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ABSTRACT

We give lower bounds for genera of components of fiber products of holo-

morphic maps between compact Riemann surfaces, extending results on

genera of components of algebraic curves of the form A(x) − B(y) = 0,

where A and B are rational functions.

1. Introduction

In this paper, we extend results of the recent papers [47], [53] concerning lower

bounds for genera of components of algebraic curves of the form

(1) EA,B : A(x)−B(y) = 0,

where A and B are rational functions with complex coefficients, to the case

of fiber products of arbitrary holomorphic maps between compact Riemann

surfaces. Not less importantly, we simplify the approach used in [47], [53]

directly relating the problem to the group action on Riemann surfaces and

the Hurwitz automorphisms theorem. Here and below, we always assume that

considered functions and maps are non-constant.

The problem of describing rational functions A, B such that the algebraic

curve (1) has a factor of genus zero or one, to which we refer below as “the low

genus problem”, naturally arises in several different branches of mathematics.
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First, since (1) has a factor of genus zero if and only if there exist rational

functions X,Y satisfying

(2) A ◦X = B ◦ Y,

the low genus problem is central in the theory of functional decompositions of

rational functions. In the polynomial case, this theory was developed by Ritt

(see [55], [59]). The general case, however, is much less understood and known

results are mostly concentrated on a study of either decompositions of special

types of functions or functional equations of a special form (see, e.g., [6], [10],

[17], [24], [40], [41], [42], [46], [51], [56]). Notice also that by the Picard theorem

any algebraic curve that can be parametrized by functions meromorphic on C

has genus zero or one. Thus, the functional equation (2), where X , Y are

allowed to be entire or meromorphic functions on C, often studied in the context

of Nevanlinna theory (see, e.g., [4], [25], [33], [39], [65]), is also related to the

low genus problem (see, e.g., [7], [34], [44], [45]).

Second, algebraic curves (1) with factors of genus zero or one have special

Diophantine properties. Indeed, by the Siegel theorem, if an irreducible al-

gebraic curve C with rational coefficients has infinitely many integer points,

then C is of genus zero with at most two points at infinity. More generally, by

the Faltings theorem, if C has infinitely many rational points, then g(C) ≤ 1.

Consequently, since many interesting Diophantine equations have the form

A(x) = B(y),

where A,B are rational functions overQ, the low genus problem is of importance

in the number theory (see, e.g., [5], [8], [9], [16], [18], [37], [38], [63]). The most

notable result in this direction is the complete classification of polynomial curves

EA,B having a factor of genus zero with at most two points at infinity obtained

in the paper of Bilu and Tichy [9], which continued the line of researches started

by Fried (see [18], [19], [20]).

Third, the low genus problem naturally arises in the new emerging field of

arithmetic dynamics. For example, the problem of describing rational func-

tions A and B such that all curves

A◦n(x)−B(y) = 0, n ≥ 1,
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have a factor of genus zero or one is a geometric counterpart of the following

problem of the arithmetic nature (see [11], [31], [49]): for which rational func-

tions A and B defined over a number field K does there exist a K-orbit of A

containing infinitely many points from the value set B(P1(K)) ? More gener-

ally, the problem of describing pairs of rational functions A and B such that

all curves

(3) A◦n(x)−B◦m(y) = 0, n,m ≥ 1,

have a factor of genus zero or one is a geometric counterpart of the problem

of describing pairs of rational functions A and B having orbits with infinite

intersection (see [26], [27], [53]).

Finally, notice that the low genus problem is related to the study of amenable

semigroups of rational functions under the operation of composition, since for

such a semigroup S the amenability condition implies that for all A,B ∈ S all

curves (3) have a factor of genus zero (see [52]).

In case the curve EA,B is irreducible, the standard approach to the low genus

problem initiated by Fried ([18], [20]) relies on the use of an explicit formula for

genus of EA,B in terms of the ramifications of A and B (see Section 2.1 below).

However, the direct analysis of this formula is quite difficult, and obtaining a

full classification of curves EA,B of genus zero or one in this way seems to be

hardly possible. In addition, such an analysis results only in possible patterns

of ramifications of A and B. However, rational functions with such patterns

may not exist. It is known that any “polynomial” pattern is realizable by

some polynomial ([64]), but already for “Laurent polynomial” patterns there

exists a number of exceptions ([43]). In general, the problem of existence of

a rational function with a given ramification pattern, the so-called Hurwitz

problem, is still widely open (see, e.g., the recent papers [35], [54], [61], [66] and

the bibliography therein).

A general lower bound for the genus of EA,B was obtained in the paper [47].

To formulate it explicitly, let us recall that for a holomorphic map between

compact Riemann surfaces P : R → C its normalization is defined as a compact

Riemann surface NP together with a holomorphic Galois covering of the lowest

possible degree P̃ : NP → C such that P̃ = P ◦ H for some holomorphic

map H : NP → R. From the algebraic point of view, the passage from P

to P̃ corresponds to the passage from the field extension M(R)/P ∗M(C) to its

Galois closure. In these terms, the main result of [47] may be formulated as
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follows: if A and B are rational functions of degree n and m correspondingly

such that EA,B is irreducible and g(NA) > 1, then

(4) g(EA,B) >
m− 84n+ 168

84
.

Thus, for fixed A the genus of EA,B grows linearly with respect to the degree

of B, unless A satisfies the condition g(NA) ≤ 1. In particular, EA,B has genus

greater than one whenever m ≥ 84(n − 1). What is important is that the

condition g(NA) ≤ 1 is quite restrictive. Specifically, up to the change

A→ α ◦A ◦ β,
where α and β are Möbius transformations, the list of rational functions A

with g(NA) = 0 consists of the series

zn, n ≥ 1, Tn, n ≥ 2,
1

2

(
zn +

1

zn

)
, n ≥ 1,

and a finite number of functions, which can be calculated explicitly (see [48]).

On the other hand, functions with g(NA) = 1 admit a simple geometric de-

scription. In particular, the simplest examples of such functions are Lattès

maps (see [48]).

In case the curveEA,B is reducible, the above mentioned genus formula cannot

be used for studying the low genus problem. On the other hand, the problem of

reducibility of EA,B, the so-called Davenport–Lewis–Schinzel problem, is very

subtle and difficult (see [12], [14], [15], [19], [22], [23], [36], [58]). Thus, universal

bounds for genera of components of EA,B are especially interesting. However,

it is easy to see that it is not possible to provide such bounds for all components

of EA,B , since for arbitrary rational functions A and S, setting B = A ◦ S we

obtain a curve EA,B with an irreducible component of genus zero x−S(y) = 0.

Nevertheless, it was shown in [53] that excluding from consideration components

of the above form and changing the condition g(NA) > 1 to a stronger condition

makes the problem solvable.

To formulate the result of [53] explicitly, let us introduce the following defi-

nition. We say that a rational function A is tame if the algebraic curve

A(x) −A(y) = 0

has no factors of genus zero or one distinct from the diagonal x − y = 0.

Otherwise, we say that A is wild. It can be shown that for every tame rational

function S the inequality g(NA) > 1 holds ([53]). Thus, the tameness condition
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is a strengthening of the condition g(NA) > 1. Notice that a generic rational

function of degree at least four is tame ([45]), but a comprehensive classification

of wild rational functions is not known (for some partial results see [3], [6], [45],

[50], [57], [60]). In this notation, the result of [53] can be formulated as follows:

if A is a tame rational function of degree n and B a rational function of degreem,

then for any irreducible component C of the curve EA,B the inequality

g(C) ≥ m/n!− 84n+ 168

84

holds, unless B = A ◦ S for some rational function S, and C is the graph

x− S(y) = 0.

The algebraic curve EA,B can be interpreted as the fiber product of rational

functions A and B, and in this paper we generalize results of [47], [53] to the

fiber products of arbitrary holomorphic maps between compact Riemann sur-

faces (see Section 2.1 for precise definitions). In practical terms, we consider

commutative diagrams

E
U−−−−→ T⏐⏐�V

⏐⏐�W

R
P−−−−→ C

consisting of holomorphic maps between compact Riemann surfaces subject to

the condition that the maps V and U have no non-trivial common compositional

right factor in the following sense: the equalities

U = Ũ ◦ T, V = Ṽ ◦ T,

where

T : E → Ẽ, Ṽ : Ẽ → R, Ũ : Ẽ → T

are holomorphic maps between compact Riemann surfaces, imply that deg T =1.

For brevity, we will call such diagrams reduced. Notice that for a reduced

diagram, the inequalities

degW ≥ deg V and degP ≥ degU

hold.
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Our first main result is the following generalization of the bound (4) to the

bound for the genus of the fiber product of holomorphic maps between compact

Riemann surfaces, in case this product consists of a unique component.

Theorem 1.1: Let P : R → C and W : T → C be holomorphic maps between

compact Riemann surfaces such that the fiber product (R, P )×C (T,W ) consists

of a unique component E and g(NW ) > 1. Then

(5) g(E) ≥ (g(R)− 1)(degW − 1) + 1 +
degP

84
.

Notice that since g(R) ≥ 0, inequality (5) implies the bound

g(E) ≥ degP − 84 degW + 168

84
,

which depends only on the degrees of P and W . Notice also that the condi-

tion g(NW ) > 1 is obviously satisfied whenever g(T) > 1.

Let us mention that in general the bound provided by Theorem 1.1 is the

best possible. Namely, the equality in (5) is attained for the fiber products of

the quotient maps associated with the action of full automorphism groups of

the Hurwitz surfaces (see Section 3.5).

Finally, we remark that Theorem 1.1 is not true if g(NW ) ≤ 1 (see [47]). The

simplest examples are obtained from the commutative diagram

CP1 zrR(zn)−−−−−→ CP1⏐⏐�zn

⏐⏐�zn

CP1 zrRn(z)−−−−−→ CP1,

where R is an arbitrary rational function and r, n are integer positive numbers.

Indeed, since the curve EA,B is irreducible whenever the degrees of A and B

are coprime, choosing R and r, n appropriately we obtain an irreducible curve

of genus zero xn − yrRn(y) = 0 such that for fixed A = zn the degree of

B = zrRn(z)

can be arbitrarily large.

Our second main result is the following bound applicable to fiber products

with several components.
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Theorem 1.2: Let

(6)

E
U−−−−→ T⏐⏐�V

⏐⏐�W

R
P−−−−→ C

be a reduced commutative diagram of holomorphic maps between compact Rie-

mann surfaces such that degV > 1 and the fiber product of (T,W ) with itself

deg V times contains no components of genus 0 or 1 that do not belong to the

big diagonal of Tdeg V . Then

g(E) ≥ (g(R)−1)(deg V −1)+1+
degP

degW (degW − 1) · · · (degW − deg V + 1)
.

Notice that the condition g(NW ) > 1 is equivalent to the condition that

the fiber product of (T,W ) with itself degW times contains no components of

genus 0 or 1 that do not belong to the big diagonal of TdegW (see Section 2.2).

Hence, in case

(7) deg V = degW,

the assumption about W from Theorem 1.2 is equivalent to the assumption

about W from Theorem 1.1. Moreover, if (7) holds, then the fiber product

(R, P )×C (T,W ) consists of a unique component E (see Section 2.1), and thus

the assumptions of both theorems coincide. Nevertheless, the bound provided

by Theorem 1.2 is weaker than the bound provided by Theorem 1.2.

Applying Theorem 1.2 to rational functions, we obtain the following state-

ment.

Theorem 1.3: Let A and B be rational functions of degree n and m corre-

spondingly, and C : F (x, y) = 0 an irreducible component of the curve EA,B

such that k = deg xF > 1. Then

(8) g(C) > 2− k +
m

n(n− 1) · · · (n− k + 1)
,

unless the algebraic curve in (CP1)k defined by the equation

(9) A(x1) = A(x2) = · · · = A(xk)

has a component of genus 0 or 1 that does not belong to the big diagonal

of (CP1)k.

Finally, we prove the following result slightly improving the result of [53].



8 F. PAKOVICH Isr. J. Math.

Theorem 1.4: Let A and B be rational functions of degree n and m corre-

spondingly, and C an irreducible component of the curve EA,B. Assume that A

is tame. Then

(10) g(C) > 2− n+
m

n!
,

unless B = A◦S for some rational function S, and C is the graph x−S(y) = 0.

In brief, our proof of Theorem 1.1 goes as follows. First, we establish a lower

bound for the Euler characteristic χ(NV ) of the normalization of a holomorphic

map between compact Riemann surfaces V : E → R in terms of χ(E) and χ(R),

and degV and deg Ṽ (Section 3.1). Using the Hurwitz automorphisms theorem,

we also obtain an upper bound for χ(NV ) in case g(NV ) > 1. Then, we show

that diagram (6) can be lifted to a diagram of holomorphic maps between

compact Riemann surfaces

(11)

NV
L−−−−→ NW⏐⏐�Q

⏐⏐�F

E
U−−−−→ T⏐⏐�V

⏐⏐�W

R
P−−−−→ C

(Section 3.2). Finally, we apply the Riemann–Hurwitz formula to the map

L : NV → NW

and use the above mentioned bounds for χ(NV ) and χ(NW ). The proof of

Theorem 1.2 is similar with the exception that in diagram (11) instead of NW

there appears some irreducible component of the fiber product of W : T → C

with itself deg V times, and a rougher upper bound for the Euler characteristic

of this component is used.

In concluding this introduction, let us mention that an upper bound for the

genera of components of fiber products follows from the classical Castelnuovo–

Severi inequality

g(E) ≤ g(R)degV + g(T)degU + (deg V − 1)(degU − 1)

for the genus of a compact Riemann surface E such that there exist holomorphic

maps V : E → R and U : E → T having no non-trivial common compositional

right factor (see [1], [2], [32]). Indeed, considering for a component of the
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fiber product of maps P : R → C and W : T → C the corresponding reduced

diagram (6), and taking into account that degW ≥ deg V and degP ≥ degU ,

we conclude that

g(E) ≤ g(R)degW + g(T)degP + (degW − 1)(degP − 1).

The paper is organized as follows. In the second section, we recall some basic

facts about fiber products and normalizations. In the third section, following

the approach described above, we prove Theorems 1.1–1.4. We also show that

the bound provided by Theorem 1.1 is sharp.

2. Fiber products and normalizations

2.1. Fiber products. Let P : R → C and W : T → C be holomorphic maps

between compact Riemann surfaces. The collection

(R, P )×C (T,W ) =

n(P,W )⋃
j=1

{Ej , Vj , Uj},

where n(P,W ) is an integer positive number and Ej , 1 ≤ j ≤ n(P,W ), are

compact Riemann surfaces provided with holomorphic maps

Vj : Ej → R, Uj : Ej → T, 1 ≤ j ≤ n(P,W ),

is called the fiber product of P and W if

P ◦ Vj =W ◦ Uj , 1 ≤ j ≤ n(P,W ),

and for any holomorphic maps V : Ẽ → R, U : Ẽ → T between compact

Riemann surfaces satisfying

(12) P ◦ V =W ◦ U
there exist a uniquely defined index j, 1 ≤ j ≤ n(P,W ), and a holomorphic

map T : Ẽ → Ej such that

V = Vj ◦ T, U = Uj ◦ T.
The fiber product is defined in a unique way up to natural isomorphisms

and can be described by the following algebro-geometric construction. Let us

consider the algebraic variety

(13) L = {(x, y) ∈ R× T | P (x) =W (y)}.
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Let us denote by Lj , 1 ≤ j ≤ n(P,W ), irreducible components of L, by Ej ,

1 ≤ j ≤ n(P,W ), their desingularizations, and by

πj : Ej → Lj , 1 ≤ j ≤ n(P,W ),

the desingularization maps. Then the compositions

x ◦ πj : Ej → R, y ◦ πj : Ej → T, 1 ≤ j ≤ n(P,W ),

extend to holomorphic maps

Vj : Ej → R, Uj : Ej → T, 1 ≤ j ≤ n(P,W ),

and the collection
⋃n(P,W )

j=1 {Ej , Vj , Uj} is the fiber product of P and W . Abus-

ing notation we call the Riemann surfaces Ej , 1 ≤ j ≤ n(P,W ), irreducible

components of the fiber product of P and W .

It follows from the definition that for every j, 1 ≤ j ≤ n(P,W ), the func-

tions Vj , Uj have no non-trivial common compositional right factor in

the following sense: the equalities

Vj = Ṽ ◦ T, Uj = Ũ ◦ T,
where

T : Ej → Ẽ, Ṽ : Ẽ → R, Ũ : Ẽ → T

are holomorphic maps between compact Riemann surfaces, imply that deg T =1.

Denoting by M(R) the field of meromorphic functions on a Riemann surface R,

we can restate this condition as the equality

V ∗
j M(R) · U∗

j M(T) = M(Ej),

meaning that the field M(Ej) is the compositum of its subfields V ∗
j M(R)

and U∗
j M(T). In the other direction, if U and V satisfy (12) and have no non-

trivial common compositional right factor, then

V = Vj ◦ T, U = Uj ◦ T
for some j, 1 ≤ j ≤ n(P,W ), and an isomorphism T : Ej → Ej .

Notice that since Vi, Ui, 1 ≤ j ≤ n(P,W ), parametrize components of (13),

the equalities

∑
j

degVj = degW,
∑
j

degUj = degP
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hold. In particular, if (R, P )×C(T,W ) consists of a unique component {E, V, U},
then

(14) deg V = degW, degU = degP.

Vice versa, if holomorphic maps U and V satisfy (12) and (14), and have no

non-trivial common compositional right factor, then (R, P )×C (T,W ) consists

of a unique component.

If R : E → C is a holomorphic map between compact Riemann surfaces, then

by the Riemann–Hurwitz formula

(15) χ(E) = χ(C)degR−
∑
z∈E

(eR(z)− 1),

where eR(z) denotes the local multiplicity of R at the point z. In case the fiber

product (R, P ) ×C (T,W ) consists of a unique component {E, V, U}, one can

calculate χ(E) applying (15) to the map

(16) R = P ◦ V =W ◦ U
as follows (see [20] or [42, Section 2]).

Setting

Rj = P ◦ Vj =W ◦ Uj , 1 ≤ j ≤ n(P,W ),

let us recall first that by the Abhyankar lemma (see, e.g., [62, Theorem 3.9.1])

for every point t0 of Ej the equality

(17) eRj (t0) = lcm(eP (V (t0)), eW (U(t0)))

holds. In particular, eRj (t0) = 1 whenever Rj(t0) is not a critical value of P

or W .

If the fiber product of P and W consists of a unique component, then for the

map R defined by (16) we have

(18) c(R) = c(P ) ∪ c(W ),

where c(F ) denotes the set of critical values of a holomorphic map F . Let

{z1, z2, . . . , zr} be points of the set (18). We denote by (pi,1, pi,2, . . . , pi,ui),

1 ≤ i ≤ r, the collection of local multiplicities of P at the points of P−1{zi},
and by (wi,1, wi,2, . . . , wi,vi ), 1 ≤ i ≤ r, the collection of local multiplicities ofW

at the points of W−1{zi}. The Riemann–Hurwitz formula applied to R gives

χ(E) = (χ(C)− r)deg PdegW +
∑

z∈R−1{z1,z2,...,zr}
1.
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On the other hand, formula (17) yields that the number of points in the preim-

age R−1(zi), 1 ≤ i ≤ r, is equal to

ui∑
j1=1

vi∑
j2=1

gcd(pi,j1wi,j2 ).

Thus,

(19) χ(E) = (χ(C)− r)deg PdegW +

r∑
i=1

ui∑
j1=1

vi∑
j2=1

gcd(pi,j1wi,j2).

2.2. Normalizations. Let F : N → R be a holomorphic map between com-

pact Riemann surfaces. Let us recall that F is called a Galois covering if its

automorphism group

Aut(N, F ) = {σ ∈ Aut(N) : F ◦ σ = F}
acts transitively on fibers of F . Equivalently, F is a Galois covering if the field

extension M(N)/F ∗M(R) is a Galois extension. In case F is a Galois covering,

for the corresponding Galois group the isomorphism

(20) Gal(M(N)/F ∗M(R)) ∼= Aut(N, F )

holds. Notice that since the action of Aut(N, F ) on fibers of F has no fixed

points, any element of Aut(N, F ) is defined by its value on an arbitrary element

of a fiber, implying that the action of Aut(N, F ) on fibers of F is transitive if

and only if the equality

(21) |Aut(N, F )| = degF

holds. Thus, the last equality is equivalent to the condition that F is a Galois

covering. Another equivalent condition for F to be a Galois covering is the

equality

(22) |Mon(F )| = degF,

where Mon(F ) denotes the monodromy group of a holomorphic map F (see,

e.g., [28, Proposition 2.66]).

Let V : E → R be an arbitrary holomorphic map between compact Riemann

surfaces. Then the normalization of V is defined as a compact Riemann sur-

face NV together with a holomorphic Galois covering of the lowest possible de-

gree Ṽ : NV → R such that Ṽ = V ◦H for some holomorphic map H : NV → E.

The map Ṽ is defined up to the change Ṽ → Ṽ ◦α, where α ∈ Aut(NV ), and is
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characterized by the property that the field extension M(NV )/Ṽ
∗M(R) is iso-

morphic to the Galois closure M̃(E)/V ∗M(R) of the extension M(E)/V ∗M(R).

Notice that since

Mon(V ) ∼= Gal(M̃(E)/V ∗M(R))

(see, e.g., [29]), this implies by (20) and (21) that the normalization of V can

be characterized as a Galois covering Ṽ that factors through V and satisfies the

equality

(23) |Mon(V )| = deg Ṽ .

For a holomorphic map V : E → R of degree n ≥ 2 its normalization can

be described in terms of the fiber product of V with itself n times as follows

(see [21, §I.G] or [30, Section 2.2]). For k, 2 ≤ k ≤ n, let Lk,V be an algebraic

variety consisting of k-tuples of Ek with a common image under V ,

Lk,V = {(xi) ∈ Ek | V (x1) = V (x2) = · · · = V (xk)},
and L̂k,V a variety obtained from Lk,V by removing components that belong to

the big diagonal

Δk,E := {(xi) ∈ Ek | xi = xj for some i 	= j}
of Ek. Further, let L be an arbitrary irreducible component of L̂n,V and N

θ−→ L

the desingularization map. Finally, let ψ : N → R be a holomorphic map

induced by the composition

N
θ−→ L

πi−→ E
V−→ R,

where πi is the projection to any coordinate. In this notation, the following

statement holds.

Theorem 2.1: The map ψ : N → R is the normalization of V .

Proof. It follows from the construction that

(24) degψ = |Mon(V )|
and that the action of Mon(ψ) on the fibers of ψ has no fixed points. The last

property yields that degψ = |Mon(ψ)|, implying that ψ is a Galois covering,

according to the characterization (22). Moreover, since ψ factors through V ,

equality (24) implies that ψ is the normalization of V , according to the charac-

terization (23).
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Notice that while the above construction is meaningless if the map V : E → R

has degree one, any such a map is a Galois covering with NV = E and Ṽ = V.

3. Proof of the main results

3.1. Upper and lower bounds for χ(NV ). Let R be a compact Riemann

surface. We recall that an orbifold O on R is a ramification function ν : R → N

which takes the value ν(z) = 1 except at finitely many points. The Euler

characteristic of an orbifold O = (R, ν) is defined by the formula

χ(O) = χ(R) +
∑
z∈R

( 1

ν(z)
− 1

)
,

where χ(R) is the Euler characteristic of R. For a holomorphic map V : E → R

between compact Riemann surfaces, we define its ramification orbifold

OV = (E, ν)

setting for z ∈ CP1 the value ν(z) equal to the least common multiple of local

multiplicities of V at the points of the preimage V −1{z}. Notice that Theo-

rem 2.1 combined with formula (17) imply that

(25) O
˜V = OV .

Lemma 3.1: Let V : E → R be a holomorphic map between compact Riemann

surfaces, and Ṽ : NV → R its normalization. Then

(26) χ(NV ) = χ(OV )deg Ṽ .

Proof. Since Ṽ : NV → R is a Galois covering, the equality

|Aut(NV , Ṽ )| = deg Ṽ

holds, and Ṽ is the quotient map

Ṽ : NV → NV /Aut(NV , Ṽ ).

Thus, for any critical value zi, 1 ≤ i ≤ r, of Ṽ there exists a number di such

that Ṽ −1{zi} consists of deg Ṽ /di points, at each of which the local multi-

plicity of Ṽ equals di. Applying now the Riemann–Hurwitz formula to Ṽ ,
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we see that

χ(NV ) = χ(R)deg Ṽ −
r∑

i=1

deg Ṽ

di
(di − 1)

=

(
χ(R) +

r∑
i=1

( 1

di
− 1

))
deg Ṽ = χ(O

˜V )deg Ṽ .

Therefore, (26) holds by (25).

Lemma 3.2: Let V : E → R be a holomorphic map between compact Riemann

surfaces. Then

(27) χ(OV ) ≥ χ(E) + χ(R)(1 − deg V ).

Proof. It follows from the definition of OV that

(28) χ(OV ) ≥ χ(R)− |c(V )|.

On the other hand, it is clear that the number of critical values of V does not

exceed the number of critical points of V , which in turn does not exceed the

number
∑

z∈E(eV (z)− 1). Therefore, since

χ(E) = χ(R)deg V −
∑
z∈E

(eV (z)− 1),

we have

(29) |c(V )| ≤
∑
z∈E

(eV (z)− 1) = χ(R)deg V − χ(E).

Now (27) follows from (28) and (29).

The above lemmas combined with the Hurwitz automorphisms theorem imply

the following statement.

Theorem 3.3: Let V : E → R be a holomorphic map between compact Rie-

mann surfaces, and Ṽ : NV → R its normalization. Then

(30) χ(NV ) ≥ (χ(E) + χ(R)(1 − degV ))deg Ṽ .

Furthermore, if g(NV ) > 1, then

(31) χ(NV ) ≤ −deg Ṽ

42
.
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Proof. The first part of the theorem follows from Lemma 3.1 and Lemma 3.2.

To prove the second, we recall that by the Hurwitz theorem for a compact

Riemann surface of genus g > 1 the order of its automorphism group does not

exceed 84(g − 1). Thus, if g(NV ) > 1, then

(32) 42χ(NV ) ≤ −|Aut(NV )|.
On the other hand, since

Aut(NV , Ṽ ) ⊆ Aut(NV )

and the map Ṽ is a Galois covering, it follows from (21) that

(33) deg Ṽ = |Aut(NV , Ṽ )| ≤ |Aut(NV )|.
Now (31) follows from (32) and (33).

3.2. Lifting lemma. Let W : T → C be a holomorphic map between compact

Riemann surfaces, and D a component of the fiber product of the map W with

itself k, 2 ≤ k ≤ degW, times. Then D is the desingularization of an irreducible

component D of the variety Lk,V , and abusing notation we will say that D does

not belong to the big diagonal of Tk, if D belongs to L̂k,V .

Our proof of Theorem 1.1 and Theorem 1.2 is based on the following lemma

of independent interest.

Lemma 3.4: Let

E
U−−−−→ T⏐⏐�V

⏐⏐�W

R
P−−−−→ C

be a reduced commutative diagram of holomorphic maps between compact Rie-

mann surfaces such that deg V > 1. Then one can complete it to a diagram of

holomorphic maps between compact Riemann surfaces

(34)

NV
L−−−−→ D⏐⏐�Q

⏐⏐�F

E
U−−−−→ T⏐⏐�V

⏐⏐�W

R
P−−−−→ C,
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where D is some irreducible component of the fiber product of W : T → C

with itself degV times that does not belong to the big diagonal of Tdeg V .

Moreover, V ◦Q = Ṽ and

(35) degF ≤ (degW − 1) · · · (degW − degV + 1).

Finally, if deg V = degW , then

D = NW and W ◦ F = W̃ .

Proof. Let us set k = deg V , and define the maps

Vk : Ek → Rk, Uk : Ek → Tk, Wk : Tk → Ck, Pk : Rk → Ck

by the formulas

Vk : (z1, z2, . . . , zk) → (V (z1), V (z2), . . . , V (zk)),

Uk : (z1, z2, . . . , zk) → (U(z1), U(z2), . . . , U(zk)),

Wk : (z1, z2, . . . , zk) → (W (z1),W (z2), . . . ,W (zk)),

Pk : (z1, z2, . . . , zk) → (P (z1), P (z2), . . . , P (zk)).

Clearly, the diagram

(36)

Ek Uk−−−−→ Tk⏐⏐�Vk

⏐⏐�Wk

Rk Pk−−−−→ Ck

commutes. Furthermore, it follows from Theorem 2.1 that for an arbitrary

irreducible component L of L̂k,V the map from L to Uk(L) induced by the

map Uk : Ek → Tk can be lifted to a map L : NV → D, where D is the

disingularization of Uk(L), and diagram (34) commutes for

Q = π1,i ◦ θ1, F = π2,i ◦ θ2,
where θ1 : NV → L and θ2 : D → Uk(L) are the desingularization maps,

and π1,i : L → E and π2,i : Uk(L) → T are the projections to any coordinate.

To prove that D does not belong to the big diagonal of Tk, it is enough to

show that

(37) Uk(L̂
k,V ) ⊆ L̂k,W .

In the notation of Section 2.2,

Lk,V = V −1
k (Δk,R),
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where Δk,R is the usual diagonal in Rk,

Δk,R := {(xi) ∈ Rk | x1 = x2 = · · · = xk}.
Since Pk(Δ

k,R) = Δk,C, it follows from the commutativity of (36) that

Uk(L
k,V ) ⊆ Lk,W .

Further, it follows from

V ∗M(R) · U∗M(T) = M(E)

by the primitive element theorem that

(38) M(E) = V ∗M(R)[h]

for some h ∈ U∗M(T). As elements of M(E) separate points of E, equality (38)

implies that for all but finitely many z0 ∈ R the map h takes deg V distinct

values on the set V −1{z0}. Since h ∈ U∗M(T), this implies in turn that for all

but finitely many z0 ∈ R the map U takes deg V distinct values on V −1{z0}.
Therefore, (37) holds.

To finish the proof, let us observe that the degree of F equals the degree of the

projection π2,i :Uk(L)→T. By (37), the last degree does not exceed the degree of

the projection π2,i : L̂
k,W → T, which is equal to (degW−1) · · · (degW−k+1).

Finally, it is easy to see that V ◦Q = Ṽ , and

D = NW , W ◦ F = W̃ ,

if deg V = degW .

3.3. Bounds for fiber products with one component.

Proof of Theorem 1.1. If (R, P ) ×C (T,W ) consists of a unique component E,

then there exists a reduced diagram (6) such that

(39) deg V = degW.

Assume first that degV > 1. By Lemma 3.4, we can complete diagram (6) to

diagram (11), where V ◦ Q = Ṽ and W ◦ F = W̃ . By the Riemann–Hurwitz

formula, we have

χ(NV ) ≤ χ(NW )degL,

implying by Theorem 3.3 that

(χ(E) + χ(R)(1 − deg V ))deg Ṽ ≤ −deg W̃ degL

42
.
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Since

deg Ṽ degP = deg V degQ degP = degF degW degL

and W ◦ F = W̃ , this implies the inequality

χ(E) + χ(R)(1 − degV ) ≤ −degP

42
,

which is equivalent to (5) by (39).

Assume now that deg V = 1. Then E ∼= R, T ∼= C, and inequality (5) reduces

to the inequality

g(R) ≥ 1 +
degP

84
.

On the other hand, in case degW = 1 the condition g(NW ) > 1 is equivalent

to the condition χ(C) ≤ −2, and by the Riemann–Hurwitz formula we have

χ(R) ≤ χ(C)degP ≤ −2degP,

whence

g(R) ≥ 1 + degP.

Thus, the theorem is still true although not with the best bound due to the fact

that for deg V = 1 the bound (31) is worse than the bound χ(NV ) ≤ −2.

Remark 3.5: In case C = CP1, Theorem 1.1 was also proved in the paper [49]

by a modification of the method of [47] (see [49], Theorem 3.1). Unfortunately,

by the mistake of the author, the formulation of the corresponding result in [49]

was partly copied from an earlier version of the paper. As a result, it is stated

in [49] that P is a rational function but what is really meant is that P : R→ CP1

is a holomorphic map from a compact Riemann surface R while W : T → CP1

is a holomorphic map from another compact Riemann surface T.

3.4. Bounds for fiber products with several components.

Proof of Theorem 1.2. By Lemma 3.4, we can complete diagram (6) to dia-

gram (34) and arguing as in the proof of Theorem 1.1 we see that

χ(NV ) ≤ χ(D)degL

and

(χ(E) + χ(R)(1− deg V )) ≤ χ(D) degL

deg Ṽ
=

χ(D) degP

degF degW
.
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Moreover, since the conditions of the theorem imply that χ(D) ≤ −2, we have

(40) χ(E) + χ(R)(1− deg V ) ≤ −2 degP

degF degW
.

Combining now (40) and (35), we conclude that

χ(E)+χ(R)(1−degV )≤ −2 degP

degW (degW−1) · · · (degW−degV +1)
.

Proof of Theorem 1.3. The theorem follows from Theorem 1.2 for W = A,

P = B and R = T = C = CP1, taking into account that for R = CP1 the

inequality in (5) is strict. Indeed, any holomorphic map V : E → CP1 of de-

gree greater than one has critical values. This yields that the inequality in (28)

is strict, implying that the inequalities in (27), (30), (5) and (40) are also

strict.

Remark 3.6: Note that since for rational A and B inequality (5) is strict, for

irreducible curves EA,B with rational A and B, Theorem 1.1 gives (4).

Proof of Theorem 1.4. Let us observe that any irreducible component L of

Lk,V , 2 ≤ k ≤ n,

projects to an irreducible component L̃ of L2,V , and g(L) ≥ g(L̃). Moreover,

if L ⊂ L̂k,V , then L̃ ⊂ L̂2,V . Therefore, if A is tame, then for any k, 2 ≤ k ≤ n,

curve (9) has no component of genus zero or one that does not belong to the

big diagonal of (CP1)k. Moreover, for any k, 2 ≤ k ≤ n, the inequalities

−k ≥ −n, m

n(n− 1) · · · (n− k + 1)
≥ m

n!

hold. Thus, if k > 1, then (10) follows from (8). On the other hand, it is easy

to see that if k = 1, then B = A ◦ S for some rational function S, and C is the

graph x− S(y) = 0.

3.5. On the sharpness of the bound of Theorem 1.1. In general, the

bound provided by Theorem 1.1 is the best possible and is attained whenever P

and W are the quotient maps associated with the action of the full automor-

phism groups of two Hurwitz surfaces, assuming that these maps have the same

ramification orbifold and the fiber product of P and W consists of a unique

component. Here, by a Hurwitz surface we mean a compact Riemann surface R

of genus g > 1 with |Aut(R)| = 84(g − 1).
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Indeed, in terms of coverings, Hurwitz surfaces can be described as surfaces R

such that there exists a holomorphic Galois covering P : R → CP1 with the ram-

ification orbifold (OP , ν) whose signature is (2, 3, 7) (the signature for which the

Euler characteristic takes the maximum possible value − 1
42 among all orbifolds

of negative Euler characteristic). By formula (26), for such a surface R, the

genus g(R) and the degree nP of P are related by the formula

(41) 84(g(R)− 1) = nP ,

and it clear that the number of points in the preimages P−1(0), P−1(1), P−1(∞)

is

n1,P =
nP

2
, n2,P =

nP

3
, n3,P =

nP

7
correspondingly.

Assuming that the fiber product of two such coverings P and W consists of

a unique component E and that P and W have the same ramification orbifold,

say, defined by the equalities

ν(0) = 2, ν(1) = 3, ν(∞) = 7,

we obtain by formula (19) that

χ(E) = −nP · nW + 2 · n1,P · n1,W + 3 · n2,P · n2,W + 7 · n3,P · n3,W

= −nP · nW + nP · n1,W + nP · n2,W + nP · n3,W

= −nP

(
nW − nW

2
− nW

3
− nW

7

)
= −nPnW

42
,

whence

g(E) = 1 +
nPnW

84
.

On the other hand, formula (5) gives

(42) g(E) ≥ (g(R)− 1)(nW − 1) + 1 +
nP

84
,

and using (41) we see that the right part of (42) equals

nP

84
(nW − 1) + 1 +

nP

84
= 1 +

nPnW

84
.

Thus, the equality in (5) is indeed attained.

In this paper, we do not make an attempt to consider the irreducibility prob-

lem for fiber products of maps of the above form in general, limiting ourselves

by giving an example of the irreducibility and an example of the reducibility,

basing on the list of all possible genera up to 11905 of Hurwitz surfaces obtained
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by Conder [13]. The beginning of this list is

g =3, 7, 14, 17, 118, 129, 146, 385, 411, 474, 687, 769,

1009, 1025, 1459, 1537, 2091, 2131, 2185, 2663, 3404, . . . ,

and formula (41) gives the list of the degrees n of the corresponding coverings.

To save space, we present the quotients n/84 of these degrees

(43)

n

84
= g − 1 =2, 6, 13, 16, 117, 128, 145, 384, 410, 473, 686, 768,

1008, 1024, 1458, 1536, 2090, 2130, 2184, 2662, 3403, . . . .

Let us show that the fiber product of any coverings P : R → CP1 and

W : T → CP1

of the above form with g(R) = 3 and g(T) = 14 consists of a unique component.

Indeed, since the compositum LK/k of two Galois extensions L/k and K/k is a

Galois extension, it follows from formula (17) that any component of the fiber

product of P and W is a Hurwitz surface. Thus, if this fiber product contains

more than one component, then there should exist a Hurwitz surface such that

the degree of the corresponding covering is divisible by the number

lcm(nP , nW ) = lcm(84 · 2, 84 · 13) = 84 · 2 · 13,
but is strictly less than the number nPnW = 842 · 2 · 13. In this case, list (43)

should contain an entry that is divisible by 2 · 13 = 26, but is strictly less

than 84 · 2 · 13 = 2184. However, this is not true as a direct calculation shows.

On the other hand, to show that the fiber product of any coverings

P : R → CP1

and W : T → CP1 of the above form with g(R) = 3 and g(T) = 17 is reducible,

it is enough to observe that list (43) does not contain an entry
nPnW

84
= 84 · 2 · 16 = 2688.
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