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RIGHT AMENABILITY IN SEMIGROUPS OF FORMAL POWER

SERIES

FEDOR PAKOVICH

Abstract. Let k be an algebraically closed field of characteristic zero, and
k[[z]] the ring of formal power series over k. We provide several character-
izations of right amenable finitely generated subsemigroups of z2k[[z]] with
the semigroup operation ◦ being composition. In particular, we show that a
subsemigroup S = 〈Q1, Q2, . . . , Qk〉 of z2k[[z]] is right amenable if and only if
there exists an invertible element β of zk[[z]] such that β−1 ◦Qi ◦ β = ωiz

di ,

1 ≤ i ≤ k, for some integers di, 1 ≤ i ≤ k, and roots of unity ωi, 1 ≤ i ≤ k.

1. Introduction

Let R be a commutative ring with identity, and R[[z]] the ring of formal power
series over R. For an element A(z) =

∑
n≥0 cnz

n of R[[z]], its order is defined by

the formula ordA = min{n ≥ 0 | cn 6= 0}. If A and B are elements of R[[z]] with
ordB ≥ 1, then the operation A ◦ B of composition of A and B is well defined
and provides zR[[z]] with the structure of a semigroup. This semigroup contains a
group J (R) consisting of all formal power series of the form z +

∑
n≥2 cnz

n. The

group J (R) has been extensively studied (see survey [1] and references therein). In
particular, it was established in [2] that J (R) is amenable as a topological group.
In this note, we study the right amenability of subsemigroups of z2k[[z]], where k
denotes an algebraically closed field of characteristic zero. However, in distinction
with [2], all studied semigroups are considered as discrete. This setting is different,
and requires another approach. In a sense, the results of this note can be seen
as analogues of the results of the recent papers [3], [4], [11] about right amenable
semigroups of polynomials and rational functions overC. Nevertheless, our methods
are different.

Let us recall that a semigroup S is called right amenable if it admits a finitely
additive probability measure µ defined on all the subsets of S such that for all a ∈ S
and T ⊆ S the equality

µ(Ta−1) = µ(T )

holds, where the set Ta−1 is defined by the formula

Ta−1 = {s ∈ S | sa ∈ T }.

A semigroup S is called right reversible if for all a, b ∈ S the left ideals Sa and Sb
have a non-empty intersection, that is, if for all a, b ∈ S there exist x, y ∈ S such
that xa = yb. It is well-known and follows easily from the definition that any right
amenable semigroup is right reversible.

This research was supported by ISF Grant No. 1092/22.

1

http://arxiv.org/abs/2208.04640v2


2 FEDOR PAKOVICH

We denote by Z
U the subsemigroup of z2k[[z]] consisting of all monomials of the

form ωzn, n ≥ 2, where ω is a root of unity. We say that two subsemigroups S1

and S2 of z2k[[z]] are conjugate if there exists β ∈ k[[z]] of order one such that

β−1 ◦ S1 ◦ β = S2.

In this notation, our main result is following.

Theorem 1.1. Let k be an algebraically closed field of characteristic zero, and

Q1, Q2, . . . , Qk elements of z2k[[z]]. Then for the semigroup S = 〈Q1, Q2, . . . , Qk〉
generated by Q1, Q2, . . . , Qk the following conditions are equivalent:

1) The semigroup S is right amenable.

2) The semigroup S is right reversible.

3) The semigroup S contains no free subsemigroup of rank two.

4) The intersection of principal left ideals SQ1∩SQ2∩· · ·∩SQk is non-empty.

5) The semigroup S is conjugate to a subsemigroup of ZU .

The rest of this note is organized as follows. In Section 2.1, we collect some
auxiliary results that are used in the paper. In Section 2.2, we show that every
subsemigroup S of ZU , not necessarily finitely generated, is right amenable and
contains no free subsemigroup of rank two. Then, using the result of the paper
[10], which is essentially equivalent to the equivalence 4) ⇔ 5) in Theorem 1.1, we
prove Theorem 1.1. Finally, in Section 2.3, we provide a class of examples showing
that Theorem 1.1 is not true for infinitely generated subsemigroups of z2k[[z]].

2. Proof of Theorem 1.1

2.1. Auxiliary results. Let us recall that a semigroup S is called left cancellative

if the equality ab = ac, where a, b, c ∈ S, implies that b = c. Right cancellative
semigroups are defined similarly. A semigroup S is called cancellative if it is left
and right cancellative.

The following result relates left reversibility with the presence of free subsemi-
group of rank two (see [6], Theorem 8.4, or [7], Corollary 4.2).

Lemma 2.1. Let S be a right cancellative semigroup that contains no free subsemi-

group of rank two. Then S is right reversible. �

A subsemigroup of a right amenable semigroup is not necessarily right amenable.
However, the following result holds (see [6], Theorem 8.5, or [5], Theorem 4).

Theorem 2.2. Let S be a cancellative semigroup such that S contains no free

subsemigroup on two generators. If S is right amenable, then every subsemigroup

of S is right amenable. �

For a semigroup U , we denote by End(U) the set of endomorphisms of U . Sup-
pose that U and T are semigroups with a homomorphism ρ : T → End(U).Denoting
for a ∈ T the endomorphism ρ(a) of U by ρa, we define the semidirect product of
U and T as the semigroup F = U ×

ρ
T of ordered pairs (u, a), where u ∈ U and

a ∈ T , with the operation

(u, a)(v, b) = (uρa(v), ab).

An example of a semidirect product is provided by the subsemigroup Z of z2k[[z]]
consisting of all monomials azn, n ≥ 2, where a ∈ k∗. Indeed, for every integer
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n ≥ 2 the map ϕn : a → an is an endomorphism of k∗. Moreover, the corresponding
map n → ϕn induces a homomorphism

(1) ρ : N \ {1} → End(k∗),

where N \ {1} stands for the corresponding subsemigroup of the multiplicative
semigroup of natural numbers, identified with the subsemigroup zn, n ≥ 2, of
z2k[[z]]. Thus, the semidirect product k∗ ×

ρ
N \ {1} is well defined and can be

identified with Z. Similarly, Z
U can be identified with the semidirect product

µ∞ ×
ρ
N \ {1}, where µ∞ is the group of all roots of unity. More generally, we can

define the semidirect product U ×
ρ
N , where U is any subsemigroup of k∗, N is

any subsemigroup N \ {1}, and ρ is the restriction of the homomorphism (1) on N.
Below, we will omit ρ in the notation of such semigroups.

The following result was proved in [9].

Theorem 2.3. If U and T are right amenable semigroups with a homomorphism

ρ : T → End(U), then F = U ×
ρ
T is right amenable. �

Let us recall that a congruence on a semigroup S is an equivalence relation on
S compatible with the structure of semigroup, that is, an equivalence relation such
that x ∼ y and x′ ∼ y′ implies that xx′ ∼ yy′. If S is a semigroup and ∼ is a
congruence on S, then one can define the quotient semigroup S/ ∼, whose elements
are the equivalence classes of ∼, and for a, b ∈ S the operation on the corresponding
classes is defined by [a] ∗ [b] = [ab].

Congruences correspond to homomorphic images of S in the following sense.
If ϕ : S → T is a homomorphism of semigroups, then the equivalence relation
∼ϕ, defined by x ∼ϕ y if and only if ϕ(x) = ϕ(y), is a congruence on S and the
isomorphism

(2) ϕ(T ) ∼= S/ ∼ϕ

holds.
Let S be a right reversible semigroup, and let ∼ be the relation on S, defined by

x ∼ y if and only if there exists s ∈ S such that

(3) s ◦ x = s ◦ y.

In this notation, the following criterion for the right amenability holds (see [12],
Proposition 1.24 and Proposition 1.25).

Theorem 2.4. Let S be a right reversible semigroup. Then the relation ∼ is a

congruence on S, and the semigroup S/ ∼ is left cancellative. Moreover, S is right

amenable if and only if S/ ∼ is right amenable. �

Let A ∈ z2k[[z]] be a formal power series of order n. We recall that a Böttcher

function associated with A is a formal series βA of order one such that the equality

A ◦ βA = βA ◦ zn

holds. It is known that such a function exists and is defined in a unique way up
to the change βA(z) → βA(εz), where εn−1 = 1 (see [8], Hilffsatz 4). Among
other things, it follows from the existence of Böttcher functions that the semigroup
z2k[[z]] is right cancellative. Indeed, if

(4) A1 ◦X = A2 ◦X,
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then conjugating (4) by βX we obtain the equality

β−1
X ◦A1 ◦ βX ◦ zn = β−1

X ◦A2 ◦ βX ◦ zn,

which implies that

β−1
X ◦A1 ◦ βX = β−1

X ◦A2 ◦ βX

and A1 = A2.
Finally, we need the following result.

Theorem 2.5. Let k be an algebraically closed field of characteristic zero,

Q1, Q2, . . . , Qk elements of z2k[[z]], and S = 〈Q1, Q2, . . . , Qk〉 the semigroup gen-

erated by Q1, Q2, . . . , Qk. Assume that Q1 is contained in Z
U . Then

(5) SQ1 ∩ SQ2 ∩ · · · ∩ SQk 6= ∅

if and only if every Qi, 2 ≤ i ≤ k, is contained in Z
U . �

In case k = C, Theorem 2.5 was proved in [10] (Theorem 2.3), and the proof
carries over verbatim to the case of an arbitrary algebraically closed field k of
characteristic zero.

2.2. Right amenability of subsemigroups Z
U . Let us denote by µn the group

of nth roots of unity.

Theorem 2.6. Every subsemigroup S of Z
U is right reversible and contains no

free subsemigroup of rank two.

Proof. Let us show that S contains no free subsemigroup of rank two. Let

F1 = ε1z
d1 , F2 = ε2z

d2, ε1, ε2 ∈ µ∞, d1, d2 ≥ 2,

be elements of S, and n ≥ 1 an integer such that ε1, ε2 ∈ µn. Assume first that
d1 = d2. Then for every j ≥ 1 the equality

F ◦j
1 = ωjF

◦j
2

holds for some ωj ∈ µn, implying by the pigeonhole principle that there exist j1 6= j2
such that

F ◦j1
1 = εF ◦j1

2 , F ◦j2
1 = εF ◦j2

2

for the same ε ∈ µn. Assuming that j2 > j1, this yields that

(6) F ◦j2
1 = F ◦j1

1 ◦ F
◦(j2−j1)
2 ,

and hence the semigroup < F1, F2 > generated by F1 and F2 is not free.
In case d1 6= d2, let us consider the elements

F ′
1 = F1 ◦ F2, F ′

2 = F2 ◦ F1

of S. If F ′
1 = F ′

2, then the semigroup < F1, F2 > obviously is not free. On the
other hand, if F ′

1 6= F ′
2, then, since F ′

1 and F ′
2 have the same order, we can apply

the above reasoning to F ′
1 and F ′

2, and find j2 > j1 such that

(7) (F1 ◦ F2)
◦j2 = (F1 ◦ F2)

◦j1 ◦ (F2 ◦ F1)
◦(j2−j1).

To prove that S is right reversible it is enough to observe that equalities (6) and
(7) provide solutions of the equation

X ◦ F1 = Y ◦ F2

in X,Y ∈ S. �
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For ε ∈ µ∞, we denote by |ε| the order of ε in the semigroup µ∞. With every
subsemigroup S of ZU we associate several objects. First, we define U(S) as the
subsemigroup of µ∞ generated by all roots of unity ε such that εzd ∈ S for some
d ≥ 2. Notice that since ε−1 = ε|ε|−1 belongs to U(S) whenever ε belongs to U(S),
the semigroup U(S) is a group. Second, we define N(S) as the subsemigroup of
the multiplicative semigroup N \ {1} consisting of all d ≥ 2 such that εzd ∈ S for
some ε ∈ µ∞. Notice that by construction the semigroup S is a subsemigroup of
the semigroup U(S)×N(S).

Further, we associate with S two subsets P1(S) and P2(S) of the set of prime
numbers as follows. For an integer l ≥ 2, we define P(l) as the set of prime divisors
of l. For an element Q = εzd of S, where ε ∈ µ∞ and d ≥ 2, we set

p1(Q) = P(|ε|), p2(Q) = P(d)

(in case |ε| = 1, we set p1(Q) = ∅). Finally, we set

P1(S) =
⋃

Q∈S

p1(Q), P2(S) =
⋃

Q∈S

p2(Q).

Notice that by construction

(8) P1(S) = P1 (U(S)×N(S)) , P2(S) = P2 (U(S)×N(S)) .

Theorem 2.7. Every subsemigroup S of ZU is right amenable.

Proof. We start by observing that any semigroup of the form U×N , where U is a
subsemigroup of k∗ and N is a subsemigroup N\{1} is right amenable. Indeed, it is
well known that every commutative semigroup is right amenable. Therefore, U and
N are right amenable, implying by Theorem 2.3 that U×N is also right amenable.

Let us show first that the statement of the theorem holds if

(9) P1(S) ∩ P2(S) = ∅.

Since S is a subsemigroup of the amenable semigroup U(S) × N(S) and the last
group is right cancellative and contains no free subsemigroup of rank two by Theo-
rem 2.6, it follows from Theorem 2.2 that to prove the amenability of S it is enough
to show that the semigroup U(S)×N(S) is left cancellative. Let us assume that

(10) A ◦ F1 = A ◦ F2

for some A,F1, F2 ∈ U(S) × N(S). Clearly, (10) implies that ordF1 = ordF2.
Thus,

A = εzm, F1 = ε1z
k, F2 = ε2z

k

for some m, k ∈ N(S) and ε, ε1, ε2 ∈ U(S), and (10) implies the equality

(11)

(
ε1
ε2

)m

= 1.

Set n = |ε1/ε2|. Since (8) and (9) yield that gcd(n,m) = 1, equality (11) is possible
only if n = 1. Therefore, ε1 = ε2 and F1 = F2.

Let us prove now the theorem in the general case. Since for any integers
n,m1,m2 ≥ 1 such that n = m1m2 and gcd(m1,m2) = 1 the equality

µn = µm1
× µm2

holds, any element Q of S has a unique representation in the form

(12) Q = ε1ε2z
d, ε1, ε2 ∈ µ∞, d ≥ 2,
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where
P(|ε1|) ∩ P2(S) = ∅, P(|ε2|) ⊆ P2(S).

Let us define a map
ϕ : S → Z

U ,

setting for Q, defined by (12),

ϕ(Q) = ε1z
d.

It is easy to see that ϕ is a semigroup homomorphism. Indeed, for

Q̂ = ε̂1ε̂2z
d̂, ε̂1, ε̂2 ∈ µ∞, d̂ ≥ 2,

we have:
Q ◦ Q̂ = ε1ε2z

d ◦ ε̂1ε̂2z
d̂ = ε1ε̂

d
1 ε2ε̂

d
2 zdd̂,

where obviously

P(|ε1ε̂
d
1 |) ∩ P2(S) = ∅, P(|ε2ε̂

d
2 |) ⊆ P2(S).

Thus,

ϕ(Q ◦ Q̂) = ε1ε̂
d
1 zdd̂ = ϕ(Q) ◦ ϕ(Q̂).

By construction, the image ϕ(S) of S under the homomorphism ϕ satisfies the
condition

P1(ϕ(S)) ∩ P2(ϕ(S)) = ∅.

Therefore, by what is proved above, the semigroup ϕ(S) is cancellative and right
amenable. It follows now from Theorem 2.4 taking into account the isomorphism
(2) that to prove the theorem it is enough to show that the congruence defined by
the homomorphism ϕ coincides with the congruence (3).

Let us assume that

(13) ϕ(Q1) = ϕ(Q2).

Then
Q1 = εε1z

d, Q2 = εε2z
d, ε, ε1, ε2 ∈ µ∞, d ≥ 2,

where
P(|ε|) ∩ P2(S) = ∅, P(|ε1|) ⊆ P2(S), P(|ε2|) ⊆ P2(S).

Let

(14) |ε1| = pa1

1 pa2

2 . . . par

r , |ε2| = qb11 qb22 . . . qbll

be the canonical decompositions of |ε1| and |ε2| into products of primes. Then for
each i, 1 ≤ i ≤ r, there exists Ki ∈ S of order divisible by pi, and for each j,
1 ≤ j ≤ l, there exists Lj ∈ S of order divisible by qj . Obviously, this implies that
the equality

(15) A ◦Q1 = A ◦Q2

holds for the element
A = K◦a1

1 . . .K◦ar

r L◦b1
1 . . . L◦bl

l

of S (formulas (14) assume that |ε1| > 1, |ε2| > 1, however, in case one of these
numbers equals one the proof can be modified in an obvious way).

In the other direction, if (15) holds, then

ϕ(A) ◦ ϕ(Q1) = ϕ(A) ◦ ϕ(Q2),

implying that (13) holds since ϕ(S) is cancellative. Thus, the congruence defined
by the homomorphism ϕ coincides with the congruence (3). �
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Proof of Theorem 1.1. We first prove the chain of implications 1) ⇒ 2) ⇒ 4) ⇒
5) ⇒ 1). It is well known (see [12], Proposition 1.23) that every right amenable
semigroup is right reversible. Thus, 1) ⇒ 2). The implication 2) ⇒ 4) is proved
by induction on k. For k = 2, the condition 2) coincides with the right reversibility
condition. On the other hand, if

F = A1 ◦Q1 = A2 ◦Q2 = · · · = Ak−1 ◦Qk−1

for some A1, A2, . . . Ak−1 ∈ S, then applying the condition of right reversibility to
F and Qk, we can find G, Y1, Y2 ∈ S such that the equality

G = Y1 ◦ F = Y2 ◦Qk

holds. Thus,

G = (Y1 ◦A1) ◦Q1 = (Y1 ◦A2) ◦Q2 = · · · = (Y1 ◦Ak−1) ◦Qk−1 = Y2 ◦Qk.

The implication 4) ⇒ 5) follows from Theorem 2.5. Indeed, if βQ1
is a Böttcher

function corresponding to Q1, then β−1
Q1

◦ S ◦ βQ1
is a semigroup satisfying the

conditions Q1 ∈ Z
U and (5). Thus, by Theorem 2.5, every Qi, 2 ≤ i ≤ k, is

contained in Z
U , and hence S is conjugate to a subsemigroup of ZU . Finally, the

implication (5) ⇒ (1) follows from Theorem 2.7.
To finish the proof it is enough to prove the implications 5) ⇒ 3) and 3) ⇒ 2).

The first implication follows from Theorem 2.6. On the other hand, since z2k[[z]]
is right cancellative, the second implication follows from Lemma 2.1. �

2.3. Infinitely generated semigroups. Theorem 1.1 is not true for infinitely
generated subsemigroups of z2k[[z]]. A class of counterexamples is provided by
Theorem 2.8 below.

We recall that an element of a semigroup S is called indecomposable if it belongs
to S \ SS, where

SS = {st : s, t ∈ S}.

Theorem 2.8. Let U be a subsemigroup of k∗ such that U 6⊆ µ∞ and 1 ∈ U . Then

for any subsemigroup N of N \ {1} the semigroup S = U×N satisfies the following

conditions:

1) The semigroup S is right amenable.

2) The semigroup S is not finitely generated.

3) The semigroup S is not conjugate to a subsemigroup of ZU .

Proof. The right amenability of S was established in the proof of Theorem 2.7.
Further, since indecomposable elements of S must belong to any generating set of
S, to prove that S is not finitely generated it is enough to find an infinite subset
of indecomposable elements of S. An example of such a set is the set akzd, k ≥ 1,
where a is an arbitrary element of U that does not belong to µ∞ and d is an
indecomposable element of the semigroup N.

Finally, the proof of Theorem 2.6 shows that to prove that S is not conjugate
to a subsemigroup of ZU it is enough to find F1, F2 ∈ S such that ordF1 = ordF2

but equality (6) does not hold for any choice of j1, j2. Since 1 ∈ U, we can take

F1 = zd, F2 = azd,

where d is an arbitrary element of N , and a is an element of U that does not belong
to µ∞. �
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