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Abstract. Let B be a rational function of degree at least two that is neither a Lattès map
nor conjugate to z±n or ±Tn . We provide a method for describing the set CB consisting of
all rational functions commuting with B. Specifically, we define an equivalence relation
∼
B

on CB such that the quotient CB/∼
B

possesses the structure of a finite group G B , and

describe generators of G B in terms of the fundamental group of a special graph associated
with B.
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1. Introduction
In this paper, we study commuting rational functions, that is rational solutions of the
functional equation

B ◦ X = X ◦ B. (1)

More precisely, we fix a function B ∈ C(z) of degree at least two and study the set CB

consisting of all X ∈ C(z) such that (1) holds.
Functional equation (1) has been investigated previously by Julia [3] and Fatou [2].

In particular, they showed that commuting rational functions X and B of degree at least
two have the same Julia set J = J (X)= J (B). Using Poincaré functions, Julia and Fatou
proved that if X and B have no iterate in common and J 6= CP1, then, up to a conjugacy,
X and B are either powers or Chebyshev polynomials. The assumption J 6= CP1 was
removed by Ritt [13], who used a topological-algebraic method. Ritt proved that solutions
of (1) having no iterate in common reduce to powers, to Chebyshev polynomials, or to
Lattès maps. A proof of the Ritt theorem based on modern dynamical methods was given
by Eremenko [1].
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All the above results assume that X and B have no iterate in common. However,
commuting rational functions X and B such that

B◦l = X◦k (2)

for some l, k ≥ 1 also exist. The simplest examples of such functions can be obtained by
setting

X = R◦l1 , B = R◦l2 ,

where R is an arbitrary rational function and l1, l2 ≥ 1. More generally, denoting by
Aut(R) the group of Möbius transformations commuting with R, we can set

X = µ1 ◦ R◦l1 , B = µ2 ◦ R◦l2 , (3)

where µ1 and µ2 are elements of Aut(R) commuting between themselves. However, it has
been shown already by Ritt [13] that commuting rational functions satisfying (2) are not
exhausted by functions of the form (3). Although Ritt’s method provides some insight into
the structure of commuting rational functions X and B satisfying (2), it does not permit
the description of this class of functions in an explicit way, and Ritt concluded his paper
by saying: ‘we think that the example given above makes it conceivable that no great order
may reign in this class’.

Functional equation (1) is a particular case of the functional equation

A ◦ X = X ◦ B, (4)

where A and B are rational functions of degree at least two. In case that (4) is satisfied
for some rational function X of degree at least two, the function B is called semiconjugate
to the function A. Semiconjugate rational functions were investigated in the recent papers
[5, 6, 8–10]. In particular, it was shown in [6] that solutions of (4) satisfying C(X, B)=
C(z), called primitive, can be described in terms of group actions on CP1 or C, implying
strong restrictions on a possible form of A, B and X . Any solution of (4) reduces to a
primitive one by a certain iterative process, and the quantitative aspects of this reduction
were studied in [5]. In particular, it was shown in [5] that if a rational function B is not
special, that is, if B is neither a Lattès map nor conjugate to z±n or ±Tn , then solutions of
equations (1) and (4) obey some finiteness conditions.

Specifically, with regards to equation (1), it was shown in [5] that if B is not special,
then there exist finitely many rational functions X1, X2, . . . , Xr such that X commutes
with B if and only if

X = Xj ◦ B◦k

for some j , 1≤ j ≤ r , and k ≥ 0. Moreover, the number r and the degrees of Xj ,
1≤ j ≤ r , can be bounded by numbers depending on deg B only. Note that this result
immediately implies the Ritt theorem. Indeed, if X commutes with B, then any iterate
X◦l , l ≥ 1, does. Thus, by the Dirichlet box principle, there exist distinct l1, l2 such that

X◦l1 = Xj ◦ B◦k1 , X◦l2 = Xj ◦ B◦k2

for the same j and some k1, k2 ≥ 0. Therefore, if, say, l2 > l1, then

X◦l2 = X◦l1 ◦ B◦k2−k1 ,

implying that (2) holds for l = l2 − l1 and k = k2 − k1, since X and B commute.
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In this paper, we provide a method for describing the set CB for non-special B. For
such B, essentially all the information about CB provided by the Ritt method reduces to
the fact that any element of CB has a common iterate with B. Thus, new approaches and
techniques are needed, and we develop them in this paper. Our main results are as follows.
First, for any non-special rational function B, we define an equivalence relation ∼

B
on the

set CB such that the quotient CB/∼
B

possesses the structure of a finite group G B . Second,

we describe generators of this group in terms of the fundamental group of a special graph
associated with B, providing a method for describing CB . Finally, we calculate G B for
several classes of rational functions. Note that our method of describing CB reduces the
problem to the easier problem of finding all functional decompositions F =U ◦ V for
finitely many rational functions F .

In more detail, for a non-special rational function B, we define an equivalence relation
∼
B

on the set CB , setting A1 ∼
B

A2 if

A1 ◦ B◦l1 = A2 ◦ B◦l2

for some l1 ≥ 0, l2 ≥ 0, and show that the multiplication of classes induced by the
functional composition of their representatives provides CB/∼

B
with the structure of a

finite group G B . The group structure on CB/∼
B

offers a new look at the problem of

describing CB , and permits the characterization of properties of CB in group theoretic
terms. For example, the group G B is trivial if and only if any element of CB is an iterate of
B, while G B is isomorphic to Aut(B) if and only if any element of CB can be represented
in the form X = µ ◦ Bk , where µ ∈ Aut(B) and k ≥ 0.

We describe generators of G B using a special finite graph 0B defined as follows. Let B
be a rational function. We say that a rational function B̂ is an elementary transformation
of B if there exist rational functions U and V such that B = V ◦U and B̂ =U ◦ V . We
say that rational functions B and A are equivalent and write A ∼ B if there exists a chain
of elementary transformations between B and A (this equivalence relation should not be
confused with the previous one where the subscript B is used). Since for any Möbius
transformation µ the equality

B = (B ◦ µ−1) ◦ µ

holds, the equivalence class [B] of a rational function B is a union of conjugacy classes.
Moreover, by the result of [9], the class [B] consists of finitely many conjugacy classes,
unless B is a flexible Lattès map. The graph 0B is defined as a multigraph whose vertices
are in a one-to-one correspondence with some fixed representatives Bi of conjugacy classes
in [B], and whose multiple edges connecting the vertices corresponding to Bi to B j are in
a one-to-one correspondence with solutions of the system

Bi = V ◦U, B j =U ◦ V

in rational functions. In these terms, the main result of the paper about the group G B is a
construction of a group epimorphism from the fundamental group of the graph 0B to the
group G B .

The paper is organized as follows. In §2, we describe the set CB in terms of elementary
transformations. In §3, we define the group G B . In §§4 and 5, we define the graph 0B
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and construct a group epimorphism from π1(0B) to G B . We also show that if A ∼ B, then
the groups G A and G B are isomorphic. Note that this implies, in particular, that if A is a
rational function such that the group Aut(A) is non-trivial, then for any rational function
B ∼ A the group G B is also non-trivial, even though Aut(B) can be trivial. In the last case,
functions of degree one in CA give rise to functions of higher degree in CB through the
isomorphism G A ∼= G B .

In §6, we calculate the group G B for certain classes of rational functions, and consider
some examples. Specifically, we show that for a wide class of rational functions, which
we call generically decomposable, G B is isomorphic to Aut(B). We also show that for
a polynomial B the group G B is metacyclic. Finally, we discuss in detail the example of
commuting rational functions B and X satisfying condition (2) from the paper of Ritt [13].
In particular, we calculate the group G B that turns out to be a cyclic group of order three.
We also provide a different example of this kind.

2. The set CB and elementary transformations
Let B be a rational function of degree at least two. We denote by CB the set of all rational
functions commuting with B.

LEMMA 2.1. The set CB is closed with respect to the operation of composition, that
is, A1, A2 ∈ CB implies A1 ◦ A2 ∈ CB . Furthermore, if A ◦U ∈ CB and U ∈ CB , then
A ∈ CB .

Proof. Indeed, if A1, A2 ∈ CB , then

A1 ◦ A2 ◦ B = A1 ◦ B ◦ A2 = B ◦ A1 ◦ A2.

On the other hand, if A ◦U ∈ CB and U ∈ CB , then

B ◦ A ◦U = A ◦U ◦ B = A ◦ B ◦U,

implying that
B ◦ A = A ◦ B. �

We emphasize that we allow to elements of CB to have degree one, that is to be Möbius
transformations. All Möbius transformations commuting with B obviously form a group
denoted by Aut(B) and called the symmetry group of B. Since any µ ∈ Aut(B) maps
periodic points of B of order l ≥ 1 to themselves, and any Möbius transformation is defined
by its values at any three points, the symmetry group of any rational function is finite. In
particular, Aut(B) is one of the five well-known finite rotation groups of the sphere: A4,
S4, A5, Cn , D2n . Note that the property of µ ∈ Aut(B) to map periodic points of B to
periodic points can be used for a practical description of Aut(B).

Let B be a rational function. A rational function B̂ is called an elementary
transformation of B if there exist rational functions U and V such that B = V ◦U and
B̂ =U ◦ V . We say that rational functions B and A are equivalent and write A ∼ B if
there exists a chain of elementary transformations between B and A. Since for any Möbius
transformation µ the equality

B = (B ◦ µ−1) ◦ µ
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holds, the equivalence class [B] of a rational function B is a union of conjugacy classes.
Thus, the relation∼ can be considered as a weaker form of the classical conjugacy relation.
The equivalence class [B] contains infinitely many conjugacy classes if and only if B is a
flexible Lattès map [9].

The following lemma is obtained by a direct calculation (see [10, Lemma 3.1]).

LEMMA 2.2. Let
L : B→ B1→ B2→ · · · → Bs (5)

be a sequence of elementary transformations, and Ui , Vi , 1≤ i ≤ s, rational functions
such that

B = V1 ◦U1, Bi =Ui ◦ Vi , 1≤ i ≤ s,

and
Ui ◦ Vi = Vi+1 ◦Ui+1, 1≤ i ≤ s − 1.

Then the functions

U =Us ◦Us−1 ◦ · · · ◦U1, V = V1 ◦ · · · ◦ Vs−1 ◦ Vs (6)

make the diagram

CP1 B
−−−−→ CP1

U

y yU

CP1 Bs
−−−−→ CP1

V

y yV

CP1 B
−−−−→ CP1

commutative and satisfy the equalities

V ◦U = B◦s, U ◦ V = B◦ss . �

It follows from Lemma 2.2, that any sequence of elementary transformations (5) such
that Bs = B gives rise to a rational function U commuting with B, and the main result of
this section states that for non-special B any element of CB can be obtained in this way.

THEOREM 2.3. Let B be a non-special rational function of degree at least two. Then a
rational function X belongs to CB if and only if there exists a sequence of elementary
transformation (5) such that Bs = B and X =Us ◦Us−1 ◦ · · · ◦U1.

The proof of Theorem 2.3 uses the following two lemmas which are particular cases
of [6, Lemma 2.1] and [5, Theorem 2.18], respectively. For the reader’s convenience,
we provide short independent proofs. We recall that a solution A, X, B of (4) is called
primitive if C(X, B)= C(z). We also mention that for an arbitrary solution A, X, B of
(4) the equality

deg A = deg B (7)

holds.
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LEMMA 2.4. A solution A, X, B of (4) is primitive if and only if the algebraic curve

A(x)− X (y)= 0 (8)

is irreducible.

Proof. By the Lüroth theorem, there exists a rational function W such that C(X, B)=
C(W ), implying that the equalities

X = X ′ ◦W, B = B ′ ◦W (9)

hold for some rational functions X ′ and B ′ with C(X ′, B ′)= C(z). Clearly, x = X ′(t),
y = B ′(t) is a generically one-to-one parametrization of some irreducible component

C : F(x, y)= 0

of (8). Furthermore, since the degree of the projection of C on x (respectively, y) is equal
to deg X ′ (respectively, deg B ′) the equalities

degx F = deg B ′, degy F = deg X ′ (10)

hold. If C(X, B)= C(z), then deg W = 1, and it follows from equalities (9), (10), and (7)
that the curve C coincides with curve (8), implying that (8) is irreducible. On the other
hand, if C(X, B) 6= C(z), then deg W > 1, and equalities (9), (10), and (7) imply that C is
a proper component of (8). �

LEMMA 2.5. Let A, X, B be a primitive solution of (4). Then for any l ≥ 1, the solution
A◦l , X, B◦l is also primitive.

Proof. The proof is by induction on l. For l = 1, the lemma is trivially true. Assume that
it is true for all k ≤ l. By Lemma 2.4, this implies that the algebraic curve

Ck : A◦k(x)− X (y)= 0

is irreducible for all k ≤ l, and

Rk : x = X (t), y = B◦k(t)

is its generically one-to-one parametrization.
Let P1, P2 be arbitrary rational functions satisfying the equality

A◦(l+1)
◦ P1 = X ◦ P2. (11)

Since the curve Cl is irreducible and Rl is its generically one-to-one parametrization, the
equality

A◦(l+1)
◦ P1 = A◦l ◦ (A ◦ P1)= X ◦ P2

implies that
A ◦ P1 = X ◦W, P2 = B◦l ◦W

for some W ∈ C(z). Furthermore, since the curve C1 is also irreducible, it follows from
the first of these equalities that

P1 = X ◦U, W = B ◦U
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for some U ∈ C(z). Thus, any pair of rational functions P1, P2 satisfying (11) has the
form

P1 = X ◦U, P2 = B◦(l+1)
◦U

for some U ∈ C(z). In particular, this implies that if the equalities

X = P1 ◦W, B◦(l+1)
= P2 ◦W (12)

hold for some P1, P2, W ∈ C(z), then deg W = 1, since P1, P2 in (12) satisfy (11).
Therefore, C(X, B◦(l+1))= C(z), that is, A◦(l+1), X, B◦(l+1) is a primitive solution. �

Proof of Theorem 2.3. The sufficiency follows from Lemma 2.2. In the other direction,
assume that X ∈ CB . If X is a Möbius transformation, then the sequence

B = (B ◦ X−1) ◦ X→ X ◦ (B ◦ X−1)= B

is as required. Thus, assume that deg X ≥ 2.
We observe first that there exist a sequence (5) and a commutative diagram

CP1 B
−−−−→ CP1

U

y yU

CP1 Bs
−−−−→ CP1

X0

y yX0

CP1 B
−−−−→ CP1

such that U is defined by (6), the equality X = X0 ◦U holds, and the triple B, X0, Bs is
a primitive solution of (4). Indeed, if B, X, B is a primitive solution of (4), we can set
U = z, X0 = X , and Bs = B. Otherwise, C(X, B)= C(W ) for some W with deg W > 1,
and substituting equalities (9) in (4) we see that the diagram

CP1 B
−−−−→ CP1

W

y yW

CP1 W◦B′
−−−−→ CP1

X ′
y yX ′

CP1 B
−−−−→ CP1

commutes. If the solution B, X ′, W ◦ B ′ of (4) is primitive, we are done. Otherwise, we
can apply the above transformation to this solution. Since deg X ′ < deg X , it is clear that
after a finite number of steps we obtain a sequence of elementary transformations (5) and
functions U , X0, and Bs as required.

To prove Theorem 2.3, we only must show that deg X0 = 1. Indeed, in this case
changing Us to X0 ◦Us and Bs to X0 ◦ Bs ◦ X−1

0 , without loss of generality we may
assume that X0 = z, so that Bs = B and (5) is the sequence required. Assume, in contrast,
that deg X0 > 1. By Lemma 2.5, for any l ≥ 1 the triple B◦l , X0, B◦ls is a primitive solution
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of (4). On the other hand, by the Ritt theorem, there exist k and l such that equality (2)
holds. Thus,

B◦l = X◦k = X0 ◦ (U ◦ X◦k−1),

implying that the curve
(U ◦ X◦k−1)(x)− y = 0

is a component of the curve
B◦l(x)− X0(y)= 0.

Moreover, this component is proper because deg X0 > 1. Since, by Lemma 2.4, this
contradicts the fact that B◦l , X0, B◦ls is a primitive solution of (4), we conclude that
deg X0 = 1. �

3. The group G B

Define an equivalence relation ∼
B

on the set CB , setting A1 ∼
B

A2 if

A1 ◦ B◦l1 = A2 ◦ B◦l2 (13)

for some l1 ≥ 0, l2 ≥ 0 (in order to distinguish this relation from the relation ∼ introduced
in the previous section we use the subscript B). It is easy to see that ∼

B
is really an

equivalence relation. Indeed, ∼
B

is clearly reflexive and symmetric. Furthermore, if

equalities (13) and
A2 ◦ B◦n1 = A3 ◦ B◦n2

hold, and n1 ≥ l2, then

A1 ◦ B◦(l1+n1−l2) = A2 ◦ B◦n1 = A3 ◦ B◦n2 ,

implying that A1 ∼
B

A3. Similarly, if l2 ≥ n1, then

A3 ◦ B◦(n2+l2−n1) = A2 ◦ B◦l2 = A1 ◦ B◦l1 .

LEMMA 3.1. Let A be an equivalence class of ∼
B

. For any n ≥ 1, the class A contains at

most one rational function of degree n. Furthermore, if A0 ∈ A is a function of minimal
possible degree, then any A ∈ A has the form A = A0 ◦ B◦l , l ≥ 1. Alternatively, the
function A0 can be described as a unique function in A that is not a rational function
in B.

Proof. If deg A1 = deg A2 in (13), then l1 = l2, implying that A1 = A2. Furthermore, if

A ◦ B◦l1 = A0 ◦ B◦l2 (14)

and l1 > l2, then
A0 = A ◦ B◦(l1−l2),

implying that deg A < deg A0 in contradiction with the assumption. Therefore, l1 ≤ l2
and, hence,

A = A0 ◦ B◦(l2−l1).
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Moreover, A0 is not a rational function in B, since if A0 = A′ ◦ B, then A′ commutes
with B by Lemma 2.1, implying that A′ ∼

B
A0 and deg A′ < deg A0. On the other hand, if

A is an other function in the class A that is not a rational function in B, then (14) implies
that l1 = l2 and A = A0. �

For a rational function B, we denote by G B the set of equivalence classes of ∼
B

on CB .

We define a binary operation on the set G B as follows. If A1 and A2 are equivalence
classes of ∼

B
, and A1 ∈ A1 and A2 ∈ A2 are their representatives, then A1 · A2 is defined

as the equivalence class containing A1 ◦ A2. It is easy to see that this operation is well
defined. Indeed, assume that A1 ∼

B
A′1 and A2 ∼

B
A′2. Then

A1 ◦ B◦l1 = A′1 ◦ B◦l
′

1

and
A2 ◦ B◦l2 = A′2 ◦ B◦l

′

2 ,

implying that
A1 ◦ B◦l1 ◦ A2 ◦ B◦l2 = A′1 ◦ B◦l

′

1 ◦ A′2 ◦ B◦l
′

2 . (15)

Since A1, A2 ∈ CB , equality (15) implies that

A1 ◦ A2 ◦ B◦(l1+l2) = A′1 ◦ A′2 ◦ B◦(l
′

1+l ′2),

and, hence,
A1 ◦ A2 ∼

B
A′1 ◦ A′2.

THEOREM 3.2. The set G B equipped with the operation · is a finite group.

Proof. By definition, if Ai ∈ Ai , 1≤ i ≤ 3, then (A1 · A2) · A3 and A1 · (A2 · A3) are
classes containing the functions (A1 ◦ A2) ◦ A3 and A1 ◦ (A2 ◦ A3), respectively. On the
other hand,

(A1 ◦ A2) ◦ A3 = A1 ◦ (A2 ◦ A3),

since ◦ is an associative operation on the set of rational functions. Therefore, the
classes (A1 · A2) · A3 and A1 · (A2 · A3) coincide, and, hence, the operation · satisfies
the associativity axiom.

Clearly, the class e containing the function z and consisting of all iterates of B serves
as the unit element. Moreover, for any class X there exists a class X−1 such that

X · X−1
= X−1

◦ X= e. (16)

Indeed, by Theorem 2.3, for any X ∈ X there exists a sequence of elementary
transformation (5) such that

X =Us ◦Us−1 ◦ · · · ◦U1.

Further, it follows from Lemma 2.2 that the function

Y = Vs ◦ Vs−1 ◦ · · · ◦ V1
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belongs to CB , and the functions X and Y satisfy

X ◦ Y = Y ◦ X = B◦s .

Therefore, condition (16) holds for X−1 defined as the class containing the rational
function Y .

Finally, by the result of [5] cited in the introduction, there exist at most finitely many
rational functions A ∈ CB which are not rational functions in B, implying by Lemma 3.1
that the group G B is finite. �

Note that the above proof provides a method for the actual finding X−1. On the other
hand, merely the existence of the inverse element follows from the Ritt theorem. Indeed,
since for any X ∈ X there exist l, k ≥ 1 such that (2) holds, for any class X there exists
k such that Xk

= e, implying that (16) holds for X−1
= Xk−1. Note also that the Ritt

theorem by itself does not imply that the group G B is finite, although it does imply that
any its element has finite order.

For X ∈ CB , we denote by X the element of G B corresponding to the equivalence class
of ∼

B
containing X .

LEMMA 3.3. The map µ→ µ is a group monomorphism from the group Aut(B) to the
group G B .

Proof. Since functions from Aut(B) have degree one, it follows from Lemma 3.1 that
µ1 = µ2 if and only if µ1 = µ2. Therefore, the map τ : µ→ µ is injective, and it is easy
to see that τ is a homomorphism of groups. �

We denote the image of Aut(B) in G B under the group monomorphism µ→ µ by
AutG(B).

LEMMA 3.4. The following conditions are equivalent.
(1) Any X ∈ CB has the form X = µ ◦ B◦l for some µ ∈ Aut(B) and l ≥ 0.
(2) Any X ∈ CB of degree at least two is a rational function in B.
(3) The group G B coincides with AutG(B).

Proof. It is easy to see that (1) and (3) are equivalent, and that (1) implies (2). Assume
now that (2) holds, and let X ∈ CB be a function of degree at least two. By the assumption,
X = R1 ◦ B for some R ∈ C(z). Moreover, since by Lemma 2.1 the function R1 belongs
to CB , using (2) again we conclude that either R1 ∈ Aut(B), or there exists R2 ∈ C(z) such
that R1 = R2 ◦ B and R2 ∈ CB . It is clear that continuing this process we will eventually
obtain a representation X = µ ◦ Bl for some µ ∈ Aut(B) and l ≥ 1. �

4. The graph 0B

Let B be a rational function of degree at least two. Define 0B as a multigraph
whose vertices are in a one-to-one correspondence with some fixed representatives of
conjugacy classes in [B], and whose multiple edges connecting vertices corresponding to
representatives Bi and B j are in a one-to-one correspondence with solutions of the system

Bi = V ◦U, B j =U ◦ V (17)
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in rational functions. Note that 0B have loops. They correspond to solutions of

Bi =U ◦ V = V ◦U.

LEMMA 4.1. The graph 0B does not depend on the choice of representatives of conjugacy
classes in [B].

Proof. Indeed, for any Möbius transformations α and β, to a solution U, V of system (17)
corresponds a solution

U ′ = β ◦U ◦ α−1, V ′ = α ◦ V ◦ β−1 (18)

of the system
α ◦ Bi ◦ α

−1
= V ′ ◦U ′, β ◦ B j ◦ β

−1
=U ′ ◦ V ′. (19)

Furthermore, it is easy to see that formulas (18) provide a one-to-one correspondence
between solutions of (17) and (19). �

THEOREM 4.2. Let B a rational function of degree at least two. Then the graph 0B is
finite, unless B is a flexible Lattès map.

Proof. By the main result of the paper [9], the class [B] contains infinitely many conjugacy
classes if and only if B is a flexible Lattès map. Therefore, if B is not such a map, the graph
0B contains only finitely many vertices.

Let us show now that the number of edges connecting two vertices is finite. Recall that
two decompositions

B = V ◦U, B = V ′ ◦U ′ (20)

of a rational function B into compositions of rational functions are called equivalent if
there exists a Möbius transformation µ such that

V ′ = V ◦ µ−1, U ′ = µ ◦U. (21)

It is well known that equivalence classes of decompositions of B are in one-to-one
correspondence with imprimitivity systems of the monodromy group Mon(B) of B. In
particular, there exist at most finitely many such classes. Therefore, to prove the finiteness
of the number of edges adjacent to the vertices corresponding to Bi and B j it is enough to
show that for any fixed solution U, V of (17) there exist only finitely many solutions U ′,
V ′ of (17) such that decompositions (20) are equivalent. Since equalities (21) combined
with the equality

U ◦ V =U ′ ◦ V ′

imply the equality
U ◦ V = µ ◦U ◦ V ◦ µ−1,

the last statement follows from the finiteness of the group Aut(U ◦ V ). �

Since in this paper we consider only non-special rational functions B, the corresponding
graphs 0B are always finite by Theorem 4.2. Note that the results of [5] imply that the
number of vertices of 0B can be bounded by a number depending on deg B only (see [5,
Remark 5.2]). Nevertheless, there exists no absolute bound for the number of vertices
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FIGURE 1. The form of 0B in Example 1.

of 0B , and it is easy to construct rational functions B of degree n for which the graph 0B

contains ≈ log2 n vertices (see [6, p. 1241]).
We always assume that the representative of the conjugacy class of the function B in

0B is the function B itself. Abusing notation, in the following we call the functions B j

simply ‘vertices’ of 0B . Note that for each vertex B j of 0B there exists at least one loop
starting and ending at B that corresponds to the solution

B = B ◦ z = z ◦ B (22)

of (17). More generally, the solutions

B = (µ−1
◦ B) ◦ µ= µ ◦ (µ−1

◦ B), µ ∈ Aut(B), (23)

give rise to |Aut(B)| loops.

Example 1. Assume that B is an indecomposable rational function. By definition, this
means that the equality B = V ◦U implies that at least one of the functions U and V
has degree one. In this case, the equivalence class [B] obviously consists of a unique
conjugacy class. Thus, 0B has a unique vertex, and all edges of 0B are loops corresponding
to solutions of

B =U ◦ V = V ◦U

such that one of the functions U , V has degree one. Assuming without loss of generality
that deg U = 1, we see that

B ◦U =U ◦ V ◦U =U ◦ B,

implying that U ∈ Aut(B). Therefore, 0B has the form shown in Figure 1, and the number
of loops of 0B is equal to |Aut(B)|.

Example 2. Assume now that a rational function B has, up to equivalency (21), a unique
decomposition B = V ◦U into a composition of rational functions of degree at least two,
and that the same is true for the function B1 =U ◦ V . In this case, graph 0B may have
two distinct forms. Namely, if B1 and B are not conjugate, then 0B has the form shown
in Figure 2, where all loops correspond to some automorphisms. Note that for such B and
B1 the groups Aut(B) and Aut(B1) are isomorphic (see Lemma 6.3), implying that B and
B1 have the same number of attached loops.

FIGURE 2. The form of 0B in Example 2.
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On the other hand, if B1 is conjugate to B, then without loss of generality we may
assume that B1 = B, so that

B = V ◦U =U ◦ V . (24)

In this case, the graph 0B has one vertex and |Aut(B)| + 1 loops corresponding to (23)
and (24). Note that since by the assumption the decompositions in (24) are equivalent, the
equalities

U = V ◦ µ−1, V = µ ◦U

hold for some Möbius transformation µ, implying that

B = V ◦U = µ ◦U◦2.

Thus, up to a composition with a Möbius transformation µ, the function B is the second
iterate of some rational function U . Moreover, since

U = V ◦ µ−1
= µ ◦U ◦ µ−1,

the transformation µ belongs to Aut(U ).

Example 3. Set

B =−
2z2

z4 + 1
=−

2
z2 + 1/z2 .

The function B is an invariant for the finite automorphism group of CP1 generated by the
transformations

z→
1
z
, z→−z,

and its monodromy group Mon(B) is the Klein four group Z/2Z× Z/2Z having three
proper imprimitivity systems. The corresponding decompositions of B are

B =−
2

z2 − 2
◦

z2
+ 1
z

, B =−
2

z2 + 2
◦

z2
− 1
z

,

and

B =
z2
− 1

z2 + 1
◦

z2
− 1

z2 + 1
. (25)

Using, for example, the ‘Maple’ system, one can check that the function

B1 =
z2
+ 1
z
◦ −

2
z2 − 2

=−
1
2

z4
− 4 z2

+ 8
z2 − 2

(26)

has three critical values in CP1, and the corresponding permutations in Mon(B1) can be
identified with the permutations (12)(34), (1243), and (14) in S4. On the other hand, the
function

B2 =
z2
− 1
z
◦ −

2
z2 + 2

=
1
2

z2(z2
+ 4)

z2 + 2
(27)

has four critical values, and the corresponding permutations in Mon(B2) can be identified
with (12)(34), (23), (12)(34), and (14). Since B1 and B2 have a different number
of critical values, they are not conjugate. Furthermore, it is easy to see that the both
groups Mon(B1) and Mon(B2) have a unique proper imprimitivity system {1, 4}, {2, 3},
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FIGURE 3. The form of 0B in Example 3.

corresponding to decompositions (26) and (27), implying, in particular, that B is not
conjugate to B1 or B2. Finally, one can check by a direct calculations, solving the system

az + b
cz + d

◦ B = B ◦
az + b
cz + d

in a, b, c, d , that the functions B, B1, B2 have no automorphisms. Summing up, we
conclude that the graph 0B has the form shown on Figure 3.

5. The epimorphism π1(0B)→ G B

Considering the graph 0B as a one-dimensional CW complex in R3, we can provide each
edge of 0B , including loops, with two opposite orientations. With each oriented edge e of
0B , we associate a rational function F(e) as follows. Assume first that e corresponds to
solution (17) with different Bi and B j . Then we set F(e)=U , if the initial point of e is
Bi and the final point is B j , and F(e)= V , if the orientation is opposite. For a loop, we
simply set the value of F equal to U for one of the two corresponding oriented edges, and
equal to V for the opposite oriented edge. For an oriented path

l = enen−1 . . . e1,

set
F(l)= F(en) ◦ F(en−1) ◦ · · · ◦ F(e1).

We emphasize that since we always compose functions from right to left, we follow this
convention also for a concatenation of paths. Thus, a path obtained by a concatenation of
the paths l1 and l2 is denoted by

l = l2l1,

and the above definition implies that

F(l)= F(l2) ◦ F(l1). (28)

As usual, we denote the path l traversed in the opposite direction by l−1.
By construction, oriented paths from B to Bs correspond to sequences of elementary

transformation (5). Furthermore, in the notation of Lemma 2.2, if

F(l)=Us ◦Us−1 ◦ · · · ◦U1,

then
F(l−1)= V1 ◦ · · · ◦ Vs−1 ◦ Vs .

In particular, Lemma 2.2 implies the following statement.
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LEMMA 5.1. Let l be an oriented path in 0B from the vertex B to a vertex Bs consisting
of k oriented edges. Then

Bs ◦ F(l)= F(l) ◦ B, (29)

and
F(l−1) ◦ F(l)= B◦k, F(l) ◦ F(l−1)= B◦ks . � (30)

If l is a closed path in 0B starting and ending at B, then (29) implies that the function
F(l) commutes with B, while equalities (30) reduce to the equalities

F(l−1) ◦ F(l)= F(l) ◦ F(l−1)= B◦k . (31)

Thus, we obtain a map φB : l→ F(l) from the set of closed paths starting and ending at
B to the set CB .

THEOREM 5.2. The map φB : l→ F(l) descends to an epimorphism of groups 8B :

π1(0B, B)→ G B .

Proof. Let 0 be a graph. Recall that an oriented path l in 0 is called reduced if no two
successive oriented edges in l are opposite orientations of the same edge. Paths of the form
e−1e, where e is an oriented edge are called spurs. Paths l and l ′ are called equivalent if l ′ is
obtained from l by a finite number of insertions and removals of spurs between successive
oriented edges or at the endpoints. In these terms, the fundamental group π1(0, V ) of the
graph 0 can be defined as the set of equivalence classes of paths that begin and end at
some fixed vertex V of 0, equipped with the product of classes defined in an obvious way
(see e.g. [14, §2.1.6]).

To prove that the map φB descends to a map from π1(0B, B) to G B , we must show that
whenever closed paths l and l ′ in 0B that start and end at B are equivalent, the rational
functions F(l) and F(l ′) are in the same equivalence class of CB . Since any path is
equivalent to a path with no spurs, for this purpose it is enough to show that if l ′ is obtained
from l by an insertion of a spur, then F(l)∼

B
F(l ′). Assume that

l ′ = l2e−1el1,

where l1 is a path from B to Bs , and l2 is a path from Bs to B (one of the paths l1 and l2
can be empty in which case Bs = B). Then

F(l ′)= F(l2) ◦ Bs ◦ F(l1),

by (28) and (31). It follows now from (29) that

F(l ′)= F(l2) ◦ F(l1) ◦ B = F(l) ◦ B,

implying that F(l)∼
B
F(l ′). Thus, φB descends to a map 8B : π1(0B, B)→ G B , and (28)

implies that 8B is a homomorphism of groups.
Finally, it follows from Theorem 2.3 that 8B is an epimorphism. Indeed, by Theorem

2.3, any X ∈ CB can be obtained from a sequence of elementary transformations (5).
Moreover, we can change if necessary each of rational functions Bi , 1≤ i ≤ s − 1,
appearing in (5) to any desired representative of its conjugacy class, consecutively
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changing the function Ui to αi ◦Ui , the function Bi to αi ◦ Bi ◦ α
−1
i , and the function Ui+1

to α−1
i ◦Ui+1 for a convenient Möbius transformation αi . Therefore, for any X ∈ CB ,

there exists a closed path l starting and ending at B such that F(l)= X , implying that
8B : π1(0B, B)→ G B is an epimorphism. �

THEOREM 5.3. Let A and B be equivalent rational functions. Then G B ∼= G A.

Proof. Assuming that A and B are vertices of 0B , take a path s from A to B in 0B . Since
the map ψ : l→ s−1ls, from the set of closed paths starting and ending at B to the set
of closed paths starting and ending at A, descends to an isomorphism of the fundamental
groups

9 : π1(0B, B)→ π1(0B, A),

it follows from Theorem 5.2 that we only need to prove the equality

9(Ker8B)= Ker8A. (32)

Let l0 be a path starting and ending at B such that F(l0)= B◦k , k ≥ 1, and let k0 =

ψ(l0). Then
F(k0)= F(s−1) ◦ F(l0) ◦ F(s)= F(s−1) ◦ B◦k ◦ F(s),

implying by (29) and (30) that

F(k0)= F(s−1) ◦ F(s) ◦ A◦k = A◦l ◦ A◦k = A◦(k+l)

for some k, l ≥ 1. This implies that

9(Ker8B)⊆ Ker8A.

Similarly, considering the isomorphism inverse to 9 we obtain that

9−1(Ker8A)⊆ Ker8B .

This proves equality (32). �

6. Examples of groups G B

6.1. Functions with G B = AutG(B). The simplest application of Theorem 5.2 is the
following result.

THEOREM 6.1. Let B be an indecomposable non-special rational function of degree at
least two. Then G B = AutG(B). Equivalently, X ∈ CB if and only if X = µ ◦ Bl for some
µ ∈ Aut(B) and l ≥ 1.

Proof. Since 0B has a unique vertex and |Aut(B)| loops corresponding to automorphisms
of B (see Example 1), it follows easily from Theorem 5.2 that G B is generated by µ,
µ ∈ Aut(B). Thus, G B = AutG(B). The second statement follows from Lemma 3.4. �

Note that Theorem 6.1 implies that for a ‘random’ rational function B, the group G B is
trivial, since such a function is indecomposable and has no automorphisms.

Theorem 6.1 can be extended to a wide class of decomposable rational functions. Recall
that a functional decomposition

B =Ur ◦Ur−1 ◦ · · · ◦U1 (33)
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FIGURE 4. The form of 00
B in Example 3.

of a rational function B is called maximal if all U1,U2, . . . ,Ur are indecomposable and of
degree greater than one. The number r is called the length of the maximal decomposition
(33). Two decompositions (maximal or not) having an equal number of terms

F = Fr ◦ Fr−1 ◦ · · · ◦ F1 and F = Gr ◦ Gr−1 ◦ · · · ◦ G1

are called equivalent if either r = 1 and F1 = G1 or r ≥ 2 and there exist Möbius
transformations µi , 1≤ i ≤ r − 1, such that

Fr = Gr ◦ µr−1, Fi = µ
−1
i ◦ Gi ◦ µi−1, 1< i < r, and F1 = µ

−1
1 ◦ G1.

Note that all maximal decompositions of a polynomial have the same length [11], but this
is not true for arbitrary rational functions (see e.g. [4]).

We say that a rational function B having a maximal decomposition (33) is generically
decomposable if the following conditions are satisfied:
• each of the functions

Bi = (Ui ◦ · · · ◦U2 ◦U1) ◦ (Ur ◦Ur−1 ◦ · · · ◦Ui+1), 0≤ i ≤ r − 1,

has a unique equivalence class of maximal decompositions;
• the functions Bi , 0≤ k ≤ r − 1, are pairwise not conjugate.
For a graph 0B , define 00

B as a graph obtained from 0B by removing all loops that
correspond to automorphisms. For example, for the graph 0B from Example 3 the graph
00

B is shown in Figure 4. Recall that a complete graph is a graph in which every pair
of distinct vertices is connected by a unique edge. The complete graph on n vertices is
denoted by Kn .

LEMMA 6.2. Assume that a non-special rational function B having a maximal
decomposition of length r is generically decomposable. Then 00

B is the complete graph Kr .

Proof. Let (33) be a maximal decomposition of B. Since all the functions Bi ,
0≤ i ≤ r − 1, are equivalent and pairwise not conjugate, the graph 0B contains at least
r vertices. Observe now that any decomposition B = V ◦U of B into a composition of
two rational functions of degree at least two has the form

V = (Ur ◦Ur−1 ◦ · · · ◦Ui+1) ◦ µ, U = µ−1
◦ (Ui ◦ · · · ◦U2 ◦U1), 0≤ i ≤ r − 1,

(34)
where µ is a Möbius transformation. Indeed, concatenating arbitrary maximal
decompositions of U and V we must obtain a maximal decomposition equivalent to
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(33), implying that (34) holds. Therefore, any edge of 0B adjacent to B0 = B and
not corresponding to an automorphism of B is adjacent to one of the vertices Bi ,
1≤ k ≤ r − 1, and there exists exactly one edge connecting B0 and Bi , 1≤ k ≤ r − 1.
Since the same argument holds for any Bi , 0≤ k ≤ r − 1, we conclude that 00

B is the
complete graph Kr . �

LEMMA 6.3. Assume that a non-special rational function B is generically decomposable,
and let l be an oriented path from a vertex Bi1 to a vertex Bi2 in 0B . Then for any
µ ∈ Aut(Bi1) there exists α(µ) ∈ Aut(Bi2) such that

F(l) ◦ µ= α(µ) ◦ F(l). (35)

Furthermore, the map µ→ α(µ) is an isomorphism of the groups Aut(Bi1) and Aut(Bi2).
In particular, the same number of loops is attached to each vertex of 0B .

Proof. In view of formula (28), it is enough to prove the lemma for the case where l is an
oriented edge. If l is a loop, then by Lemma 6.2, it corresponds to a solution of (17) of the
form

Bi1 = (µ
−1
0 ◦ Bi1) ◦ µ0 = µ0 ◦ (µ

−1
0 ◦ Bi1), µ0 ∈ Aut(Bi1).

Thus, either F(l)= µ0 or F(l)= µ−1
0 ◦ Bi1 , and it is easy to see that in these cases equality

(35) holds for the automorphisms

α(µ)= µ0 ◦ µ ◦ µ
−1
0 , α(µ)= µ−1

0 ◦ µ ◦ µ0,

respectively.
Assume now that l is an oriented edge from a vertex Bi1 = V ◦U to a different vertex

Bi2 =U ◦ V . Let us observe that for any µ ∈ Aut(Bi1) the decompositions Bi1 = V ◦U
and

Bi1 = (µ
−1
◦ V ) ◦ (U ◦ µ)

are equivalent, since for arbitrary maximal decompositions of U and V the corresponding
induced maximal decompositions of Bi1 are equivalent. Therefore, for any µ ∈ Aut(Bi1),
there exists a Möbius transformation α = α(µ) such that

µ−1
◦ V = V ◦ α(µ)−1, U ◦ µ= α(µ) ◦U.

Furthermore, since

Bi2 =U ◦ V =U ◦ µ ◦ µ−1
◦ V = α(µ) ◦U ◦ V ◦ α(µ)−1,

the transformation α(µ) belongs to µ ∈ Aut(Bi2), and it is easy to see that µ→ α(µ) is a
group homomorphism from Aut(Bi1) to Aut(Bi2).

Finally, if
ν→ β(ν)

is a homomorphism from Aut(Bi2) to Aut(Bi1), defined by the conditions

ν−1
◦U =U ◦ β(ν)−1, V ◦ ν = β(ν) ◦ V,

and µ ∈ Aut(Bi1), then

V ◦U ◦ µ= V ◦ α(µ) ◦U = β(α(µ)) ◦ V ◦U.
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Since
V ◦U ◦ µ= µ ◦ V ◦U,

this implies that β ◦ α is the identical mapping of Aut(Bi1), and hence µ→ α(µ) is an
isomorphism. �

THEOREM 6.4. Let B be a non-special generically decomposable rational function. Then
G B = AutG(B). Equivalently, X ∈ CB if and only if X = µ ◦ Bl for some µ ∈ Aut(B) and
l ≥ 1.

Proof. Let (33) be a maximal decomposition of B. For convenience, define rational
functions Ui for i ≥ r setting Ui =Ui ′ , where i ≡ i ′ mod r . Let us recall that any
decomposition B = V ◦U , where U and V are functions of degree at least two, has the
form (34), and a similar statement holds for all Bi , 0≤ i ≤ r − 1. Therefore, for the
oriented edge e from a vertex Bi1 to a different vertex Bi2 the equality

F(e)=Ui2 ◦ · · · ◦Ui1+2 ◦Ui1+1

holds, implying inductively by (28) that for an arbitrary path l with no loops from Bi1 to
Bi2 the equality

F(l)=Ui2+rk ◦ · · · ◦Ui1+2 ◦Ui1+1 = B◦ki2
◦Ui2 ◦ · · · ◦Ui1+2 ◦Ui1+1

holds for some k ≥ 1. In particular, if l is a closed path starting and ending at B and
containing no loops, then F(l)= B◦k , k ≥ 1, implying that the image of l under the
homomorphism 8B from Theorem 5.2 is the unit element. Further, if l contains a loop,
then either

F(l)=Ukr ◦ · · · ◦Ui+1 ◦ ν ◦Ui ◦ · · · ◦U1,

or
F(l)=Ukr ◦ · · · ◦Ui+1 ◦ (ν

−1
◦ Bi ) ◦Ui ◦ · · · ◦U1

for some k ≥ 1, 0≤ i ≤ r − 1, and ν ∈ Aut(Bi ). Therefore, by Lemmas 6.3 and 5.1, either

F(l)= µ ◦ B◦k,

or
F(l)= µ ◦ B◦(k+1)

for some µ ∈ Aut(B). Finally, if l contains several loops, then repeatedly using
Lemmas 6.3 and 5.1, we conclude that

F(l)= µ ◦ B◦s

for some µ ∈ Aut(B) and s ≥ 1. Thus, G B = AutG(B). �

COROLLARY 6.5. Let B be a non-special rational function of degree at least two such
that G B is strictly larger than AutG(B). Then there exists A ∼ B such that either A can
be represented as a composition of two commuting rational functions of degree at least
two, or A has more than one class of maximal decompositions.
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Proof. By Theorem 6.4, it is enough to show that if any A ∼ B has a unique equivalence
class of maximal decompositions and cannot be represented as a composition of two
commuting rational functions of degree at least two, then for the function B the both
conditions defining generically decomposable rational functions are satisfied. For the first
condition, this is obvious. For the second condition, this is also true. Indeed, if say B0 = B
is conjugate to Bi and µ is a Möbius transformation such that

(Ur ◦ · · · ◦Ui+1) ◦ (Ui ◦ · · · ◦U1)= µ ◦ (Ui ◦ · · · ◦U1) ◦ (Ur ◦ · · · ◦Ui+1) ◦ µ
−1,

then for the functions

N = µ ◦ (Ui ◦ · · · ◦U1), M = (Ur ◦ · · · ◦Ui+1) ◦ µ
−1

the equality
B = M ◦ N = N ◦ M (36)

holds. �

Note that whenever B is a composition of two commuting rational functions of degree
at least two, the group G B is strictly larger than AutG(B). Indeed, equality (36) implies
easily that the functions N and M belong to CB . Moreover, their images in G B are not
trivial and do not belong to AutG(B), since

1< deg M < deg B, 1< deg N < deg B.

In particular, if B = T ◦s , where s > 1, the group G B contains a cyclic group of order s
whose intersection with AutG(B) is trivial.

Finally, note that the group G B can be strictly larger than AutG(B) even if B is not
a composition of commuting functions, and that the relation A ∼ B does not imply, in
general, the equality AutG(A)∼= AutG(B) (see §6.3).

6.2. The group G B for polynomial B. Before stating the theorem describing groups
G B for polynomial B let us recall several results.

First, for a non-special polynomial B of degree at least two, the set CB consists of
polynomials. Indeed, (1) yields that

B−1(X−1
{∞})= X−1

{∞}, (37)

implying that X−1
{∞} contains at most two points. Furthermore, considering instead of

B and X the functions

X→ µ ◦ X ◦ µ−1, B→ µ ◦ B ◦ µ−1

for a convenient Möbius transformation µ, without loss of generality one can assume that
either X−1

{∞} = {∞} or X−1
{∞} = {∞, 0}. In the first case, X is a polynomial. On the

other hand, in the second case, (37) implies that B is conjugate to zn , contradicting the
assumption that B is not special.

Second, the symmetry group Aut(B) of a non-special polynomial B of degree at least
two is cyclic. Indeed, unless B is conjugate to zn , for any µ ∈ Aut(B) necessarily
µ−1
{∞} = {∞}, implying that µ is a polynomial. By a polynomial conjugation, we can
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always assume that the coefficient of zdeg B−1 is zero, and it is clear that µ= az + b may
commute with such B only if b = 0. Furthermore, it is easy to see that Aut(B) is a cyclic
rotation group of order n, where n is the maximal number such that

B = z R(zn)

for some polynomial R.
Third, a polynomial B is special if and only if B is conjugate to zn or ±Tn , since it is

well known that a polynomial cannot be a Lattès map.
In addition, we need the following result (see [7, Theorem 1.3]).

THEOREM 6.6. Let A and B be fixed non-special polynomials of degree at least two, and
let E(A, B) be the set of all polynomials of degree at least two X such that A ◦ X = X ◦ B.
Then, either E(A, B) is empty, or there exists X0 ∈ E(A, B) such that a polynomial
X belongs to E(A, B) if and only if X = Â ◦ X0 for some polynomial Â commuting
with A. �

Recall that a group G is called metacyclic if it has a normal cyclic subgroup H such
that G/H is a cyclic group.

THEOREM 6.7. Let B be a polynomial of degree at least two not conjugate to zn or ±Tn ,
n ≥ 2. Then the group G B is metacyclic.

Proof. Applying Theorem 6.6 for A = B and arguing as in Lemma 3.4, we see that any
rational function X that belongs to CB = E(B, B) has the form X = µ ◦ X◦l0 , where µ ∈
Aut(B) and l ≥ 1. In particular, B = µ ◦ X l0

0 for some l0 ≥ 1 and µ ∈ Aut(B). Moreover,
the degree of any element of CB is a power of d0 = deg X0, and for l ≥ 0 the subset of
elements of degree dl

0 coincides with the set S1,l = {µ ◦ X l
0 | µ ∈ Aut(B)}.

Let us observe now that if
X◦l0 ◦ µ1 = X◦l0 ◦ µ2, (38)

where µ1, µ2 ∈ Aut(B), then µ1 = µ2. Indeed, (38) implies that

X◦l0 ◦ (µ1 ◦ µ
−1
2 )= X◦l0 .

Therefore, since B◦l = ν ◦ X◦(l0l)
0 for some ν ∈ Aut(B),

B◦l ◦ (µ1 ◦ µ
−1
2 )= B◦l ,

implying that µ1 = µ2. Thus, for l ≥ 0 the set S2,l = {X l
0 ◦ µ | µ ∈ Aut(B)} has the same

cardinality as the set S1,l . Since S2,l is contained in CB , this implies that S1,l = S2,l .
The above analysis shows that the right cosets of AutG(B) in G have the form

X l
0AutG(B), 0≤ l < l0,

the left cosets have the form

AutG(B)X l
0, 0≤ l < l0,

and any right coset of AutG(B) in G is a left coset. Thus, AutG(B) is a normal subgroup
in G B , and the group G B/AutG(B) is a cyclic group of order l0 generated by X0. Since
Aut(B) is also a cyclic group, we conclude that the group G B is metacyclic. �
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Note that Theorem 6.7 can be deduced from the Ritt theorem [12, 13] saying that
any commuting non-special polynomials X and B can be represented in the form (3).
Nevertheless, the Ritt theorem does not imply Theorem 6.7 immediately, since R in (3)
a priori depends on X , and the further analysis is needed.

6.3. The group G B for the Ritt example. Let B be a rational function of degree at least
two. Denote by Âut(B) the group consisting of Möbius transformations µ such that

B ◦ µ= ν ◦ B

for some Möbius transformations ν. Like the group Aut(B), the group Âut(B) is a finite
rotation group of the sphere (see [5, §4]). More generally, denote by ĈB the set of rational
functions X such that

B ◦ X = Y ◦ B

for some rational function Y . Clearly, Aut(B) is a subgroup of Âut(B), and CB ⊆ ĈB .
Let

V =
z2
+ 2

z + 1
, U =

z2
− 4

z − 1
, µ= εz,

where ε3
= 1. In [13], Ritt showed that the rational functions

B = V ◦U, X = V ◦ µ ◦U

commute but no one of them is a rational function of the other. In particular, this implies
that there is no R such that

B = µ1 ◦ R◦l1 , X = µ2 ◦ R◦l2

for some Möbius transformations µ1, µ2, and l1, l2 ≥ 1. More generally, for any function
C such that C(εz)= εC(z), the functions

B ′ = V ◦ C ◦U, X ′ = V ◦ µ ◦ C ◦U

commute, but no one of them is a rational function of the other.
The Ritt statement follows from the following more general observation.

LEMMA 6.8. Let W ∈ CU◦V , but W 6∈ ĈV . Then the functions V ◦U and V ◦W ◦U
commute but the latter is not a rational function of the former. Furthermore, the same
conclusion holds for the functions V ◦ C ◦U and V ◦W ◦ C ◦U, where C is any function
commuting with W .

Proof. Indeed, we have

(V ◦ C ◦U ) ◦ (V ◦W ◦ C ◦U )= V ◦ C ◦ (U ◦ V ◦W ) ◦ C ◦U

= V ◦ C ◦ (W ◦U ◦ V ) ◦ C ◦U = (V ◦ C ◦W ◦U ) ◦ (V ◦ C ◦U )

= (V ◦W ◦ C ◦U ) ◦ (V ◦ C ◦U ).

On the other hand, if
V ◦W ◦ C ◦U = R ◦ V ◦ C ◦U

for some rational function R, then

V ◦W = R ◦ V,

contradicting the assumption that W 6∈ ĈV . �
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The Ritt statement is obtained from Lemma 6.8 for W = µ. Indeed,

U ◦ V =
z(z3
− 8)

(z3 + 1)
,

implying that µ ∈ Aut(U ◦ V ). On the other hand, the assumption that

V ◦ µ= ν ◦ V (39)

for some Möbius transformation ν leads to a contradiction. Namely, (39) implies that
ν(∞)=∞. Therefore, ν = az + b, a, b ∈ C, and, hence, if (39) holds, then the functions
V and

V ◦ µ=
ε2z2
+ 2

εz + 1
have the same set of poles. However, this is not true.

Let us calculate the group G B . Again using the assistance of a computer one can check
that the function

B = V ◦U =
z4
− 6 z2

− 4 z + 18
(z2 + z − 5)(z − 1)

has four critical values and the corresponding permutations in Mon(B) can be identified
with the permutations (13), (12)(34), (13), and (12)(34) in S4, while the function

B1 =U ◦ V =
z(z3
− 8)

(z3 + 1)

has three critical values and the corresponding permutations in Mon(B1) can be identified
with (12)(34), (13)(24), and (14)(23). In particular, B1 and B are not conjugate since they
have a different number of critical values. Moreover, one can check that the group Aut(B)
is trivial while Aut(B1) is a cyclic group of order three generated by µ.

It is easy to see that Mon(B) has a unique imprimitivity system {1, 3}, {2, 4},
corresponding to the decomposition B = V ◦U while Mon(B1) has three imprimitivity
systems

{1, 3}, {2, 4}, {1, 2}, {3, 4}, {1, 4}, {2, 3},

corresponding to the decompositions

B1 =U ◦ V, B1 = (µ
−1
◦U ) ◦ (V ◦ µ), B1 = (µ

−2
◦U ) ◦ (V ◦ µ2).

Summing up, we see that the graph 0B has the form shown in Figure 5, where the edges
connecting B and B1 correspond to the solutions

B = (V ◦ µi−1) ◦ (µ−(i−1)
◦U ), B1 = (µ

−(i−1)
◦U ) ◦ (V ◦ µi−1), 1≤ i ≤ 3,

of system (17), the loops attached to B1 correspond to the solutions

B1 = (µ
−(i−1)

◦ B1) ◦ µ
i−1
= µi−1

◦ (µ−(i−1)
◦ B1), 1≤ i ≤ 3,

and the loop attached to B corresponds to the solution (22).
The fundamental group of 0B can be easily calculated by the well-known method using

the spanning tree (see e.g. [14, §4.1.2]). Namely, choosing a fixed orientation on each of
edges of 0B as shown in Figure 6, and considering the edge l1 together with vertices B and
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318 F. Pakovich

FIGURE 5. The form of 0B in the Ritt example.

B1 as the spanning tree, we see that π1(0B, B) is a free group of rank six generated by the
paths

c, l−1
1 li , 2≤ i ≤ 3, l−1

1 e j l1, 1≤ j ≤ 3,

implying that the group G B is generated by the images of these paths under the map 8B .
Assuming that

F(c)= z, F(ei )= µ
i−1, 1≤ i ≤ 3,

we obtain

F(l−1
1 li )= V ◦ µ−(i−1)

◦U, 2≤ i ≤ 3, F(l−1
1 e j l1)= V ◦ µ j−1

◦U, 1≤ j ≤ 3,

implying that the images of the functions

g0 = z, g1 = V ◦ µ ◦U, g2 = V ◦ µ2
◦U (40)

in the group G B generate G B . Since

deg g1 = deg g2 = deg B, (41)

and
g1 6= B, g2 6= B, g1 6= g2,

it follows from Lemma 3.1 that g1, g2, g3 represent different classes in CB/∼
B

, so that G B

has at least three elements. On the other hand, we have

g◦21 = g2 ◦ B, g◦22 = g1 ◦ B, g◦31 = g◦32 = B◦3, g1 ◦ g2 = g2 ◦ g1 = B◦2.

Therefore, G B = Z/3Z.
In turn, the set CB can be described as follows: X ∈ CB if and only if

X = B◦ j , j ≥ 0,

X = V ◦ µ ◦U ◦ B◦ j , j ≥ 0,

or
X = V ◦ µ2

◦U ◦ B◦ j , j ≥ 0.

Indeed, by Lemma 3.1, it is enough to check that the functions (40) are not rational
functions in B. Assume say that g1 = R ◦ B. Then it follows from (41) that R is a Möbius
transformation. Moreover, R ∈ Aut(B) by Lemma 2.1. However, since Aut(B) is trivial
and g1 6= B, this is impossible.

Note that since G B ∼= G B1 by Theorem 5.3 and AutG(B1)= Z/3Z, we have

G B1 = AutG(B1)= Z/3Z.

Note also that since G B ∼= G B1 , the non-triviality of Aut(B1) already implies the non-
triviality of G B . Moreover, since B has no automorphisms, we can conclude that the set
CB contains functions of degree greater than one that are not iterates of B.
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FIGURE 6. The form of 0B in the Ritt example with oriented edges.

6.4. The group G B for B =−2z2/(z4
+ 1). Since equality (25) implies that the

function

W =
z2
− 1

z2 + 1
commutes with B, the group G B clearly contains a cyclic group of order two generated
by W . Moreover, it is easy to see that in fact G B = Z/2Z. Indeed, providing edges of the
graph 0B with orientations shown in Figure 7, we see that π1(0B, B) is a free group of
rank four with generators

c, t, l−1
i ei li , i = 1, 2,

and assuming that
F(c)= F(e1)= F(e2)= z, F(t)=W,

we see that G B is generated by the W . Similarly, one can conclude that G B1 is generated
by X , where

X = F(l1tl−1
1 )=

z2
+ 1
z
◦

z2
− 1

z2 + 1
◦ −

2
z2 − 2

.

The above functions B1 and X provide an example of commuting rational functions
similar to that constructed by Ritt. Namely, set

V =
z2
+ 1
z

, U =−
2

z2 − 2
.

Then W commutes with U ◦ V =W ◦2, but W 6∈ ĈV . Indeed, assume the inverse, and let
S be the rational function defined by any of the sides of the equality

z2
+ 1
z
◦

z2
− 1

z2 + 1
= R ◦

z2
+ 1
z

, (42)

where R ∈ C(z). Then substituting z by 1/z in the right-hand side of (42), we obtain that
S ◦ 1/z = S. However, substituting z by 1/z in the left-hand side, we obtain

S ◦
1
z
=

z2
+ 1
z
◦ −

z2
− 1

z2 + 1
=−S.

The contradiction obtained shows that W 6∈ ĈV . Therefore, by Lemma 6.8, the rational
function

X = V ◦W ◦U

commutes with B1 = V ◦U , but is not a rational function in B1. Note that in distinction
with the Ritt example, the non-triviality of G B1 is explained by the existence in the class
[B1] of a function that is an iterate.
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FIGURE 7. The form of 0B in Example 3 with oriented edges.
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