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Abstract

Let A, Ay € C(z) be rational functions of degree at least two that are neither
Lattés maps nor conjugate to z*" or +7,. We describe invariant, periodic, and
preperiodic algebraic curves for endomorphisms of (PL(C))? of the form (z1, z2) —
(A1(z1), A2(z2)). In particular, we show that if A € C(z) is not a “generalized Lattes
map”, then any (A, A)-invariant curve has genus zero and can be parametrized by
rational functions commuting with A. As an application, for A defined over a subfield
K of C we give a criterion for a point of (P!(K))? to have a Zariski dense (A, A)-orbit
in terms of canonical heights, and deduce from this criterion a version of a conjecture
of Zhang on the existence of rational points with Zariski dense forward orbits. We also
prove a result about functional decompositions of iterates of rational functions, which
implies in particular that there exist at most finitely many (A, A»)-invariant curves
of any given bi-degree (d, d>).

1 Introduction
Let A be a rational function of one complex variable. We say that A is special if it is
either a Lattés map, or it is conjugate to z*" or £7,,. In this paper, we describe invariant

and, more generally, periodic and preperiodic algebraic curves for endomorphisms
(A1, A2) : (P1(C))? — (P'(C))? given by the formula

(z1,22) = (A1(z1), A2(z2)), (1
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where A1 and A, are non-special rational functions of degree at least two. Note that
describing invariant varieties for more general endomorphisms

(Zla ZZ,Zn) - (AI(ZI),AZ(ZZ)vAn(Zn)), n 22’ (2)

reduces to describing invariant curves for endomorphisms (1) [11,15,16,34]. On the
other hand, an arbitrary dominant endomorphism of (P!(C))" has the form

(21,22, - 2n) = (A1(Zo1))s A2(Z62)s - - - An(Zo@m)))

for some permutation o € S,,, implying that some of its iterates has form (2).

Invariant curves for endomorphisms (1) with polynomial Ay, Ay were studied in
the paper of Medvedev and Scanlon [16]. In particular, it was shown in [16] that if
A1 and A are not conjugate to powers z”* or Chebyshev polynomials 7}, then any
irreducible algebraic (A1, Az)-invariant curve has genus zero and can be parametrized
by polynomials X, X» satisfying the system of functional equations

A1o0 X1 = X10B, AroXo=Xp0B 3)

for some polynomial B. Using the theory of functional decompositions of polynomials
developed by Ritt [31], Medvedev and Scanlon investigated system (3) in detail and
obtained a description of (A1, Aj)-invariant curves. Specifically, for A; = A; the main
result of [16] about invariant curves can be formulated as follows: if a polynomial
A is not conjugate to z" or £7),, then any irreducible (A, A)-invariant curve is a
graph zo = X(z1) or z1 = X(z2), where X is a polynomial commuting with A. The
classification of invariant curves obtained by Medvedev and Scanlon has numerous
applications in arithmetic dynamics (see e. g. [1,5,7,9,10,12,13,21]), and the goal of
this paper is to obtain a generalization of this classification to arbitrary non-special
rational functions A and A;. For such functions, any (A, Ap)-invariant curve still
has genus zero and can be parametrized by rational functions X1, X satisfying (3) for
some rational function B. In particular, the existence of invariant curves implies the
equality deg A1 = deg A,. However, the Ritt theory of polynomial decompositions
used in [16] for the analysis of (3) does not extend to rational functions. Furthermore,
one of the key ingredients of the method of [16], the so-called “first Ritt theorem”,
is known not to be true in the rational case (see e. g. [17]). Note that results of [16]
about invariant curves can be proved by a different method, which does not rely on
the first Ritt theorem [23]. Nevertheless, the method of [23] is also restricted to the
polynomial case.

Since rational functions parametrizing invariant curves for endomorphisms (1) sat-
isfy system (3), the problem of describing invariant curves is closely related to the
problem of describing semiconjugate rational functions, that is, rational solutions of
the functional equation

AoX = XoB. “4)
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Invariant curves for endomorphisms...

A comprehensive description of solutions of (4) was obtained in the series of papers
[22,24,27,28,30], and in this paper we apply the main results of [22,28] to system (3).
To formulate our results explicitly we recall several definitions. For the rest of this
paper, we use the standing convention that “rational function” means “nonconstant
rational function”.

An orbifold © on P! (C) is a ramification function v : P! (C) — N which takes the
value v(z) = 1 except at a finite set of points. If f is a rational function and O, O,
are orbifolds with ramification functions vy and vy, then we say that f : O — O3 is
a covering map between orbifolds if for any z € P!(C) the equality

1 (f(z) =vi(z)deg, f

holds. In case the weaker condition

v2(f(z)) = v1(2)GCD(deg  f, v2(f(2))

is satisfied, we say that f : O; — O is a minimal holomorphic map between
orbifolds. In these terms, a Lattés map can be defined as a rational function A of
degree at least two such that A : O — O is a covering self-map for some orbifold
O [19]. Following [28], we say that A is a generalized Lattés map if there exists an
orbifold O distinct from the non-ramified sphere such that A : O — O is a minimal
holomorphic map. Note that similar to ordinary Lattés maps, generalized Lattes maps
can be characterized in terms of semiconjugacies and group actions [28].
Let Ay, A> X1, X3, B be rational functions such that the diagram

@'©)? L @(©)?
(lexz)l l(xl,Xﬁ (5)
@'(©)? L2 (pl ()

commutes. Then the image of P! (C) in (P! (C))? under the map
= (X1(1), X2(1)) (6)

isan (A1, Ap)-invariant algebraic curve C, since the diagonal A in (P1(C))%is (B, B)-
invariant and C = (X1, X2)(A). For brevity, we say that the map (6) is a paramet-
rization of the curve C. We emphasize however that such a parametrization is not
necessarily generically one-to-one, that is, we do not assume that X; and X» satisfy
the condition C(Xy, X3) = C(2).

In like manner, if Aj, A> Y1, Y2, B are rational functions such that the diagram

P(©)? L pi ()2

(¥ ,Yz)l lm Y2) @)
@'(©)? 22 @!(C))?
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commutes, then the algebraic curve & = (Y1, Y2)~1(A), defined by the equation
Yi(x) — Y2(y) = 0, satisfies (A1, A2)(E) C &. Therefore, each component of &£ is
(A1, Ap)-preperiodic and at least one of these components is (A1, As)-periodic.

Our first result provides a description of (A1, Az)-invariant curves in case that A
and A, are not generalized Lattes maps through a system of functional equations
involving functional decompositions of iterates of Aj, A and diagrams (5), (7).

Theorem 1.1 Let Ay, Ay be rational functions of degree at least two that are not
generalized Lattés maps, and C an irreducible algebraic curve in (P'(C))? that is not
a vertical or horizontal line. Then C is (A1, As)-invariant if and only if there exist
rational functions X1, X2, Y1, Y2, B such that:

1. The diagram

@' (©)? 2L @)

(Xl,Xz)l l(Xl,Xz)

P'(©)? L2 ()2 ®)
(Ylsz)l l(Yl Y2)
(B,B)
(P1(C))? —— (P1(C))?
commutes,
2. The equalities
Xio¥) =AY,  XyoYy =AY, )
YioX| =Y0X, =B (10)

hold for some d > 0,
3. The mapt — (X1(t), X2(t)) is a parametrization of C.

Note that the top square of (8) is obtained from elementary considerations about
parametrizations of invariant curves in the same way as in the paper [16] in the poly-
nomial case. On the other hand, the bottom square is based on results [22,28], and
requires the assumption that A; and A, are not generalized Lattés maps.

Let us mention that, among other things, Theorem 1.1 implies that C is a component
of the “separate variable” curve

E: 1) —Ya(y) =0. (1)
Thus, Theorem 1.1 provides us both with the parametrization of C and with the equation
of a curve having C as acomponent. Moreover, both these characterizations of invariant
curves are obtained from decompositions of iterates (9) subject to special restrictions.

Note also that condition (9) yields that

(A1, A)°Y(E) =
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that is, all components of curve (11) are eventually mapped to the curve C.

Theorem 1.1 permits us to describe also (A1, Az)-periodic and preperiodic curves.
Specifically, we show that under the assumptions of Theorem 1.1 acurve Cis (A, A2)-
periodic if and only if there exist rational functions X1, X2, Yi, Y> such that the
equalities

Xio¥1 =AY, XpoYa=A45, YioX =Yr0X;

hold for some d > 0, and the map + — (X (), X2(¢)) is a parametrization of C. On
the other hand, a curve C is (A1, Ap)-preperiodic if and only if there exist rational
functions as above such that C is a component of curve (11) (Theorem 4.6). Finally,
we show that describing (A1, Az)-periodic and preperiodic curves for arbitrary non-
special rational functions A and A; reduces to the case where A; and A, are not
generalized Lattes maps (Theorem 4.15).

In a sense, describing (A, Ap)-periodic and preperiodic curves reduces to the case
A; = Ay = A (see Corollary 4.5). For this case, we give the following alternative
description of invariant curves, providing an analogue of the result of Medvedev and
Scanlon cited above.

Theorem 1.2 Let A be a rational function of degree at least two that is not a generalized
Lattés map, and C an irreducible algebraic curve in (Pl (C)? that is not a vertical or
horizontal line. Then C is (A, A)-invariant if and only if there exist rational functions
Ui, Us, V1, Vo commuting with A such that the equalities

UioVi=UyoV, =A%, (12)
VioUj = V00U, = A% (13)

hold for some d > 0 and the map t — (U (t), Ux(t)) is a parametrization of C.

As an application of Theorem 1.2, for A defined over a number field K we give a
criterion for a point of (xg, yo) € (P'(K))? to have a Zariski dense (A, A)-orbit in
terms of canonical heights of x( and yy. Let us denote by / the Weil height on P! (K)
and by T4 the corresponding canonical height associated to A. The simplest examples
of points with non-dense (A, A)-orbits are points (xg, yp) such that xo or yp is A-
preperiodic. Further examples are points of the form (xo, A (x0)) or (A% (xp), x0),
where x¢ € P! (K) and I > 0, since such points belong to the curves

A% @) =y =0, x—A"() =0, (14)
which are (A, A)-invariant. The canonical heights of the last kind of points obviously
satisfy the relation n A00) = n'h. A(x0), where n = deg A and / € 7Z, and our main

result about orbits states that a similar relation is satisfied for any point (xg, yp) whose
(A, A)-orbit is not dense, provided that xo and yg are not A-preperiodic.
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Theorem 1.3 Let K be a number filed and A a non-special rational function of degree
n > 2 defined over K. Then the (A, A)-orbit of a point (xg, yo) € (IP>1 (f))2 is Zariski
dense in (PY(C))2, unless either xq or Yo is a preperiodic point of A, or the canonical
heights of xo and yq satisfy the condition

ha(yo) = nhha(xo), [€Z, (15)

where n is a minimum natural number such that n = néfor some k > 1.

Using instead of the Weil height the Moriwaki height, we also provide an analogue of
Theorem 1.3 for an arbitrary subfield K of C finitely generated over Q (Theorem 5.4).
This allows us to prove a variant of a conjecture of Zhang [35] on the existence of
Zariski dense orbits for endomorphisms of varieties. Namely, we show that if K is a
subfield of C and A1, A2 € K (z) are non-special rational functions of degree at least
two, then there is a point in (P'(K))? whose (A1, Ay)-forward orbit is Zariski dense
in (P'(K))? (Theorem 5.5). For algebraically closed fields, this result was established
previously in the appendix to the paper [34] as a corollary of the main result of [34]
about the existence of Zariski dense orbits for endomorphisms of projective surfaces.
The benefits of our approach are that it does not require K to be algebraically closed,
and it permits construct points with dense orbits in an effective way.

Since for any rational function A € C(z) and integer [ > 0 the curves (14) are
(A, A)-invariant, one cannot expect to bound the total number of (A, Ap)-invariant
curves. Nevertheless, we show (Theorem 6.10) that for any rational functions A1, Ay
of degree m > 2 there exist at most finitely many (A, Aj)-invariant curves of any
given bi-degree (d1, d3), and that the number of such curves can be bounded in terms of
dy, dp and m. We obtain this result from the above classification of (A, Ay)-invariant
curves and the following result of independent interest, which states roughly speaking
that if a rational function X is “a compositional left factor” of some iterate of a rational
function A, then X is already a factor of A°Y, where N is bounded in terms of degrees
of A and X.

Theorem 1.4 There exists a function ¢ : N x N — R with the following property. For
any rational functions A and X such that the equality

AY = XoR (16)

holds for some rational function R and d > 1, there exists N < ¢(deg A, deg X) and
a rational function R’ such that

AN =XoR
and R = R' o A°Y=N)_ifd > N. In particular, for any fixed rational function A and
integer n > 1, up to the change X — X o ju, where w is a Mébius transformation,

there exist at most finitely many rational functions X of degree n such that (16) holds
for some rational function R and d > 1.
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The paper is organized as follows. In the second and the third sections, we recall
basic definitions and results related to orbifolds on Riemann surfaces, and review
some of results of the papers [22,28] describing the structure of solutions of functional
equation (4) in rational functions. In the fourth section, we describe (A1, Az)-invariant,
periodic, and preperiodic curves. In the fifth section, we prove results concerning the
orbit density.

Finally, in the sixth section, we obtain quantitative versions of some results of the
paper [29] concerning pairs of rational functions A and X such that for every d > 1
the algebraic curve

A (x) = X(y) =0

has a factor of genus zero or one. As an application, we prove Theorem 1.4 and deduce
from it the finiteness of the number of (A, A»)-invariant curves of any given bi-degree
(d, da).

2 Orbifolds and generalized Lattés maps

2.1 Riemann surface orbifolds

A Riemann surface orbifold is a pair O = (R, v) consisting of a Riemann surface
R and a ramification function v : R — N, which takes the value v(z) = 1 except

at isolated points. For an orbifold O = (R, v), the Euler characteristic of O is the
number

1
x(O) ZX(RH;(@_ 1),

the set of singular points of O is the set
@) ={z1,22,..., 25, ...} ={z € R v(2) > 1},
and the signature of O is the set

v(O) = {v(z1),v(z2), ..., v(Zg), ... }.

For orbifolds O1 = (Ry, vi) and Oy = (R3, vp), we write O; < Oy if Ry = R, and
for any z € Ry, the condition v{(z) | v2(z) holds.

Let O1 = (R1,v1) and Oy = (R, v2) be orbifolds and let f : Ry — Ry bea
holomorphic branched covering map. We say that f : O1 — O3 is a covering map
between orbifolds if for any z € Ry the equality

v2(f(2)) = vi(z)deg . f a7)
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holds, where deg , f is the local degree of f at the point z. If for any z € R the weaker
condition

v2(f(2)) | vi(z)deg f (18)

is satisfied instead of (17), we say that f : O1 — O is a holomorphic map between
orbifolds.

A universal covering of an orbifold O is a_covering map between orbifolds
6o : O — Osuch that R is simply connected and O is non- -ramified, thatis, V(z) = 1.
If 6 is such a map, then there exists a group I'9 of conformal automorphisms of R
such that the equality 0 (z1) = 09 (z2) holds for z1, z> € R if and only if z; = 0(22)
forsome o_€ I'¢. A universal covering exists and is unique up to a conformal isomor-
phism of R whenever O is good, that is, distinct from the Riemann sphere with one
ramified point or with two ramified points z1, z> such that v(z1) # v(z2). Furthermore,
R is the unit disk D) if and only if x(0) < 0, R is the complex plane C if and only
if x(0) = 0, and R is the Riemann sphere P1(C) if and only if x(O) > 0 (see e.g.
[3], Section IV.9.12). Below we always assume that considered orbifolds are good.
Abusing notation, we use the symbol O both for the orbifold and for the Riemann

surface R.

Covering maps between orbifolds lift to isomorphisms between their universal
coverings. More generally, for any holomorphic map between orbifolds f : 01 — 02
there exist a holomorphic map F : O; — 03 and a homomorphism ¢ : I'g, — I'e,
such that the diagram

0, —— 0,
l%l leoz (19)
0, —L~ 0,
commutes and for any o € I'9, the equality
Foo=¢(0)oF (20)

holds. The holomorphic map F is an isomorphism if and only if f is a covering map
between orbifolds (see [22], Proposition 3.1).

If f: O1 — O3 is a covering map between orbifolds with compact supports, then
the Riemann-Hurwitz formula implies that

x(01) =dx(02), 1)

where d = deg f. More generally, if f : O] — O is a holomorphic map, then

x(01) = x(O2) deg f, (22)

and the equality is attained if and only if f : O; — O3 is a covering map between
orbifolds (see [22], Proposition 3.2).
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Let R;, R> be Riemann surfaces and f : R; — R» a holomorphic branched
covering map. Assume that R, is provided with a ramification function v,. In order
to define a ramification function v; on Rj so that f would be a holomorphic map
between orbifolds O1 = (Ry, v1) and Oy = (R, v2) we must satisfy condition (18),
and it is easy to see that for any z € R; a minimal possible value for v (z) is defined
by the equality

v2(f(2)) = vi(2)GCD(deg  f, va(f(2))- (23)

In case (23) is satisfied for any z € Rp, we say that f is a minimal holomorphic map
between orbifolds O; = (Ry, vi) and Oy = (R3, vy). It follows from the definition that
for any orbifold O = (R, v) and a holomorphic branched covering map f : R' — R
there exists a unique orbifold structure O’ = (R’,v’) such that f : O — O is
a minimal holomorphic map between orbifolds. We will denote the corresponding
orbifold by f*0. Notice that any covering map between orbifolds f : O; — Oy is a
minimal holomorphic map.

Minimal holomorphic maps between orbifolds possess the following fundamental
property with respect to the operation of composition (see [22], Theorem 4.1).

Theorem 2.1 Let f : R” — R and g : R’ — R be holomorphic branched covering
maps, and O = (R, v) an orbifold. Then

(g0 H*O = f*(g"0).

Theorem 2.1 implies the following two corollaries (see [22], Corollary 4.1 and
Corollary 4.2).

Corollary2.2 Let f : O — O’ and g : O — Oy be minimal holomorphic maps
(resp. covering maps) between orbifolds. Then g o f : O1 — Oz is a minimal
holomorphic map (resp. covering map). O

Corollary2.3 Let f : Ry — R andg : R’ — R, be holomorphic branched covering
maps, and O1 = (R, v1) and Oy = (Ra, vp) orbifolds. Assume that go f : O1 — O
is a minimal holomorphic map (resp. a covering map). Then g : g*Oy — Oy and
f: 01 = g*0y are minimal holomorphic maps (resp. covering maps). O

Most of orbifolds considered in this paper are defined on P!(C). For such orb-
ifolds, we omit the Riemann surface R in the definition of O = (R, v), meaning that
R = P!(C). Signatures of orbifolds on P! (C) with non-negative Euler characteristics
and corresponding I' 9 and 6 can be described explicitly as follows. If O is an orbifold
distinct from the non-ramified sphere, then x (O) = 0 if and only if the signature of O
belongs to the list

{2,2,2,2} {3,3,3}, (2,44}, {2,3,06}, (24
and x (O) > 0 if and only if the signature of O belongs to the list

{Liy, 1=2, {2,2,1}, 1=2, {2,3,3}, {2,3,4}, {2,3,5} (25)
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Groups I'9g C Aut(C) corresponding to orbifolds O with signatures (24) are generated
by translations of C by elements of some lattice L C C of rank two and the rotation
z — ¢z, where ¢ is an nth root of unity with n equal to 2,3,4, or 6, such thateL = L
(see [3], Section IV.9.5, or [19]). Accordingly, the functions 69 may be written in
terms of the corresponding Weierstrass functions as g (z), £'(z), ©2(2), and " (2).
Groups I'g C Aut (P1(C)) corresponding to orbifolds O with signatures (25) are the
well-known finite subgroups C;, Dy, A4, S4, As of Aut (P! (C)), and the functions
0 are Galois coverings of PL(C) by PL(C) of degrees [, 21, 12, 24, 60, calculated
for the first time by Klein in [14].

2.2 Functional equations and orbifolds

With each holomorphic map f : R; — R; between compact Riemann surfaces, one
can associate two orbifolds O{ = (Ry, vlf ) and Of = (R, v{ ), setting vg (z) equal to
the least common multiple of local degrees of f at the points of the preimage f~!{z},
and

f
v; (f(2)
vl (@) = 2222
deg . f
By construction,
f:0] - 04

is a covering map between orbifolds. It is easy to see that the covering map
I O{ — O{ is minimal in the following sense. For any covering map between

orbifolds f : O; — O, we have:
of <0,, 0f <0, (26)

Notice that for any orbifold O the orbifolds O?O and Ogo obviously are well defined
even if O is non-compact and satisfy

o =0 o =o. Q27)
The orbifolds defined above are useful for the study of the functional equation
fop=gogq, (28)
where
p: R— Cy, f:C1—>]P’1(C), q: R— Cy, g:C2—>]P’1((C)

are holomorphic maps between compact Riemann surfaces. We say that a solution
f. D, 8 q of (28) is good if the fiber product of f and g has a unique component,
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and p: R — Cyand g : R — C> have no non-trivial common compositional right
factor in the following sense: the equalities

p=pow, g=gow,

where w : R — R, D R - Ci, q: R — C are holomorphic maps between
compact Riemann surfaces, imply that degw = 1. In this notation, the following
statement holds (see [22], Theorem 4.2).

Theorem 2.4 Let f, p, g, q be a good solution of (28). Then the commutative diagram

0f —— of

I b

0 —£— 0f

consists of minimal holomorphic maps between orbifolds. O
Good solutions admit the following characterization (see [22], Lemma 2.1).

Lemma 2.5 A solution f, p, g, q of (28) is good whenever any two of the following
three conditions are satisfied:

e the fiber product of f and g has a unique component,
e p and q have no non-trivial common compositional right factor,
e deg f =degq, degg = degp. O
Note that if f and g are rational functions, then the fiber product of f and g has a
unique component if and only if the algebraic curve f(x) — g(y) = 0 is irreducible.
Finally, the following result (see [29], Corollary 2.9 or [30], Theorem 2.18) states

that “gluing together” two commutative diagrams corresponding to good solutions of
(28) we obtain again a good solution of (28) (see the diagram below).

PI(C) —— PI(C) —*— P!(C)
Je e v
Pl(C) —2— P!(C) —L— PL(C).
Theorem 2.6 Assume that the quadruples of rational functions A,C, D, B and

U, D,V,W are good solutions of (28). Then the quadruple U o A, C, V, W o B
is also a good solution of (28). O

2.3 Generalized Lattés maps

We recall that a Lattés map A is arational function of degree at least two such that there
exist a lattice A of rank two in C, an affine map L = az + b on C, and a holomorphic
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map ® : C/A — P!(C), such that L(A) € A and the diagram

C/A “EF /A

l(-) J'@ 29)

PL(C) —2 PL(C)

commutes (abusing the notation we will continue using the notation az + b for the
map on C/A induced by the affine map az + b on C). Equivalently, a Lattés map can
be defined as a rational function A of degree at least two such that A : O — O isa
covering self-map for some orbifold O [19]. Thus, A is a Lattes map if there exists an
orbifold O such that for any z € P!(C) the equality

V(A(z)) = v(z)deg A (30)

holds. By formula (21), such O necessarily satisfies x (9) = 0.. Furthermore, for a
given function A there might be at most one orbifold such that (30) holds (see [19] or
[28], Theorem 6.1).

Following [28], we say that a rational function A of degree at least two is a gener-
alized Lattes map if there exists an orbifold O, distinct from the non-ramified sphere,
such that A : O — O is a minimal holomorphic self-map between orbifolds; that is,
for any z € P! (C), the equality

V(A(z)) = v(z2)GCD(deg , A, v(A(2))) 31

holds. By inequality (22), such O satisfies x (O) > 0. Since condition (30) implies
condition (31), any ordinary Lattés map is a generalized Lattes map. Note that if O is
the non-ramified sphere, then condition (31) trivially holds for any rational function
A.

In general, for a given function A there might be several orbifolds O satisfying (31),
and even infinitely many such orbifolds. For example, it is easy to see that z =" : O — O
is a minimal holomorphic map for any O defined by

v(0) =m, v(co)=m, GCD(n,m)=1,
while £7;, : O — Oisaminimal holomorphic map for any O defined by the conditions
v(=l)=v(1) =2, v(co)=m, GCDn,m)=1.

Nevertheless, the following statement holds (see [28], Theorem 1.2).

Theorem 2.7 Let A be a rational function of degree at least two not conjugate
to z¥¢ or £T,. Then there exists an orbifold (‘)6‘ such that A : (‘)6‘ — (‘)6‘ is
a minimal holomorphic map between orbifolds, and for any orbifold O such that
A : O — 0 is a minimal holomorphic map between orbifolds, the relation O < (96‘

holds. Furthermore, (‘)6‘01 = Oé foranyl > 1. O
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It is clear that generalized Lattes maps are exactly rational functions for which the
orbifold (‘)6‘ is distinct from the non-ramified sphere, completed by the functions z ¢
and £T7y for which the orbifold O{)‘ is not defined. Furthermore, ordinary Lattes maps
are exactly rational functions for which x (Oé) = 0 (see [28], Lemma 6.4). Notice also
that since a rational function A is conjugate to z*¢ or &7} if and only if some iterate
Al > 1, s conjugate to ZHd or +Tj4 (see e.g. [28], Lemma 6.3), Theorem 2.7
implies that A is a generalized Lattes map if and only if some iterate A, [ > 1, is a
generalized Lattes map. Finally, notice that for a given rational function A the orbifold
(‘)61 can be effectively calculated from the branch data of A (see [28], Section 6).

We recall that a rational function A is called special if it is either a Lattés map, or
it is conjugate to z*" or +7,,. If A is a generalized Lattés map, which is not special,
then x ((‘.)6*) > 0, and the corresponding diagram (19) takes the form

PL(C) —— PI(C)
i 1Pop (32)
PL(C) —2 PL(C).

Moreover, for such A the homomorphism ¢ in (20) is an automorphism. More pre-
cisely, the following statement holds (see [22], Theorem 5.1).

Theorem 2.8 Let A and F be rational functions of degree at least two, and O an
orbifold with x(0) > 0 such that A : O — O is a holomorphic map between
orbifolds and the diagram

PL(C) —— P!(C)

o e

OLO

commutes. Then the following conditions are equivalent:

(1) The holomorphic map A is a minimal holomorphic map.

(2) The homomorphism ¢ : T'9 — T' 9 defined by the equality
Foo=¢()oF, oe€lgp,

is an automorphism of ' 9.
(3) The functions 0, F, A, 09 form a good solution of equation (28). O

Finally, we need the following simple result (see Lemma 6.6 of [28]) impos-
ing restrictions on ramification of generalized Lattés maps, and, more generally, on
ramification of holomorphic coverings maps between orbifolds of positive Euler char-
acteristic.
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Lemma 2.9 Let A be a rational function of degree at least five, and O, O, orbifolds
distinct from the non-ramified sphere suchthat A : Oy — O3 is aminimal holomorphic
map between orbifolds. Assume that x (O1) > 0. Then c(03) C c(Of).

3 Semiconjugate rational functions
3.1 Primitive solutions

Let A and B be rational functions of degree at least two. We recall that B is said to
be semiconjugate to A if there exists a non-constant rational function X such that the
equality

AoX=XoB (33)

holds. If deg X = 1, then A and B are conjugate in the usual sense. We say that
a solution A, X, B of functional equation (33) is primitive if C(B, X) = C(x). By
Lemma 2.5, a solution A, X, B of (33) is primitive if and only if the quadruple

f=A p=X, g=X, g=8B

is a good solution of (28). Primitive solution are described as follows (see [22], The-
orem 6.1, or [27]).

Theorem 3.1 Let A, X, B be a primitive solution of (33) with deg X > 1. Then
X(o{() >0, x(O%() > 0, and the commutative diagram

B
0f —— Of

R

A
X X
O2 OZ

consists of minimal holomorphic maps between orbifolds. O

In particular, Theorem 3.1 implies that if A, X, B is a primitive solution of (33)
with deg X > 1, then A is necessarily a generalized Lattés map, and X satisfies the
condition x (Oé( ) > 0, implying strong restrictions on X [26].

3.2 Elementary transformations

Let A be a rational function. For any decomposition A = V o U, where U and
V are rational functions, the rational function A = U oV is called an elementary
transformation of A, and rational functions A and B are called equivalent if there
exists a chain of elementary transformations between A and B. For a rational function
A, we denote its equivalence class by [A]. Since for any Mobius transformation W the
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equality A = (Ao W)o W~ holds, each equivalence class [A] is a union of conjugacy
classes. Moreover, an equivalence class [ F'] contains infinitely many conjugacy classes
if and only if F is a flexible Lattes map [24]. If A is a generalized Lattes map, then
any elementary transformation of A is a generalized Lattés map (see [28], Theorem
4.1), implying that any B ~ A is a generalized Lattés map.

The connection between the relation ~ and semiconjugacy is straightforward.
Namely, for A and A as above the diagrams

A ~
PiC) — PI(©) Pl —25 PYO)
lU lU lv lv
PlC) — Pl@©). P —2 PYO)

commute, implying inductively that if A ~ A, then A is semiconjugate to A, and

A is semiconjugate to A. Moreover, the following statement, obtained by a direct
calculation, is true (see [28], Lemma 3.1).

Lemma 3.2 Let
A—> Al — Ay —> -+ > A

be a chain of elementary transformations, and U;, Vi, 1 <i < s, rational functions
such that

A=VioU;, A =U;0oV;, 1<i<sys,
and
UioVi=Viy1oUiy1, 15i<s—1
Then the functions
U=UsoUs_10---0U;, V=Vio---oVi_10V;

make the diagram

PL(C) —2— PL(C)

v] It

Pl(C) —2 PL(C)

v v

PL(C) —2— P!I(C)
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commutative and satisfy the equalities

VolU = A%, UoV =AY,

Non-primitive solutions of (33) reduce to primitive ones by chains of elementary
transformations (see [22,28] for more detail). Below we only need the following state-
ment.

Proposition 3.3 If A, X, B is a solution of (33) and A is not a generalized Lattés map,
then B ~ A and there exists a rational function Y such that the diagram

P'C) —2— PI(C)
X l lx
P'(C) —2 P'(C)
Yl ly
PI(C) —2— P'(©),
commutes, and the equalities

YoX=B% XoY=A"

hold for some d > 0.

Proof In case deg X = 1, the conlcusion of the proposition holds for ¥ = X! and

d = 0. Assume now that deg X > 1. Since A is not a generalized Lattes map, it
follows from Theorem 3.1 that the triple A, X, B is not a primitive solution of (33).
Therefore, by the Liiroth theorem, C(B, X) = C(U;) for some rational function U
with deg Uy > 1, and hence

B=VioU;, X=X10U;
for some rational functions X1, Vj. Since equality (33) implies the equality
AoXi=X10(Uj 0V,
the triple A, X1, Uy o V| is also a solution of (33). Moreover, this new solution again
is not primitive by Theorem 3.1, implying that there exist rational functions X7, V»,
U, such that
UioVi=V0U;, X;=Xy0U,,
and

Ao Xy =Xp0(UyoW).
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Continuing in this way and taking into account that
deg X > deg X1 >degXy ...,

we obtain a chain of elementary transformations between A and B and the represen-
tation

X=UsoUs_10---0U

as in Lemma 3.2, so the proposition follows from this lemma. O

4 Invariant, periodic, and preperiodic curves.
4.1 Invariant curves and semiconjugacies

Let Aj, A5 be rational functions. We denote by (A1, A») : (P'(C))? — (P'(C))? the
map given by the formula

(z1, 22) — (A(z1), A(22)).

We say that an irreducible algebraic curve C in (P'(C))? is (A1, Ap)-invariant if
(A1, A2)(C) =C, and (A}, Ap)-periodic if

(A1, A" (C) =

for some n > 1. Finally, we say that £ is (A, As)-preperiodic if (Ay, A2)°L(C) is
periodic for some [ > 1.

The simplest (A, As)-invariant curves are vertical lines x = a, where a is a fixed
point of A1, and horizontal lines y = b, where b is a fixed point of A;. Other invariant
curves are described as follows.

Theorem 4.1 Let Ay, Aj be rational functions of degree at least two, and C an irre-
ducible (A1, Aj)- invariant curve that is not a vertical or horizontal line. Then the
desingularization C of C has genus zero or one, and there exist non-constant rational
maps X1, X» : C— P (C) and B : C — C such that the diagram

¢ 22 ¢y
(Xl,Xz>l l(xwm (34)
@'(©))? L122 (pl(C))2

commutes and the map t — (X1(t), X2(t)) isa genericglly one-to-one parametriza-
tion of C. Finally, unless both Ay, Ay are Lattés maps, C has genus zero.
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Proof Let C be the desingularization of C, and 7 : C — C the desingularization map.
We set

X|i=xom, X, =yom,

where x, y : (PL(C))2 — PL(C) are the projections on the first and on the second
coordinate correspondingly. Since the map (X1, X2) : C — C is an isomorphism off a
finite set of points, the map (A1, Ay) : C — C lifts to arational map B : C — C which
makes diagram (34) commutative. Furthermore, since C is not a vertical or horizontal
line, X1 and X, are non-constant, implying by (34) that

deg A; = deg A, = deg B.
In particular, deg B > 2. It follows now from the Riemann-Hurwitz formula

28(0) —2=(2g(0) —Ddeg B+ ) (e —
peC

that g(C) < 1. Finally, if g(C) = 1, then A; and A; are Lattés maps. Indeed, in this
case C = C/A for some lattice A, and B : C/A — C/A is induced by an affine map.
Thus, diagram (34) consists of a pair of diagrams of the form (29). O

Remark 4.2 Note that Theorem 4.1 implies in particular that if deg A; # deg A», then
any (A1, Ap)-invariant curve is a vertical or horizontal line.

Remark 4.3 For an arbitrary field of characteristic zero K and rational functions A
and A; defined over K the notion of invariant curve is defined in the same way as
above. Furthermore, it is easy to see that if K is algebraically closed, then an analogue
of Theorem 4.1 remains true over K.

Below we will consider only fields K that are subfields of C. For the problems
considered in this paper, such a restriction does not lead to the loss of generality since
A1 and A; defined over a field of characteristic zero actually are defined over a finitely
generated extension of (Q, and such an extension can be embedded into C. Taking this
into account, we do not consider the case K # C separately till the fifth section. Note
that the assumption K C C allows us in particular to continue using the notion of a
generalized Lattes map.

The following lemma relates periodic curves for pairs of semiconjugate maps.

Lemma4.4 Let Ay, Az, By, Bz, X1, X2 be non-constant rational functions such that
the diagram

By)

@'(©)? 2B pl(0))?

(X"XZ).L l(leXz)

)2 (A1,A2)

PY(C) (PY(C))?
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commutes. Then for any irreducible (A1, Aa)-periodic (resp. preperiodic) curve C
there exists an irreducible (B, By)-periodic (resp. preperiodic) curve C' such that
C = (X1, X2)(C).

Proof For any irreducible curve C in (P'(C))? the preimage £ = (X1, X2)~'(C)
is a union of irreducible curves, and any irreducible component C’ of £ satisfies
(X1, X2)(C") = C. Furthermore, if C satisfies (A1, A2)°"(C) = C, then & satisfies
(B1, B2)°"(€) C &, implying that all components of £ are (Bj, By)-preperiodic and
at least one of these components is (Bj, By)-periodic. Similarly, if C is (Aq, A)-
preperiodic, then any component C’ of £ is (B}, By)-preperiodic. O

Assuming that at least one (A, Ap)-invariant curve C is known, Theorem 4.1
combined with Lemma 4.4 permits to reduce describing (A1, Az)-periodic curves for
a pair of functions Ay, A, to describing (B, B)-periodic curves for a single function
B.

Corollary 4.5 Let Ay, Az be rational functions of degree at least two that are not Lat-
tes maps, and B a fixed irreducible (A}, Aj)-invariant curve that is not a vertical
or horizontal line. Then there exist rational functions X1, X2, B such that diagram
(5) commutes, the map t — (X|(t), X2(t)) is a parametrization of B, and any irre-
ducible (A1, Ay)-periodic (resp. preperiodic) curve C is the (X1, X2)-image of some
irreducible (B, B)-periodic (resp. preperiodic) curve C'. O

4.2 The case where A, A; are not generalized Lattés maps

In this section, we describe (A1, As)-invariant, periodic, and preperiodic curves in the
case where A1, A, are not generalized Lattes maps.

Proof of Theorem 1.1. It was already mentioned in the introduction, that for any ratio-
nal functions X1, X5, A, B that make diagram (5) commutative, the map ¢t —
(X1(1), Xo(t)) is a parametrization of some (A1, Aj)-invariant curve C.

In the other direction, assume that C is an (A1, A)-invariant curve. Then by The-
orem 4.1 there exist rational functions X, X7, B such that diagram (5) commutes
and the map ¢ — (X(¢), X2(¢)) is a parametrization of C. Furthermore, since A} and
Aj are not generalized Lattes maps, it follows from Proposition 3.3 that there exist
rational functions Y;, i = 1, 2, such that the diagram

2D p(©))?

(P1(C))*
(XI’XZ)l l(Xl’XZ)

@L(C)? L ple))? (35)
(YleZ)l l(Yl,YZ)

@'(©)? 22 @!(C))?
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commutes and the equalities
od; od; .
XioY;=A", YioX;=B", i=1,2, (36)

hold for some dy, d, > 0.
Let us show that modifying Y7 and Y> we may assume that d; = d>. Suppose, say,
that d» > dj. Setting d = d» and completing diagram (35) to the diagram

@'©)? 22 @ (©)?

(Xlgxz)J( l(XLXz)

E'(©) "2 @H(0))?
(Yl,Yz)l l(Yl,Yz)
E©)2 22 @)
<B°<"2—d1>,z>l l(B“dz—dl),z)
®©) 22 @)
we see that for the rational functions
Y =B @ Woy, Y=Y,
diagram (35) still commutes. Moreover,
Xio¥) =X, 0B @M oy = AT o x 0y = A,
X20Y = X0, = AS,
and

YioX; =B i=1,2.

Theorem 4.6 Let Ay, Ay be rational functions of degree at least two that are not
generalized Lattes maps, and C an irreducible algebraic curve in (P'(C))? that is
not a vertical or horizontal line. Then C is (A1, Aa)-periodic if and only if there exist
rational functions X1, X2, Y1, Y2 such that the equalities

XioY) =AY, Xs0Yy = ASY, (37)
YIoX =Y0X» (38)

hold for some d > 0, and the map t — (X1(t), X2(t)) is a parametrization of C. On

the other hand, C is (A1, Aa)-preperiodic if and only if there exist rational functions
as above such that C is a component of the curve Y1 (x) — Y2(y) = 0.
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Proof If (A1, A2)°/(C) = C for some [ > 1, then by Theorem 1.1 there exist rational
functions X1, X», Y1, Y2, B such that the diagram

@@y 22 @(©)?

(Xl,Xz)l J'(Xl,Xz)

ol ol
@®'(©)? L) i)y (39)

(YI,YZ)l l(YI»YZ)

(B,B)
PL(C)?* —— @'(C))?
commutes, the equalities
Xio0Y) = Acl)dol, Xo0Y, = A;dol, (40)
YioX|=Yy0X,=B% (41)

hold for some dy > 0, and t — (X (1), X»(¢)) is a parametrization of C. Thus, (37)
and (38) hold for d = Idy.
On the other hand, if (37) and (38) hold, then setting

B=Y oX =Y,0X» (42)
we see that the diagram
®'©2 LE @0y
(Xl,Xz)l Jv(Xqu)

od pod
@) S @)

commutes, implying that the curve C parametrized by the map t — (X(¢), X2(¢))
satisfies (A1, A2)°?(C) = C. This proves the first part of the theorem.

Assume now that C’ is an (A, Ap)-preperiodic curve. Then there exists a curve C
such that (A1, A2)°/(C) = C for some [ > 1 and C’ is contained in the preimage of C
under the map (A1, A2)°® for some s > 0. Therefore, by the already proved part of
the theorem, C’ is a component of the curve

(Y10 ATH(x) — (Y20 AF)(y) =0

for some rational functions Y7, Y» satisfying (39), (40), (41). Moreover, since the
equality

(A1, Ap)°UH0) (') = (A1, A2)°0(C))
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implies that
(A1, A)°H(C) = (A1, A (C)

for any s > s, without loss of generality we may assume that s = ¢/ for some ¢ > 1.
Thus, C’ is a component of the curve

Y{(x) = Y;(y) =0,
where
Y[ =Y10AS", ¥)=Yr0AS,
and the functions Y 1/ , Yz/ satisfy the required conditions (37) and (38), since

Xj oY) = Al o g0l = ASFDI - — o)

1

and
Y/ oX; =Y 0 A o X; = ¥; 0 X; 0 B = B°% o B°" = Bt i =12,
Lastly, if (37) and (38) hold, then for B defined by formula (42) the diagram

Od,Agd)

@®'(©)? L i)y

(Yl,Yz)l l(Yl,Yz)

®'©)y 22 (@l0)?

commutes. Therefore, curve (11) satisfies (A, Ay (&) C &, implying that every
component of £ is preperiodic. O

Remark 4.7 Note that for every (A1, Az)-invariant curve C we can find rational func-
tions X1, X», Y1, Y2, B satisfying conditions 1)-3) of Theorem 1.1 and the additional
condition that the parametrization r — (X(¢), X2(t)) of C is generically one-to-one,
or equivalently that C(X, X3) = C(z). Indeed, the functions Y; and Y> in the proof of
the necessity are constructed from the functions X and X» provided by Theorem 4.1,
and these functions satisfy the required condition. However, arbitrary rational func-
tions satisfying (8), (9), (10) do not necessarily satisfy condition C(X 1, X») = C(z).
A similar remark holds for Theorem 4.6.

Remark 4.8 Note that if under the assumptions of Theorem 1.1 the functions A, Aj
are defined over an algebraically closed field K C C, then we can assume that the
functions X, X2, Y1, Y>, B are also defined over K. Indeed, for X, X», B this is
a corollary of Theorem 4.1 (see Remark 4.3). On the other hand, if X, X, B are
defined over K, then Y7, Y> are also defined over K since their coefficients are given
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by a linear system of equations over K obtained from the second group of equalities
in (36). A similar remark holds for Theorem 4.6.

4.3 The case where A; = A;
In this section we provide an alternative description of (A, Aj)-invariant, periodic,
and preperiodic curves in the special case Ay = Ay = A in terms of functions

commuting with A or with some iterate of A.

Proof of Theorem 1.2. 1f C is (A, A)-invariant, then applying Theorem 1.1 we can find
rational functions X1, X3, Y1, Y2, B such that the diagram

(B,B)

(P1(C))? —— (P'(©))?
(XI’XZ)l l(X],X2)

@' (©)? L4 @) (43)
(YleZ)l l(Yl,Yz)

@' (©)? 22 @ (@©)?,

commutes, the equalities
XioYi =A%  YioX;,=B% i=1,2,

hold for some dy > 0, and r — (X(¢), X2(¢)) is a parametrization of C. Completing
now diagram (43) to the diagram

@'©) L @)

(Yl,Yl)l l(Ylle)
@02 22, (pl(C))
(XI’X2)l l(Xl,XZ)

@' (©)? LY @) (44)

(YI,Yz)l l(Yl,Yz)

@' (©)? 22 @l ()

(lexl)l l(X],X])

®'(©)? L4 @l(©)?,
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and setting
U =X10Y), Uy=Xy0Y], Vi=X10Y, Vo=X10Y,, 45)

we see that the diagram

@'(©)? L2 (P!(C))?
(UlyUz)l l(Ul,Uz)
@'(©)? L2 (pl(C))? (46)
(Vl-,VZ)l l(Vl,Vz)
®'(©)? L2 @)

commutes, implying that Uy, U, Vi, V> commute with A.
Furthermore, we have:

VioU=X10Yi0XjoY1 =X 0B%oY = A%0 X, 0Y =A%, =12,
and
UoVi=X;oYioXi0Y;=X;0B®oY, =AM o X;0Y; = A% j=1,2,

implying that equalities (12) and (13) hold for d = 2dy. Finally, since obviously
(Y1, Y1)(A) = A, the equality

(U1, U2)(A) = (X1, X2)(A) =C (47)

holds, that is,  — (U} (¢), U2(t)) is a parametrization of C. This proves the necessity.
The sufficiency follows merely from the commutativity of the top square of diagram
(46), which in turn follows from the assumption that U; and U, commute with A. O

Remark 4.9 Note that for A, # A an analogue of diagram (44) is obtained by chang-
ing (Y1, Y1) to (Y1, Y2) and (X1, X1) to (X1, X2). Nevertheless, equality (47) does
not hold anymore since (Y1, Y2)(A) # A.

Theorem 4.10 Let A be a rational function of degree at least two that is not a gen-
eralized Lattés map, and C an irreducible algebraic curve in (P'(C))? that is not a
vertical or horizontal line. Then C is (A, A)-periodic if and only if there exist rational
functions Uy, Ua, Vi, Vo commuting with some iterate of A such that the equalities

UioVi=UoVy= A%, (48)
VioUj=V,0U; = A% (49)
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hold for some d > 0 and the map t — (U\(t), Ux(t)) is a parametrization of C. On
the other hand, C is (A, A)-preperiodic if and only if there exist rational functions as
above such that C is a component of the curve Vi(x) — Va(y) = 0.

Proof. The first part of the theorem follows directly from Theorem 1.2, so we only

must prove the second part.
The sufficiency follows from the commutativity of the diagram

®' ()2 LA, pi(o)y2

(VI,VZ)l l(Vl,Vz)

(AOd,AOd)
(P1(C))> —— (P'(0))?
in the same way as in the proof of Theorem 4.6. To prove the necessity, let us observe

that equality (13) implies, in the notation of the proof of Theorem 1.2, that the invariant
curve (47) is a component of the curve defined by the equation

Vikx) = Va(y) =0.
Therefore, if C' is an (A, A)-preperiodic curve, then C’ is a component of the curve
(Vio A%)(x) = (V20 A*)(y) =0
for some s > 0 and rational functions V;, V», which commute with A% for some ! > 1

and satisfy (48), (49). Furthermore, as in the proof of Theorem 4.6, without loss of
generality we may assume that C’ is a component of

Vi(x) = V3(y) =0,
where
Vi=VioA", V]=V,0A"
fo some # > 1. Finally, V| and V; commute with A° and satisfy

UioV/ =AU+ =172
VioUi=Vio A o Ui = A o V; o U; = A 0 A°? = A°W@HD 1 =1,2. O

1

Remark 4.11 Note that since the functions U;, U, V}, V5, in Theorem 1.2 and The-
orem 4.10 commute with some iterate of A, and A is not special, it follows from
the Ritt theorem about commuting rational functions [32] that each of the functions
Uy, Uy, Vi, V> has a common iterate with A.
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Remark 4.12 Note that if under the assumptions of Theorem 1.2 the function A is
defined over an algebraically closed field K C C, then we can assume that the func-
tions Uy, Uy, V1, V> are also defined over K. Indeed, the functions Uy, U, Vi, V; are
given by equality (45), and the functions X1, X», Y1, Y2 can be defined over K by
Remark 4.8. A similar remark holds for Theorem 4.10.

4.4 Description of (A1, A)-invariant curves for non-special A1, A;

In this section, we show that describing (A1, As)-periodic and preperiodic curves for
non-special Ay, A; can be reduced to the case where A| and A, are not generalized
Lattes maps.

Lemma4.13 Let U, V, X be rational functions suchthat X = UoV. Then OZU =< Oé(.
Moreover, t:ng = OF, then Og =< O%/.

Proof Since X : O{( — O§ is a covering map, it follows from Corollary 2.3 that
U: U0 - 0f, v:of - urof (50)
are covering maps. Therefore, since
u:0Y -0y, v.:0/ -0)

also are covering maps, the relation Og < Of holds by (26). Moreover, in addition,
we see that

oY <u*of, oY <v*oX. (51)
It follows from formula (21) applied to the first covering in (50) that

X (U*05) = degU - x(03).

Since, on the other hand,
Xx(07) = degU - x(0%),
we see that if Og = (95(, then
x(07) = x(U*07). (52)

Since for any pair of orbifolds satisfying 0 < O the equality x (6) = x(O) holds if

and only if 0=0, equality (52) and the first relation in (51) imply that OV = U *O; .
It follows now from the second relation in (51) that Og =< O?. O
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Theorem 4.14 Let A be a non-special rational function of degree at least two, and B

a rational function that makes the diagram

Pl(C) —2— PI(C)

0.4 0
Ool lo{)‘

PL(C) —2— PL(C).

commutative. Then the orbifold Og is the non-ramified sphere.

Proof Let us complete diagram (53) to the diagram

=B ¢ =B
9% — 0O

0 0
of | I

PL(C) —2— P(C)

0.4 004
Ool loo

PL(C) —2 PI(O),
and set

X =9an O@Og.

(53)

Let us observe first that 65 = P!(C), implying that the functions B¢ B and X are

rational. Indeed, since X(OB) > 0, otherwise 63 C, C =

az + b for some

a,b e C, and 903 and X are doubly periodic meromorph1c function with respect to
some lattice A. Therefore in this case diagram (29) commutes for some holomorphic
function ®, in contradiction with the assumption that A is not a Lattés map.

Since the quadruples A, 906\ , 903 ,Band B, Go{f , 90{; , C are good solutions of (28)
by Theorem 2.8, the quadruple A, X, X, C is also a good solution of (28) by Theo-
rem 2.6, implying that A : Oé( — Oé( is a minimal holomorphic map by Theorem 2.4.

Therefore,
of < of
by Theorem 2.7. Since
00A
0," = 0f

by the first part of Lemma 4.13 and
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by (27), this implies that
0 = 0f. (54)
Finally, it follows from (54) by the second part of Lemma 4.13 that

0 OA

0,? <0,7°,

implying that Og is non-ramified by (27). i

Theorem 4.15 Let Ay, Az be non-special rational functions of degree at least two. Then
there exist rational functions X1, X», B1, By such that X1, X, are Galois coverings
of P (C) by P'(C), B, B> are not generalized Lattés maps, the diagram

B)

@'(©)? 2B pl(e))?

(Xl-,XZ)l l(Xl,Xz)

A2)

P (©)? L2 ()2

commutes, and every irreducible (A1, A1)-periodic (resp. preperiodic) curve is the
(X1, X2)-image of some irreducible (B, By)-periodic (resp. preperiodic) curve.

Proof Applying Theorem 4.14 to A and A;, we obtain the commutative diagram

@'(©)? LB el

6 ay.0_4,) © A1.0_4,5)
9% 9 9" 9

)2 (A1,A2)

(P'(C) (P1(C))?,

where Bj., By are not generalized Lattes map, and the use of Lemma 4.4 finishes the
proof. O

Remark 4.16 Note that in fact we proved a more precise version of Theorem 4.15 with
the concrete representation

X1 = 9031, X = 9032

suitable for applications.

5 Points with Zariski dense orbits
5.1 Canonical heights and semiconjugacy

Let K be a field of characteristic zero, which is assumed to be a subfield of C finitely
generated over Q, and A € K (z) a non-special rational function of degree n > 2. In
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this section, we give a criterion for the (A, A)-orbit of a point (xg, yo) € (PY(K))?
to be Zariski dense in (P'(C))? in terms of canonical heights of xo and yo. As an
application, we prove a version of a conjecture of Zhang on the existence of rational
points with Zariski dense forward orbits for endomorphisms of (PL(K))%. We first
assume that K is a number field and use the Weil height. Then we explain how to
extend our results to the general case using the Moriwaki height.

Let K be a number field. For x € P! (K) we denote by (x) the (logarithmic) Weil
height of x. We recall that for any rational function R € K (z) of degree m there exists
a constant C1 > 0 depending only on R such that for every x € P!(K) the inequality

|h(R(x)) —mh(x)| < Cy (55)

holds. Furthermore, by the Northcgtt theorem, for any numbers D1, D> > 0 there are
only finitely many points x € P! (K) satisfying the conditions

h(x) < D1, [QKx):Q] =< D
(see e.g. [33]).

Following [2], for A € K(2) of degree n > 2 we define the canonical height
(associated to A) of a point x € P!(K) as the limit

ha(x) = lim h(A™ @)

r—00 n’

(56)

We recall the following properties of the canonical height [2,33]. First, for every
x € P!(K) the equality

RA(A(x)) = nha(x) (57)
holds. Second, there is a constant Cy > 0 depending only on A such that
ha(x) = h(x)| < Ca (58)
for every x € P'(K). Third, a point x € P'(K) is A-preperiodic if and only if
ha(x) = 0. Finally, we mention that the function % 4 : PY(K) — R is defined by the
conditions (57) and (58) in a unique way. o
Note that (55) and (58) imply that for any R € K (z) of degree m there exists a
constant C3 > 0 depending only on A and R such that

BA(R(x)) — mha(x)| < C3 (59)

for every x € P'(K). Specifically,

[HA(R(x)) — mha(x)] < [ha(R(x)) — R(R(x))| + [h(R(x)) — mha(x)| <
[RA(R(X)) — h(R(xX))| + [h(R(x)) — mh(x)| 4 |mh(x) — mha(x)| < C2 + Ci +mCa.
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Proposition 5.1 Let A € K (z) and B € K (z) be rational functions of degree at least
two, and X € K (z) a rational function of degree at least one such that the equality
A o X = X o B holds. Then for every point x € P'(K) the equality

ha(X () = hp(x)deg X
holds.
Proof. Setting n = deg A = deg B and using inequality (55), we have:

FaX) = tim MATEQD) o BEXET@)
r—00 n

r— 00 n"
h(B* (x))deg X + O(1)  ~
Jim MBTWHeg X+ OW) _ 7o x. o
r— 00 n"

Notice that Proposition 5.1 implies the following known corollary.

Corollary 5.2 Let A € K(2) be a rational function of degree n > 2 and V € K(Z) a
rational function of degree m > 2 commuting with some iterate of A. Then hv =h A-

Proof Proposition 5.1 implies that if rational functions B and V commute, then
h(V(x) = hp(x)deg V

for every x € P'(K). Therefore, since the function 7’l\A is defined by the COIldlthIlS
(57) and (58) in a unique way, for commuting B and \% the equality hv = hB holds.
Thus, the condition of the corollary implies that hy =h 4o for some [ > 1. On the
other hand, it follows from (56) that n A= 7 Aol - O

5.2 Points with dense orbits: the case of a number field

Let A € C(z) be a rational function of degree n > 2, and ng a minimum natural
number such that n = nlé for some k > 1. Let us recall that by the Ritt theorem [32] if
arational function V € C(z) of degree m > 2 commutes with A, then A and V have a
common iterate, unless they are both special. Therefore, if A is not special, there exist
r, s € N such that

Vor — AOS
implying that m = n®/" = n6 for some / € N.

Proof of Theorem 1.3. Let (xo, yo) € (P'(K))? be a point, and O its (A, A)-orbit.
Assume that the Zariski closure of O in (P!(C))? does not coincide with (P!(C))2. It
is easy to see (see e.g. [16], Lemma 7.20) that then all but finitely many elements of
O are contained in some (A, A)-invariant algebraic set Z C (P'(C))?. Moreover, if
xp and yp are not preperiodic points of A, then Z is a finite union of curves that are
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not vertical or horizontal lines. Therefore, there exists an (A, A)-preperiodic curve
C c (P'(C))? that is not a vertical or horizontal line such that (xo, yo) € C.

Assume first that A is not a generalized Lattes map. Then Theorem 4.10 implies
that C is a component of a separated variable curve

Vitx) = Va(y) =0,

where V|, V, € C(z) are rational functions comrrilting with some iterate of A. More-
over, we can assume that V; and V; belong to K (z) (see Remark 4.12). Hence, by
Corollary 5.2,

Bv, =By, = ha, (60)
and, in addition,
deg V| =n8, deg V» =nf)2 (61)

for some /1,1l € N.
Since V1(x9) = Va(yo), the equality

Ra(Vi(x0)) = ha(Va(30))

holds. On the other hand, by (60) and (61), we have:

ha(Vi(x0)) = hy, (Vi(x0)) = nid by, (x0) = nll ia (x0),
ha(Va(0) = hy, (Va(30)) = n2hv, (o) = nlhia(yo).

Therefore, equality (15) holds forl =11 — I».

Assume now that A is a generalized Lattes map, and let (xg, yo) € (PL(K))? be a
point such that xo and yq are not preperiodic points of A, and the canonical heights of
xo and yq do not satisfy condition (15). By Theorem 4.15, there exist rational functions
X and B such that equality (33) holds, X : PH(C) — P(C) is a Galois covering,
and B is not a generalized Lattés map. Moreover, in fact, X = 903’ implying that

c((‘)f ) = c((‘)é) (see Remark 4.16). Let us observe that without loss of generality we
can assume that X and B belong to K (x). Indeed, it is well-known that for any Galois
covering X : PL(C) — P(C) there exist Mdbius transformations 8;, 8, such that
the function §; o X o §; is ramified over 0, 1, oo and has rational coefficients. Since
obviously c(O‘z“) C K and

c(05) = ¢(0g) S c(03)
by Lemma 2.9 (in case deg A < 5, we can consider A°3 instead of A), this implies that
for some Mobius transformation § the function {’ = X o4 belongs to K (x). It follows
now from (33) that preimages of any point x € K under the function B ' =810Bos

belong to K, implying that B’ € K (x).
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Let now x), € P!(K) and y) € P'(K) be arbitrary points such that the equalities
X(x{) = xo and X(yy) = yo hold. It is easy to see that equality (33) implies that
x(, nor y; are not preperiodic points of B. Moreover, Proposition 5.1 implies that the
canonical heights of x{, and y associated to B do not satisfy the condition

hp(yy) = nhhp(x), e

Applying the already proved part of the theorem, we conclude that the (B, B)-orbit of
(x4, ¥p) is dense in (P'(C))?. Since for any (A, A)-preperiodic curve C in (P!(C))?
the preimage £ = (X, X )~1(C) is a union of (B, B )-preperiodic curves, this implies
that (A, A)-orbit of (xq, yo) is dense in (P! (C))2. O

Let us recall that the Zhang conjecture about orbits states that if ¢ : X — X
is a polarizable dynamical system over some number field K, then there exists a
point @ € X (K) whose forward ¢-orbit is Zariski dense [20]. More generally, it was
conjectured in the paper [16] that if X is an irreducible variety over an algebraically
closed field of characteristic zero K and f : X — X is a dominant rational self map
such that there do not exist a positive dimensional algebraic variety ¥ and a dominant
rational map g : X — Y for which g o f = g, then there exists ¢ € X(K) with a
Zariski dense forward orbit.

For a detailed discussion of the above ‘“Zariski dense orbit conjecture” and a descrip-
tion of a few special cases in which it is known to be true we refer the reader to the
recent paper [34]. In particular, the addendum to [34] contains a proof of the Zariski
dense orbit conjecture for endomorphisms of (P!(K))?, which is based on the main
result of [34] about the existence of Zariski dense orbits for endomorphisms of projec-
tive surfaces. Below, we give an alternative proof of the Zariski dense orbit conjecture
for endomorphisms of (P1(K))%, which is based on Theorem 1.3. Notice that for
endomorphisms induced by special rational functions the truth of the Zariski dense
orbit conjecture follows from known results (see [34] and also [16] for the polynomial
case). Thus, as before, we will consider only the case of non-special functions.

Theorem 5.3 Let K be a number field and Ay, Ay € K (z) non-special rational func-
tions of degree at least two. Then there is a point in (P'(K))? whose (A1, A>)-forward
orbit is Zariski dense in (P'(K))2.

Proof Let us show first that if A| = Ay = A € K(z), then there exists a point in
(P'(Q))? whose (A, A)-orbit is dense in (P! (C))2.

Let R € Q(x) be an arbitrary rational function of degree two, say, z2. By the
Northcott theorem, there is a point xo € P! (Q) with 71\,4 (xg) > C3, where C3 is a
constant such that (59) holds. Setting n = deg A and assuming that ng > 2, we obtain
from (59) the inequalities

7a(R(x0)) > 2ha(x0) — C3 > ha(xo)
and

TA(R(x0)) < 2ha(x0) + C3 < 3ha(x0) < noha(xo).
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Thus, the point yo = R(xo) € P!(Q) satisfies
0 < ha(x0) < ha(yo) < noha(xo),

implying that xo and yg are not preperiodic points of A, and the canonical heights of
xo and yg do not satisfy condition (15). Therefore, the (A, A)-orbit of (xo, yo) is dense
in (P!(C))? by Theorem 1.3.

In case nog = 2, instead of a rational function of degree two we can take any rational
function R € Q(x) of degree three, obtaining

ha(R(x0)) > 3ha(x0) — C3 > 2ha(xo)
and
ha(R(x0)) < 3ha(x0) + C3 < 4ha(xo).
so that the point yo = R(xo) € P!(Q) satisfies
0 < noha(xo) < ha(yo) < ngha(xo).

Assume now that Aj, A2 € K(z) are arbitrary non-special rational functions of
degree at least two, and let (xq, yo) € (P'(K))? be an arbitrary point. If the (A1, A2)-
orbit of (xg, yo) is dense in (PY(K ))2, we are done. Otherwise, infinitely many elements
of the orbit belong to an (A, Aj)-periodic curve C defined over K. By Theorem 4.1,
there exist rational functions X1, X», B € K(x) and r > 1 such that the diagram

®'(©)? L2 pl(©)?

(Xl,Xz)l l(Xth)
A" AL
@' (©)2 L2 pi ey

commutes, and X1, Xo parametrize C. Moreover, since C contains infinitely many
points with coordinates in P'(K), there exists a parametrization of C defined over
K. Thus, without loss of generality we may assume that X, X, € K(x). By what
is proved above there is a point (xg, yo) € (P! ((@))2 whose (B, B) orbit is dense in
(P!(C))?, implying that the (A", A%)-orbit of the point (X1 (x0), X2(y0)) € (P'(K))?
is dense in (P'(C))? and hence in (P! (K))?. 0

5.3 Points with dense orbits: the case of an arbitrary field

Let us recall that by the results of Moriwaki [20] for every field K finitely generated
over Q one can define the height function b on P!(K) satisfying the following two
properties used in Sect.5.2. For any R € K (x) of degree m there exists a constant
C1 > 0 such that for every x € P!(K) the equality
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[H(R(x)) —mb(x)| < Cy

holds, and forany Dy, D, > Othere are only finitely many points x € P! (K) satisfying
the conditions

h(x) < D1, [Qx):Q] < Ds.

Defining now the canonical height corresponding to a rational function A € K (x) by
the formula

. Aor
() — lim DAY
r—00 n”
and repeating verbatim the proofs of Proposition 5.1 and Theorem 1.3, we obtain the
following result.

Theorem 5.4 Let K C C be a field finitely generated over Q and A a non-special
rational function of degree n > 2 defined over K. Then the (A, A)-orbit of a point
(x0, y0) € (IE”l(f))2 is Zariski dense in (P! ((C))z, unless either xq or yq is a preperiodic
point of A, or the canonical heights of xo and yq satisfy the condition

ba(o) = nbha(xo), l€Z,

where n is a minimum natural number such that n = néfor some k > 1. O
In turn, Theorem 5.4 implies the following statement.

Theorem 5.5 Let K C C be afieldand Ay, Ay € K (z) non-special rational functions
of degree at least two. Then there is a point in (P (K))? whose (A1, A>)-forward orbit
is Zariski dense in (P! (K))2.

Proof Defining K’ as the subfield of K generated by the coefficients of Aj, Ay and
arguing as in the proof of Theorem 5.3 we can find a point in (P'(K’))> whose
(A1, A»)-orbit is dense in (P!(C))? and hence in (P! (K))2. O

6 Finiteness theorems
6.1 Formulation of results
In this section, we prove several results, which can be considered as quantitative
analogues of results of the paper [29] in a slightly simplified setting. As an application,
we prove Theorem 1.4 and the finiteness of the number of (A1, As)-invariant curves

of any given bi-degree (d;, d>).
The first result is following.
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Theorem 6.1 There exists a function ¢ : N x N — R with the following property. For
any non-special rational function A of degree at least two and rational function X
such that for every d > 1 the algebraic curve

A () = X(») =0 (62)
has a factor of genus zero, there exists N < ¢(deg A, deg X) such that the equality
mNo%ézxoR (63)

holds for some rational function R.

Note that the assumption of Theorem 6.1 about curves (62) holds for any pair of
rational functions A and X satisfying (4) for some rational function B. Indeed, it
follows from (4) that

Ao X =XoB, d>1,

implying that the curve (62) has a component of genus zero with the parametrization
t — (X(1), B°(1)). Similarly, the above assumption holds for any A and X satisfying
(16). However, in this case Theorem 1.4 provides a more precise conclusion which
permits to getrid of the function 6, A in (63). On the other hand, if A isnota generalized
Lattes map, then 0, 4 reduces to the identical map even in the more general setting of
Theorem 6.1.

We say that two rational functions W and W, are pu-equivalent if there exists a
Mobius transformation . such that

Wi =Wyopu.

The nextresultis a weaker form of Theorem 6.1, which holds, however, for all functions
A including special, for which the function 906\ is transcendental or is not defined.

Theorem 6.2 There exists a function x : N x N — R with the following property.
For any rational functions A of degree m > 2 and integer n > 1, there exist at most

x (m, n) classes of u-equivalence of rational functions X of degree n such that for
every d > 1 the algebraic curve

A () = X(») =0
has a factor of genus zero.

Let A be a rational function. We denote by D = D[A, N, (Wy, hd)ﬁlvzl] a com-
mutative diagram of the form
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Pl(C) 5 pl(c) ... PYC) —2 PIC) " PO
J,WN lWNq le lWl lWO (64)
PlC) — > PI(C) ... P(C) —2- PLC) —25 PLO),

where hy, Wy, 1 <d < N, and Wy are rational functions. We say that D is good if
for any dy, d», 0 < d| < dy < N, the functions

Wai, hays10hg420---0hg, AR W,

form a good solution of equation (28). Note that if D is good, then by Lemma 2.5
deg W; = deg Wy, d > 1. For a good diagram D, we set

mp =degA, np=degW.

We call the number N the length of D. For a diagram D = D[A, N, (Wy, hd)ﬁl\’:l]
and ji, j2, 0 < ji < jo < N, wedenote by Dj, j, the sub-diagram of D bounded by
the arrows W, and W,.

Letr, 1 < r < N, be an integer. We say that D = D[A, N, (Wy, hd)f}’:]] is
r-periodic if for every j, 0 < j < N — r, the equality

Wiy, =W;oa;j

holds for some Mobius transformation o ;. We say that D is periodic if it is r-periodic
for some r, 1 < r < N. Finally, we say that D is preperiodic if for some Ny,
0 < No < N — 1, the sub-diagram Dy, y is periodic.

The last of the analogues of results of the paper [29] proved in this section is
following.

Theorem 6.3 There exists a function  : N x N — R with the following property. Any
good diagram D = D[A, N, (Wy, hd)fjvzl] such thatmp > 2 and N > Y (mp,np)

is preperiodic.

6.2 Proof of Theorem 6.3

As in [29], we use the following result proved in [25].

Theorem 6.4 Let U be a rational function of degree n. Then for any rational function
V' of degree m such that the curve Eyy : U(x) — V(y) = 0 is irreducible the
inequality

m — 84n + 168

gu,y) > ”

holds, unless X(Og) > 0. O
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We also need the following lemma, which is a particular case of Theorem 2.4 in
the paper [29].

Lemma 6.5 Let R be a compact Riemann surface, f : R — PY(C) a holomorphic
map, and O an orbifold. Then

o= foh (65)

for some holomorphic map h : O— R if and only if(f){ =< 0. O

For brevity, we call arational function f satisfying (65) a compositional left factor of
0. More precisely, by a compositional left factor of a holomorphicmap f : Ry — Ry
between Riemann surfaces, we mean any holomorphic map g : R* — R; between
Riemann surfaces such that f = g o i for some holomorphic map & : Ry — R’.

Lemma 6.6 There exists a function k : N — N with the following property. For any
orbifold O with x (O) > 0 there exist at most k (n) classes of p-equivalence of rational

functions f of degree n with Og =0.

Proof By Lemma 6.5, the equality Og = O implies that f is a compositional left
factor of 8. Moreover, it is easy to see that the equality

9@; :fo@olf

holds. Therefore, for any fixed O, the number of p-equivalence classes of rational
functions f of degree n with 0 = O does not exceed the number of subgroups of
index n in the group I'9. On the other hand, the number of such subgroups can be
bounded in terms of n, since "¢ is finitely generated. Since the group I'¢ is defined
by the signature of O, this implies that to prove the lemma we only must show that
for orbifolds whose signatures belong to the infinite series {[, 1}, [ > 2, and {2, 2, [},
[ > 2, from the lists (24), (25), the bounds for the number of p-equivalence classes
are uniform.

It is well-known (see e.g. Corollary 2.7 in [29]) that if (9{ is defined by the condi-
tions

v =1, vf(c0)=1,
then
f=Zon (66)
for some Mdbius transformation p, while if Og is defined by the conditions
/(= =2, v)=2 vf(c0) =1,
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then either
/ 1
z

or
f=+Tiopn (68)

for some Mobius transformation . Therefore, there exists exactly one u-equivalence
class of rational functions f of degree n such that the signature of O{ belongs to the

series {/, 1}, [ > 2, and there exist at most three such classes if the signature of (92f
belongs to the series {2, 2,1}, [ > 2. O

Lemma 6.7 Let D = D[A, N, (Wy, hd>9/:1] be a diagram such that
Clhg,Wg) =C(z), 1<d=<N. (69)
Assume that
W, =Wyopu (70)

forsomer, 1 <r < N, and Mobius transformation j1. Then D is good and r-periodic.
Proof Since (69) implies that the map
t — (ha(t), Waq(1)), 1=d=N,
is a generically one-to-one parametrization of some component of the curve
Wa—1(x) — A(y) =0,

we see that

deg Wy < degWy_1 <--- < deg Wi < deg Wp. (71)
Thus, (70) yields that

degW, =degW,_1 = --- =deg W = deg W,
implying by Lemma 2.5 and Theorem 2.6 that the sub-diagram Dy, is good. In
particular, the fiber product of Wj and A has a unique component and the functions
W1, hy are defined by W in a unique way up to natural isomorphisms. It follows now
from (70) that the fiber product of W, and A also has a unique component and

Wrp1=Wio :u'/
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for some Mgbius transformation p’. In particular, the sub-diagram Dy, is good.
Continuing arguing in this way, we conclude that D is good and r-periodic. O

Proof of Theorem 6.3. We first prove the theorem under the additional assumption
x(0y) =0, 0<d=<N. (72)

For a good diagram D = D[A, N, (W, hd)évzl] define k = k(D) as the number of

distinct orbifolds among the orbifolds O;V 4,0 <d < N. To prove the theorem it is
enough to show that there exists a function C = C(mp) such that

k(D) < C(mp). (73)
Indeed, if (73) holds, then Lemma 6.6 and the box principle imply that whenever
N >4 = C(mp)k(np),

there exist ji, j2, 0 < j1 < j» < N, such that W;, and W}, are p-equivalent. Since
equalities (69) hold by Lemma 2.5, this implies by Lemma 6.7 that the sub-diagram
Dj, n is (jo — j1)-periodic.

To prove (73) it is enough to bound in terms of mp the number of distinct sets
among the sets c(OgV 7),0 < d < N, and the number of distinct signatures among the

signatures v((f)zv‘i), 0 <d < N. Since
A:0YH 5ol 0<d<N-1,

is a minimal holomorphic map between orbifolds by Theorem 2.4, it follows from
Lemma 2.9 that if mp > 4, then every set c((‘);}v"), 0 <d < N — 1, is a subset of the
set c(Og‘). Since a rational function of degree m has at most 2m — 2 critical values,
this implies that the number of distinct sets among the sets c((‘);‘/ Y, 0<d<N,is
bounded in terms of m p. Moreover, this is also true if m p < 4. Indeed, the inequality
mp > 2 implies the inequality m‘;)3 > 4, and hence every set c((‘)gv"), 0<d<N-3,
is a subset of the set ¢(A°%), since

A 0) 5 0 0<d<N-3,

also are minimal holomorphic maps. Finally, possible signatures of the orbifolds O;V ‘4
0 <d < N, are contained in the lists (24), (25), and by formulas (66), (67), (68), if
v(OY) = {1,1},1 > 2, then [ = np, while if v(9)*) = {2,2,1}, > 2, then either
| = np orl = np/2. Thus, the number of distinct signatures among the signatures
v(O;V“), d > 0, does not exceed ten.

The proof of the theorem in the general case reduces to the case where (72) is
satisfied. Indeed, since the commutativity of diagram (64) implies that the curves

A (x) = Wo(y) =0, 1<d<N,
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have genus zero, applying Theorem 6.4 for U = Wy and V = A°V, we see that
whenever

mb > 84(np —2)

the inequality X(OEV %) > 0 holds. More generally, setting U = W;, 0 < i < Ny, and
V = A°N= we see that whenever

m N > 84(np —2), No =0,
the inequalities
x(0Y) =0, 0<d <N,

hold. Therefore, if

N > ¢ =log,,,(84(np —2)) + C(mp)k(np) + 1, (714)
then the inequalities

XY 20, 0<d<Clnpnp)+1,

hold. By the already proved part of the theorem, we conclude that there exist ji, ja,

0 < ji < jo < C(mp)k(np) + 1, such that W;, and W}, are p-equivalent, implying
as above that D is preperiodic. O

6.3 Proof of Theorem 6.1, Theorem 6.2, and Theorem 1.4

Proof of Theorem 6.1. Since for any holomorphic map f : R — R’ between compact
Riemann surfaces the inequality g(R) > g(R’) holds, it follows from the universality
property of the fiber product that if for every d > 1 curve (62) has a factor of genus
zero, then for every N > 1 there exists a diagram D of the form (64) such that Wy = X
and the conditions (69), (71) hold.

Assume that for some [, I, 0 <[} <[> < N, the condition

deg Wi, =--- =deg Wy, 1| =degW;, >2
holds. Then we conclude as in Lemma 6.7 that the sub-diagram Dy, ;, is good, and
applying Theorem 6.3 to the diagram D;, ;, we see that either there exist ji, jo,
Iy < j1 < ja <l such that W}, and W;, are u-equivalent, or
l1 =l < y(deg A, deg Wy,),
implying that
Iy =l < Y (deg A, deg X), (75)
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since the function in the right part of (74) is increasing in the argument n p. It follows

now from (71) and (75) that whenever

N > ¢p(deg A,deg X) = Y(deg A,deg X) - (deg X — 1) + 1,

(76)

(77)

(78)

either
degWy =1,
or there exist a Mobius transformation p and integers ji, j2, 1 < j1 < j» < N, such
that
Wi, =Wj on
and

degWj, =degW;, > 2.
In the first case, the function
Ri=hiohyo---ohyoWy'
satisfies
AN = X o Ry,
implying that
AN 0fgp = X o (Ri 00p).
In the second case, the equality
A% o Wiy=XoRy
holds for the function
Ry=hiohyo---ohj.
Furthermore, since D, j, is good, it follows from (78) by Theorem 2.4 that
A= o s o)
is a minimal holomorphic map, and hence

Wi, A

(79)

(80)

1)

(82)
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by Theorem 2.7. It follows now from Lemma 6.5 that the equality
Oos = W) oT
holds for some rational function 7', implying by (81) that
AT ofga =XoRyoT.
Thus,
AN 0y =X oRyoT o FPNTI),

where F is a rational function, which makes the diagram (32) commutative. O

Proof of Theorem 6.2. We recall that if R is a compact Riemann surface and
f : R — P!(C) is a holomorphic map, then functional decompositions f = U o V,
where V : R — R’ and U : R’ — P'(C) are holomorphic maps between compact
Riemann surfaces, considered up to the equivalence

U—-Uoupu, V—),l,L_IOV, u € Aut(R),

are in a one-to-one correspondence with imprimitivity systems of the monodromy
group of f. Thus, Theorem 6.1 implies that for non-special A the number of u-
equivalence classes of rational functions X of degree n such that for every d > 1
the algebraic curve (62) has a factor of genus zero is bounded by the number of
imprimitivity systems in the monodromy group of the function A°V o B¢ A In turn,
this number is bounded in terms of m and n.

Assume now that A is a Lattes map. In this case, it is still true that if N satisfies
(76), then either conditions (77) and (80), or conditions (81) and (82) hold. Moreover,

degWj, < degWy=n,

and (82) implies that
W.
x(0,") = x(0g) =0.

It follows now from Lemma 6.6 that the considered number of -equivalence classes
is bounded by the total number of imprimitivity systems in the monodromy groups
of a finite number of rational functions of the form A°/' o W, where degW < n,
0 < 0f, and j; < N.

Finally, by Theorem 3.6 of [29], if A is conjugate to z™, then any X satisfying the
conditions of the theorem has the form X = z” o u for some u € Aut(P'(C)), while
if A is conjugate to +T,,,, then either X = £7}, o i, or
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L/, 1
= _ ("
X—2<Z —I—Zn/z)ou,

for some u € Aut (P1(C)). Thus, the theorem is true also in this case. O

Proof of Theorem 1.4 1t follows from equality (16) that the map
t = AV @), R@))
is a parametrization of some irreducible component of the curve
A(x) — X(y) =0.
This parametrization is not necessary one-to-one. However, we can find a parametri-
zation Wy, hy such that C(Wy, h) = C(z). Moreover, the functions Wy, h; satisfy
the equalities

Ao(d_l)(l‘) =WioH|;, R=hjoH

for some rational function Hj. In particular, the diagram

Ppl(c) —— PYC) —— PY(©)
lz lWl lX
Pl(C) — AT pt ©) —2 PI(C)

commutes. Similarly, the map
1= (AP (@), Hi(0)
is a parametrization of some irreducible component of the curve
A(x) = Wi(y) =0,
implying that there exist rational functions W5, h» and H; such that the equalities
A2ty = Wy o Hy, Hi=hyoHy, C(Wa,h2) =C(2)

hold and the diagram

Pl(c) —— PY(C) —— P/C) —— PL(©)

I’ lwz lwl Jx
PlC) 27 plcy —A Pl —As PI(O),
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commutes.‘ Continuing arguing in the same way, for every N < d we obtain diagram
(64), such that

Wo=X, Wny=z,

and the conditions (69), (71) hold.

Now, as in the proof of Theorem 6.1 and Theorem 6.2, we conclude that if N
satisfies (76), then either equalities (77), (80) hold, or there exist integers ji, ja,
1 < j1 < j» < N, such that (78) and (79) hold. However, the last case is impossible.
Indeed, if (78) holds, then Lemma 6.7 applied to the diagram D, 4 implies that

deg Wy = deg W;,,
in contradiction with the conditions
degWy =1, degW; >2. O

6.4 Finiteness of the number of invariant curves of a given bi-degree

Let R be a compact Riemann surface of genus zero or one, and B : R — R
a holomorphic map. We denote by G(B) the subgroup of Aut(R) consisting of
i € Aut(R) such that

Bou=RB8B,
and by G2 (B) the subgroup consisting of u such that
Mfl oBou=B.

Lemma 6.8 The group G1(B) is finite, and its order can be bounded in terms of the
degree of B. The same conclusion holds for the group G,(B) whenever the degree of
B is at least two.

Proof Assume first that g(R) = 0, so that B is a rational function and elements
of G1(B) and G,(B) are Mobius transformations. If deg B = 1, then the group
G1(B) is trivial. So, assume that deg B > 2. Let us observe that any u € G(B)
permutes preimages of (B°%)~!(zq) for any zo € P!(C) and k > 1. Since each
Mobius transformation is determined by specifying its value at three distinct points,
this implies that the group G1(B) is finite and its order can be bounded in terms of
deg B. Similarly, any 1 € G2(B) permutes B-periodic points of any given period
k > 1, implying that the group G, (B) is finite.

If g(R) = 1, then any 1 € G(B) still permutes preimages of (B°¢)~!(zo), while
any i € G2(B) permutes B-periodic points. Furthermore, any ;© € Aut(R) is induced
by a linear map
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F=wz+c¢, w,ceC,

where w is an /th root of unity with / = 1,2,3, 4, or 6. Such y has | — 1|? fixed
points, implying that it is determined by its values at | — 1|2+ 1 distinct points. Thus,
the same argument as above shows the finiteness of G1(B) and G2 (B). O

Lemma 6.9 Let A be a rational function of degree at least two, R a compact Riemann
surface of genus zero or one, and X : R — PY(C) a holomorphic map. Then the
number of holomorphic maps B : R — R such that the diagram

R—B>R

lx lx (83)

Pl(C) —— P!(C)
commutes is finite and can be bounded in terms of degrees of A and X.

Proof Setting F = A o X, we see that any two functions B and B’ making diagram
(83) commutative satisfy the equality

F=XoB=XoBRB.

Since the number of imprimitivity systems in the monodromy group of F is finite,
this implies that there exist holomorphic maps Bj, B2, ..., By : R — R such that
the equality F = X o B holds for a holomorphic map B : R — R if and only if there
exists u € Aut(R) such that

X=Xou, B=p'oB; (84)

for some j, 1 < j < N. Moreover, the number N is bounded in terms of degrees of
A and X, since deg F = deg A - deg X. Finally, the number of p satisfying the first
equality in (84) is also bounded by Lemma 6.8. O

Theorem 6.10 Let A, A be rational functions of degree m > 2. Then for any pair of
positive integers (dy, do) there exist at most finitely many (A1, Ap)-invariant curves
of bi-degree (dy, d2). Moreover, there exists a function y : N x N x N — R such that
the number of these curves does not exceed y (m, dy, dz).

Proof Assume firstthat A1, A, are not both Lattés maps. Then by Theorem 4.1 any irre-
ducible invariant curve € of bi-degree (d3, d1) has genus zero and can be parametrized
by rational functions X and X, of degrees d; and d» correspondingly making the dia-
gram

@'(©)? 22 @l (©))?

(leXz)J( l(Xl,Xz)

P(©)? L (pl ()2
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commutative for some rational function B. It follows now from Theorem 6.2 that
there exist rational functions

X1,1,X12,.... X1, and X31,X22,..., X2,

such that any irreducible invariant curve € of bi-degree (ds, d;) is parametrized by
rational functions X1 and X, satisfying

X=Xy jom, Xo=2X2j0u

for some j1, 1 < j1 <Uli, jo, | < jo <lp, and 1, o € AutGP’l (©)). Moreover, the
numbers /| and /> can be bounded in terms of dy, d>, and m. Since a parametrization
X1, X7 of € is defined in a unique way up to the change

(X1,X2) > (X1oa, X200a), «cAut(P(C)),

this implies that to prove the theorem it is enough to show that for any fixed rational
functions X, X5 there exist at most finitely many u € Aut(P'(C)) such that the
diagram

@'©) <L @)

(X, ,Xzou)l l(xl X204) (85)

@'(©)? L2 (1))

commutes for some rational function C, and that the number of such © can be bounded
in terms of the numbers m, d, d>.

By Lemma 6.9, there exist By 1, Bi2, ..., Bis and By 1, B2 2, ..., Bag,, where
s1 and s, are bounded in terms of m, dy, d3, such that (85) holds if and only if

1

C=8B1j, wpmoCou =5Bj

for some ji, 1 < j;1 <s1,j2, 1 < jp <spand u € Aut(IPl((C)). Thus, we only must
show that for each pair ji, j» the number of u € Aut(IP’1 (©)) such that

poBijon ' =By (86)

is finite and can be bounded in terms of m. For this purpose, we observe that if along
with (86) the equality
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~ ~_1
moByjou =By

holds for some i € Aut(P'(C)), then 7 o ™! belongs to G2(By, j,). Therefore, the
number of . € Aut(P'(C)) satisfying (86) is equal to the order of the group G2 (B2, j,),
which is finite by Lemma 6.8.

Assume finally that both A| and A; are Lattés maps. In this case, by Theorem 4.1
there exist a compact Riemann surface R of genus zero or one, and holomorphic maps
X1 : R — PY(C) and X; : R — P!(C) of degrees d; and d; correspondingly such
that the diagram

(B,B)
—_—

R? R?

(XI’XZ)l l(Xl’XZ)
(A1,A2)
P1(©)* — (B'(C)?
commutes for some holomorphic map B : R — R. In turn, the commutativity of this
diagram implies that for every d > 1 the algebraic curves

AM(x) —B(y) =0, i=12,

have a factor of genus zero or one. By Theorem 3.5 of [29], this implies that X; is

a compositional left factor of 6 ohit Therefore, Oé( i< Og ', by Lemma 6.5. Thus,
0

X (Of ") > 0, and arguing as in Lemma 6.6 we see that, up to the change
X —> Xooa, oc€Aut(R),

there exist only finitely many choices for X;. Now we can finish the proof as above
using the full versions of Lemma 6.8 and Lemma 6.9. O
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