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Abstract. We show that for a general rational function A of degree m ≥ 2,

any decomposition of its iterate A◦n, n ≥ 1, into a composition of indecom-
posable rational functions is equivalent to the decomposition A◦n itself. As an

application, we prove that if (A1, A2) is a general pair of rational functions,

then the endomorphism of CP1 × CP1 given by (z1, z2) 7→ (A1(z1), A2(z2))
admits a periodic curve that is neither a vertical nor a horizontal line if and

only if A1 and A2 are conjugate.

1. Introduction

Let A be a rational function over C of degree m ≥ 2. The function A is said to
be indecomposable if, whenever it can be written as a composition A = A2 ◦ A1 of
rational functions, at least one of A1 or A2 has degree one. Any expression of A as
a composition

A = Ar ◦Ar−1 ◦ · · · ◦A1,

where each Ai is a rational function of degree at least two, is called a decomposition
of A. Two decompositions,

A = Ar ◦Ar−1 ◦ · · · ◦A1 and A = Âℓ ◦ Âℓ−1 ◦ · · · ◦ Â1,

are said to be equivalent if ℓ = r and either r = 1 with A1 = Â1, or r ≥ 2 and there
exist Möbius transformations µi for 1 ≤ i ≤ r − 1 such that

Ar = Âr ◦ µr−1, Ai = µ−1
i ◦ Âi ◦ µi−1 for 1 < i < r, and A1 = µ−1

1 ◦ Â1.

In this paper, we are interested in decompositions of the totality of all iterates
of a rational function A, with emphasis on the case when, for every n ≥ 1, every
decomposition of A◦n into a composition of indecomposable rational functions is
equivalent to the decomposition A◦n itself. In this case, we say that the iterates of
A admit no non-trivial decompositions. Note that this condition implies that A is
itself indecomposable.

It was shown in the recent paper [19] that the iterates of a general rational
function A of degree m ≥ 4 admit no non-trivial decompositions. Here and below,
we say that a statement holds for general rational functions of degree m if, upon
identifying the set of rational functions of degree m with the algebraic variety Ratm
obtained from CP2m+1 by removing the resultant hypersurface, the statement holds
for all F ∈ Ratm, with the exception of some proper Zariski closed subset. In more
detail, it was shown in [19] that the iterates of a rational function A of degree m ≥ 4
admit no non-trivial decompositions whenever A is simple, that is, whenever for
every z ∈ CP1, the preimage A−1{z} contains at least m− 1 points.
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Although it was shown in [19] that the iterates of certain simple rational functions
of degree two and three can admit non-trivial decompositions, the main result of
this paper shows that—by strengthening the simplicity condition—one can ensure
that the iterates of general rational functions of degree two and three still admit
no non-trivial decompositions. This extends the result of [19], as stated in the
following theorem.

Theorem 1.1. For every m ≥ 2, the iterates of a general rational function A of
degree m admit no non-trivial decompositions.

As in [19], Theorem 1.1 can be applied to the problem of describing periodic
algebraic curves for endomorphisms of (CP1)2 of the form

(A1, A2) : (z1, z2) 7→ (A1(z1), A2(z2)),

where A1 and A2 are rational functions. Specifically, the classification of periodic
curves obtained in [16], which incorporates earlier results for the polynomial case
from [9], relates this problem to the study of functional decompositions of iterates
of A1 and A2. This connection allows Theorem 1.1 to be applied to the analysis of
periodic curves for general rational functions A1 and A2, and leads to the following
result, which was proved in [19] under the more restrictive assumption m ≥ 4.

Theorem 1.2. For every m ≥ 2, there exists a non-empty Zariski open subset
U ⊂ Ratm such that the following holds. For any A1, A2 ∈ U , an irreducible
algebraic curve C ⊂ (CP1)2 that is not a vertical or horizontal line is (A1, A2)-
periodic if and only if

A2 = α ◦A1 ◦ α−1

for some Möbius transformation α, and C is one of the graphs

y = (α ◦A◦s
1 )(x) or x = (A◦s

1 ◦ α−1)(y),

for some s ≥ 0. In particular, any (A1, A2)-periodic curve is (A1, A2)-invariant.

Theorem 1.2 has an interesting application in complex dynamics. Namely,
Zhuchao Ji and Junyi Xie recently proved in [8] that a general rational function A
of degree m ≥ 2 is uniquely determined up to conjugacy by its multiplier spectrum
(see also [1], and [6] for stronger results in the polynomial case). One of the steps
in their proof relies on Theorem 1.2. Since Theorem 1.2 was established in [19]
only for m ≥ 4, the argument in [8] does not apply to the cases m = 2 and m = 3.
While for these degrees the result of [8] follows from earlier work—[10] for m = 2,
and [21], [4], and [7] for m = 3—it remained an interesting question whether the
argument in [8] could be extended to m = 2 and m = 3 by strengthening the result
of [19] to the form stated in Theorem 1.2. Addressing this question was one of the
main motivations for writing the present paper.

Taking into account the results of [19], the main contribution of this paper is the
proof of Theorems 1.1 and 1.2 for the remaining cases m = 2 and m = 3. Below,
we briefly describe the explicit conditions on A under which Theorem 1.1 holds for
these values of m, along with our approach to the proof, which differs in these two
cases.

Let A be a rational function of degree m ≥ 2. We define Σ(A) as the group of
Möbius transformations µ satisfying A ◦µ = A, and the group Σ∞(A) as the union

Σ∞(A) =

∞⋃
k=1

Σ(A◦k).
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The group Σ∞(A) is always finite and, in some cases, can be computed explicitly
(see [18]). For a general rational function A of degree m ≥ 3, the group Σ∞(A) is
trivial (see [19]). However, this is not the case for m = 2, since for any rational
function A of degree two, the group Σ(A) is a cyclic group of order two, generated
by some Möbius transformation which we denote by µA.

Our proof of Theorem 1.1 for m = 2 proceeds as follows. First, we show that if
A is a rational function of degree two, then the equality

Σ∞(A) = Σ(A)

holds whenever

(1) µA(V (A)) ∩ V (A) = ∅,
where, here and below, V (A) denotes the set of critical values of a rational func-
tion A (Theorem 3.6). The next step relies on the following result, which is of
independent interest.

Theorem 1.3. Let A be a rational function of degree m ≥ 2. Then for any decom-
position

(2) A◦n = Ar ◦Ar−1 ◦ · · · ◦A1

of an iterate A◦n, n ≥ 1, into a composition of indecomposable rational functions,
the inequality degA1 ≤ m holds.

Applying this theorem to the decomposition (2) of a rational function A of
degree two, we see that degA1 = 2 and that the group Σ∞(A) contains µA1

. Under
condition (1), it follows that µA1

= µA, which readily implies the conclusion of
Theorem 1.1 for A. Finally, it is easy to show that (1) holds for general A (note
that all functions of degree two are simple).

Let now A be a simple rational function of degree three. Then it is easy to see
that there exist two orbifolds O1 and O2 on CP1 with signature {2, 2, 2, 2} such that
A : O1 → O2 is a covering map between orbifolds. We show that the conclusion
of Theorem 1.1 holds whenever O1 ̸= O2, that is, whenever A is not a Lattès map
(Theorem 4.8). Our approach here is similar to that of [19] and is based on studying
the conditions under which the algebraic curve defined by the equation

A(x)−Ar(y) = 0,

arising from equality (1), may have an irreducible component of genus zero. This
analysis, however, is rather complicated and involves a variety of techniques, with
the main results stated in Theorems 4.3, 4.6, and 4.7.

Notice that Theorem 1.1 implies the following result: for a general rational
function A of degree m ≥ 2, the equality

A◦n = B◦n

for some rational function B and integer n ≥ 1, implies that A = B (Theorem 5.4).
In particular, for a general rational function A of degree m ≥ 2, the n-fold iteration
operator A 7→ A◦n is injective (a result previously established by Ye in [22]).

This paper is organized as follows. In Section 2, we prove Theorem 1.3. Sections 3
and 4 are devoted to the proof of Theorem 1.1 and related results for m = 2 and
m = 3, respectively, following the approach outlined above. Finally, in Section 5,
we prove Theorem 1.2 for m = 2 and m = 3 by modifying the argument from [19]
used for m ≥ 4.
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2. Proof of Theorem 1.3

Let A and B be non-constant rational functions, and let A1, A2 and B1, B2 be
pairs of polynomials without common roots such that

A =
A1

A2
and B =

B1

B2
.

We define the algebraic curve hA,B by

(3) hA,B : A1(x)B2(y)−A2(x)B1(y) = 0.

We begin by recalling the following statement, which follows easily from general
properties of fiber products (see, e.g., Section 2.1 of [17]).

Lemma 2.1. Let A,B,X, Y be non-constant rational functions satisfying

A ◦X = B ◦ Y and C(X,Y ) = C(z).

Then

deg Y ≤ degA, degX ≤ degB,

and the equalities

deg Y = degA, degX = degB

hold if and only if the algebraic curve hA,B is irreducible. □

Theorem 1.3 is obtained from Lemma 2.1 as follows.

Proof of Theorem 1.3. The proof proceeds by induction on n. For n = 1, the
statement is obvious. For n > 1, the inductive step is established by considering
two cases depending on whether

C(A◦(n−1), A1) = C(z)

or not.
In the first case, considering the commuting diagram

CP1 A1−−−−→ CP1yA◦(n−1)

yAr◦Ar−1◦···◦A2

CP1 A−−−−→ CP1,

we see that degA1 ≤ m by Lemma 2.1.
In the second case, since A1 is indecomposable, the Lüroth theorem implies that

there exists a rational function U such that

A◦(n−1) = U ◦A1.

Since any decomposition of U into a composition of indecomposable rational func-
tions U = Ul ◦ Ul−1 ◦ · · · ◦ U1 induces a decomposition

A◦(n−1) = Ul ◦ Ul−1 ◦ · · · ◦ U1 ◦A1,

in this case, the inequality degA1 ≤ m holds by the induction hypothesis. □
Theorem 1.3 implies the following corollary.
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Corollary 2.2. Let A be a rational function of prime degree p. Then, for any
decomposition

(4) A◦n = Ar ◦Ar−1 ◦ · · · ◦A1

of an iterate A◦n, n ≥ 1, into a composition of indecomposable rational functions,
the equality degA1 = p holds. □

Proof. Since degA = p is prime, equality (4) implies that degA1 is a power of p.
Thus, the statement follows from Theorem 1.3. □

3. Results concerning quadratic rational functions

3.1. The genus formula for hA,B. Let A and B be non-constant rational func-
tions of degrees m and l, respectively. Under the assumption that the algebraic
curve hA,B is irreducible, its genus can be calculated explicitly in terms of the
ramification of A and B as follows. Let S = {z1, z2, . . . , zr} be the union of V (A)
and V (B). For i, 1 ≤ i ≤ r, we denote by (ai,1, ai,2, . . . , ai,pi

) the collection of
multiplicities of A at the points of A−1{zi}, and by (bi,1, bi,2, . . . , bi,qi) the collec-
tion of multiplicities of B at the points of B−1{zi}. In this notation, the following
statement holds (see, e.g. [3] or [17]).

Theorem 3.1. Let A and B be non-constant rational functions such that the curve
hA,B is irreducible. Then

2− 2g(hA,B) =

r∑
i=1

qi∑
j2=1

pi∑
j1=1

gcd(ai,j1 , bi,j2)− lm(r − 2).

Below, we will use the following condition implying the irreducibilty of hA,B in
terms of V (A) and V (B) (see [13], Proposition 3.1).

Theorem 3.2. Let A and B be non-constant rational functions such that the set
V (A)∩V (B) contains at most one element. Then the curve hA,B is irreducible. □

The above theorems imply the following corollary.

Corollary 3.3. Let A be a rational function of degree two, and µ a Möbius trans-
formation such that

(5) µ(V (A)) ∩ V (A) = ∅.

Then the algebraic curve hA,µ◦A is irreducible and has genus one. In particular,
the functional equation

(6) A ◦X = (µ ◦A) ◦ Y

has no solutions in non-constant rational functions X and Y .

Proof. Since

V (µ ◦A) = µ(V (A)),

it follows from (5) by Theorem 3.2 that the algebraic curve hA,µ◦A is irreducible.
Moreover, it follows from (5) by Theorem 3.1 that

2− 2g(hA,µ◦A) = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)− 2 · 2 · 2 = 0.

Hence, g(hA,µ◦A) = 1. □
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3.2. Decompositions of iterates of quadratic rational functions. We start
by proving the following two lemmas.

Lemma 3.4. Let

A(z) =
az2 + bz + c

dz2 + ez + f
be a rational function of degree two. Then the following holds:

i) The group Σ(A) is a cyclic group of order two generated by the Möbius
transformation

(7) µA(z) =
(cd− af)z + (ce− bf)

(ae− bd)z + (af − cd)
.

ii) A pair of non-constant rational functions X,Y satisfies the functional equa-
tion

A ◦X = A ◦ Y
if and only if either Y = X or Y = µA ◦X.

Proof. Formula (7) is obtained by directly solving A ◦ µ = A in terms of the
coefficients of µ. To prove the second part, it is sufficient to observe that the curve
hA,A clearly has two irreducible components: x − y = 0 and µA(x) − y = 0, and
therefore cannot have any other components. □

Lemma 3.5. Let A1 and A2 be rational functions of degree two. Then µA1
= µA2

if and only if A2 = ν ◦A1 for some Möbius transformation ν.

Proof. The “if” part is obvious. To prove the “only if” part, we observe that since
degA1 = degA2 = 2, it follows from the Lüroth theorem that A2 = ν ◦A1 for some
Möbius transformation ν if and only if C(A1, A2) ̸= C(z). Thus, it is enough to
show that if there exists a Möbius transformation µ ̸= id such that

A1 ◦ µ = A1, A2 ◦ µ = A2,

then C(A1, A2) ̸= C(z).
Assume the inverse. Then there exist U, V ∈ C[x, y] such that

z =
U(A1, A2)

V (A1, A2)
.

Therefore,

µ =
U(A1 ◦ µ,A2 ◦ µ)
V (A1 ◦ µ,A2 ◦ µ)

=
U(A1, A2)

V (A1, A2)
= z,

in contradiction with the assumption that µ ̸= id. □

Theorem 3.6. Let A be a rational function of degree two such that

(8) µA(V (A)) ∩ V (A) = ∅.
Then the group Σ∞(A) coincides with Σ(A).

Proof. We prove by induction on n that

Σ(A◦n) = Σ(A).

For n = 1, the statement is trivial. Suppose now that ν ∈ Σ(A◦n) for some n > 1.
Then

A ◦ (A◦(n−1) ◦ ν) = A ◦A◦(n−1),



7

which, by Lemma 3.4, implies that either

A◦(n−1) = µA ◦A◦(n−1) ◦ ν,
or

(9) A◦(n−1) = A◦(n−1) ◦ ν.
In the first case, however, equation (6) with µ = µA admits a rational solution:

X = A◦(n−2), Y = A◦(n−2) ◦ ν,
which implies by Corollary 3.3 that

µA(V (A)) ∩ V (A) ̸= ∅,
in contradiction with the assumption. Thus, equality (9) holds, and the statement
follows by the induction hypothesis. □

Let us recall that writing a rational function A = A(z) of degree m as A = P/Q,
where

P (z) = amzm + am−1z
m−1 + · · ·+ a0, Q(z) = bmzm + bm−1z

m−1 + · · ·+ b0

are polynomials of degree m without common roots, one can identify the space of
rational functions of degree m with the algebraic variety

Ratm = CP2m+1 \ {Resm,m,z(P,Q) = 0} ,
where Resm,m,z(P,Q) denotes the resultant of P and Q.

Furthermore, for any A ∈ Ratm, the set of finite critical points of A coincides
with the set of zeros of its Wronskian

W (z) = P ′(z)Q(z)− P (z)Q′(z).

Clearly, degW ≤ 2m− 2, and equality holds unless A lies on the projective hyper-
surface L ⊂ CP2m+1 defined by

(10) L : ambm−1 − bmam−1 = 0.

Finally, by a standard property of the resultant, if R(t) is the polynomial defined
by

(11) R(t) = Res2m−2,m,z(W (z), P (z)−Q(z)t),

then for any A ∈ Ratm \ L, we have

R(t) = c
∏

ζ,W (ζ)=0

(P (ζ)−Q(ζ)t)

for some constant c ∈ C∗. Hence, the zeros of R(t) coincide with the finite critical
values of A.

Corollary 3.7. For a general rational function A of degree two, the group Σ∞(A)
coincides with the group Σ(A).

Proof. Assuming that

A(z) =
az2 + bz + c

dz2 + ez + f
∈ Rat2,

and keeping the notation introduced above, we see that the set of zeros of the
polynomial S(t) defined by

S(t) = Res2,1,z
(
R(z), (cd− af)z + (ce− bf)−

(
(ae− bd)z + (af − cd)

)
t
)
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coincides with the set of finite values of µA at the finite critical values of A.
Therefore, if Z ⊂ CP5 is the projective hypersurface defined by

Z : Res2,2,t(R(t), S(t)) = 0,

then, by the properties of resultants, every rational function A ∈ Rat2 \(L∪Z) has
two distinct finite critical points with two distinct finite critical values. Further-
more, the values of µA at the finite critical values of A are themselves finite, and
(8) holds. Thus, every rational function A ∈ Rat2 \(L ∪ Z) satisfies the condition
of Theorem 3.6. □

Theorem 3.8. Let A be a rational function of degree two such that

µA(V (A)) ∩ V (A) = ∅.
Then the iterates of A admit no non-trivial decompositions.

Proof. The proof is by induction on n, where n is the order of the iterate A◦n. For
n = 1, the statement holds since degA = 2 is prime.

Assume now that the statement holds for all iterates of order less than n, and
let

(12) A◦n = Ar ◦Ar−1 ◦ · · · ◦A1

be a decomposition of A◦n into a composition of indecomposable rational functions.
It is easy to see that to complete the inductive step, it suffices to show that

(13) A1 = µ ◦A
for some Möbius transformation µ.

By Corollary 2.2, the function A1 has degree two, and equality (12) implies that
µA1

∈ Σ∞(A). Thus, by Theorem 3.6, we must have µA1
= µA, and (13) follows

from Lemma 3.5. □

Corollary 3.9. For a general rational function A of degree two, the iterates of A
admit no non-trivial decompositions.

Proof. The corollary follows from Theorem 3.8 in the same way as Corollary 3.7
follows from Theorem 3.6. □

For a rational function F , we define the group G(F ) as the group of all Möbius
transformations ν such that

(14) F ◦ ν = δ ◦ F
for some Möbius transformation δ. Notice that equality (14) readily implies

δ(V (F )) = V (F ), ν(C(F )) = C(F ),

where C(F ) denotes the set of critical points of F .
We define the group Aut(A) as the subgroup of G(A) consisting of all Möbius

transformations σ such that
A ◦ σ = σ ◦A,

and define the group Aut∞(A) by

Aut∞(A) =

∞⋃
k=1

Aut(A◦k).

Corollary 3.10. For a general rational function A of degree two, the group Aut∞(A)
is trivial.
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Proof. Let µ ∈ Aut(A◦k) for some k ≥ 1. Applying Corollary 3.9 to the equality

(15) A◦k = µ−1 ◦A◦k ◦ µ = (µ−1 ◦A) ◦A◦(k−2) ◦ (A ◦ µ),

we conclude that there exist Möbius transformations ν and δ such that

(16) µ−1 ◦A = A ◦ ν, A ◦ µ = δ ◦A,

which implies that µ ∈ G(A), and

µ(V (A)) = V (A), µ(C(A)) = C(A).

In the above notation, C(A) ∩ V (A) = ∅ whenever

Res2,2,t(W (t), R(t)) ̸= 0.

Thus, for a general A, the set C(A) ∪ V (A) consists of four distinct points,

C(A) = {z1, z2}, V (A) = {z3, z4},

and hence each µ ∈ Aut∞(A) induces a permutation σ = σµ ∈ S4, defined by

µ(zi) = zσ(i), 1 ≤ i ≤ 4.

Moreover, it is easy to see that the map µ 7→ σµ is a homomorphism from Aut∞(A)
to the Klein four-group

S = {e, (12)(34), (12), (34)} ⊂ S4,

whose kernel is trivial, since any Möbius transformation that fixes four distinct
points is the identity.

The above implies that Aut∞(A) has order 4, 2, or 1. However, the first case is
impossible, since any nontrivial involution µ ∈ G(A) that fixes C(A) must coincide
with µA, for which the equality (15) is impossible. Indeed, without loss of generality,
we may assume that C(A) = {0,∞}. Then G(A) consists of all transformations
cz±1, where c ∈ C∗ (see, e.g., Section 2 of [18]). The subgroup of G(A) that fixes
C(A) consists of all transformations cz, and the identity cz ◦cz = z implies c = ±1.
Thus, |Aut∞(A)| ≤ 2.

Let us now observe that applying Corollary 3.9 to (15), we obtain, along with
the second equality in (16), the equality

µ−1 ◦A◦(k−1) = A◦(k−1) ◦ δ−1,

which implies

A◦k = A ◦ µ ◦ µ−1 ◦A◦(k−1) = δ ◦A ◦A◦(k−1) ◦ δ−1 = δ ◦A◦k ◦ δ−1.

Thus, δ ∈ Aut(A◦k). Now, the second equality in (16), together with the inequality
|Aut∞(A)| ≤ 2, implies that if µ ̸= id, then δ = µ, and hence µ ∈ Aut(A). Thus,
Aut∞(A) = Aut(A). Finally, for a general rational function A of degree two, the
group Aut(A) is trivial (see [10], Section 5 for more detail). □

4. Results concerning cubic rational functions

4.1. Algebraic curves hA,B with degA = 3: the irreducible case. We be-
gin by recalling some definitions and results concerning orbifolds on the Riemann
sphere, which arise in the context of functional equations.
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An orbifold O on CP1 is a ramification function ν : CP1 → N, which takes
the value ν(z) = 1 except at a finite set of points. For an orbifold O, the Euler
characteristic of O is the number

χ(O) = 2 +
∑

z∈CP1

(
1

ν(z)
− 1

)
,

the set of singular points of O is the set

c(O) = {z1, z2, . . . , zs, . . . } = {z ∈ CP1 | ν(z) > 1},

and the signature of O is the set

ν(O) = {ν(z1), ν(z2), . . . , ν(zs), . . . }.

Let A be a rational function, and let O1, O2 be orbifolds with ramification
functions ν1, ν2. We say that A : O1 → O2 is a covering map between orbifolds if,
for any z ∈ CP1, the equality

(17) ν2(A(z)) = ν1(z)deg zA

holds. If, for any z ∈ CP1, the weaker condition

(18) ν2(A(z)) | ν1(z)deg zA

holds instead of (17), then we say that A : O1 → O2 is a holomorphic map between
orbifolds O1 and O2.

If A : O1 → O2 is a covering map between orbifolds, then the Riemann-Hurwitz
formula implies that

(19) χ(O1) = degAχ(O2).

For holomorphic maps the following statement is true (see [14], Proposition 3.2).

Proposition 4.1. Let A : O1 → O2 be a holomorphic map between orbifolds. Then

(20) χ(O1) ≤ χ(O2) degA,

and the equality holds if and only if A : O1 → O2 is a covering map between
orbifolds. □

Let A be a non-constant rational function. If CP1 is equipped with a ramification
function ν2, then to define a ramification function ν1 on CP1 so that A becomes a
holomorphic map between orbifolds O1 and O2, condition (18) must be satisfied,
and it is easy to see that for any z ∈ CP1, a minimal possible value for ν1(z) is
determined by the equality

(21) ν2(A(z)) = ν1(z)GCD(deg zf, ν2(A(z))).

If (21) holds for all z ∈ CP1, we say that A is a minimal holomorphic map between
orbifolds O1 and O2. Notice that if A : O1 → O2 is a covering map between
orbifolds, then A : O1 → O2 is also a minimal holomorphic map between orbifolds.

With each rational function A, one can naturally associate two orbifolds OA
1 and

OA
2 by defining νA2 (z) as the least common multiple of the multiplicities of A at the

points of the preimage A−1{z}, and setting

νA1 (z) =
νA2 (A(z))

deg zA
.
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By construction, A : OA
1 → OA

2 is a covering map between orbifolds. Orbifolds
defined in this way are useful for studying the functional equation

(22) A ◦X = B ◦ Y,
where A, B, and X, Y are rational functions, which we usually represent by the
commuting diagram

CP1 X−−−−→ CP1yY

yA

CP1 B−−−−→ CP1.

The main result we use to analyze equation (22) is the following statement (see
[14], Theorem 4.2).

Theorem 4.2. Let A, B and X,Y be rational functions satisfying (22) such that
the curve hA,B is irreducible and C(X,Y ) = C(z). Then the diagram

OY
1

X−−−−→ OA
1yY

yA

OY
2

B−−−−→ OA
2

consists of minimal holomorphic maps between orbifolds. □

We recall that a rational function A of degree m ≥ 2 is called simple if, for every
z ∈ CP1, the preimage A−1{z} contains at least m − 1 points. This condition is
equivalent to requiring that A has exactly 2m − 2 critical values (see [19], Lem-
ma 2.1). For a simple rational function A of degree m ≥ 2, its monodromy group
Mon(A) satisfies the isomorphism

(23) Mon(A) ∼= Sm

(see, e.g., [19], Theorem 2.2).
In this paper, we are concerned only with simple rational functions of degree

three. Clearly, if A is such a function, then

(24) ν(OA
2 ) = {2, 2, 2, 2}, ν(OA

1 ) = {2, 2, 2, 2},
and

χ(OA
2 ) = 0, χ(OA

1 ) = 0.

Theorem 4.3. Let A, B and X,Y be rational functions satisfying (22) such that
the curve hA,B is irreducible and C(X,Y ) = C(z). Assume that A is a simple
rational function of degree three and degB ̸= 2, 4. Then

OA
2 = OB

2 , OA
1 = OX

2 ,

and the diagram

OY
1

X−−−−→ OA
1yY

yA

OY
2

B−−−−→ OA
2

consists of covering maps between orbifolds.
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Proof. First, let us observe that by Lemma 2.1, the equalities

degX = degB, deg Y = degA = 3

hold.
Further, since B : OY

2 → OA
2 is a minimal holomorphic map between orbifolds

by Theorem 4.2, it follows from the first equality in (24) and the definition of a
minimal holomorphic map (21) that

ν(OY
2 ) = {2, 2, . . . , 2}︸ ︷︷ ︸

ℓ

for some natural number ℓ. Moreover, ℓ ≥ 2, since a rational function of degree
three has at least two critical values, and it is easy to see that in fact ℓ = 4. Indeed,
if 2 ≤ ℓ ≤ 3, then χ(OY

2 ) > 0, contradicting (20) because χ(OA
2 ) = 0. On the other

hand, the inequality ℓ > 4 is impossible, since a rational function of degree three
has at most four critical values. Thus, ν(OY

2 ) = {2, 2, 2, 2}.
Since the last equality implies that χ(OY

2 ) = 0, it follows from Proposition 4.1
that B : OY

2 → OA
2 is a covering map between orbifolds. Taking into account the

signatures of OY
2 and OA

2 , the definition (17) implies that the multiplicity of B at
points of the set B−1(V (A)) is equal to two, except at four points where it is equal
to one. Hence, the set B−1(V (A)) contains

4 · degB − 4

2
+ 4 = 2degB + 2

points, which implies, by the Riemann–Hurwitz formula, that the set V (A) contains
the set V (B), or equivalently, that c(OB

2 ) ⊆ c(OA
2 ).

Using again that the multiplicity of B at points of the set B−1(V (A)) is equal
to two or to one, we conclude that either ν(OB

2 ) = {2, 2, 2, 2} and OA
2 = OB

2 , or
ν(OB

2 ) = {2, 2, 2}, or ν(OB
2 ) = {2, 2}. It is well known, however, that in the last

two cases, up to replacing B with µ1 ◦B ◦ µ2 for some Möbius transformations µ1

and µ2, the function B is equal to T4, 1/2(z
2 + 1/z2), or z2 implying that degB is

either two or four. Thus, OA
2 = OB

2 .
To prove the equality OA

1 = OX
2 , we observe that switching the roles of A and

B and applying Theorem 4.2 again, we see that A : OX
2 → OB

2 is a minimal
holomorphic map between orbifolds. Since OB

2 = OA
2 , it follows now easily from

the definition of OA
2 and formula (21) that OX

2 = OA
1 and A : OX

2 → OB
2 is a

covering map. □
In the case A = B, the algebraic curve hA,B is always reducible, as it contains

the component x − y = 0. In this situation, it is convenient to replace the curve
hA,A defined by (3) with the curve

hA :
A1(x)A2(y)−A2(x)A1(y)

x− y
= 0.

We will use the following result (see [19], Theorem 2.4).

Theorem 4.4. Let A be a simple rational function of degree m ≥ 3. Then the
curve hA is irreducible and g(hA) > 0. In particular, the equality A ◦X = A ◦ Y ,
where X and Y are non-constant rational functions, implies that X = Y . □
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4.2. Algberaic curve hA,B with degA = 3: the reducible case. Let us recall
that a holomorphic map between compact Riemann surfaces F : N → R is called
a Galois covering if its automorphism group

Aut(N,F ) = {σ ∈ Aut(N) : F ◦ σ = F}

acts transitively on fibers of F . Denoting by M(R) the field of meromorphic func-
tions on a compact Riemann surface R, we can restate this condition as the condi-
tion that the field extension M(N)/F ∗M(R) is a Galois extension.

In case F is a Galois covering, for the corresponding Galois group the isomor-
phism

(25) Gal (M(N)/F ∗M(R)) ∼= Aut(N,F )

holds. Notice that since the action of Aut(N,F ) on fibers of F has no fixed points,
F is a Galois covering if and only the equality

(26) |Aut(N,F )| = degF

holds.
Let A be a rational function. Then the normalization of A is defined as a

compact Riemann surface NA together with a holomorphic Galois covering of the

lowest possible degree Â : NA → CP1 such that

Â = A ◦H

for some holomorphic map H : NA → CP1. The map Â is defined up to the

change Â → Â ◦ α, where α ∈ Aut(NA), and is characterized by the property

that the field extension M(NA)/Â
∗M(CP1) is isomorphic to the Galois closure

M̃(CP1)/A∗M(CP1) of the extension M(CP1)/A∗M(CP1). Notice that the corre-
sponding Galois group satisfies the isomorphism

Gal
(
M̃(CP1)/A∗M(CP1)

) ∼= Mon(A)

(see e. g. [5]). In particular, this implies by (25) and (26) that

(27) |Mon(A)| = deg Â.

The main technical tool for working with reducible curves hA,B is the following
result of Fried (see [2], Proposition 2, or [12], Theorem 3.5).

Theorem 4.5. Let A and B be non-constant rational functions such that the curve
hA,B is reducible. Then there exist rational functions A1, A2 and B1, B2 such that

A = A1 ◦A2, B = B1 ◦B2,

the number of components of hA1,B1 is equal to the number of components of hA,B,

and Â1 = B̂1. □

Notice that both A1 and B1 must have degree at least two since otherwise the
curve hA1,B1

is irreducible.

Theorem 4.6. Let A be a simple rational function of degree three, and let B be a
rational function such that the curve hA,B is reducible. Then

(28) B = A ◦R

for some rational function R. In particular, V (A) ⊆ V (B).
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Proof. Since A is indecomposable, it follows from Fried’s theorem that there exist
rational functions U and D such that

(29) B = U ◦D,

the curve hA,U is reducible, and Â = Û .

Since A is simple, its monodromy group is S3 by (23), so deg Â = |S3| = 6 by

(27). Furthermore, the equality Â = Û implies that there exist holomorphic maps
E,F : NA → CP1 such that

(30) Â = A ◦ E = U ◦ F.

If degU = 6, then degF = 1. Thus,

U = A ◦ E ◦ F−1,

implying (28) by (29). Therefore, degU equals either two or three. However, the
curve hA,U is always irreducible if the degrees of A and U are coprime (see, e.g.,
[12], Proposition 3.1). Hence, degU = 3 and degE = degF = 2.

As Â is a Galois covering, it follows from (30) that there exist subgroups Γ1 and

Γ2 of order two in Aut(Â,CP1) such that

Γ1 = Aut(E,CP1), Γ2 = Aut(F,CP1).

However, all subgroups of order two in S3 are conjugate, and hence there exists

µ ∈ Aut(Â,CP1) such that

Γ2 = µ−1 ◦ Γ1 ◦ µ,
implying that

δ ◦ F = E ◦ µ
for some Möbius transformation δ. Since Â = Â ◦ µ for any µ ∈ Aut(Â,CP1), we
obtain

Â = A ◦ E = A ◦ E ◦ µ = A ◦ δ ◦ F.
Since on the other hand Â = U ◦ F , we conclude that U = A ◦ δ, which, combined
with (29), yields the required equality (28). □

4.3. Iterates of cubic rational functions. We recall that a Lattès map can be
defined as a rational function A such that there exists an orbifold O for which
A : O → O is a covering map between orbifolds (see [11], [15]). Note that for such
an orbifold, necessarily χ(O) = 0 by (19).

Theorem 4.7. Let A be a simple rational function of degree three. Assume that
there exists a rational function B such that degB ̸= 2, 4, the curve hA,B is ir-
reducible, and the curve hA◦2,B has a factor of genus zero. Then A is a Lattès
map.

Proof. The condition that hA◦2,B has a factor of genus zero is equivalent to the
existence of rational functions X and Y such that C(X,Y ) = C(z) and the diagram

CP1 Y−−−−→ CP1

X

y B

y
CP1 A◦2

−−−−→ CP1



15

commutes. By the universality property of fiber products, this diagram can be
extended to

(31)

CP1 Y2−−−−→ CP1 Y1−−−−→ CP1

X

y E

y B

y
CP1 A−−−−→ CP1 A−−−−→ CP1,

where the maps are rational functions satisfying Y = Y1 ◦ Y2 and

C(X,Y2) = C(z), C(E, Y1) = C(z).

Applying Theorem 4.3 to the right square in diagram (31), we see that

(32) OE
2 = OA

1 .

Thus, since A : OA
1 → OA

2 is a covering map between orbifolds, to prove the theorem
it suffices to show that

(33) OE
2 = OA

2 .

If the curve hA,E is irreducible, then equality (33) follows from Theorem 4.3
applied to the left square in diagram (31). On the other hand, if hA,E is reducible,
then V (A) ⊆ V (E) by Theorem 4.6. Since (32) implies by (24) that

ν(OE
2 ) = ν(OA

2 ) = {2, 2, 2, 2},

this can only happen if (33) holds. □

Theorem 4.8. Let A be a simple rational function of degree three that is not a
Lattès map. Then the iterates of A admit no non-trivial decompositions.

Proof. The proof is by induction on n, where n is the order of the iterate A◦n. For
n = 1, the statement holds since degA = 3 is prime. Now let

(34) A◦n = Ar ◦Ar−1 ◦ · · · ◦A1

be a decomposition of A◦n into a composition of indecomposable rational functions,
with n ≥ 2. Since Theorem 4.4 implies that the equality A◦X = A◦Y yieldsX = Y ,
to prove the inductive step it suffices to show that (34) implies

(35) Ar = A ◦ µ

for some Möbius transformation µ. Clearly, (34) implies that the algebraic curve

A◦2(x)−Ar(y) = 0

has a factor of genus zero. Since A is not a Lattès map and (34) implies that degAr

is a power of 3, it follows from Theorem 4.7 that hA,Ar is reducible. Hence, (35)
holds by Theorem 4.6. □

Corollary 4.9. For a general rational function A of degree three, the iterates of A
admit no non-trivial decompositions.

Proof. Since a general rational function is simple (see Lemma 3.9 in [19]), to prove
the corollary it is enough to show that a general rational function is not a Lattès
map. This follows from the more general Theorem 5.3 proved below. □

Since Theorem 1.1 is proved in [19] for m ≥ 3, Corollary 4.9, combined with
Corollary 3.9, completes the proof of Theorem 1.1.
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5. Proof of Theorem 1.2

While studying the functional equation

A ◦X = X ◦B,

in rational functions, and invariant algebraic curves for endomorphisms of (CP1)2

of the form
(A1, A2) : (z1, z2) 7→ (A1(z1), A2(z2)),

where A1, A2 are rational functions, it is instructive to consider, alongside ordinary
Lattès maps, the more general notion of generalized Lattès maps.

A generalized Lattès map can be defined as a rational function A for which
there exists a good orbifold O, distinct from the non-ramified sphere, such that
A : O → O is a minimal holomorphic map (for details, see [15]). Thus, A is a
Lattès map if there exists an orbifold O such that

(36) ν(A(z)) = ν(z)deg zA, z ∈ CP1,

while A is a generalized Lattès map if there exists an orbifold O such that

(37) ν(A(z)) = ν(z) gcd(deg zA, ν(A(z))), z ∈ CP1.

Since (36) implies (37), every Lattès map is a generalized Lattès map. Note that
(20) implies that the Euler characteristic of any orbifold O for which (37) holds
must be non-negative.

The concept of a generalized Lattès map is helpful for two main reasons: first,
a general rational function does not fall into this class; second, excluding gener-
alized Lattès maps allows for simpler formulations of results about semiconjugate
functions and invariant curves. Specifically, our proof of Theorem 1.2 relies on the
following two results. The first is a corollary of the classification of semiconjugate
rational functions (see [16], Proposition 3.3):

Theorem 5.1. Let A and B be rational functions of degree at least two, and let X
be a rational function of degree at least one such that

A ◦X = X ◦B.

Assume that A is not a generalized Lattès map. Then there exist a rational function
Y and an integer d ≥ 0 such that

X ◦ Y = A◦d. □

The second result is a corollary of the classification of invariant curves for endo-
morphisms (A1, A2) of (CP1)2 (see [16], Theorem 1.1):

Theorem 5.2. Let A1 and A2 be rational functions of degree at least two that are
not generalized Lattès maps, and let C be an irreducible algebraic curve in (CP1)2

that is invariant under (A1, A2) and is not a vertical or horizontal line. Then there
exist rational functions X1, X2, Y1, Y2, and B such that:

(1) The diagram

(38)

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A1,A2)−−−−−→ (CP1)2

commutes.
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(2) The equalities

X1 ◦ Y1 = A◦d
1 , X2 ◦ Y2 = A◦d

2

hold for some integer d ≥ 0.
(3) The map t 7→ (X1(t), X2(t)) parametrizes the curve C. □

Note that if diagram (38) commutes, then this condition alone clearly implies
that the curve C, parametrized by t 7→ (X1(t), X2(t)), is invariant under (A1, A2).

For m ≥ 4, the following result is a consequence of Lemma 4.3 in [19]. Below,
we provide an alternative proof that extends the result to all m ≥ 2.

Theorem 5.3. For every m ≥ 2, a general rational function A of degree m is not
a generalized Lattès map.

Proof. Let us first assume that m ≥ 5. In this case, the fact that

A : O → O
is a minimal holomorphic map for some orbifold O implies that

(39) c(O) ⊆ c(OA
2 ).

Indeed, suppose that z0 ∈ c(O) is not a critical value of A. Then (37) implies that
for every point z ∈ A−1{z0} we have

ν(z) = ν(z0) > 1,

implying that c(O) contains at least five points. However, for any orbifold O with
χ(O) ≥ 0, the set c(O) contains at most four points. Thus, (39) holds.

Furthermore, (37) implies that whenever z belongs to c(O), the point A(z) also
belongs to c(O). Therefore, if A is a generalized Lattès map of degree m ≥ 5, then

A(V (A)) ∩ V (A) ̸= ∅,
and hence, to prove the theorem, it is enough to show that for a general rational
function A = P/Q, the condition

(40) A(V (A)) ∩ V (A) = ∅
holds.

Using the fact that the zeros of the polynomial R(t) defined by equality (11)
coincide with the finite critical values of A for any A ∈ Ratm \L, where L is defined
by (10), we see that the set of zeros of the polynomial S(t) defined by

S(t) = Res2m−2,m,z (R(z), P (z)−Q(z)t)

coincides with the set of finite values of A at the finite critical values of A. Therefore,
if Z ⊂ CP2m+1 is the projective hypersurface defined by

Z : Res2m−2,2m−2,t(R(t), S(t)) = 0,

then for every rational function A ∈ Ratm \(L ∪ Z), condition (40) holds.
To prove the theorem for 2 ≤ m ≤ 4, we use that a rational function A is a

generalized Lattès map if and only if some iterate A◦d, d ≥ 1, is a generalized
Lattès map (see [16], Section 2.3). Therefore, if the third iterate A◦3 is not a
generalized Lattès map, then the same holds for A. Thus, to prove the theorem, it
suffices to verify that for a general rational function of degree m ≥ 2, the condition

A◦3(V (A◦3)) ∩ V (A◦3) = ∅
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holds. This can be established by a modification of the proof of (40), using, instead

of the representation A = P/Q, the representation A◦3 = P̂ /Q̂, where P̂ and Q̂ are
polynomials in the coefficients of A. □

For m ≥ 4, the following result follows from Theorems 1.2 and 1.3 in [19]. Below,
we provide a derivation of it from Theorem 1.1, valid for all m ≥ 2.

Theorem 5.4. For a general rational function A of degree m ≥ 2, the equality

(41) A◦n = B◦n

for some rational function B of degree m and integer n ≥ 1 implies that A = B.

Proof. Applying Theorem 1.1 to decomposition (41), we see that there exist Möbius
transformations ν and δ such that

(42) B = A ◦ ν, B = δ ◦A,

so ν ∈ G(A).
In the case m ≥ 3, this already implies the statement, since for a general rational

function A of degree at least three, the group G(A) is trivial (see Lemma 3.10
in [19]). Thus, ν = id, and hence A = B.

If m = 2, we observe that applying Corollary 3.9 to (41), we obtain, along with
the second equality in (42), the identity

B◦(n−1) = A◦(n−1) ◦ δ−1,

which implies

A◦n = B◦n = B ◦B◦(n−1) = δ ◦A ◦A◦(n−1) ◦ δ−1 = δ ◦A◦n ◦ δ−1.

Therefore, δ ∈ Aut(A◦n), which implies by Corollary 3.10 that δ = id. Thus,
B = A. □

The following result is a direct corollary of Theorem 1.1.

Corollary 5.5. For a general rational function A of degree m ≥ 2, the following
holds: whenever Gi, 1 ≤ i ≤ r, are rational functions of degree at least two satisfying

A◦n = Gr ◦Gr−1 ◦ · · · ◦G1

for some n ≥ 1, there exist Möbius transformations νi, 1 ≤ i < r, and integers
si ≥ 1, 1 ≤ i ≤ r, such that

Gr = A◦sr ◦ νr−1, Gi = ν−1
i ◦A◦si ◦ νi−1, 1 < i < r, and G1 = ν−1

1 ◦A◦s1 .

Proof. To prove the corollary, it suffices to decompose each Gi, 1 ≤ i ≤ r, into a
composition of indecomposable rational functions and then apply Theorem 1.1. □

Theorems 5.1 and 5.3 imply the following statement.

Theorem 5.6. For a general rational function A of degree two or three, the follow-
ing holds: whenever B,X are non-constant rational functions such that the diagram

(43)

CP1 B−−−−→ CP1

X

y yX

CP1 A◦r

−−−−→ CP1

commutes for some integer r ≥ 1, there exist a Möbius transformation µ and an
integer l ≥ 0 such that

X = A◦l ◦ µ, B = µ−1 ◦A◦r ◦ µ.
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Proof. Let U ⊂ Ratm be an open subset such that every A ∈ U is simple and the
conclusions of Theorem 5.3, Corollary 5.5, and Corollary 3.7 (if m = 2) hold. In
particular, A ∈ U is not a generalized Lattès map.

Since a rational function is a generalized Lattès map if and only if some iterate
is, it follows that A◦r is also not a generalized Lattès map. Hence, by Theorem 5.1,
there exists a rational function Y such that

X ◦ Y = A◦rd

for some d ≥ 0. By Corollary 5.5, this implies that

(44) X = A◦l ◦ µ
for some Möbius transformation µ and some l ≥ 0. Substituting (44) into dia-
gram (43), we obtain the identity

A◦r ◦A◦l ◦ µ = A◦l ◦ µ ◦B,

which implies

(45) A◦l ◦A◦r = A◦l ◦ µ ◦B ◦ µ−1.

In the casem = 3, applying Theorem 4.4 inductively to this identity, we conclude
that

B = µ−1 ◦A◦r ◦ µ.
In the case m = 2, applying Corollary 5.5 to (45), we conclude that there exists a
Möbius transformation δ such that

A◦l = A◦l ◦ δ, µ ◦B ◦ µ−1 = δ−1 ◦A◦r.

Since the first equality implies δ ∈ Σ∞(A), we see that δ = µA by Corollary 3.7.
Thus,

µ ◦B ◦ µ−1 = µ−1
A ◦A◦r = µ−1

A ◦A◦r ◦ µA,

implying that
B = µ′−1 ◦A◦r ◦ µ′,

where µ′ = µA ◦ µ. Since (44) obviously implies

X = A◦l ◦ µ′,

we conclude that the theorem also holds in the case m = 2.

Proof of Theorem 1.2. By the results of [19], it suffices to prove the theorem for
m = 2 or 3. So, let m be either of these values, and let U ⊂ Ratm be an open
subset for which the conclusions of Theorem 5.4, Corollary 5.5, and Theorem 5.6
hold.

Suppose A1, A2 ∈ U and

(46) (A1, A2)
◦d(C) = C, d ≥ 1.

Then Theorem 5.2 and Theorem 5.6 imply that C is parametrized by

t 7→
(
(A◦d1

1 ◦ β)(t), (A◦d2
2 ◦ α)(t)

)
for some integers d1, d2 ≥ 0 and Möbius transformations α, β such that

β−1 ◦A◦d
1 ◦ β = α−1 ◦A◦d

2 ◦ α.
Moreover, without loss of generality, we may assume that β is the identity map,
which implies

A◦d
1 = α−1 ◦A◦d

2 ◦ α = (α−1 ◦A2 ◦ α)◦d.
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By Theorem 5.4, this yields

(47) A2 = α ◦A1 ◦ α−1

for some Möbius transformation α. Thus, the parametrization above becomes

t 7→
(
A◦d1

1 (t), α ◦A◦d2
1 (t)

)
.

If d1 ≤ d2, then this parametrization reduces to

t 7→
(
t, (α ◦A◦(d2−d1)

1 )(t)
)
.

On the other hand, if d1 > d2, then C is parametrized by

t 7→
(
A

◦(d1−d2)
1 (t), α(t)

)
,

and hence also by

t 7→
(
(A

◦(d1−d2)
1 ◦ α−1)(t), t

)
.

This completes the proof of the ”only if” part of the theorem.
In the other direction, let us assume that (47) holds and C is a curve parametrized

by

t → (t, (α ◦A◦s
1 )(t)) , s ≥ 0.

Since

A◦d
2 ◦ (α ◦A◦s

1 ) = α ◦A◦d
1 ◦A◦s

1 = (α ◦A◦s
1 ) ◦A◦d

1 ,

in this case the diagram

(48)

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A◦d

1 ,A◦d
2 )−−−−−−→ (CP1)2

commutes for

B = A◦d
1 , X1 = z, X2 = α ◦A◦s

1 ,

implying that (46) holds. Similarly, if C is parametrized by

t →
(
(A◦s

1 ◦ α−1)(t), t
)
, s ≥ 0,

then it follows from

A◦d
1 ◦ (A◦s

1 ◦α−1) = A◦s
1 ◦A◦d

1 ◦α−1 = A◦s
1 ◦α−1 ◦α ◦A◦d

1 ◦α−1 = (A◦s
1 ◦α−1) ◦A◦d

2

that diagram (48) commutes for

B = A◦d
2 , X1 = A◦s

1 ◦ α−1, X2 = z. □
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