respectively. On the other hand,

$$
\left(A_{1} \circ A_{2}\right) \circ A_{3}=A_{1} \circ\left(A_{2} \circ A_{3}\right),
$$

since \circ is an associative operation on the set of rational functions. Therefore, the classes $\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2}\right) \cdot \mathbf{A}_{3}$ and $\mathbf{A}_{1} \cdot\left(\mathbf{A}_{2} \cdot \mathbf{A}_{3}\right)$ coincide, and, hence, the operation \cdot satisfies the associativity axiom.

Clearly, the class \mathbf{e} containing the function z and consisting of all iterates of B serves as the unit element. Moreover, for any class \mathbf{X} there exists a class \mathbf{X}^{-1} such that

$$
\begin{equation*}
\mathbf{X} \cdot \mathbf{X}^{-1}=\mathbf{X}^{-1} \circ \mathbf{X}=\mathbf{e} \tag{16}
\end{equation*}
$$

Indeed, by Theorem 2.3, for any $X \in \mathbf{X}$ there exists a sequence of elementary transformation (5) such that

$$
X=U_{s} \circ U_{s-1} \circ \cdots \circ U_{1} .
$$

Further, it follows from Lemma 2.2 that the function

$$
Y=V_{s} \circ V_{s-1} \circ \cdots \circ V_{1}
$$

belongs to C_{B}, and the functions X and Y satisfy

$$
X \circ Y=Y \circ X=B^{\circ s} .
$$

Therefore, condition (16) holds for \mathbf{X}^{-1} defined as the class containing the rational function Y.

Finally, by the result of [5] cited in the introduction, there exist at most finitely many rational functions $A \in C_{B}$ which are not rational functions in B, implying by Lemma 3.1 that the group G_{B} is finite.

Note that the above proof provides a method for the actual finding \mathbf{X}^{-1}. On the other hand, merely the existence of the inverse element follows from the Ritt theorem. Indeed, since for any $X \in \mathbf{X}$ there exist $l, k \geq 1$ such that (2) holds, for any class \mathbf{X} there exists k such that $\mathbf{X}^{k}=\mathbf{e}$, implying that (16) holds for $\mathbf{X}^{-1}=\mathbf{X}^{k-1}$. Note also that the Ritt theorem by itself does not imply that the group G_{B} is finite, although it does imply that any its element has finite order.

For $X \in C_{B}$, we denote by \boldsymbol{X} the element of G_{B} corresponding to the equivalence class of $\underset{B}{\sim}$ containing X.

Lemma 3.3. The map $\mu \rightarrow \boldsymbol{\mu}$ is a group monomorphism from the group $\operatorname{Aut}(B)$ to the group G_{B}.

Proof. Since functions from $\operatorname{Aut}(B)$ have degree one, it follows from Lemma 3.1 that $\boldsymbol{\mu}_{\mathbf{1}}=\boldsymbol{\mu}_{\mathbf{2}}$ if and only if $\mu_{1}=\mu_{2}$. Therefore, the map $\tau: \mu \rightarrow \boldsymbol{\mu}$ is injective, and it is easy to see that τ is a homomorphism of groups.

We denote the image of $\operatorname{Aut}(B)$ in G_{B} under the group monomorphism $\mu \rightarrow \boldsymbol{\mu}$ by $\operatorname{Aut}_{G}(B)$.

LEMMA 3.4. The following conditions are equivalent.
(1) Any $X \in C_{B}$ has the form $X=\mu \circ B^{\circ l}$ for some $\mu \in \operatorname{Aut}(B)$ and $l \geq 0$.
(2) Any $X \in C_{B}$ of degree at least two is a rational function in B.
(3) The group G_{B} coincides with $\operatorname{Aut}_{G}(B)$.

Proof. It is easy to see that (1) and (3) are equivalent, and that (1) implies (2). Assume now that (2) holds, and let $X \in C_{B}$ be a function of degree at least two. By the assumption, $X=R_{1} \circ B$ for some $R \in \mathbb{C}(z)$. Moreover, since by Lemma 2.1 the function R_{1} belongs to C_{B}, using (2) again we conclude that either $R_{1} \in \operatorname{Aut}(B)$, or there exists $R_{2} \in \mathbb{C}(z)$ such that $R_{1}=R_{2} \circ B$ and $R_{2} \in C_{B}$. It is clear that continuing this process we will eventually obtain a representation $X=\mu \circ B^{l}$ for some $\mu \in \operatorname{Aut}(B)$ and $l \geq 1$.

4. The graph Γ_{B}

Let B be a rational function of degree at least two. Define Γ_{B} as a multigraph whose vertices are in a one-to-one correspondence with some fixed representatives of conjugacy classes in $[B]$, and whose multiple edges connecting vertices corresponding to representatives B_{i} and B_{j} are in a one-to-one correspondence with solutions of the system

$$
\begin{equation*}
B_{i}=V \circ U, \quad B_{j}=U \circ V \tag{17}
\end{equation*}
$$

in rational functions. Note that Γ_{B} have loops. They correspond to solutions of

$$
B_{i}=U \circ V=V \circ U .
$$

LEmma 4.1. The graph Γ_{B} does not depend on the choice of representatives of conjugacy classes in $[B]$.

Proof. Indeed, for any Möbius transformations α and β, to a solution U, V of system (17) corresponds a solution

$$
\begin{equation*}
U^{\prime}=\beta \circ U \circ \alpha^{-1}, \quad V^{\prime}=\alpha \circ V \circ \beta^{-1} \tag{18}
\end{equation*}
$$

of the system

$$
\begin{equation*}
\alpha \circ B_{i} \circ \alpha^{-1}=V^{\prime} \circ U^{\prime}, \quad \beta \circ B_{j} \circ \beta^{-1}=U^{\prime} \circ V^{\prime} . \tag{19}
\end{equation*}
$$

Furthermore, it is easy to see that formulas (18) provide a one-to-one correspondence between solutions of (17) and (19).

Theorem 4.2. Let B a rational function of degree at least two. Then the graph Γ_{B} is finite, unless B is a flexible Lattès map.

Proof. By the main result of the paper [9], the class [B] contains infinitely many conjugacy classes if and only if B is a flexible Lattès map. Therefore, if B is not such a map, the graph Γ_{B} contains only finitely many vertices.

Let us show now that the number of edges connecting two vertices is finite. Recall that two decompositions

$$
\begin{equation*}
B=V \circ U, \quad B=V^{\prime} \circ U^{\prime} \tag{20}
\end{equation*}
$$

of a rational function B into compositions of rational functions are called equivalent if there exists a Möbius transformation μ such that

$$
\begin{equation*}
V^{\prime}=V \circ \mu^{-1}, \quad U^{\prime}=\mu \circ U . \tag{21}
\end{equation*}
$$

It is well known that equivalence classes of decompositions of B are in one-to-one correspondence with imprimitivity systems of the monodromy group $\operatorname{Mon}(B)$ of B. In particular, there exist at most finitely many such classes. Therefore, to prove the finiteness of the number of edges adjacent to the vertices corresponding to B_{i} and B_{j} it is enough to show that for any fixed solution U, V of (17) there exist only finitely many solutions U^{\prime}, V^{\prime} of (17) such that decompositions (20) are equivalent. Since equalities (21) combined with the equality

$$
U \circ V=U^{\prime} \circ V^{\prime}
$$

imply the equality

$$
U \circ V=\mu \circ U \circ V \circ \mu^{-1},
$$

the last statement follows from the finiteness of the group $\operatorname{Aut}(U \circ V)$.
Since in this paper we consider only non-special rational functions B, the corresponding graphs Γ_{B} are always finite by Theorem 4.2. Note that the results of [5] imply that the number of vertices of Γ_{B} can be bounded by a number depending on $\operatorname{deg} B$ only (see [$\mathbf{5}$, Remark 5.2]). Nevertheless, there exists no absolute bound for the number of vertices

Figure 1. The form of Γ_{B} in Example 1.
of Γ_{B}, and it is easy to construct rational functions B of degree n for which the graph Γ_{B} contains $\approx \log _{2} n$ vertices (see [6, p. 1241]).

We always assume that the representative of the conjugacy class of the function B in Γ_{B} is the function B itself. Abusing notation, in the following we call the functions B_{j} simply 'vertices' of Γ_{B}. Note that for each vertex B_{j} of Γ_{B} there exists at least one loop starting and ending at B that corresponds to the solution

$$
\begin{equation*}
B=B \circ z=z \circ B \tag{22}
\end{equation*}
$$

of (17). More generally, the solutions

$$
\begin{equation*}
B=\left(\mu^{-1} \circ B\right) \circ \mu=\mu \circ\left(\mu^{-1} \circ B\right), \quad \mu \in \operatorname{Aut}(B), \tag{23}
\end{equation*}
$$

give rise to $|\operatorname{Aut}(B)|$ loops.
Example 1. Assume that B is an indecomposable rational function. By definition, this means that the equality $B=V \circ U$ implies that at least one of the functions U and V has degree one. In this case, the equivalence class $[B]$ obviously consists of a unique conjugacy class. Thus, Γ_{B} has a unique vertex, and all edges of Γ_{B} are loops corresponding to solutions of

$$
B=U \circ V=V \circ U
$$

such that one of the functions U, V has degree one. Assuming without loss of generality that $\operatorname{deg} U=1$, we see that

$$
B \circ U=U \circ V \circ U=U \circ B
$$

implying that $U \in \operatorname{Aut}(B)$. Therefore, Γ_{B} has the form shown in Figure 1, and the number of loops of Γ_{B} is equal to $|\operatorname{Aut}(B)|$.

Example 2. Assume now that a rational function B has, up to equivalency (21), a unique decomposition $B=V \circ U$ into a composition of rational functions of degree at least two, and that the same is true for the function $B_{1}=U \circ V$. In this case, graph Γ_{B} may have two distinct forms. Namely, if B_{1} and B are not conjugate, then Γ_{B} has the form shown in Figure 2, where all loops correspond to some automorphisms. Note that for such B and B_{1} the groups $\operatorname{Aut}(B)$ and $\operatorname{Aut}\left(B_{1}\right)$ are isomorphic (see Lemma 6.3), implying that B and B_{1} have the same number of attached loops.

Figure 2. The form of Γ_{B} in Example 2.

On the other hand, if B_{1} is conjugate to B, then without loss of generality we may assume that $B_{1}=B$, so that

$$
\begin{equation*}
B=V \circ U=U \circ V \tag{24}
\end{equation*}
$$

In this case, the graph Γ_{B} has one vertex and $|\operatorname{Aut}(B)|+1$ loops corresponding to (23) and (24). Note that since by the assumption the decompositions in (24) are equivalent, the equalities

$$
U=V \circ \mu^{-1}, \quad V=\mu \circ U
$$

hold for some Möbius transformation μ, implying that

$$
B=V \circ U=\mu \circ U^{\circ 2} .
$$

Thus, up to a composition with a Möbius transformation μ, the function B is the second iterate of some rational function U. Moreover, since

$$
U=V \circ \mu^{-1}=\mu \circ U \circ \mu^{-1},
$$

the transformation μ belongs to $\operatorname{Aut}(U)$.
Example 3. Set

$$
B=-\frac{2 z^{2}}{z^{4}+1}=-\frac{2}{z^{2}+1 / z^{2}} .
$$

The function B is an invariant for the finite automorphism group of $\mathbb{C P}^{1}$ generated by the transformations

$$
z \rightarrow \frac{1}{z}, \quad z \rightarrow-z,
$$

and its monodromy group $\operatorname{Mon}(B)$ is the Klein four group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ having three proper imprimitivity systems. The corresponding decompositions of B are

$$
B=-\frac{2}{z^{2}-2} \circ \frac{z^{2}+1}{z}, \quad B=-\frac{2}{z^{2}+2} \circ \frac{z^{2}-1}{z},
$$

and

$$
\begin{equation*}
B=\frac{z^{2}-1}{z^{2}+1} \circ \frac{z^{2}-1}{z^{2}+1} . \tag{25}
\end{equation*}
$$

Using, for example, the 'Maple' system, one can check that the function

$$
\begin{equation*}
B_{1}=\frac{z^{2}+1}{z} \circ-\frac{2}{z^{2}-2}=-\frac{1}{2} \frac{z^{4}-4 z^{2}+8}{z^{2}-2} \tag{26}
\end{equation*}
$$

has three critical values in $\mathbb{C P}^{1}$, and the corresponding permutations in $\operatorname{Mon}\left(B_{1}\right)$ can be identified with the permutations (12)(34), (1243), and (14) in S_{4}. On the other hand, the function

$$
\begin{equation*}
B_{2}=\frac{z^{2}-1}{z} \circ-\frac{2}{z^{2}+2}=\frac{1}{2} \frac{z^{2}\left(z^{2}+4\right)}{z^{2}+2} \tag{27}
\end{equation*}
$$

has four critical values, and the corresponding permutations in $\operatorname{Mon}\left(B_{2}\right)$ can be identified with (12)(34), (23), (12)(34), and (14). Since B_{1} and B_{2} have a different number of critical values, they are not conjugate. Furthermore, it is easy to see that the both groups $\operatorname{Mon}\left(B_{1}\right)$ and $\operatorname{Mon}\left(B_{2}\right)$ have a unique proper imprimitivity system $\{1,4\},\{2,3\}$,

Figure 3. The form of Γ_{B} in Example 3.
corresponding to decompositions (26) and (27), implying, in particular, that B is not conjugate to B_{1} or B_{2}. Finally, one can check by a direct calculations, solving the system

$$
\frac{a z+b}{c z+d} \circ B=B \circ \frac{a z+b}{c z+d}
$$

in a, b, c, d, that the functions B, B_{1}, B_{2} have no automorphisms. Summing up, we conclude that the graph Γ_{B} has the form shown on Figure 3.

5. The epimorphism $\pi_{1}\left(\Gamma_{B}\right) \rightarrow G_{B}$

Considering the graph Γ_{B} as a one-dimensional $C W$ complex in \mathbb{R}^{3}, we can provide each edge of Γ_{B}, including loops, with two opposite orientations. With each oriented edge e of Γ_{B}, we associate a rational function $\mathcal{F}(e)$ as follows. Assume first that e corresponds to solution (17) with different B_{i} and B_{j}. Then we set $\mathcal{F}(e)=U$, if the initial point of e is B_{i} and the final point is B_{j}, and $\mathcal{F}(e)=V$, if the orientation is opposite. For a loop, we simply set the value of \mathcal{F} equal to U for one of the two corresponding oriented edges, and equal to V for the opposite oriented edge. For an oriented path

$$
l=e_{n} e_{n-1} \ldots e_{1}
$$

set

$$
\mathcal{F}(l)=\mathcal{F}\left(e_{n}\right) \circ \mathcal{F}\left(e_{n-1}\right) \circ \cdots \circ \mathcal{F}\left(e_{1}\right) .
$$

We emphasize that since we always compose functions from right to left, we follow this convention also for a concatenation of paths. Thus, a path obtained by a concatenation of the paths l_{1} and l_{2} is denoted by

$$
l=l_{2} l_{1},
$$

and the above definition implies that

$$
\begin{equation*}
\mathcal{F}(l)=\mathcal{F}\left(l_{2}\right) \circ \mathcal{F}\left(l_{1}\right) \tag{28}
\end{equation*}
$$

As usual, we denote the path l traversed in the opposite direction by l^{-1}.
By construction, oriented paths from B to B_{s} correspond to sequences of elementary transformation (5). Furthermore, in the notation of Lemma 2.2, if

$$
\mathcal{F}(l)=U_{s} \circ U_{s-1} \circ \cdots \circ U_{1},
$$

then

$$
\mathcal{F}\left(l^{-1}\right)=V_{1} \circ \cdots \circ V_{s-1} \circ V_{s} .
$$

In particular, Lemma 2.2 implies the following statement.

Lemma 5.1. Let l be an oriented path in Γ_{B} from the vertex B to a vertex B_{s} consisting of k oriented edges. Then

$$
\begin{equation*}
B_{s} \circ \mathcal{F}(l)=\mathcal{F}(l) \circ B, \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}\left(l^{-1}\right) \circ \mathcal{F}(l)=B^{\circ k}, \quad \mathcal{F}(l) \circ \mathcal{F}\left(l^{-1}\right)=B_{s}^{\circ k} \tag{30}
\end{equation*}
$$

If l is a closed path in Γ_{B} starting and ending at B, then (29) implies that the function $\mathcal{F}(l)$ commutes with B, while equalities (30) reduce to the equalities

$$
\begin{equation*}
\mathcal{F}\left(l^{-1}\right) \circ \mathcal{F}(l)=\mathcal{F}(l) \circ \mathcal{F}\left(l^{-1}\right)=B^{\circ k} \tag{31}
\end{equation*}
$$

Thus, we obtain a map $\phi_{B}: l \rightarrow \mathcal{F}(l)$ from the set of closed paths starting and ending at B to the set C_{B}.

THEOREM 5.2. The map $\phi_{B}: l \rightarrow \mathcal{F}(l)$ descends to an epimorphism of groups Φ_{B} : $\pi_{1}\left(\Gamma_{B}, B\right) \rightarrow G_{B}$.

Proof. Let Γ be a graph. Recall that an oriented path l in Γ is called reduced if no two successive oriented edges in l are opposite orientations of the same edge. Paths of the form $e^{-1} e$, where e is an oriented edge are called spurs. Paths l and l^{\prime} are called equivalent if l^{\prime} is obtained from l by a finite number of insertions and removals of spurs between successive oriented edges or at the endpoints. In these terms, the fundamental group $\pi_{1}(\Gamma, V)$ of the graph Γ can be defined as the set of equivalence classes of paths that begin and end at some fixed vertex V of Γ, equipped with the product of classes defined in an obvious way (see e.g. [14, §2.1.6]).

To prove that the map ϕ_{B} descends to a map from $\pi_{1}\left(\Gamma_{B}, B\right)$ to G_{B}, we must show that whenever closed paths l and l^{\prime} in Γ_{B} that start and end at B are equivalent, the rational functions $\mathcal{F}(l)$ and $\mathcal{F}\left(l^{\prime}\right)$ are in the same equivalence class of C_{B}. Since any path is equivalent to a path with no spurs, for this purpose it is enough to show that if l^{\prime} is obtained from l by an insertion of a spur, then $\mathcal{F}(l) \underset{B}{\sim} \mathcal{F}\left(l^{\prime}\right)$. Assume that

$$
l^{\prime}=l_{2} e^{-1} e l_{1}
$$

where l_{1} is a path from B to B_{s}, and l_{2} is a path from B_{s} to B (one of the paths l_{1} and l_{2} can be empty in which case $B_{s}=B$). Then

$$
\mathcal{F}\left(l^{\prime}\right)=\mathcal{F}\left(l_{2}\right) \circ B_{S} \circ \mathcal{F}\left(l_{1}\right),
$$

by (28) and (31). It follows now from (29) that

$$
\mathcal{F}\left(l^{\prime}\right)=\mathcal{F}\left(l_{2}\right) \circ \mathcal{F}\left(l_{1}\right) \circ B=\mathcal{F}(l) \circ B,
$$

implying that $\mathcal{F}(l) \underset{B}{\sim} \mathcal{F}\left(l^{\prime}\right)$. Thus, ϕ_{B} descends to a map $\Phi_{B}: \pi_{1}\left(\Gamma_{B}, B\right) \rightarrow G_{B}$, and (28) implies that Φ_{B} is a homomorphism of groups.

Finally, it follows from Theorem 2.3 that Φ_{B} is an epimorphism. Indeed, by Theorem 2.3, any $X \in C_{B}$ can be obtained from a sequence of elementary transformations (5). Moreover, we can change if necessary each of rational functions $B_{i}, 1 \leq i \leq s-1$, appearing in (5) to any desired representative of its conjugacy class, consecutively
changing the function U_{i} to $\alpha_{i} \circ U_{i}$, the function B_{i} to $\alpha_{i} \circ B_{i} \circ \alpha_{i}^{-1}$, and the function U_{i+1} to $\alpha_{i}^{-1} \circ U_{i+1}$ for a convenient Möbius transformation α_{i}. Therefore, for any $X \in C_{B}$, there exists a closed path l starting and ending at B such that $\mathcal{F}(l)=X$, implying that $\Phi_{B}: \pi_{1}\left(\Gamma_{B}, B\right) \rightarrow G_{B}$ is an epimorphism.

Theorem 5.3. Let A and B be equivalent rational functions. Then $G_{B} \cong G_{A}$.
Proof. Assuming that A and B are vertices of Γ_{B}, take a path s from A to B in Γ_{B}. Since the map $\psi: l \rightarrow s^{-1} l s$, from the set of closed paths starting and ending at B to the set of closed paths starting and ending at A, descends to an isomorphism of the fundamental groups

$$
\Psi: \pi_{1}\left(\Gamma_{B}, B\right) \rightarrow \pi_{1}\left(\Gamma_{B}, A\right),
$$

it follows from Theorem 5.2 that we only need to prove the equality

$$
\begin{equation*}
\Psi\left(\operatorname{Ker} \Phi_{B}\right)=\operatorname{Ker} \Phi_{A} \tag{32}
\end{equation*}
$$

Let l_{0} be a path starting and ending at B such that $\mathcal{F}\left(l_{0}\right)=B^{\circ k}, k \geq 1$, and let $k_{0}=$ $\psi\left(l_{0}\right)$. Then

$$
\mathcal{F}\left(k_{0}\right)=\mathcal{F}\left(s^{-1}\right) \circ \mathcal{F}\left(l_{0}\right) \circ \mathcal{F}(s)=\mathcal{F}\left(s^{-1}\right) \circ B^{\circ k} \circ \mathcal{F}(s),
$$

implying by (29) and (30) that

$$
\mathcal{F}\left(k_{0}\right)=\mathcal{F}\left(s^{-1}\right) \circ \mathcal{F}(s) \circ A^{\circ k}=A^{\circ l} \circ A^{\circ k}=A^{\circ(k+l)}
$$

for some $k, l \geq 1$. This implies that

$$
\Psi\left(\operatorname{Ker} \Phi_{B}\right) \subseteq \operatorname{Ker} \Phi_{A} .
$$

Similarly, considering the isomorphism inverse to Ψ we obtain that

$$
\Psi^{-1}\left(\operatorname{Ker} \Phi_{A}\right) \subseteq \operatorname{Ker} \Phi_{B}
$$

This proves equality (32).

6. Examples of groups G_{B}

6.1. Functions with $G_{B}=\operatorname{Aut}_{G}(B)$. The simplest application of Theorem 5.2 is the following result.

THEOREM 6.1. Let B be an indecomposable non-special rational function of degree at least two. Then $G_{B}=\operatorname{Aut}_{G}(B)$. Equivalently, $X \in C_{B}$ if and only if $X=\mu \circ B^{l}$ for some $\mu \in \operatorname{Aut}(B)$ and $l \geq 1$.

Proof. Since Γ_{B} has a unique vertex and $|\operatorname{Aut}(B)|$ loops corresponding to automorphisms of B (see Example 1), it follows easily from Theorem 5.2 that G_{B} is generated by μ, $\mu \in \operatorname{Aut}(B)$. Thus, $G_{B}=\operatorname{Aut}_{G}(B)$. The second statement follows from Lemma 3.4.

Note that Theorem 6.1 implies that for a 'random' rational function B, the group G_{B} is trivial, since such a function is indecomposable and has no automorphisms.

Theorem 6.1 can be extended to a wide class of decomposable rational functions. Recall that a functional decomposition

$$
\begin{equation*}
B=U_{r} \circ U_{r-1} \circ \cdots \circ U_{1} \tag{33}
\end{equation*}
$$

Figure 4. The form of Γ_{B}^{0} in Example 3.
of a rational function B is called maximal if all $U_{1}, U_{2}, \ldots, U_{r}$ are indecomposable and of degree greater than one. The number r is called the length of the maximal decomposition (33). Two decompositions (maximal or not) having an equal number of terms

$$
F=F_{r} \circ F_{r-1} \circ \cdots \circ F_{1} \quad \text { and } \quad F=G_{r} \circ G_{r-1} \circ \cdots \circ G_{1}
$$

are called equivalent if either $r=1$ and $F_{1}=G_{1}$ or $r \geq 2$ and there exist Möbius transformations $\mu_{i}, 1 \leq i \leq r-1$, such that

$$
F_{r}=G_{r} \circ \mu_{r-1}, \quad F_{i}=\mu_{i}^{-1} \circ G_{i} \circ \mu_{i-1}, \quad 1<i<r, \quad \text { and } \quad F_{1}=\mu_{1}^{-1} \circ G_{1} .
$$

Note that all maximal decompositions of a polynomial have the same length [11], but this is not true for arbitrary rational functions (see e.g. [4]).

We say that a rational function B having a maximal decomposition (33) is generically decomposable if the following conditions are satisfied:

- each of the functions

$$
B_{i}=\left(U_{i} \circ \cdots \circ U_{2} \circ U_{1}\right) \circ\left(U_{r} \circ U_{r-1} \circ \cdots \circ U_{i+1}\right), \quad 0 \leq i \leq r-1,
$$

has a unique equivalence class of maximal decompositions;

- the functions $B_{i}, 0 \leq k \leq r-1$, are pairwise not conjugate.

For a graph Γ_{B}, define Γ_{B}^{0} as a graph obtained from Γ_{B} by removing all loops that correspond to automorphisms. For example, for the graph Γ_{B} from Example 3 the graph Γ_{B}^{0} is shown in Figure 4. Recall that a complete graph is a graph in which every pair of distinct vertices is connected by a unique edge. The complete graph on n vertices is denoted by K_{n}.

Lemma 6.2. Assume that a non-special rational function B having a maximal decomposition of length r is generically decomposable. Then Γ_{B}^{0} is the complete graph K_{r}.

Proof. Let (33) be a maximal decomposition of B. Since all the functions B_{i}, $0 \leq i \leq r-1$, are equivalent and pairwise not conjugate, the graph Γ_{B} contains at least r vertices. Observe now that any decomposition $B=V \circ U$ of B into a composition of two rational functions of degree at least two has the form

$$
\begin{equation*}
V=\left(U_{r} \circ U_{r-1} \circ \cdots \circ U_{i+1}\right) \circ \mu, \quad U=\mu^{-1} \circ\left(U_{i} \circ \cdots \circ U_{2} \circ U_{1}\right), \quad 0 \leq i \leq r-1, \tag{34}
\end{equation*}
$$

where μ is a Möbius transformation. Indeed, concatenating arbitrary maximal decompositions of U and V we must obtain a maximal decomposition equivalent to
(33), implying that (34) holds. Therefore, any edge of Γ_{B} adjacent to $B_{0}=B$ and not corresponding to an automorphism of B is adjacent to one of the vertices B_{i}, $1 \leq k \leq r-1$, and there exists exactly one edge connecting B_{0} and $B_{i}, 1 \leq k \leq r-1$. Since the same argument holds for any $B_{i}, 0 \leq k \leq r-1$, we conclude that Γ_{B}^{0} is the complete graph K_{r}.

Lemma 6.3. Assume that a non-special rational function B is generically decomposable, and let l be an oriented path from a vertex $B_{i_{1}}$ to a vertex $B_{i_{2}}$ in Γ_{B}. Then for any $\mu \in \operatorname{Aut}\left(B_{i_{1}}\right)$ there exists $\alpha(\mu) \in \operatorname{Aut}\left(B_{i_{2}}\right)$ such that

$$
\begin{equation*}
\mathcal{F}(l) \circ \mu=\alpha(\mu) \circ \mathcal{F}(l) . \tag{35}
\end{equation*}
$$

Furthermore, the map $\mu \rightarrow \alpha(\mu)$ is an isomorphism of the groups $\operatorname{Aut}\left(B_{i_{1}}\right)$ and $\operatorname{Aut}\left(B_{i_{2}}\right)$. In particular, the same number of loops is attached to each vertex of Γ_{B}.

Proof. In view of formula (28), it is enough to prove the lemma for the case where l is an oriented edge. If l is a loop, then by Lemma 6.2, it corresponds to a solution of (17) of the form

$$
B_{i_{1}}=\left(\mu_{0}^{-1} \circ B_{i_{1}}\right) \circ \mu_{0}=\mu_{0} \circ\left(\mu_{0}^{-1} \circ B_{i_{1}}\right), \quad \mu_{0} \in \operatorname{Aut}\left(B_{i_{1}}\right) .
$$

Thus, either $\mathcal{F}(l)=\mu_{0}$ or $\mathcal{F}(l)=\mu_{0}^{-1} \circ B_{i_{1}}$, and it is easy to see that in these cases equality (35) holds for the automorphisms

$$
\alpha(\mu)=\mu_{0} \circ \mu \circ \mu_{0}^{-1}, \quad \alpha(\mu)=\mu_{0}^{-1} \circ \mu \circ \mu_{0},
$$

respectively.
Assume now that l is an oriented edge from a vertex $B_{i_{1}}=V \circ U$ to a different vertex $B_{i_{2}}=U \circ V$. Let us observe that for any $\mu \in \operatorname{Aut}\left(B_{i_{1}}\right)$ the decompositions $B_{i_{1}}=V \circ U$ and

$$
B_{i_{1}}=\left(\mu^{-1} \circ V\right) \circ(U \circ \mu)
$$

are equivalent, since for arbitrary maximal decompositions of U and V the corresponding induced maximal decompositions of $B_{i_{1}}$ are equivalent. Therefore, for any $\mu \in \operatorname{Aut}\left(B_{i_{1}}\right)$, there exists a Möbius transformation $\alpha=\alpha(\mu)$ such that

$$
\mu^{-1} \circ V=V \circ \alpha(\mu)^{-1}, \quad U \circ \mu=\alpha(\mu) \circ U
$$

Furthermore, since

$$
B_{i_{2}}=U \circ V=U \circ \mu \circ \mu^{-1} \circ V=\alpha(\mu) \circ U \circ V \circ \alpha(\mu)^{-1}
$$

the transformation $\alpha(\mu)$ belongs to $\mu \in \operatorname{Aut}\left(B_{i_{2}}\right)$, and it is easy to see that $\mu \rightarrow \alpha(\mu)$ is a group homomorphism from $\operatorname{Aut}\left(B_{i_{1}}\right)$ to $\operatorname{Aut}\left(B_{i_{2}}\right)$.

Finally, if

$$
v \rightarrow \beta(\nu)
$$

is a homomorphism from $\operatorname{Aut}\left(B_{i_{2}}\right)$ to $\operatorname{Aut}\left(B_{i_{1}}\right)$, defined by the conditions

$$
v^{-1} \circ U=U \circ \beta(\nu)^{-1}, \quad V \circ v=\beta(\nu) \circ V,
$$

and $\mu \in \operatorname{Aut}\left(B_{i_{1}}\right)$, then

$$
V \circ U \circ \mu=V \circ \alpha(\mu) \circ U=\beta(\alpha(\mu)) \circ V \circ U .
$$

Since

$$
V \circ U \circ \mu=\mu \circ V \circ U,
$$

this implies that $\beta \circ \alpha$ is the identical mapping of $\operatorname{Aut}\left(B_{i_{1}}\right)$, and hence $\mu \rightarrow \alpha(\mu)$ is an isomorphism.

THEOREM 6.4. Let B be a non-special generically decomposable rational function. Then $G_{B}=\operatorname{Aut}_{G}(B)$. Equivalently, $X \in C_{B}$ if and only if $X=\mu \circ B^{l}$ for some $\mu \in \operatorname{Aut}(B)$ and $l \geq 1$.

Proof. Let (33) be a maximal decomposition of B. For convenience, define rational functions U_{i} for $i \geq r$ setting $U_{i}=U_{i^{\prime}}$, where $i \equiv i^{\prime} \bmod r$. Let us recall that any decomposition $B=V \circ U$, where U and V are functions of degree at least two, has the form (34), and a similar statement holds for all $B_{i}, 0 \leq i \leq r-1$. Therefore, for the oriented edge e from a vertex $B_{i_{1}}$ to a different vertex $B_{i_{2}}$ the equality

$$
\mathcal{F}(e)=U_{i_{2}} \circ \cdots \circ U_{i_{1}+2} \circ U_{i_{1}+1}
$$

holds, implying inductively by (28) that for an arbitrary path l with no loops from $B_{i_{1}}$ to $B_{i_{2}}$ the equality

$$
\mathcal{F}(l)=U_{i_{2}+r k} \circ \cdots \circ U_{i_{1}+2} \circ U_{i_{1}+1}=B_{i_{2}}^{\circ k} \circ U_{i_{2}} \circ \cdots \circ U_{i_{1}+2} \circ U_{i_{1}+1}
$$

holds for some $k \geq 1$. In particular, if l is a closed path starting and ending at B and containing no loops, then $\mathcal{F}(l)=B^{\circ k}, k \geq 1$, implying that the image of l under the homomorphism Φ_{B} from Theorem 5.2 is the unit element. Further, if l contains a loop, then either

$$
\mathcal{F}(l)=U_{k r} \circ \cdots \circ U_{i+1} \circ v \circ U_{i} \circ \cdots \circ U_{1},
$$

or

$$
\mathcal{F}(l)=U_{k r} \circ \cdots \circ U_{i+1} \circ\left(v^{-1} \circ B_{i}\right) \circ U_{i} \circ \cdots \circ U_{1}
$$

for some $k \geq 1,0 \leq i \leq r-1$, and $v \in \operatorname{Aut}\left(B_{i}\right)$. Therefore, by Lemmas 6.3 and 5.1, either

$$
\mathcal{F}(l)=\mu \circ B^{\circ k}
$$

or

$$
\mathcal{F}(l)=\mu \circ B^{\circ(k+1)}
$$

for some $\mu \in \operatorname{Aut}(B)$. Finally, if l contains several loops, then repeatedly using Lemmas 6.3 and 5.1, we conclude that

$$
\mathcal{F}(l)=\mu \circ B^{\circ s}
$$

for some $\mu \in \operatorname{Aut}(B)$ and $s \geq 1$. Thus, $G_{B}=\operatorname{Aut}_{G}(B)$.
Corollary 6.5. Let B be a non-special rational function of degree at least two such that G_{B} is strictly larger than $\operatorname{Aut}_{G}(B)$. Then there exists $A \sim B$ such that either A can be represented as a composition of two commuting rational functions of degree at least two, or A has more than one class of maximal decompositions.

Proof. By Theorem 6.4, it is enough to show that if any $A \sim B$ has a unique equivalence class of maximal decompositions and cannot be represented as a composition of two commuting rational functions of degree at least two, then for the function B the both conditions defining generically decomposable rational functions are satisfied. For the first condition, this is obvious. For the second condition, this is also true. Indeed, if say $B_{0}=B$ is conjugate to B_{i} and μ is a Möbius transformation such that

$$
\left(U_{r} \circ \cdots \circ U_{i+1}\right) \circ\left(U_{i} \circ \cdots \circ U_{1}\right)=\mu \circ\left(U_{i} \circ \cdots \circ U_{1}\right) \circ\left(U_{r} \circ \cdots \circ U_{i+1}\right) \circ \mu^{-1}
$$

then for the functions

$$
N=\mu \circ\left(U_{i} \circ \cdots \circ U_{1}\right), \quad M=\left(U_{r} \circ \cdots \circ U_{i+1}\right) \circ \mu^{-1}
$$

the equality

$$
\begin{equation*}
B=M \circ N=N \circ M \tag{36}
\end{equation*}
$$

holds.
Note that whenever B is a composition of two commuting rational functions of degree at least two, the group G_{B} is strictly larger than $\operatorname{Aut}_{G}(B)$. Indeed, equality (36) implies easily that the functions N and M belong to C_{B}. Moreover, their images in G_{B} are not trivial and do not belong to $\operatorname{Aut}_{G}(B)$, since

$$
1<\operatorname{deg} M<\operatorname{deg} B, \quad 1<\operatorname{deg} N<\operatorname{deg} B
$$

In particular, if $B=T^{\circ s}$, where $s>1$, the group G_{B} contains a cyclic group of order s whose intersection with $\operatorname{Aut}_{G}(B)$ is trivial.

Finally, note that the group G_{B} can be strictly larger than $\operatorname{Aut}_{G}(B)$ even if B is not a composition of commuting functions, and that the relation $A \sim B$ does not imply, in general, the equality $\operatorname{Aut}_{G}(A) \cong \operatorname{Aut}_{G}(B)$ (see §6.3).
6.2. The group G_{B} for polynomial B. Before stating the theorem describing groups G_{B} for polynomial B let us recall several results.

First, for a non-special polynomial B of degree at least two, the set C_{B} consists of polynomials. Indeed, (1) yields that

$$
\begin{equation*}
B^{-1}\left(X^{-1}\{\infty\}\right)=X^{-1}\{\infty\} \tag{37}
\end{equation*}
$$

implying that $X^{-1}\{\infty\}$ contains at most two points. Furthermore, considering instead of B and X the functions

$$
X \rightarrow \mu \circ X \circ \mu^{-1}, \quad B \rightarrow \mu \circ B \circ \mu^{-1}
$$

for a convenient Möbius transformation μ, without loss of generality one can assume that either $X^{-1}\{\infty\}=\{\infty\}$ or $X^{-1}\{\infty\}=\{\infty, 0\}$. In the first case, X is a polynomial. On the other hand, in the second case, (37) implies that B is conjugate to z^{n}, contradicting the assumption that B is not special.

Second, the symmetry $\operatorname{group} \operatorname{Aut}(B)$ of a non-special polynomial B of degree at least two is cyclic. Indeed, unless B is conjugate to z^{n}, for any $\mu \in \operatorname{Aut}(B)$ necessarily $\mu^{-1}\{\infty\}=\{\infty\}$, implying that μ is a polynomial. By a polynomial conjugation, we can
always assume that the coefficient of $z^{\operatorname{deg} B-1}$ is zero, and it is clear that $\mu=a z+b$ may commute with such B only if $b=0$. Furthermore, it is easy to see that $\operatorname{Aut}(B)$ is a cyclic rotation group of order n, where n is the maximal number such that

$$
B=z R\left(z^{n}\right)
$$

for some polynomial R.
Third, a polynomial B is special if and only if B is conjugate to z^{n} or $\pm T_{n}$, since it is well known that a polynomial cannot be a Lattès map.

In addition, we need the following result (see [7, Theorem 1.3]).
Theorem 6.6. Let A and B be fixed non-special polynomials of degree at least two, and let $\mathcal{E}(A, B)$ be the set of all polynomials of degree at least two X such that $A \circ X=X \circ B$. Then, either $\mathcal{E}(A, B)$ is empty, or there exists $X_{0} \in \mathcal{E}(A, B)$ such that a polynomial X belongs to $\mathcal{E}(A, B)$ if and only if $X=\widehat{A} \circ X_{0}$ for some polynomial \widehat{A} commuting with A.

Recall that a group G is called metacyclic if it has a normal cyclic subgroup H such that G / H is a cyclic group.

THEOREM 6.7. Let B be a polynomial of degree at least two not conjugate to z^{n} or $\pm T_{n}$, $n \geq 2$. Then the group G_{B} is metacyclic.

Proof. Applying Theorem 6.6 for $A=B$ and arguing as in Lemma 3.4, we see that any rational function X that belongs to $C_{B}=\mathcal{E}(B, B)$ has the form $X=\mu \circ X_{0}^{\circ}$, where $\mu \in$ $\operatorname{Aut}(B)$ and $l \geq 1$. In particular, $B=\mu \circ X_{0}^{l_{0}}$ for some $l_{0} \geq 1$ and $\mu \in \operatorname{Aut}(B)$. Moreover, the degree of any element of C_{B} is a power of $d_{0}=\operatorname{deg} X_{0}$, and for $l \geq 0$ the subset of elements of degree d_{0}^{l} coincides with the set $S_{1, l}=\left\{\mu \circ X_{0}^{l} \mid \mu \in \operatorname{Aut}(B)\right\}$.

Let us observe now that if

$$
\begin{equation*}
X_{0}^{\circ l} \circ \mu_{1}=X_{0}^{\circ l} \circ \mu_{2}, \tag{38}
\end{equation*}
$$

where $\mu_{1}, \mu_{2} \in \operatorname{Aut}(B)$, then $\mu_{1}=\mu_{2}$. Indeed, (38) implies that

$$
X_{0}^{\circ l} \circ\left(\mu_{1} \circ \mu_{2}^{-1}\right)=X_{0}^{\circ l}
$$

Therefore, since $B^{\circ l}=v \circ X_{0}^{\circ\left(l_{0} l\right)}$ for some $v \in \operatorname{Aut}(B)$,

$$
B^{\circ l} \circ\left(\mu_{1} \circ \mu_{2}^{-1}\right)=B^{\circ l}
$$

implying that $\mu_{1}=\mu_{2}$. Thus, for $l \geq 0$ the set $S_{2, l}=\left\{X_{0}^{l} \circ \mu \mid \mu \in \operatorname{Aut}(B)\right\}$ has the same cardinality as the set $S_{1, l}$. Since $S_{2, l}$ is contained in C_{B}, this implies that $S_{1, l}=S_{2, l}$.

The above analysis shows that the right cosets of $\operatorname{Aut}_{G}(B)$ in G have the form

$$
\boldsymbol{X}_{0}^{l} \operatorname{Aut}_{G}(B), \quad 0 \leq l<l_{0},
$$

the left cosets have the form

$$
\operatorname{Aut}_{G}(B) \boldsymbol{X}_{0}^{l}, \quad 0 \leq l<l_{0}
$$

and any right coset of $\operatorname{Aut}_{G}(B)$ in G is a left coset. Thus, $\operatorname{Aut}_{G}(B)$ is a normal subgroup in G_{B}, and the group $G_{B} / \operatorname{Aut}_{G}(B)$ is a cyclic group of order l_{0} generated by \boldsymbol{X}_{0}. Since $\operatorname{Aut}(B)$ is also a cyclic group, we conclude that the group G_{B} is metacyclic.

Note that Theorem 6.7 can be deduced from the Ritt theorem [12, 13] saying that any commuting non-special polynomials X and B can be represented in the form (3). Nevertheless, the Ritt theorem does not imply Theorem 6.7 immediately, since R in (3) a priori depends on X, and the further analysis is needed.
6.3. The group G_{B} for the Ritt example. Let B be a rational function of degree at least two. Denote by $\widehat{\operatorname{Aut}}(B)$ the group consisting of Möbius transformations μ such that

$$
B \circ \mu=v \circ B
$$

for some Möbius transformations ν. Like the $\operatorname{group} \operatorname{Aut}(B)$, the $\operatorname{group} \widehat{\operatorname{Aut}}(B)$ is a finite rotation group of the sphere (see [5, §4]). More generally, denote by \widehat{C}_{B} the set of rational functions X such that

$$
B \circ X=Y \circ B
$$

for some rational function Y. Clearly, $\operatorname{Aut}(B)$ is a subgroup of $\widehat{\operatorname{Aut}}(B)$, and $C_{B} \subseteq \widehat{C}_{B}$.
Let

$$
V=\frac{z^{2}+2}{z+1}, \quad U=\frac{z^{2}-4}{z-1}, \quad \mu=\varepsilon z
$$

where $\varepsilon^{3}=1$. In [13], Ritt showed that the rational functions

$$
B=V \circ U, \quad X=V \circ \mu \circ U
$$

commute but no one of them is a rational function of the other. In particular, this implies that there is no R such that

$$
B=\mu_{1} \circ R^{\circ l_{1}}, \quad X=\mu_{2} \circ R^{\circ l_{2}}
$$

for some Möbius transformations μ_{1}, μ_{2}, and $l_{1}, l_{2} \geq 1$. More generally, for any function C such that $C(\varepsilon z)=\varepsilon C(z)$, the functions

$$
B^{\prime}=V \circ C \circ U, \quad X^{\prime}=V \circ \mu \circ C \circ U
$$

commute, but no one of them is a rational function of the other.
The Ritt statement follows from the following more general observation.
Lemma 6.8. Let $W \in C_{U \circ V}$, but $W \notin \widehat{C}_{V}$. Then the functions $V \circ U$ and $V \circ W \circ U$ commute but the latter is not a rational function of the former. Furthermore, the same conclusion holds for the functions $V \circ C \circ U$ and $V \circ W \circ C \circ U$, where C is any function commuting with W.

Proof. Indeed, we have

$$
\begin{aligned}
& (V \circ C \circ U) \circ(V \circ W \circ C \circ U)=V \circ C \circ(U \circ V \circ W) \circ C \circ U \\
& \quad=V \circ C \circ(W \circ U \circ V) \circ C \circ U=(V \circ C \circ W \circ U) \circ(V \circ C \circ U) \\
& \quad=(V \circ W \circ C \circ U) \circ(V \circ C \circ U) .
\end{aligned}
$$

On the other hand, if

$$
V \circ W \circ C \circ U=R \circ V \circ C \circ U
$$

for some rational function R, then

$$
V \circ W=R \circ V,
$$

contradicting the assumption that $W \notin \widehat{C}_{V}$.

The Ritt statement is obtained from Lemma 6.8 for $W=\mu$. Indeed,

$$
U \circ V=\frac{z\left(z^{3}-8\right)}{\left(z^{3}+1\right)},
$$

implying that $\mu \in \operatorname{Aut}(U \circ V)$. On the other hand, the assumption that

$$
\begin{equation*}
V \circ \mu=v \circ V \tag{39}
\end{equation*}
$$

for some Möbius transformation v leads to a contradiction. Namely, (39) implies that $v(\infty)=\infty$. Therefore, $v=a z+b, a, b \in \mathbb{C}$, and, hence, if (39) holds, then the functions V and

$$
V \circ \mu=\frac{\varepsilon^{2} z^{2}+2}{\varepsilon z+1}
$$

have the same set of poles. However, this is not true.
Let us calculate the group G_{B}. Again using the assistance of a computer one can check that the function

$$
B=V \circ U=\frac{z^{4}-6 z^{2}-4 z+18}{\left(z^{2}+z-5\right)(z-1)}
$$

has four critical values and the corresponding permutations in $\operatorname{Mon}(B)$ can be identified with the permutations (13), (12)(34), (13), and (12)(34) in S_{4}, while the function

$$
B_{1}=U \circ V=\frac{z\left(z^{3}-8\right)}{\left(z^{3}+1\right)}
$$

has three critical values and the corresponding permutations in $\operatorname{Mon}\left(B_{1}\right)$ can be identified with (12)(34), (13)(24), and (14)(23). In particular, B_{1} and B are not conjugate since they have a different number of critical values. Moreover, one can check that the group Aut (B) is trivial while $\operatorname{Aut}\left(B_{1}\right)$ is a cyclic group of order three generated by μ.

It is easy to see that $\operatorname{Mon}(B)$ has a unique imprimitivity system $\{1,3\},\{2,4\}$, corresponding to the decomposition $B=V \circ U$ while $\operatorname{Mon}\left(B_{1}\right)$ has three imprimitivity systems

$$
\{1,3\},\{2,4\}, \quad\{1,2\},\{3,4\}, \quad\{1,4\},\{2,3\}
$$

corresponding to the decompositions

$$
B_{1}=U \circ V, \quad B_{1}=\left(\mu^{-1} \circ U\right) \circ(V \circ \mu), \quad B_{1}=\left(\mu^{-2} \circ U\right) \circ\left(V \circ \mu^{2}\right) .
$$

Summing up, we see that the graph Γ_{B} has the form shown in Figure 5, where the edges connecting B and B_{1} correspond to the solutions

$$
B=\left(V \circ \mu^{i-1}\right) \circ\left(\mu^{-(i-1)} \circ U\right), \quad B_{1}=\left(\mu^{-(i-1)} \circ U\right) \circ\left(V \circ \mu^{i-1}\right), \quad 1 \leq i \leq 3
$$

of system (17), the loops attached to B_{1} correspond to the solutions

$$
B_{1}=\left(\mu^{-(i-1)} \circ B_{1}\right) \circ \mu^{i-1}=\mu^{i-1} \circ\left(\mu^{-(i-1)} \circ B_{1}\right), \quad 1 \leq i \leq 3,
$$

and the loop attached to B corresponds to the solution (22).
The fundamental group of Γ_{B} can be easily calculated by the well-known method using the spanning tree (see e.g. [14, §4.1.2]). Namely, choosing a fixed orientation on each of edges of Γ_{B} as shown in Figure 6, and considering the edge l_{1} together with vertices B and

Figure 5. The form of Γ_{B} in the Ritt example.
B_{1} as the spanning tree, we see that $\pi_{1}\left(\Gamma_{B}, B\right)$ is a free group of rank six generated by the paths

$$
c, \quad l_{1}^{-1} l_{i}, \quad 2 \leq i \leq 3, \quad l_{1}^{-1} e_{j} l_{1}, \quad 1 \leq j \leq 3
$$

implying that the group G_{B} is generated by the images of these paths under the map Φ_{B}. Assuming that

$$
\mathcal{F}(c)=z, \quad \mathcal{F}\left(e_{i}\right)=\mu^{i-1}, \quad 1 \leq i \leq 3,
$$

we obtain

$$
\mathcal{F}\left(l_{1}^{-1} l_{i}\right)=V \circ \mu^{-(i-1)} \circ U, \quad 2 \leq i \leq 3, \quad \mathcal{F}\left(l_{1}^{-1} e_{j} l_{1}\right)=V \circ \mu^{j-1} \circ U, \quad 1 \leq j \leq 3,
$$

implying that the images of the functions

$$
\begin{equation*}
g_{0}=z, \quad g_{1}=V \circ \mu \circ U, \quad g_{2}=V \circ \mu^{2} \circ U \tag{40}
\end{equation*}
$$

in the group G_{B} generate G_{B}. Since

$$
\begin{equation*}
\operatorname{deg} g_{1}=\operatorname{deg} g_{2}=\operatorname{deg} B \tag{41}
\end{equation*}
$$

and

$$
g_{1} \neq B, \quad g_{2} \neq B, \quad g_{1} \neq g_{2},
$$

it follows from Lemma 3.1 that g_{1}, g_{2}, g_{3} represent different classes in $C_{B} / \underset{B}{\sim}$, so that G_{B} has at least three elements. On the other hand, we have

$$
g_{1}^{\circ 2}=g_{2} \circ B, \quad g_{2}^{\circ 2}=g_{1} \circ B, \quad g_{1}^{\circ 3}=g_{2}^{\circ 3}=B^{\circ 3}, \quad g_{1} \circ g_{2}=g_{2} \circ g_{1}=B^{\circ 2}
$$

Therefore, $G_{B}=\mathbb{Z} / 3 \mathbb{Z}$.
In turn, the set C_{B} can be described as follows: $X \in C_{B}$ if and only if

$$
\begin{gathered}
X=B^{\circ j}, \quad j \geq 0, \\
X=V \circ \mu \circ U \circ B^{\circ j}, \quad j \geq 0,
\end{gathered}
$$

or

$$
X=V \circ \mu^{2} \circ U \circ B^{\circ j}, \quad j \geq 0 .
$$

Indeed, by Lemma 3.1, it is enough to check that the functions (40) are not rational functions in B. Assume say that $g_{1}=R \circ B$. Then it follows from (41) that R is a Möbius transformation. Moreover, $R \in \operatorname{Aut}(B)$ by Lemma 2.1. However, since $\operatorname{Aut}(B)$ is trivial and $g_{1} \neq B$, this is impossible.

Note that since $G_{B} \cong G_{B_{1}}$ by Theorem 5.3 and $\operatorname{Aut}_{G}\left(B_{1}\right)=\mathbb{Z} / 3 \mathbb{Z}$, we have

$$
G_{B_{1}}=\operatorname{Aut}_{G}\left(B_{1}\right)=\mathbb{Z} / 3 \mathbb{Z}
$$

Note also that since $G_{B} \cong G_{B_{1}}$, the non-triviality of $\operatorname{Aut}\left(B_{1}\right)$ already implies the nontriviality of G_{B}. Moreover, since B has no automorphisms, we can conclude that the set C_{B} contains functions of degree greater than one that are not iterates of B.

Figure 6. The form of Γ_{B} in the Ritt example with oriented edges.
6.4. The group G_{B} for $B=-2 z^{2} /\left(z^{4}+1\right)$. Since equality (25) implies that the function

$$
W=\frac{z^{2}-1}{z^{2}+1}
$$

commutes with B, the group G_{B} clearly contains a cyclic group of order two generated by \boldsymbol{W}. Moreover, it is easy to see that in fact $G_{B}=\mathbb{Z} / 2 \mathbb{Z}$. Indeed, providing edges of the graph Γ_{B} with orientations shown in Figure 7, we see that $\pi_{1}\left(\Gamma_{B}, B\right)$ is a free group of rank four with generators

$$
c, \quad t, \quad l_{i}^{-1} e_{i} l_{i}, \quad i=1,2
$$

and assuming that

$$
\mathcal{F}(c)=\mathcal{F}\left(e_{1}\right)=\mathcal{F}\left(e_{2}\right)=z, \quad \mathcal{F}(t)=W
$$

we see that G_{B} is generated by the \boldsymbol{W}. Similarly, one can conclude that $G_{B_{1}}$ is generated by \boldsymbol{X}, where

$$
X=\mathcal{F}\left(l_{1} t l_{1}^{-1}\right)=\frac{z^{2}+1}{z} \circ \frac{z^{2}-1}{z^{2}+1} \circ-\frac{2}{z^{2}-2}
$$

The above functions B_{1} and X provide an example of commuting rational functions similar to that constructed by Ritt. Namely, set

$$
V=\frac{z^{2}+1}{z}, \quad U=-\frac{2}{z^{2}-2} .
$$

Then W commutes with $U \circ V=W^{\circ 2}$, but $W \notin \widehat{C}_{V}$. Indeed, assume the inverse, and let S be the rational function defined by any of the sides of the equality

$$
\begin{equation*}
\frac{z^{2}+1}{z} \circ \frac{z^{2}-1}{z^{2}+1}=R \circ \frac{z^{2}+1}{z} \tag{42}
\end{equation*}
$$

where $R \in \mathbb{C}(z)$. Then substituting z by $1 / z$ in the right-hand side of (42), we obtain that $S \circ 1 / z=S$. However, substituting z by $1 / z$ in the left-hand side, we obtain

$$
S \circ \frac{1}{z}=\frac{z^{2}+1}{z} \circ-\frac{z^{2}-1}{z^{2}+1}=-S
$$

The contradiction obtained shows that $W \notin \widehat{C}_{V}$. Therefore, by Lemma 6.8, the rational function

$$
X=V \circ W \circ U
$$

commutes with $B_{1}=V \circ U$, but is not a rational function in B_{1}. Note that in distinction with the Ritt example, the non-triviality of $G_{B_{1}}$ is explained by the existence in the class [$\left.B_{1}\right]$ of a function that is an iterate.

Figure 7. The form of Γ_{B} in Example 3 with oriented edges.

Acknowledgements. The author is grateful to the Max-Planck-Institut für Mathematik for the hospitality and support. This research was supported by the ISF (grant number 1432/18).

References

[1] A. Eremenko. Some functional equations connected with the iteration of rational functions. Leningrad Math. J. 1 (1990), 905-919.
[2] P. Fatou. Sur l'iteration analytique et les substitutions permutables. J. Math. Pures Appl. (9) 2(1923) 343-384.
[3] G. Julia. Mémoire sur la permutabilité des fractions rationelles. Ann. Sci. Éc. Norm. Supér (4) 39(3) (1922), 131-215.
[4] M. Muzychuk and F. Pakovich. Jordan-Holder theorem for imprimitivity systems and maximal decompositions of rational functions. Proc. Lond. Math. Soc. (3) 102(1) (2011), 1-24.
[5] F. Pakovich. Finiteness theorems for commuting and semiconjugate rational functions. Preprint, 2015, arXiv:1604:04771.
[6] F. Pakovich. On semiconjugate rational functions. Geom. Funct. Anal. 26 (2016), 1217-1243.
[7] F. Pakovich. Polynomial semiconjugacies, decompositions of iterations, and invariant curves. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XVII (2017), 1417-1446.
[8] F. Pakovich. Semiconjugate rational functions: a dynamical approach. Arnold Math. J. 4(1) (2018), 59-68.
[9] F. Pakovich. Recomposing rational functions. Int. Math. Res. Not. IMRN 2019(7) (2019), 1921-1935.
[10] F. Pakovich. On generalized Latès maps. J. Anal. Math. accepted.
[11] J. Ritt. Prime and composite polynomials. Amer. Math. Soc. Transl. Ser. 223 (1922), 51-66.
[12] J. F. Ritt. On the iteration of rational functions. Trans. Amer. Math. Soc. 21(3) (1920), 348-356.
[13] J. F. Ritt. Permutable rational functions. Trans. Amer. Math. Soc. 25 (1923), 399-448.
[14] J. Stillwell. Classical Topology and Combinatorial Group Theory (Graduate Texts in Mathematics, 72). Springer, New York, 1993.

