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Abstract
Let A1, A2 ∈ C(z) be rational functions of degree at least two that are neither
Lattès maps nor conjugate to z±n or ±Tn . We describe invariant, periodic, and
preperiodic algebraic curves for endomorphisms of (P1(C))2 of the form (z1, z2) →
(A1(z1), A2(z2)). In particular, we show that if A ∈ C(z) is not a “generalized Lattès
map”, then any (A, A)-invariant curve has genus zero and can be parametrized by
rational functions commuting with A. As an application, for A defined over a subfield
K ofCwe give a criterion for a point of (P1(K ))2 to have a Zariski dense (A, A)-orbit
in terms of canonical heights, and deduce from this criterion a version of a conjecture
of Zhang on the existence of rational points with Zariski dense forward orbits. We also
prove a result about functional decompositions of iterates of rational functions, which
implies in particular that there exist at most finitely many (A1, A2)-invariant curves
of any given bi-degree (d1, d2).

1 Introduction

Let A be a rational function of one complex variable. We say that A is special if it is
either a Lattèsmap, or it is conjugate to z±n or±Tn . In this paper, we describe invariant
and, more generally, periodic and preperiodic algebraic curves for endomorphisms
(A1, A2) : (P1(C))2 → (P1(C))2 given by the formula

(z1, z2) → (A1(z1), A2(z2)), (1)
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where A1 and A2 are non-special rational functions of degree at least two. Note that
describing invariant varieties for more general endomorphisms

(z1, z2, . . . zn) → (A1(z1), A2(z2), . . . An(zn)), n ≥ 2, (2)

reduces to describing invariant curves for endomorphisms (1) [11,15,16,34]. On the
other hand, an arbitrary dominant endomorphism of (P1(C))n has the form

(z1, z2, . . . zn) → (A1(zσ(1)), A2(zσ(2)), . . . An(zσ(n)))

for some permutation σ ∈ Sn , implying that some of its iterates has form (2).
Invariant curves for endomorphisms (1) with polynomial A1, A2 were studied in

the paper of Medvedev and Scanlon [16]. In particular, it was shown in [16] that if
A1 and A2 are not conjugate to powers zn or Chebyshev polynomials ±Tn , then any
irreducible algebraic (A1, A2)-invariant curve has genus zero and can be parametrized
by polynomials X1, X2 satisfying the system of functional equations

A1 ◦ X1 = X1 ◦ B, A2 ◦ X2 = X2 ◦ B (3)

for some polynomial B.Using the theory of functional decompositions of polynomials
developed by Ritt [31], Medvedev and Scanlon investigated system (3) in detail and
obtained a description of (A1, A2)-invariant curves. Specifically, for A1 = A2 themain
result of [16] about invariant curves can be formulated as follows: if a polynomial
A is not conjugate to zn or ±Tn , then any irreducible (A, A)-invariant curve is a
graph z2 = X(z1) or z1 = X(z2), where X is a polynomial commuting with A. The
classification of invariant curves obtained by Medvedev and Scanlon has numerous
applications in arithmetic dynamics (see e. g. [1,5,7,9,10,12,13,21]), and the goal of
this paper is to obtain a generalization of this classification to arbitrary non-special
rational functions A1 and A2. For such functions, any (A1, A2)-invariant curve still
has genus zero and can be parametrized by rational functions X1, X2 satisfying (3) for
some rational function B. In particular, the existence of invariant curves implies the
equality deg A1 = deg A2. However, the Ritt theory of polynomial decompositions
used in [16] for the analysis of (3) does not extend to rational functions. Furthermore,
one of the key ingredients of the method of [16], the so-called “first Ritt theorem”,
is known not to be true in the rational case (see e. g. [17]). Note that results of [16]
about invariant curves can be proved by a different method, which does not rely on
the first Ritt theorem [23]. Nevertheless, the method of [23] is also restricted to the
polynomial case.

Since rational functions parametrizing invariant curves for endomorphisms (1) sat-
isfy system (3), the problem of describing invariant curves is closely related to the
problem of describing semiconjugate rational functions, that is, rational solutions of
the functional equation

A ◦ X = X ◦ B. (4)
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A comprehensive description of solutions of (4) was obtained in the series of papers
[22,24,27,28,30], and in this paper we apply the main results of [22,28] to system (3).
To formulate our results explicitly we recall several definitions. For the rest of this
paper, we use the standing convention that “rational function” means “nonconstant
rational function”.

An orbifold O on P1(C) is a ramification function ν : P1(C) → N which takes the
value ν(z) = 1 except at a finite set of points. If f is a rational function and O1, O2
are orbifolds with ramification functions ν1 and ν2, then we say that f : O1 → O2 is
a covering map between orbifolds if for any z ∈ P

1(C) the equality

ν2( f (z)) = ν1(z)deg z f

holds. In case the weaker condition

ν2( f (z)) = ν1(z)GCD(deg z f , ν2( f (z))

is satisfied, we say that f : O1 → O2 is a minimal holomorphic map between
orbifolds. In these terms, a Lattès map can be defined as a rational function A of
degree at least two such that A : O → O is a covering self-map for some orbifold
O [19]. Following [28], we say that A is a generalized Lattès map if there exists an
orbifold O distinct from the non-ramified sphere such that A : O → O is a minimal
holomorphic map. Note that similar to ordinary Lattès maps, generalized Lattès maps
can be characterized in terms of semiconjugacies and group actions [28].

Let A1, A2 X1, X2, B be rational functions such that the diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

(5)

commutes. Then the image of P1(C) in (P1(C))2 under the map

t → (X1(t), X2(t)) (6)

is an (A1, A2)-invariant algebraic curve C, since the diagonal� in (P1(C))2 is (B, B)-
invariant and C = (X1, X2)(�). For brevity, we say that the map (6) is a paramet-
rization of the curve C. We emphasize however that such a parametrization is not
necessarily generically one-to-one, that is, we do not assume that X1 and X2 satisfy
the condition C(X1, X2) = C(z).

In like manner, if A1, A2 Y1, Y2, B are rational functions such that the diagram

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2

(7)
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commutes, then the algebraic curve E = (Y1, Y2)
−1(�), defined by the equation

Y1(x) − Y2(y) = 0, satisfies (A1, A2)(E) ⊆ E . Therefore, each component of E is
(A1, A2)-preperiodic and at least one of these components is (A1, A2)-periodic.

Our first result provides a description of (A1, A2)-invariant curves in case that A1
and A2 are not generalized Lattès maps through a system of functional equations
involving functional decompositions of iterates of A1, A2 and diagrams (5), (7).

Theorem 1.1 Let A1, A2 be rational functions of degree at least two that are not
generalized Lattès maps, and C an irreducible algebraic curve in (P1(C))2 that is not
a vertical or horizontal line. Then C is (A1, A2)-invariant if and only if there exist
rational functions X1, X2, Y1, Y2, B such that:

1. The diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2

(8)

commutes,
2. The equalities

X1 ◦ Y1 = A◦d
1 , X2 ◦ Y2 = A◦d

2 , (9)

Y1 ◦ X1 = Y2 ◦ X2 = B◦d (10)

hold for some d ≥ 0,
3. The map t → (X1(t), X2(t)) is a parametrization of C.

Note that the top square of (8) is obtained from elementary considerations about
parametrizations of invariant curves in the same way as in the paper [16] in the poly-
nomial case. On the other hand, the bottom square is based on results [22,28], and
requires the assumption that A1 and A2 are not generalized Lattès maps.

Let us mention that, among other things, Theorem 1.1 implies that C is a component
of the “separate variable” curve

E : Y1(x) − Y2(y) = 0. (11)

Thus, Theorem1.1 provides us bothwith the parametrization ofC andwith the equation
of a curve having C as a component.Moreover, both these characterizations of invariant
curves are obtained from decompositions of iterates (9) subject to special restrictions.
Note also that condition (9) yields that

(A1, A2)
◦d(E) = C,
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that is, all components of curve (11) are eventually mapped to the curve C.
Theorem 1.1 permits us to describe also (A1, A2)-periodic and preperiodic curves.

Specifically, we show that under the assumptions of Theorem1.1 a curve C is (A1, A2)-
periodic if and only if there exist rational functions X1, X2, Y1, Y2 such that the
equalities

X1 ◦ Y1 = A◦d
1 , X2 ◦ Y2 = A◦d

2 , Y1 ◦ X1 = Y2 ◦ X2

hold for some d ≥ 0, and the map t → (X1(t), X2(t)) is a parametrization of C. On
the other hand, a curve C is (A1, A2)-preperiodic if and only if there exist rational
functions as above such that C is a component of curve (11) (Theorem 4.6). Finally,
we show that describing (A1, A2)-periodic and preperiodic curves for arbitrary non-
special rational functions A1 and A2 reduces to the case where A1 and A2 are not
generalized Lattès maps (Theorem 4.15).

In a sense, describing (A1, A2)-periodic and preperiodic curves reduces to the case
A1 = A2 = A (see Corollary 4.5). For this case, we give the following alternative
description of invariant curves, providing an analogue of the result of Medvedev and
Scanlon cited above.

Theorem 1.2 Let A be a rational function of degree at least two that is not a generalized
Lattès map, and C an irreducible algebraic curve in (P1(C))2 that is not a vertical or
horizontal line. Then C is (A, A)-invariant if and only if there exist rational functions
U1, U2, V1, V2 commuting with A such that the equalities

U1 ◦ V1 = U2 ◦ V2 = A◦d , (12)

V1 ◦ U1 = V2 ◦ U2 = A◦d (13)

hold for some d ≥ 0 and the map t → (U1(t), U2(t)) is a parametrization of C.

As an application of Theorem 1.2, for A defined over a number field K we give a
criterion for a point of (x0, y0) ∈ (P1(K ))2 to have a Zariski dense (A, A)-orbit in
terms of canonical heights of x0 and y0. Let us denote by h the Weil height on P1(K )

and by ĥ A the corresponding canonical height associated to A. The simplest examples
of points with non-dense (A, A)-orbits are points (x0, y0) such that x0 or y0 is A-
preperiodic. Further examples are points of the form (x0, A◦l(x0)) or (A◦l(x0), x0),
where x0 ∈ P

1(K ) and l ≥ 0, since such points belong to the curves

A◦l(x) − y = 0, x − A◦l(y) = 0, (14)

which are (A, A)-invariant. The canonical heights of the last kind of points obviously
satisfy the relation ĥ A(y0) = nl ĥ A(x0), where n = deg A and l ∈ Z, and our main
result about orbits states that a similar relation is satisfied for any point (x0, y0)whose
(A, A)-orbit is not dense, provided that x0 and y0 are not A-preperiodic.
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Theorem 1.3 Let K be a number filed and A a non-special rational function of degree
n ≥ 2 defined over K . Then the (A, A)-orbit of a point (x0, y0) ∈ (P1(K ))2 is Zariski
dense in (P1(C))2, unless either x0 or y0 is a preperiodic point of A, or the canonical
heights of x0 and y0 satisfy the condition

ĥ A(y0) = nl
0ĥ A(x0), l ∈ Z, (15)

where n0 is a minimum natural number such that n = nk
0 for some k ≥ 1.

Using insteadof theWeil height theMoriwaki height,we alsoprovide an analogueof
Theorem 1.3 for an arbitrary subfield K ofC finitely generated overQ (Theorem 5.4).
This allows us to prove a variant of a conjecture of Zhang [35] on the existence of
Zariski dense orbits for endomorphisms of varieties. Namely, we show that if K is a
subfield of C and A1, A2 ∈ K (z) are non-special rational functions of degree at least
two, then there is a point in (P1(K ))2 whose (A1, A2)-forward orbit is Zariski dense
in (P1(K ))2 (Theorem 5.5). For algebraically closed fields, this result was established
previously in the appendix to the paper [34] as a corollary of the main result of [34]
about the existence of Zariski dense orbits for endomorphisms of projective surfaces.
The benefits of our approach are that it does not require K to be algebraically closed,
and it permits construct points with dense orbits in an effective way.

Since for any rational function A ∈ C(z) and integer l ≥ 0 the curves (14) are
(A, A)-invariant, one cannot expect to bound the total number of (A1, A2)-invariant
curves. Nevertheless, we show (Theorem 6.10) that for any rational functions A1, A2
of degree m ≥ 2 there exist at most finitely many (A1, A2)-invariant curves of any
given bi-degree (d1, d2), and that the number of such curves can be bounded in terms of
d1, d2 and m. We obtain this result from the above classification of (A1, A2)-invariant
curves and the following result of independent interest, which states roughly speaking
that if a rational function X is “a compositional left factor” of some iterate of a rational
function A, then X is already a factor of A◦N , where N is bounded in terms of degrees
of A and X .

Theorem 1.4 There exists a function ϕ : N×N → R with the following property. For
any rational functions A and X such that the equality

A◦d = X ◦ R (16)

holds for some rational function R and d ≥ 1, there exists N ≤ ϕ(deg A, deg X) and
a rational function R′ such that

A◦N = X ◦ R′

and R = R′ ◦ A◦(d−N ), if d > N. In particular, for any fixed rational function A and
integer n ≥ 1, up to the change X → X ◦ μ, where μ is a Möbius transformation,
there exist at most finitely many rational functions X of degree n such that (16) holds
for some rational function R and d ≥ 1.
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The paper is organized as follows. In the second and the third sections, we recall
basic definitions and results related to orbifolds on Riemann surfaces, and review
some of results of the papers [22,28] describing the structure of solutions of functional
equation (4) in rational functions. In the fourth section,we describe (A1, A2)-invariant,
periodic, and preperiodic curves. In the fifth section, we prove results concerning the
orbit density.

Finally, in the sixth section, we obtain quantitative versions of some results of the
paper [29] concerning pairs of rational functions A and X such that for every d ≥ 1
the algebraic curve

A◦d(x) − X(y) = 0

has a factor of genus zero or one. As an application, we prove Theorem 1.4 and deduce
from it the finiteness of the number of (A1, A2)-invariant curves of any given bi-degree
(d1, d2).

2 Orbifolds and generalized Lattès maps

2.1 Riemann surface orbifolds

A Riemann surface orbifold is a pair O = (R, ν) consisting of a Riemann surface
R and a ramification function ν : R → N, which takes the value ν(z) = 1 except
at isolated points. For an orbifold O = (R, ν), the Euler characteristic of O is the
number

χ(O) = χ(R) +
∑

z∈R

(
1

ν(z)
− 1

)

,

the set of singular points of O is the set

c(O) = {z1, z2, . . . , zs, . . . } = {z ∈ R | ν(z) > 1},

and the signature of O is the set

ν(O) = {ν(z1), ν(z2), . . . , ν(zs), . . . }.

For orbifolds O1 = (R1, ν1) and O2 = (R2, ν2), we write O1 	 O2 if R1 = R2, and
for any z ∈ R1, the condition ν1(z) | ν2(z) holds.

Let O1 = (R1, ν1) and O2 = (R2, ν2) be orbifolds and let f : R1 → R2 be a
holomorphic branched covering map. We say that f : O1 → O2 is a covering map
between orbifolds if for any z ∈ R1 the equality

ν2( f (z)) = ν1(z)deg z f (17)
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holds, where deg z f is the local degree of f at the point z. If for any z ∈ R1 the weaker
condition

ν2( f (z)) | ν1(z)deg z f (18)

is satisfied instead of (17), we say that f : O1 → O2 is a holomorphic map between
orbifolds.

A universal covering of an orbifold O is a covering map between orbifolds
θO : Õ → O such that R̃ is simply connected and Õ is non-ramified, that is, ν̃(z) ≡ 1.
If θO is such a map, then there exists a group �O of conformal automorphisms of R̃
such that the equality θO(z1) = θO(z2) holds for z1, z2 ∈ R̃ if and only if z1 = σ(z2)
for some σ ∈ �O. A universal covering exists and is unique up to a conformal isomor-
phism of R̃ whenever O is good, that is, distinct from the Riemann sphere with one
ramified point or with two ramified points z1, z2 such that ν(z1) �= ν(z2). Furthermore,
R̃ is the unit disk D if and only if χ(O) < 0, R̃ is the complex plane C if and only
if χ(O) = 0, and R̃ is the Riemann sphere P1(C) if and only if χ(O) > 0 (see e.g.
[3], Section IV.9.12). Below we always assume that considered orbifolds are good.
Abusing notation, we use the symbol Õ both for the orbifold and for the Riemann
surface R̃.

Covering maps between orbifolds lift to isomorphisms between their universal
coverings. More generally, for any holomorphic map between orbifolds f : O1 → O2
there exist a holomorphic map F : Õ1 → Õ2 and a homomorphism ϕ : �O1 → �O2

such that the diagram

Õ1
F−−−−→ Õ2

⏐
⏐
�θO1

⏐
⏐
�θO2

O1
f−−−−→ O2

(19)

commutes and for any σ ∈ �O1 the equality

F ◦ σ = ϕ(σ) ◦ F (20)

holds. The holomorphic map F is an isomorphism if and only if f is a covering map
between orbifolds (see [22], Proposition 3.1).

If f : O1 → O2 is a covering map between orbifolds with compact supports, then
the Riemann-Hurwitz formula implies that

χ(O1) = dχ(O2), (21)

where d = deg f . More generally, if f : O1 → O2 is a holomorphic map, then

χ(O1) ≤ χ(O2) deg f , (22)

and the equality is attained if and only if f : O1 → O2 is a covering map between
orbifolds (see [22], Proposition 3.2).
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Let R1, R2 be Riemann surfaces and f : R1 → R2 a holomorphic branched
covering map. Assume that R2 is provided with a ramification function ν2. In order
to define a ramification function ν1 on R1 so that f would be a holomorphic map
between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2) we must satisfy condition (18),
and it is easy to see that for any z ∈ R1 a minimal possible value for ν1(z) is defined
by the equality

ν2( f (z)) = ν1(z)GCD(deg z f , ν2( f (z)). (23)

In case (23) is satisfied for any z ∈ R1, we say that f is a minimal holomorphic map
between orbifoldsO1 = (R1, ν1) andO2 = (R2, ν2). It follows from the definition that
for any orbifold O = (R, ν) and a holomorphic branched covering map f : R′ → R
there exists a unique orbifold structure O′ = (R′, ν′) such that f : O′ → O is
a minimal holomorphic map between orbifolds. We will denote the corresponding
orbifold by f ∗O. Notice that any covering map between orbifolds f : O1 → O2 is a
minimal holomorphic map.

Minimal holomorphic maps between orbifolds possess the following fundamental
property with respect to the operation of composition (see [22], Theorem 4.1).

Theorem 2.1 Let f : R′′ → R′ and g : R′ → R be holomorphic branched covering
maps, and O = (R, ν) an orbifold. Then

(g ◦ f )∗O = f ∗(g∗O).

Theorem 2.1 implies the following two corollaries (see [22], Corollary 4.1 and
Corollary 4.2).

Corollary 2.2 Let f : O1 → O′ and g : O′ → O2 be minimal holomorphic maps
(resp. covering maps) between orbifolds. Then g ◦ f : O1 → O2 is a minimal
holomorphic map (resp. covering map).

Corollary 2.3 Let f : R1 → R′ and g : R′ → R2 be holomorphic branched covering
maps, and O1 = (R1, ν1) and O2 = (R2, ν2) orbifolds. Assume that g ◦ f : O1 → O2
is a minimal holomorphic map (resp. a covering map). Then g : g∗O2 → O2 and
f : O1 → g∗O2 are minimal holomorphic maps (resp. covering maps).

Most of orbifolds considered in this paper are defined on P
1(C). For such orb-

ifolds, we omit the Riemann surface R in the definition of O = (R, ν), meaning that
R = P

1(C). Signatures of orbifolds on P1(C) with non-negative Euler characteristics
and corresponding�O and θO can be described explicitly as follows. IfO is an orbifold
distinct from the non-ramified sphere, then χ(O) = 0 if and only if the signature of O
belongs to the list

{2, 2, 2, 2} {3, 3, 3}, {2, 4, 4}, {2, 3, 6}, (24)

and χ(O) > 0 if and only if the signature of O belongs to the list

{l, l}, l ≥ 2, {2, 2, l}, l ≥ 2, {2, 3, 3}, {2, 3, 4}, {2, 3, 5}. (25)
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Groups�O ⊂ Aut(C) corresponding to orbifoldsOwith signatures (24) are generated
by translations of C by elements of some lattice L ⊂ C of rank two and the rotation
z → εz, where ε is an nth root of unity with n equal to 2,3,4, or 6, such that εL = L
(see [3], Section IV.9.5, or [19]). Accordingly, the functions θO may be written in
terms of the corresponding Weierstrass functions as ℘(z), ℘′(z), ℘2(z), and ℘′2(z).
Groups �O ⊂ Aut(P1(C)) corresponding to orbifolds O with signatures (25) are the
well-known finite subgroups Cl , D2l , A4, S4, A5 of Aut(P1(C)), and the functions
θO are Galois coverings of P1(C) by P

1(C) of degrees l, 2l, 12, 24, 60, calculated
for the first time by Klein in [14].

2.2 Functional equations and orbifolds

With each holomorphic map f : R1 → R2 between compact Riemann surfaces, one
can associate two orbifoldsO f

1 = (R1, ν
f
1 ) andO f

2 = (R2, ν
f
2 ), setting ν

f
2 (z) equal to

the least common multiple of local degrees of f at the points of the preimage f −1{z},
and

ν
f
1 (z) = ν

f
2 ( f (z))

deg z f
.

By construction,

f : O
f
1 → O

f
2

is a covering map between orbifolds. It is easy to see that the covering map
f : O

f
1 → O

f
2 is minimal in the following sense. For any covering map between

orbifolds f : O1 → O2 we have:

O
f
1 	 O1, O

f
2 	 O2. (26)

Notice that for any orbifold O the orbifolds OθO
1 and O

θO
2 obviously are well defined

even if Õ is non-compact and satisfy

O
θO
1 = Õ O

θO
2 = O. (27)

The orbifolds defined above are useful for the study of the functional equation

f ◦ p = g ◦ q, (28)

where

p : R → C1, f : C1 → P
1(C), q : R → C2, g : C2 → P

1(C)

are holomorphic maps between compact Riemann surfaces. We say that a solution
f , p, g, q of (28) is good if the fiber product of f and g has a unique component,
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and p : R → C1 and q : R → C2 have no non-trivial common compositional right
factor in the following sense: the equalities

p = p̃ ◦ w, q = q̃ ◦ w,

where w : R → R̃, p̃ : R̃ → C1, q̃ : R̃ → C2 are holomorphic maps between
compact Riemann surfaces, imply that degw = 1. In this notation, the following
statement holds (see [22], Theorem 4.2).

Theorem 2.4 Let f , p, g, q be a good solution of (28). Then the commutative diagram

O
q
1

p−−−−→ O
f
1

⏐
⏐
�q

⏐
⏐
� f

O
q
2

g−−−−→ O
f
2

consists of minimal holomorphic maps between orbifolds.

Good solutions admit the following characterization (see [22], Lemma 2.1).

Lemma 2.5 A solution f , p, g, q of (28) is good whenever any two of the following
three conditions are satisfied:

• the fiber product of f and g has a unique component,
• p and q have no non-trivial common compositional right factor,
• deg f = deg q, deg g = deg p.

Note that if f and g are rational functions, then the fiber product of f and g has a
unique component if and only if the algebraic curve f (x) − g(y) = 0 is irreducible.

Finally, the following result (see [29], Corollary 2.9 or [30], Theorem 2.18) states
that “gluing together” two commutative diagrams corresponding to good solutions of
(28) we obtain again a good solution of (28) (see the diagram below).

P
1(C)

B−−−−→ P
1(C)

W−−−−→ P
1(C)

⏐
⏐
�C

⏐
⏐
�D

⏐
⏐
�V

P
1(C)

A−−−−→ P
1(C)

U−−−−→ P
1(C).

Theorem 2.6 Assume that the quadruples of rational functions A, C, D, B and
U , D, V , W are good solutions of (28). Then the quadruple U ◦ A, C, V , W ◦ B
is also a good solution of (28).

2.3 Generalized Lattès maps

We recall that a Lattès map A is a rational function of degree at least two such that there
exist a lattice � of rank two in C, an affine map L = az + b on C, and a holomorphic
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map � : C/� → P
1(C), such that L(�) ⊆ � and the diagram

C/�
az+b−−−−→ C/�

⏐
⏐
��

⏐
⏐
��

P
1(C)

A−−−−→ P
1(C)

(29)

commutes (abusing the notation we will continue using the notation az + b for the
map on C/� induced by the affine map az + b on C). Equivalently, a Lattès map can
be defined as a rational function A of degree at least two such that A : O → O is a
covering self-map for some orbifold O [19]. Thus, A is a Lattès map if there exists an
orbifold O such that for any z ∈ P

1(C) the equality

ν(A(z)) = ν(z)deg z A (30)

holds. By formula (21), such O necessarily satisfies χ(O) = 0.. Furthermore, for a
given function A there might be at most one orbifold such that (30) holds (see [19] or
[28], Theorem 6.1).

Following [28], we say that a rational function A of degree at least two is a gener-
alized Lattès map if there exists an orbifold O, distinct from the non-ramified sphere,
such that A : O → O is a minimal holomorphic self-map between orbifolds; that is,
for any z ∈ P

1(C), the equality

ν(A(z)) = ν(z)GCD(deg z A, ν(A(z))) (31)

holds. By inequality (22), such O satisfies χ(O) ≥ 0. Since condition (30) implies
condition (31), any ordinary Lattès map is a generalized Lattès map. Note that if O is
the non-ramified sphere, then condition (31) trivially holds for any rational function
A.

In general, for a given function A there might be several orbifoldsO satisfying (31),
and even infinitelymany such orbifolds. For example, it is easy to see that z±n : O → O

is a minimal holomorphic map for any O defined by

ν(0) = m, ν(∞) = m, GCD(n, m) = 1,

while±Tn : O → O is aminimal holomorphicmap for anyOdefinedby the conditions

ν(−1) = ν(1) = 2, ν(∞) = m, GCD(n, m) = 1.

Nevertheless, the following statement holds (see [28], Theorem 1.2).

Theorem 2.7 Let A be a rational function of degree at least two not conjugate
to z±d or ±Td . Then there exists an orbifold OA

0 such that A : OA
0 → OA

0 is
a minimal holomorphic map between orbifolds, and for any orbifold O such that
A : O → O is a minimal holomorphic map between orbifolds, the relation O 	 OA

0

holds. Furthermore, OA◦l

0 = OA
0 for any l ≥ 1.
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It is clear that generalized Lattès maps are exactly rational functions for which the
orbifold OA

0 is distinct from the non-ramified sphere, completed by the functions z±d

and ±Td for which the orbifold OA
0 is not defined. Furthermore, ordinary Lattès maps

are exactly rational functions for which χ(OA
0 ) = 0 (see [28], Lemma 6.4). Notice also

that since a rational function A is conjugate to z±d or ±Td if and only if some iterate
A◦l , l ≥ 1, is conjugate to z±ld or ±Tld (see e.g. [28], Lemma 6.3), Theorem 2.7
implies that A is a generalized Lattès map if and only if some iterate A◦l , l ≥ 1, is a
generalized Lattès map. Finally, notice that for a given rational function A the orbifold
OA
0 can be effectively calculated from the branch data of A (see [28], Section 6).
We recall that a rational function A is called special if it is either a Lattès map, or

it is conjugate to z±n or ±Tn . If A is a generalized Lattès map, which is not special,
then χ(OA

0 ) > 0, and the corresponding diagram (19) takes the form

P
1(C)

F−−−−→ P
1(C)

⏐
⏐
�

θ
OA
0

⏐
⏐
�

θ
OA
0

P
1(C)

A−−−−→ P
1(C).

(32)

Moreover, for such A the homomorphism ϕ in (20) is an automorphism. More pre-
cisely, the following statement holds (see [22], Theorem 5.1).

Theorem 2.8 Let A and F be rational functions of degree at least two, and O an
orbifold with χ(O) > 0 such that A : O → O is a holomorphic map between
orbifolds and the diagram

P
1(C)

F−−−−→ P
1(C)

⏐
⏐
�θO

⏐
⏐
�θO

O
A−−−−→ O

commutes. Then the following conditions are equivalent:

(1) The holomorphic map A is a minimal holomorphic map.
(2) The homomorphism ϕ : �O → �O defined by the equality

F ◦ σ = ϕ(σ) ◦ F, σ ∈ �O,

is an automorphism of �O.
(3) The functions θO, F, A, θO form a good solution of equation (28).

Finally, we need the following simple result (see Lemma 6.6 of [28]) impos-
ing restrictions on ramification of generalized Lattès maps, and, more generally, on
ramification of holomorphic coverings maps between orbifolds of positive Euler char-
acteristic.
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Lemma 2.9 Let A be a rational function of degree at least five, and O1, O2 orbifolds
distinct from the non-ramified sphere such that A : O1 → O2 is a minimal holomorphic
map between orbifolds. Assume that χ(O1) ≥ 0. Then c(O2) ⊆ c(OA

2 ).

3 Semiconjugate rational functions

3.1 Primitive solutions

Let A and B be rational functions of degree at least two. We recall that B is said to
be semiconjugate to A if there exists a non-constant rational function X such that the
equality

A ◦ X = X ◦ B (33)

holds. If deg X = 1, then A and B are conjugate in the usual sense. We say that
a solution A, X , B of functional equation (33) is primitive if C(B, X) = C(x). By
Lemma 2.5, a solution A, X , B of (33) is primitive if and only if the quadruple

f = A, p = X , g = X , q = B

is a good solution of (28). Primitive solution are described as follows (see [22], The-
orem 6.1, or [27]).

Theorem 3.1 Let A, X , B be a primitive solution of (33) with deg X > 1. Then
χ(OX

1 ) ≥ 0, χ(OX
2 ) ≥ 0, and the commutative diagram

OX
1

B−−−−→ OX
1

⏐
⏐
�X

⏐
⏐
�X

OX
2

A−−−−→ OX
2

consists of minimal holomorphic maps between orbifolds.

In particular, Theorem 3.1 implies that if A, X , B is a primitive solution of (33)
with deg X > 1, then A is necessarily a generalized Lattès map, and X satisfies the
condition χ(OX

2 ) ≥ 0, implying strong restrictions on X [26].

3.2 Elementary transformations

Let A be a rational function. For any decomposition A = V ◦ U , where U and
V are rational functions, the rational function Ã = U ◦ V is called an elementary
transformation of A, and rational functions A and B are called equivalent if there
exists a chain of elementary transformations between A and B. For a rational function
A, we denote its equivalence class by [A]. Since for anyMöbius transformation W the
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equality A = (A◦W )◦W −1 holds, each equivalence class [A] is a union of conjugacy
classes.Moreover, an equivalence class [F] contains infinitelymany conjugacy classes
if and only if F is a flexible Lattès map [24]. If A is a generalized Lattès map, then
any elementary transformation of A is a generalized Lattès map (see [28], Theorem
4.1), implying that any B ∼ A is a generalized Lattès map.

The connection between the relation ∼ and semiconjugacy is straightforward.
Namely, for Ã and A as above the diagrams

P
1(C)

A−−−−→ P
1(C)

⏐
⏐
�U

⏐
⏐
�U

P
1(C)

Ã−−−−→ P
1(C),

P
1(C)

Ã−−−−→ P
1(C)

⏐
⏐
�V

⏐
⏐
�V

P
1(C)

A−−−−→ P
1(C)

commute, implying inductively that if A ∼ Ã, then A is semiconjugate to Ã, and
Ã is semiconjugate to A. Moreover, the following statement, obtained by a direct
calculation, is true (see [28], Lemma 3.1).

Lemma 3.2 Let

A → A1 → A2 → · · · → As

be a chain of elementary transformations, and Ui , Vi , 1 ≤ i ≤ s, rational functions
such that

A = V1 ◦ U1, Ai = Ui ◦ Vi , 1 ≤ i ≤ s,

and

Ui ◦ Vi = Vi+1 ◦ Ui+1, 1 ≤ i ≤ s − 1.

Then the functions

U = Us ◦ Us−1 ◦ · · · ◦ U1, V = V1 ◦ · · · ◦ Vs−1 ◦ Vs

make the diagram

P
1(C)

A−−−−→ P
1(C)

U

⏐
⏐
�

⏐
⏐
�U

P
1(C)

As−−−−→ P
1(C)

V

⏐
⏐
�

⏐
⏐
�V

P
1(C)

A−−−−→ P
1(C)
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commutative and satisfy the equalities

V ◦ U = A◦s, U ◦ V = A◦s
s .

Non-primitive solutions of (33) reduce to primitive ones by chains of elementary
transformations (see [22,28] for more detail). Below we only need the following state-
ment.

Proposition 3.3 If A, X , B is a solution of (33) and A is not a generalized Lattès map,
then B ∼ A and there exists a rational function Y such that the diagram

P
1(C)

B−−−−→ P
1(C)

X

⏐
⏐
�

⏐
⏐
�X

P
1(C)

A−−−−→ P
1(C)

Y

⏐
⏐
�

⏐
⏐
�Y

P
1(C)

B−−−−→ P
1(C),

commutes, and the equalities

Y ◦ X = B◦d , X ◦ Y = A◦d

hold for some d ≥ 0.

Proof In case deg X = 1, the conlcusion of the proposition holds for Y = X−1 and
d = 0. Assume now that deg X > 1. Since A is not a generalized Lattès map, it
follows from Theorem 3.1 that the triple A, X , B is not a primitive solution of (33).
Therefore, by the Lüroth theorem, C(B, X) = C(U1) for some rational function U1
with degU1 > 1, and hence

B = V1 ◦ U1, X = X1 ◦ U1

for some rational functions X1, V1. Since equality (33) implies the equality

A ◦ X1 = X1 ◦ (U1 ◦ V1),

the triple A, X1, U1 ◦ V1 is also a solution of (33). Moreover, this new solution again
is not primitive by Theorem 3.1, implying that there exist rational functions X2, V2,

U2 such that

U1 ◦ V1 = V2 ◦ U2, X1 = X2 ◦ U2,

and

A ◦ X2 = X2 ◦ (U2 ◦ V2).
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Continuing in this way and taking into account that

deg X > deg X1 > deg X2 . . . ,

we obtain a chain of elementary transformations between A and B and the represen-
tation

X = Us ◦ Us−1 ◦ · · · ◦ U1

as in Lemma 3.2, so the proposition follows from this lemma.

4 Invariant, periodic, and preperiodic curves.

4.1 Invariant curves and semiconjugacies

Let A1, A2 be rational functions. We denote by (A1, A2) : (P1(C))2 → (P1(C))2 the
map given by the formula

(z1, z2) → (A(z1), A(z2)).

We say that an irreducible algebraic curve C in (P1(C))2 is (A1, A2)-invariant if
(A1, A2)(C) = C, and (A1, A2)-periodic if

(A1, A2)
◦n(C) = C

for some n ≥ 1. Finally, we say that E is (A1, A2)-preperiodic if (A1, A2)
◦l(C) is

periodic for some l ≥ 1.
The simplest (A1, A2)-invariant curves are vertical lines x = a, where a is a fixed

point of A1, and horizontal lines y = b, where b is a fixed point of A2. Other invariant
curves are described as follows.

Theorem 4.1 Let A1, A2 be rational functions of degree at least two, and C an irre-
ducible (A1, A2)-invariant curve that is not a vertical or horizontal line. Then the
desingularization C̃ of C has genus zero or one, and there exist non-constant rational
maps X1, X2 : C̃ → P

1(C) and B : C̃ → C̃ such that the diagram

(C̃)2
(B,B)−−−−→ (C̃)2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

(34)

commutes and the map t → (X1(t), X2(t)) is a generically one-to-one parametriza-
tion of C. Finally, unless both A1, A2 are Lattès maps, C̃ has genus zero.
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Proof Let C̃ be the desingularization of C, and π : C̃ → C the desingularization map.
We set

X1 = x ◦ π, X2 = y ◦ π,

where x, y : (P1(C))2 → P
1(C) are the projections on the first and on the second

coordinate correspondingly. Since the map (X1, X2) : C̃ → C is an isomorphism off a
finite set of points, the map (A1, A2) : C → C lifts to a rational map B : C̃ → C̃ which
makes diagram (34) commutative. Furthermore, since C is not a vertical or horizontal
line, X1 and X2 are non-constant, implying by (34) that

deg A1 = deg A2 = deg B.

In particular, deg B ≥ 2. It follows now from the Riemann-Hurwitz formula

2g(C̃) − 2 = (2g(C̃) − 2)deg B +
∑

P∈C̃
(ep − 1)

that g(C̃) ≤ 1. Finally, if g(C̃) = 1, then A1 and A2 are Lattès maps. Indeed, in this
case C̃ = C/� for some lattice �, and B : C/� → C/� is induced by an affine map.
Thus, diagram (34) consists of a pair of diagrams of the form (29).

Remark 4.2 Note that Theorem 4.1 implies in particular that if deg A1 �= deg A2, then
any (A1, A2)-invariant curve is a vertical or horizontal line.

Remark 4.3 For an arbitrary field of characteristic zero K and rational functions A1
and A2 defined over K the notion of invariant curve is defined in the same way as
above. Furthermore, it is easy to see that if K is algebraically closed, then an analogue
of Theorem 4.1 remains true over K .

Below we will consider only fields K that are subfields of C. For the problems
considered in this paper, such a restriction does not lead to the loss of generality since
A1 and A2 defined over a field of characteristic zero actually are defined over a finitely
generated extension ofQ, and such an extension can be embedded into C. Taking this
into account, we do not consider the case K �= C separately till the fifth section. Note
that the assumption K ⊂ C allows us in particular to continue using the notion of a
generalized Lattès map.

The following lemma relates periodic curves for pairs of semiconjugate maps.

Lemma 4.4 Let A1, A2, B1, B2, X1, X2 be non-constant rational functions such that
the diagram

(P1(C))2
(B1,B2)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2
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commutes. Then for any irreducible (A1, A2)-periodic (resp. preperiodic) curve C
there exists an irreducible (B1, B2)-periodic (resp. preperiodic) curve C′ such that
C = (X1, X2)(C′).

Proof For any irreducible curve C in (P1(C))2 the preimage E = (X1, X2)
−1(C)

is a union of irreducible curves, and any irreducible component C′ of E satisfies
(X1, X2)(C′) = C. Furthermore, if C satisfies (A1, A2)

◦n(C) = C, then E satisfies
(B1, B2)

◦n(E) ⊆ E, implying that all components of E are (B1, B2)-preperiodic and
at least one of these components is (B1, B2)-periodic. Similarly, if C is (A1, A2)-
preperiodic, then any component C′ of E is (B1, B2)-preperiodic.

Assuming that at least one (A1, A2)-invariant curve C is known, Theorem 4.1
combined with Lemma 4.4 permits to reduce describing (A1, A2)-periodic curves for
a pair of functions A1, A2 to describing (B, B)-periodic curves for a single function
B.

Corollary 4.5 Let A1, A2 be rational functions of degree at least two that are not Lat-
tès maps, and B a fixed irreducible (A1, A2)-invariant curve that is not a vertical
or horizontal line. Then there exist rational functions X1, X2, B such that diagram
(5) commutes, the map t → (X1(t), X2(t)) is a parametrization of B, and any irre-
ducible (A1, A2)-periodic (resp. preperiodic) curve C is the (X1, X2)-image of some
irreducible (B, B)-periodic (resp. preperiodic) curve C′.

4.2 The case where A1, A2 are not generalized Lattès maps

In this section, we describe (A1, A2)-invariant, periodic, and preperiodic curves in the
case where A1, A2 are not generalized Lattès maps.

Proof of Theorem 1.1. It was already mentioned in the introduction, that for any ratio-
nal functions X1, X2, A, B that make diagram (5) commutative, the map t →
(X1(t), X2(t)) is a parametrization of some (A1, A2)-invariant curve C.

In the other direction, assume that C is an (A1, A2)-invariant curve. Then by The-
orem 4.1 there exist rational functions X1, X2, B such that diagram (5) commutes
and the map t → (X1(t), X2(t)) is a parametrization of C. Furthermore, since A1 and
A2 are not generalized Lattès maps, it follows from Proposition 3.3 that there exist
rational functions Yi , i = 1, 2, such that the diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2

(35)
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commutes and the equalities

Xi ◦ Yi = A◦di
i , Yi ◦ Xi = B◦di , i = 1, 2, (36)

hold for some d1, d2 ≥ 0.
Let us show that modifying Y1 and Y2 we may assume that d1 = d2. Suppose, say,

that d2 ≥ d1. Setting d = d2 and completing diagram (35) to the diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2

(B◦(d2−d1),z)

⏐
⏐
�

⏐
⏐
�(B◦(d2−d1),z)

(P1(C))2
(B,B)−−−−→ (P1(C))2,

we see that for the rational functions

Ỹ1 = B◦(d2−d1) ◦ Y1, Ỹ2 = Y2

diagram (35) still commutes. Moreover,

X1 ◦ Ỹ1 = X1 ◦ B◦(d2−d1) ◦ Y1 = A◦(d2−d1)
1 ◦ X1 ◦ Y1 = Ad

1 ,

X2 ◦ Ỹ2 = X2 ◦ Y2 = Ad
2 ,

and

Ỹi ◦ Xi = B◦d , i = 1, 2.

Theorem 4.6 Let A1, A2 be rational functions of degree at least two that are not
generalized Lattès maps, and C an irreducible algebraic curve in (P1(C))2 that is
not a vertical or horizontal line. Then C is (A1, A2)-periodic if and only if there exist
rational functions X1, X2, Y1, Y2 such that the equalities

X1 ◦ Y1 = A◦d
1 , X2 ◦ Y2 = A◦d

2 , (37)

Y1 ◦ X1 = Y2 ◦ X2 (38)

hold for some d ≥ 0, and the map t → (X1(t), X2(t)) is a parametrization of C. On
the other hand, C is (A1, A2)-preperiodic if and only if there exist rational functions
as above such that C is a component of the curve Y1(x) − Y2(y) = 0.
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Proof If (A1, A2)
◦l(C) = C for some l ≥ 1, then by Theorem 1.1 there exist rational

functions X1, X2, Y1, Y2, B such that the diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A◦l

1 ,A◦l
2 )−−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2

(39)

commutes, the equalities

X1 ◦ Y1 = A◦d0l
1 , X2 ◦ Y2 = A◦d0l

2 , (40)

Y1 ◦ X1 = Y2 ◦ X2 = B◦d0 (41)

hold for some d0 ≥ 0, and t → (X1(t), X2(t)) is a parametrization of C. Thus, (37)
and (38) hold for d = ld0.

On the other hand, if (37) and (38) hold, then setting

B = Y1 ◦ X1 = Y2 ◦ X2 (42)

we see that the diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A◦d

1 ,A◦d
2 )−−−−−−→ (P1(C))2

commutes, implying that the curve C parametrized by the map t → (X1(t), X2(t))
satisfies (A1, A2)

◦d(C) = C. This proves the first part of the theorem.
Assume now that C′ is an (A1, A2)-preperiodic curve. Then there exists a curve C

such that (A1, A2)
◦l(C) = C for some l ≥ 1 and C′ is contained in the preimage of C

under the map (A1, A2)
◦s for some s ≥ 0. Therefore, by the already proved part of

the theorem, C′ is a component of the curve

(Y1 ◦ A◦s
1 )(x) − (Y2 ◦ A◦s

2 )(y) = 0

for some rational functions Y1, Y2 satisfying (39), (40), (41). Moreover, since the
equality

(A1, A2)
◦(l+s0)(C′) = (A1, A2)

◦s0(C′)
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implies that

(A1, A2)
◦(l+s)(C′) = (A1, A2)

◦s(C′)

for any s ≥ s0, without loss of generality we may assume that s = tl for some t ≥ 1.
Thus, C′ is a component of the curve

Y ′
1(x) − Y ′

2(y) = 0,

where

Y ′
1 = Y1 ◦ A◦tl

1 , Y ′
2 = Y2 ◦ A◦tl

2 ,

and the functions Y ′
1, Y ′

2 satisfy the required conditions (37) and (38), since

Xi ◦ Y ′
i = A◦d0l

i ◦ A◦tl
i = A◦(d0+t)l

i , i = 1, 2,

and

Y ′
i ◦ Xi = Yi ◦ A◦tl

i ◦ Xi = Yi ◦ Xi ◦ B◦t = B◦d0 ◦ B◦t = B◦(d0+t), i = 1, 2.

Lastly, if (37) and (38) hold, then for B defined by formula (42) the diagram

(P1(C))2
(A◦d

1 ,A◦d
2 )−−−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2

commutes. Therefore, curve (11) satisfies (A1, A2)
◦d(E) ⊆ E, implying that every

component of E is preperiodic.

Remark 4.7 Note that for every (A1, A2)-invariant curve C we can find rational func-
tions X1, X2, Y1, Y2, B satisfying conditions 1)-3) of Theorem 1.1 and the additional
condition that the parametrization t → (X1(t), X2(t)) of C is generically one-to-one,
or equivalently thatC(X1, X2) = C(z). Indeed, the functions Y1 and Y2 in the proof of
the necessity are constructed from the functions X1 and X2 provided by Theorem 4.1,
and these functions satisfy the required condition. However, arbitrary rational func-
tions satisfying (8), (9), (10) do not necessarily satisfy condition C(X1, X2) = C(z).
A similar remark holds for Theorem 4.6.

Remark 4.8 Note that if under the assumptions of Theorem 1.1 the functions A1, A2
are defined over an algebraically closed field K ⊂ C, then we can assume that the
functions X1, X2, Y1, Y2, B are also defined over K . Indeed, for X1, X2, B this is
a corollary of Theorem 4.1 (see Remark 4.3). On the other hand, if X1, X2, B are
defined over K , then Y1, Y2 are also defined over K since their coefficients are given
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by a linear system of equations over K obtained from the second group of equalities
in (36). A similar remark holds for Theorem 4.6.

4.3 The case where A1 = A2

In this section we provide an alternative description of (A1, A2)-invariant, periodic,
and preperiodic curves in the special case A1 = A2 = A in terms of functions
commuting with A or with some iterate of A.

Proof of Theorem 1.2. If C is (A, A)-invariant, then applying Theorem 1.1 we can find
rational functions X1, X2, Y1, Y2, B such that the diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A,A)−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2,

(43)

commutes, the equalities

Xi ◦ Yi = Ad0 , Yi ◦ Xi = Bd0 , i = 1, 2,

hold for some d0 ≥ 0, and t → (X1(t), X2(t)) is a parametrization of C. Completing
now diagram (43) to the diagram

(P1(C))2
(A,A)−−−−→ (P1(C))2

(Y1,Y1)

⏐
⏐
�

⏐
⏐
�(Y1,Y1)

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A,A)−−−−→ (P1(C))2

(Y1,Y2)

⏐
⏐
�

⏐
⏐
�(Y1,Y2)

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X1)

⏐
⏐
�

⏐
⏐
�(X1,X1)

(P1(C))2
(A,A)−−−−→ (P1(C))2,

(44)
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and setting

U1 = X1 ◦ Y1, U2 = X2 ◦ Y1, V1 = X1 ◦ Y1, V2 = X1 ◦ Y2, (45)

we see that the diagram

(P1(C))2
(A,A)−−−−→ (P1(C))2

(U1,U2)

⏐
⏐
�

⏐
⏐
�(U1,U2)

(P1(C))2
(A,A)−−−−→ (P1(C))2

(V1,V2)

⏐
⏐
�

⏐
⏐
�(V1,V2)

(P1(C))2
(A,A)−−−−→ (P1(C))2

(46)

commutes, implying that U1, U2, V1, V2 commute with A.
Furthermore, we have:

Vi ◦ Ui = X1 ◦ Yi ◦ Xi ◦ Y1 = X1 ◦ B◦d0 ◦ Y1 = A◦d0 ◦ X1 ◦ Y1 = A◦2d0 , i = 1, 2,

and

Ui ◦ Vi = Xi ◦ Y1 ◦ X1 ◦ Yi = Xi ◦ B◦d0 ◦ Yi = A◦d0 ◦ Xi ◦ Yi = A◦2d0 , i = 1, 2,

implying that equalities (12) and (13) hold for d = 2d0. Finally, since obviously
(Y1, Y1)(�) = �, the equality

(U1, U2)(�) = (X1, X2)(�) = C (47)

holds, that is, t → (U1(t), U2(t)) is a parametrization of C. This proves the necessity.
The sufficiency followsmerely from the commutativity of the top square of diagram

(46), which in turn follows from the assumption that U1 and U2 commute with A.

Remark 4.9 Note that for A2 �= A1 an analogue of diagram (44) is obtained by chang-
ing (Y1, Y1) to (Y1, Y2) and (X1, X1) to (X1, X2). Nevertheless, equality (47) does
not hold anymore since (Y1, Y2)(�) �= �.

Theorem 4.10 Let A be a rational function of degree at least two that is not a gen-
eralized Lattès map, and C an irreducible algebraic curve in (P1(C))2 that is not a
vertical or horizontal line. Then C is (A, A)-periodic if and only if there exist rational
functions U1, U2, V1, V2 commuting with some iterate of A such that the equalities

U1 ◦ V1 = U2 ◦ V2 = A◦d , (48)

V1 ◦ U1 = V2 ◦ U2 = A◦d (49)
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hold for some d ≥ 0 and the map t → (U1(t), U2(t)) is a parametrization of C. On
the other hand, C is (A, A)-preperiodic if and only if there exist rational functions as
above such that C is a component of the curve V1(x) − V2(y) = 0.

Proof. The first part of the theorem follows directly from Theorem 1.2, so we only
must prove the second part.

The sufficiency follows from the commutativity of the diagram

(P1(C))2
(A◦d ,A◦d )−−−−−−→ (P1(C))2

(V1,V2)

⏐
⏐
�

⏐
⏐
�(V1,V2)

(P1(C))2
(A◦d ,A◦d )−−−−−−→ (P1(C))2

in the same way as in the proof of Theorem 4.6. To prove the necessity, let us observe
that equality (13) implies, in the notation of the proof of Theorem 1.2, that the invariant
curve (47) is a component of the curve defined by the equation

V1(x) − V2(y) = 0.

Therefore, if C′ is an (A, A)-preperiodic curve, then C′ is a component of the curve

(V1 ◦ A◦s)(x) − (V2 ◦ A◦s)(y) = 0

for some s ≥ 0 and rational functions V1, V2, which commute with A◦l for some l ≥ 1
and satisfy (48), (49). Furthermore, as in the proof of Theorem 4.6, without loss of
generality we may assume that C′ is a component of

V ′
1(x) − V ′

2(y) = 0,

where

V ′
1 = V1 ◦ A◦tl , V ′

2 = V2 ◦ A◦tl

fo some t ≥ 1. Finally, V ′
1 and V ′

2 commute with A◦l and satisfy

Ui ◦ V ′
i = A◦(d+tl), i = 1, 2,

V ′
i ◦ Ui = Vi ◦ A◦tl ◦ Ui = A◦tl ◦ Vi ◦ Ui = A◦tl ◦ A◦d = A◦(d+tl), i = 1, 2.

Remark 4.11 Note that since the functions U1, U2, V1, V2 in Theorem 1.2 and The-
orem 4.10 commute with some iterate of A, and A is not special, it follows from
the Ritt theorem about commuting rational functions [32] that each of the functions
U1, U2, V1, V2 has a common iterate with A.
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Remark 4.12 Note that if under the assumptions of Theorem 1.2 the function A is
defined over an algebraically closed field K ⊂ C, then we can assume that the func-
tions U1, U2, V1, V2 are also defined over K . Indeed, the functions U1, U2, V1, V2 are
given by equality (45), and the functions X1, X2, Y1, Y2 can be defined over K by
Remark 4.8. A similar remark holds for Theorem 4.10.

4.4 Description of (A1,A2)-invariant curves for non-special A1, A2

In this section, we show that describing (A1, A2)-periodic and preperiodic curves for
non-special A1, A2 can be reduced to the case where A1 and A2 are not generalized
Lattès maps.

Lemma 4.13 Let U , V , X be rational functions such that X = U ◦V . ThenOU
2 	 OX

2 .
Moreover, if OU

2 = OX
2 , then OV

2 	 OU
1 .

Proof Since X : OX
1 → OX

2 is a covering map, it follows from Corollary 2.3 that

U : U∗OX
2 → OX

2 , V : OX
1 → U∗OX

2 (50)

are covering maps. Therefore, since

U : OU
1 → OU

2 , V : OV
1 → OV

2

also are covering maps, the relation OU
2 	 OX

2 holds by (26). Moreover, in addition,
we see that

OU
1 	 U∗OX

2 , OV
2 	 U∗OX

2 . (51)

It follows from formula (21) applied to the first covering in (50) that

χ(U∗OX
2 ) = degU · χ(OX

2 ).

Since, on the other hand,

χ(OU
1 ) = degU · χ(OU

2 ),

we see that if OU
2 = OX

2 , then

χ(OU
1 ) = χ(U∗OX

2 ). (52)

Since for any pair of orbifolds satisfying Õ 	 O the equality χ(Õ) = χ(O) holds if
and only if Õ = O, equality (52) and the first relation in (51) imply that OU

1 = U∗OX
2 .

It follows now from the second relation in (51) that OV
2 	 OU

1 .
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Theorem 4.14 Let A be a non-special rational function of degree at least two, and B
a rational function that makes the diagram

P
1(C)

B−−−−→ P
1(C)

θ
OA
0

⏐
⏐
�

⏐
⏐
�

θ
OA
0

P
1(C)

A−−−−→ P
1(C).

(53)

commutative. Then the orbifold OB
0 is the non-ramified sphere.

Proof Let us complete diagram (53) to the diagram

ÕB
0

C−−−−→ ÕB
0

θ
OB
0

⏐
⏐
�

⏐
⏐
�

θ
OB
0

P
1(C)

B−−−−→ P
1(C)

θ
OA
0

⏐
⏐
�

⏐
⏐
�

θ
OA
0

P
1(C)

A−−−−→ P
1(C),

and set

X = θOA
0

◦ θOB
0
.

Let us observe first that ÕB
0 = P

1(C), implying that the functions θOB
0
and X are

rational. Indeed, since χ(OB
0 ) ≥ 0, otherwise ÕB

0 = C, C = az + b for some
a, b ∈ C, and θOB

0
and X are doubly periodic meromorphic function with respect to

some lattice �. Therefore, in this case diagram (29) commutes for some holomorphic
function �, in contradiction with the assumption that A is not a Lattès map.

Since the quadruples A, θOA
0
, θOA

0
, B and B, θOB

0
, θOB

0
, C are good solutions of (28)

by Theorem 2.8, the quadruple A, X , X , C is also a good solution of (28) by Theo-
rem 2.6, implying that A : OX

2 → OX
2 is a minimal holomorphic map by Theorem 2.4.

Therefore,

OX
2 	 OA

0

by Theorem 2.7. Since

O
θ
OA
0

2 	 OX
2

by the first part of Lemma 4.13 and

O
θ
OA
0

2 = OA
0
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by (27), this implies that

OX
2 = OA

0 . (54)

Finally, it follows from (54) by the second part of Lemma 4.13 that

O
θ
OB
0

2 	 O
θ
OA
0

1 ,

implying that OB
0 is non-ramified by (27).

Theorem 4.15 Let A1, A2 be non-special rational functions of degree at least two. Then
there exist rational functions X1, X2, B1, B2 such that X1, X2 are Galois coverings
of P1(C) by P

1(C), B1, B2 are not generalized Lattès maps, the diagram

(P1(C))2
(B1,B2)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

commutes, and every irreducible (A1, A1)-periodic (resp. preperiodic) curve is the
(X1, X2)-image of some irreducible (B1, B2)-periodic (resp. preperiodic) curve.

Proof Applying Theorem 4.14 to A1 and A2, we obtain the commutative diagram

(P1(C))2
(B1,B2)−−−−→ (P1(C))2

(θ
O

A1
0

,θ
O

A2
0

)
⏐
⏐
�

⏐
⏐
�

(θ
O

A1
0

,θ
O

A2
0

)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2,

where B1., B2 are not generalized Lattès map, and the use of Lemma 4.4 finishes the
proof.

Remark 4.16 Note that in fact we proved a more precise version of Theorem 4.15 with
the concrete representation

X1 = θ
O

A1
0

, X2 = θ
O

A2
0

suitable for applications.

5 Points with Zariski dense orbits

5.1 Canonical heights and semiconjugacy

Let K be a field of characteristic zero, which is assumed to be a subfield of C finitely
generated over Q, and A ∈ K (z) a non-special rational function of degree n ≥ 2. In
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this section, we give a criterion for the (A, A)-orbit of a point (x0, y0) ∈ (P1(K ))2

to be Zariski dense in (P1(C))2 in terms of canonical heights of x0 and y0. As an
application, we prove a version of a conjecture of Zhang on the existence of rational
points with Zariski dense forward orbits for endomorphisms of (P1(K ))2. We first
assume that K is a number field and use the Weil height. Then we explain how to
extend our results to the general case using the Moriwaki height.

Let K be a number field. For x ∈ P
1(K ) we denote by h(x) the (logarithmic) Weil

height of x . We recall that for any rational function R ∈ K (z) of degree m there exists
a constant C1 > 0 depending only on R such that for every x ∈ P

1(K ) the inequality

|h(R(x)) − mh(x)| < C1 (55)

holds. Furthermore, by the Northcott theorem, for any numbers D1, D2 > 0 there are
only finitely many points x ∈ P

1(K ) satisfying the conditions

h(x) ≤ D1, [Q(x) : Q] ≤ D2

(see e.g. [33]).
Following [2], for A ∈ K (z) of degree n ≥ 2 we define the canonical height

(associated to A) of a point x ∈ P
1(K ) as the limit

ĥ A(x) = lim
r→∞

h(A◦r (x))

nr
. (56)

We recall the following properties of the canonical height [2,33]. First, for every
x ∈ P

1(K ) the equality

ĥ A(A(x)) = nĥ A(x) (57)

holds. Second, there is a constant C2 > 0 depending only on A such that

|̂h A(x) − h(x)| < C2 (58)

for every x ∈ P
1(K ). Third, a point x ∈ P

1(K ) is A-preperiodic if and only if
ĥ A(x) = 0. Finally, we mention that the function ĥ A : P1(K ) → R is defined by the
conditions (57) and (58) in a unique way.

Note that (55) and (58) imply that for any R ∈ K (z) of degree m there exists a
constant C3 > 0 depending only on A and R such that

|̂h A(R(x)) − mĥ A(x)| < C3 (59)

for every x ∈ P
1(K ). Specifically,

|̂h A(R(x)) − mĥ A(x)| < |̂h A(R(x)) − h(R(x))| + |h(R(x)) − mĥ A(x)| <

|̂h A(R(x)) − h(R(x))| + |h(R(x)) − mh(x)| + |mh(x) − mĥ A(x)| < C2 + C1 + mC2.
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Proposition 5.1 Let A ∈ K (z) and B ∈ K (z) be rational functions of degree at least
two, and X ∈ K (z) a rational function of degree at least one such that the equality
A ◦ X = X ◦ B holds. Then for every point x ∈ P

1(K ) the equality

ĥ A(X(x)) = ĥ B(x)deg X

holds.

Proof. Setting n = deg A = deg B and using inequality (55), we have:

ĥ A(X(x)) = lim
r→∞

h(A◦r (X(x)))

nr
= lim

r→∞
h(X(B◦r (x)))

nr
=

lim
r→∞

h(B◦r (x))deg X + O(1)

nr
= ĥ B(x)deg X .

Notice that Proposition 5.1 implies the following known corollary.

Corollary 5.2 Let A ∈ K (z) be a rational function of degree n ≥ 2 and V ∈ K (z) a
rational function of degree m ≥ 2 commuting with some iterate of A. Then ĥV = ĥ A.

Proof Proposition 5.1 implies that if rational functions B and V commute, then

ĥ B(V (x)) = ĥ B(x)deg V

for every x ∈ P
1(K ). Therefore, since the function ĥ A is defined by the conditions

(57) and (58) in a unique way, for commuting B and V the equality ĥV = ĥ B holds.
Thus, the condition of the corollary implies that ĥV = ĥ A◦l for some l ≥ 1. On the
other hand, it follows from (56) that ĥ A = ĥ A◦l .

5.2 Points with dense orbits: the case of a number field

Let A ∈ C(z) be a rational function of degree n ≥ 2, and n0 a minimum natural
number such that n = nk

0 for some k ≥ 1. Let us recall that by the Ritt theorem [32] if
a rational function V ∈ C(z) of degree m ≥ 2 commutes with A, then A and V have a
common iterate, unless they are both special. Therefore, if A is not special, there exist
r , s ∈ N such that

V ◦r = A◦s,

implying that m = ns/r = nl
0 for some l ∈ N.

Proof of Theorem 1.3. Let (x0, y0) ∈ (P1(K ))2 be a point, and O its (A, A)-orbit.
Assume that the Zariski closure of O in (P1(C))2 does not coincide with (P1(C))2. It
is easy to see (see e.g. [16], Lemma 7.20) that then all but finitely many elements of
O are contained in some (A, A)-invariant algebraic set Z ⊂ (P1(C))2. Moreover, if
x0 and y0 are not preperiodic points of A, then Z is a finite union of curves that are
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not vertical or horizontal lines. Therefore, there exists an (A, A)-preperiodic curve
C ⊂ (P1(C))2 that is not a vertical or horizontal line such that (x0, y0) ∈ C .

Assume first that A is not a generalized Lattès map. Then Theorem 4.10 implies
that C is a component of a separated variable curve

V1(x) − V2(y) = 0,

where V1, V2 ∈ C(z) are rational functions commuting with some iterate of A. More-
over, we can assume that V1 and V2 belong to K (z) (see Remark 4.12). Hence, by
Corollary 5.2,

ĥV1 = ĥV2 = ĥ A, (60)

and, in addition,

deg V1 = nl1
0 , deg V2 = nl2

0 (61)

for some l1, l2 ∈ N.
Since V1(x0) = V2(y0), the equality

ĥ A(V1(x0)) = ĥ A(V2(y0))

holds. On the other hand, by (60) and (61), we have:

ĥ A(V1(x0)) = ĥV1(V1(x0)) = nl1
0 ĥV1(x0) = nl1

0 ĥ A(x0),

ĥ A(V2(y0)) = ĥV2(V2(y0)) = nl2
0 ĥV2(y0) = nl2

0 ĥ A(y0).

Therefore, equality (15) holds for l = l1 − l2.
Assume now that A is a generalized Lattès map, and let (x0, y0) ∈ (P1(K ))2 be a

point such that x0 and y0 are not preperiodic points of A, and the canonical heights of
x0 and y0 do not satisfy condition (15). By Theorem 4.15, there exist rational functions
X and B such that equality (33) holds, X : P1(C) → P

1(C) is a Galois covering,
and B is not a generalized Lattès map. Moreover, in fact, X = θOA

0
, implying that

c(OX
2 ) = c(OA

0 ) (see Remark 4.16). Let us observe that without loss of generality we
can assume that X and B belong to K (x). Indeed, it is well-known that for any Galois
covering X : P1(C) → P

1(C) there exist Möbius transformations δ1, δ2 such that
the function δ1 ◦ X ◦ δ2 is ramified over 0, 1,∞ and has rational coefficients. Since
obviously c(OA

2 ) ⊂ K and

c(OX
2 ) = c(OA

0 ) ⊆ c(OA
2 )

by Lemma 2.9 (in case deg A < 5, we can consider A◦3 instead of A), this implies that
for someMöbius transformation δ the function X ′ = X ◦δ belongs to K (x). It follows
now from (33) that preimages of any point x ∈ K under the function B ′ = δ−1 ◦ B ◦ δ

belong to K , implying that B ′ ∈ K (x).
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Let now x ′
0 ∈ P

1(K ) and y′
0 ∈ P

1(K ) be arbitrary points such that the equalities
X(x ′

0) = x0 and X(y′
0) = y0 hold. It is easy to see that equality (33) implies that

x ′
0 nor y′

0 are not preperiodic points of B. Moreover, Proposition 5.1 implies that the
canonical heights of x ′

0 and y′
0 associated to B do not satisfy the condition

ĥ B(y′
0) = nl

0ĥ B(x ′
0), l ∈ Z.

Applying the already proved part of the theorem, we conclude that the (B, B)-orbit of
(x ′

0, y′
0) is dense in (P1(C))2. Since for any (A, A)-preperiodic curve C in (P1(C))2

the preimage E = (X , X)−1(C) is a union of (B, B)-preperiodic curves, this implies
that (A, A)-orbit of (x0, y0) is dense in (P1(C))2.

Let us recall that the Zhang conjecture about orbits states that if ϕ : X → X
is a polarizable dynamical system over some number field K , then there exists a
point a ∈ X(K ) whose forward ϕ-orbit is Zariski dense [20]. More generally, it was
conjectured in the paper [16] that if X is an irreducible variety over an algebraically
closed field of characteristic zero K and f : X → X is a dominant rational self map
such that there do not exist a positive dimensional algebraic variety Y and a dominant
rational map g : X → Y for which g ◦ f = g, then there exists a ∈ X(K ) with a
Zariski dense forward orbit.

For a detailed discussion of the above “Zariski dense orbit conjecture” and a descrip-
tion of a few special cases in which it is known to be true we refer the reader to the
recent paper [34]. In particular, the addendum to [34] contains a proof of the Zariski
dense orbit conjecture for endomorphisms of (P1(K ))2, which is based on the main
result of [34] about the existence of Zariski dense orbits for endomorphisms of projec-
tive surfaces. Below, we give an alternative proof of the Zariski dense orbit conjecture
for endomorphisms of (P1(K ))2, which is based on Theorem 1.3. Notice that for
endomorphisms induced by special rational functions the truth of the Zariski dense
orbit conjecture follows from known results (see [34] and also [16] for the polynomial
case). Thus, as before, we will consider only the case of non-special functions.

Theorem 5.3 Let K be a number field and A1, A2 ∈ K (z) non-special rational func-
tions of degree at least two. Then there is a point in (P1(K ))2 whose (A1, A2)-forward
orbit is Zariski dense in (P1(K ))2.

Proof Let us show first that if A1 = A2 = A ∈ K (z), then there exists a point in
(P1(Q))2 whose (A, A)-orbit is dense in (P1(C))2.

Let R ∈ Q(x) be an arbitrary rational function of degree two, say, z2. By the
Northcott theorem, there is a point x0 ∈ P

1(Q) with ĥ A(x0) > C3, where C3 is a
constant such that (59) holds. Setting n = deg A and assuming that n0 > 2, we obtain
from (59) the inequalities

ĥ A(R(x0)) > 2ĥ A(x0) − C3 > ĥ A(x0)

and

ĥ A(R(x0)) < 2ĥ A(x0) + C3 < 3ĥ A(x0) ≤ n0ĥ A(x0).

123



Invariant curves for endomorphisms...

Thus, the point y0 = R(x0) ∈ P
1(Q) satisfies

0 < ĥ A(x0) < ĥ A(y0) < n0ĥ A(x0),

implying that x0 and y0 are not preperiodic points of A, and the canonical heights of
x0 and y0 do not satisfy condition (15). Therefore, the (A, A)-orbit of (x0, y0) is dense
in (P1(C))2 by Theorem 1.3.

In case n0 = 2, instead of a rational function of degree two we can take any rational
function R ∈ Q(x) of degree three, obtaining

ĥ A(R(x0)) > 3ĥ A(x0) − C3 > 2ĥ A(x0)

and

ĥ A(R(x0)) < 3ĥ A(x0) + C3 < 4ĥ A(x0),

so that the point y0 = R(x0) ∈ P
1(Q) satisfies

0 < n0ĥ A(x0) < ĥ A(y0) < n2
0ĥ A(x0).

Assume now that A1, A2 ∈ K (z) are arbitrary non-special rational functions of
degree at least two, and let (x0, y0) ∈ (P1(K ))2 be an arbitrary point. If the (A1, A2)-
orbit of (x0, y0) is dense in (P1(K ))2,we are done.Otherwise, infinitelymany elements
of the orbit belong to an (A1, A2)-periodic curve C defined over K . By Theorem 4.1,
there exist rational functions X1, X2, B ∈ K (x) and r ≥ 1 such that the diagram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(Ar

1,Ar
2)−−−−→ (P1(C))2

commutes, and X1, X2 parametrize C . Moreover, since C contains infinitely many
points with coordinates in P

1(K ), there exists a parametrization of C defined over
K . Thus, without loss of generality we may assume that X1, X2 ∈ K (x). By what
is proved above there is a point (x0, y0) ∈ (P1(Q))2 whose (B, B) orbit is dense in
(P1(C))2, implying that the (Ar

1, Ar
2)-orbit of the point (X1(x0), X2(y0)) ∈ (P1(K ))2

is dense in (P1(C))2 and hence in (P1(K ))2.

5.3 Points with dense orbits: the case of an arbitrary field

Let us recall that by the results of Moriwaki [20] for every field K finitely generated
over Q one can define the height function h on P

1(K ) satisfying the following two
properties used in Sect. 5.2. For any R ∈ K (x) of degree m there exists a constant
C1 > 0 such that for every x ∈ P

1(K ) the equality

123



F. Pakovich

|h(R(x)) − mh(x)| < C1

holds, and for any D1, D2 > 0 there are only finitelymany points x ∈ P
1(K ) satisfying

the conditions

h(x) ≤ D1, [Q(x) : Q] ≤ D2.

Defining now the canonical height corresponding to a rational function A ∈ K (x) by
the formula

ĥA(x) = lim
r→∞

h(A◦r (x))

nr

and repeating verbatim the proofs of Proposition 5.1 and Theorem 1.3, we obtain the
following result.

Theorem 5.4 Let K ⊂ C be a field finitely generated over Q and A a non-special
rational function of degree n ≥ 2 defined over K . Then the (A, A)-orbit of a point
(x0, y0) ∈ (P1(K ))2 is Zariski dense in (P1(C))2, unless either x0 or y0 is a preperiodic
point of A, or the canonical heights of x0 and y0 satisfy the condition

ĥA(y0) = nl
0ĥA(x0), l ∈ Z,

where n0 is a minimum natural number such that n = nk
0 for some k ≥ 1.

In turn, Theorem 5.4 implies the following statement.

Theorem 5.5 Let K ⊂ C be a field and A1, A2 ∈ K (z) non-special rational functions
of degree at least two. Then there is a point in (P1(K ))2 whose (A1, A2)-forward orbit
is Zariski dense in (P1(K ))2.

Proof Defining K ′ as the subfield of K generated by the coefficients of A1, A2 and
arguing as in the proof of Theorem 5.3 we can find a point in (P1(K ′))2 whose
(A1, A2)-orbit is dense in (P1(C))2 and hence in (P1(K ))2.

6 Finiteness theorems

6.1 Formulation of results

In this section, we prove several results, which can be considered as quantitative
analogues of results of the paper [29] in a slightly simplified setting. As an application,
we prove Theorem 1.4 and the finiteness of the number of (A1, A2)-invariant curves
of any given bi-degree (d1, d2).

The first result is following.
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Theorem 6.1 There exists a function ϕ : N×N → R with the following property. For
any non-special rational function A of degree at least two and rational function X
such that for every d ≥ 1 the algebraic curve

A◦d(x) − X(y) = 0 (62)

has a factor of genus zero, there exists N ≤ ϕ(deg A, deg X) such that the equality

A◦N ◦ θOA
0

= X ◦ R (63)

holds for some rational function R.

Note that the assumption of Theorem 6.1 about curves (62) holds for any pair of
rational functions A and X satisfying (4) for some rational function B. Indeed, it
follows from (4) that

A◦d ◦ X = X ◦ B◦d , d ≥ 1,

implying that the curve (62) has a component of genus zero with the parametrization
t → (X(t), B◦d(t)). Similarly, the above assumption holds for any A and X satisfying
(16). However, in this case Theorem 1.4 provides a more precise conclusion which
permits to get rid of the function θOA

0
in (63). On the other hand, if A is not a generalized

Lattès map, then θOA
0
reduces to the identical map even in the more general setting of

Theorem 6.1.
We say that two rational functions W1 and W2 are μ-equivalent if there exists a

Möbius transformation μ such that

W1 = W2 ◦ μ.

Thenext result is aweaker formofTheorem6.1,which holds, however, for all functions
A including special, for which the function θOA

0
is transcendental or is not defined.

Theorem 6.2 There exists a function χ : N × N → R with the following property.
For any rational functions A of degree m ≥ 2 and integer n ≥ 1, there exist at most
χ(m, n) classes of μ-equivalence of rational functions X of degree n such that for
every d ≥ 1 the algebraic curve

A◦d(x) − X(y) = 0

has a factor of genus zero.

Let A be a rational function. We denote by D = D
[

A, N , 〈Wd , hd〉N
d=1

]

a com-

mutative diagram of the form
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P
1(C)

hN−−−−→ P
1(C) . . . P

1(C)
h2−−−−→ P

1(C)
h1−−−−→ P

1(C)
⏐
⏐
�WN

⏐
⏐
�WN−1

⏐
⏐
�W2

⏐
⏐
�W1

⏐
⏐
�W0

P
1(C)

A−−−−→ P
1(C) . . . P

1(C)
A−−−−→ P

1(C)
A−−−−→ P

1(C),

(64)

where hd , Wd , 1 ≤ d ≤ N , and W0 are rational functions. We say that D is good if
for any d1, d2, 0 ≤ d1 < d2 ≤ N , the functions

Wd1 , hd1+1 ◦ hd1+2 ◦ · · · ◦ hd2 , A◦(d2−d1), Wd2

form a good solution of equation (28). Note that if D is good, then by Lemma 2.5
deg Wd = deg W0, d ≥ 1. For a good diagram D, we set

m D = deg A, nD = deg W0.

We call the number N the length of D. For a diagram D = D
[

A, N , 〈Wd , hd〉N
d=1

]

and j1, j2, 0 ≤ j1 < j2 ≤ N , we denote by D j1, j2 the sub-diagram of D bounded by
the arrows W j1 and W j2 .

Let r , 1 ≤ r ≤ N , be an integer. We say that D = D
[

A, N , 〈Wd , hd〉N
d=1

]

is

r -periodic if for every j, 0 ≤ j ≤ N − r , the equality

W j+r = W j ◦ α j

holds for some Möbius transformation α j . We say that D is periodic if it is r -periodic
for some r , 1 ≤ r ≤ N . Finally, we say that D is preperiodic if for some N0,

0 ≤ N0 ≤ N − 1, the sub-diagram DN0,N is periodic.
The last of the analogues of results of the paper [29] proved in this section is

following.

Theorem 6.3 There exists a function ψ : N×N → R with the following property. Any

good diagram D = D
[

A, N , 〈Wd , hd〉N
d=1

]

such that m D ≥ 2 and N > ψ(m D, nD)

is preperiodic.

6.2 Proof of Theorem 6.3

As in [29], we use the following result proved in [25].

Theorem 6.4 Let U be a rational function of degree n. Then for any rational function
V of degree m such that the curve EU ,V : U (x) − V (y) = 0 is irreducible the
inequality

g(EU ,V ) >
m − 84n + 168

84

holds, unless χ(OU
2 ) ≥ 0.
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We also need the following lemma, which is a particular case of Theorem 2.4 in
the paper [29].

Lemma 6.5 Let R be a compact Riemann surface, f : R → P
1(C) a holomorphic

map, and O an orbifold. Then

θO = f ◦ h (65)

for some holomorphic map h : Õ → R if and only if O f
2 	 O.

For brevity,we call a rational function f satisfying (65) a compositional left factorof
θO.More precisely, by a compositional left factor of a holomorphicmap f : R1 → R2
between Riemann surfaces, we mean any holomorphic map g : R′ → R2 between
Riemann surfaces such that f = g ◦ h for some holomorphic map h : R1 → R′.

Lemma 6.6 There exists a function κ : N → N with the following property. For any
orbifold O with χ(O) ≥ 0 there exist at most κ(n) classes of μ-equivalence of rational
functions f of degree n with O

f
2 = O.

Proof By Lemma 6.5, the equality O
f
2 = O implies that f is a compositional left

factor of θO. Moreover, it is easy to see that the equality

θ
O

f
2

= f ◦ θ
O

f
1

holds. Therefore, for any fixed O, the number of μ-equivalence classes of rational
functions f of degree n with O

f
2 = O does not exceed the number of subgroups of

index n in the group �O. On the other hand, the number of such subgroups can be
bounded in terms of n, since �O is finitely generated. Since the group �O is defined
by the signature of O, this implies that to prove the lemma we only must show that
for orbifolds whose signatures belong to the infinite series {l, l}, l ≥ 2, and {2, 2, l},
l ≥ 2, from the lists (24), (25), the bounds for the number of μ-equivalence classes
are uniform.

It is well-known (see e.g. Corollary 2.7 in [29]) that if O f
2 is defined by the condi-

tions

ν
f
2 (0) = l, ν

f
2 (∞) = l,

then

f = zl ◦ μ (66)

for some Möbius transformation μ, while if O f
2 is defined by the conditions

ν
f
2 (−1) = 2, ν

f
2 (1) = 2, ν

f
2 (∞) = l,
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then either

f = 1

2

(

zl + 1

zl

)

◦ μ, (67)

or

f = ±Tl ◦ μ (68)

for some Möbius transformation μ. Therefore, there exists exactly one μ-equivalence
class of rational functions f of degree n such that the signature of O f

2 belongs to the

series {l, l}, l ≥ 2, and there exist at most three such classes if the signature of O f
2

belongs to the series {2, 2, l}, l ≥ 2.

Lemma 6.7 Let D = D
[

A, N , 〈Wd , hd〉N
d=1

]

be a diagram such that

C(hd , Wd) = C(z), 1 ≤ d ≤ N . (69)

Assume that

Wr = W0 ◦ μ (70)

for some r , 1 ≤ r ≤ N , and Möbius transformation μ. Then D is good and r-periodic.

Proof Since (69) implies that the map

t → (hd(t), Wd(t)), 1 ≤ d ≤ N ,

is a generically one-to-one parametrization of some component of the curve

Wd−1(x) − A(y) = 0,

we see that

deg WN ≤ deg WN−1 ≤ · · · ≤ deg W1 ≤ deg W0. (71)

Thus, (70) yields that

deg Wr = deg Wr−1 = · · · = deg W1 = deg W0,

implying by Lemma 2.5 and Theorem 2.6 that the sub-diagram D0,r is good. In
particular, the fiber product of W0 and A has a unique component and the functions
W1, h1 are defined by W0 in a unique way up to natural isomorphisms. It follows now
from (70) that the fiber product of Wr and A also has a unique component and

Wr+1 = W1 ◦ μ′
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for some Möbius transformation μ′. In particular, the sub-diagram D0,r+1 is good.
Continuing arguing in this way, we conclude that D is good and r -periodic.

Proof of Theorem 6.3. We first prove the theorem under the additional assumption

χ(O
Wd
2 ) ≥ 0, 0 ≤ d ≤ N . (72)

For a good diagram D = D
[

A, N , 〈Wd , hd〉N
d=1

]

define k = k(D) as the number of

distinct orbifolds among the orbifolds OWd
2 , 0 ≤ d ≤ N . To prove the theorem it is

enough to show that there exists a function C = C(m D) such that

k(D) ≤ C(m D). (73)

Indeed, if (73) holds, then Lemma 6.6 and the box principle imply that whenever

N > ψ = C(m D)κ(nD),

there exist j1, j2, 0 ≤ j1 < j2 ≤ N , such that W j2 and W j1 are μ-equivalent. Since
equalities (69) hold by Lemma 2.5, this implies by Lemma 6.7 that the sub-diagram
D j1,N is ( j2 − j1)-periodic.

To prove (73) it is enough to bound in terms of m D the number of distinct sets
among the sets c(OWd

2 ), 0 ≤ d ≤ N , and the number of distinct signatures among the

signatures ν(O
Wd
2 ), 0 ≤ d ≤ N . Since

A : OWd+1
2 → O

Wd
2 , 0 ≤ d ≤ N − 1,

is a minimal holomorphic map between orbifolds by Theorem 2.4, it follows from
Lemma 2.9 that if m D > 4, then every set c(OWd

2 ), 0 ≤ d ≤ N − 1, is a subset of the
set c(OA

2 ). Since a rational function of degree m has at most 2m − 2 critical values,

this implies that the number of distinct sets among the sets c(OWd
2 ), 0 ≤ d ≤ N , is

bounded in terms of m D . Moreover, this is also true if m D ≤ 4. Indeed, the inequality
m D ≥ 2 implies the inequality m◦3

D > 4, and hence every set c(OWd
2 ), 0 ≤ d ≤ N −3,

is a subset of the set c(A◦3), since

A◦3 : OWd+3
2 → O

Wd
2 , 0 ≤ d ≤ N − 3,

also are minimal holomorphic maps. Finally, possible signatures of the orbifoldsOWd
2 ,

0 ≤ d ≤ N , are contained in the lists (24), (25), and by formulas (66), (67), (68), if
ν(O

Wd
2 ) = {l, l}, l ≥ 2, then l = nD , while if ν(O

Wd
2 ) = {2, 2, l}, l ≥ 2, then either

l = nD or l = nD/2. Thus, the number of distinct signatures among the signatures
ν(O

Wd
2 ), d ≥ 0, does not exceed ten.
The proof of the theorem in the general case reduces to the case where (72) is

satisfied. Indeed, since the commutativity of diagram (64) implies that the curves

A◦d(x) − W0(y) = 0, 1 ≤ d ≤ N ,
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have genus zero, applying Theorem 6.4 for U = W0 and V = A◦N , we see that
whenever

m N
D > 84(nD − 2)

the inequality χ(O
W0
2 ) ≥ 0 holds. More generally, setting U = Wi , 0 ≤ i ≤ N0, and

V = A◦(N−i), we see that whenever

m N−N0
D > 84(nD − 2), N0 ≥ 0,

the inequalities

χ(O
Wd
2 ) ≥ 0, 0 ≤ d ≤ N0,

hold. Therefore, if

N > ψ = logm D
(84(nD − 2)) + C(m D)κ(nD) + 1, (74)

then the inequalities

χ(O
Wd
2 ) ≥ 0, 0 ≤ d ≤ C(m D)κ(nD) + 1,

hold. By the already proved part of the theorem, we conclude that there exist j1, j2,
0 ≤ j1 < j2 ≤ C(m D)κ(nD) + 1, such that W j2 and W j1 are μ-equivalent, implying
as above that D is preperiodic.

6.3 Proof of Theorem 6.1, Theorem 6.2, and Theorem 1.4

Proof of Theorem 6.1. Since for any holomorphic map f : R → R′ between compact
Riemann surfaces the inequality g(R) ≥ g(R′) holds, it follows from the universality
property of the fiber product that if for every d ≥ 1 curve (62) has a factor of genus
zero, then for every N ≥ 1 there exists a diagram D of the form (64) such that W0 = X
and the conditions (69), (71) hold.

Assume that for some l1, l2, 0 ≤ l1 < l2 ≤ N , the condition

deg Wl2 = · · · = deg Wl1+1 = deg Wl1 ≥ 2

holds. Then we conclude as in Lemma 6.7 that the sub-diagram Dl1,l2 is good, and
applying Theorem 6.3 to the diagram Dl1,l2 we see that either there exist j1, j2,
l1 ≤ j1 < j2 ≤ l2 such that W j2 and W j1 are μ-equivalent, or

l1 − l2 ≤ ψ(deg A, deg Wl1),

implying that

l1 − l2 ≤ ψ(deg A, deg X), (75)
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since the function in the right part of (74) is increasing in the argument nD . It follows
now from (71) and (75) that whenever

N > ϕ(deg A, deg X) = ψ(deg A, deg X) · (deg X − 1) + 1, (76)

either

deg WN = 1, (77)

or there exist a Möbius transformation μ and integers j1, j2, 1 ≤ j1 < j2 ≤ N , such
that

W j2 = W j1 ◦ μ (78)

and

deg W j2 = deg W j1 ≥ 2. (79)

In the first case, the function

R1 = h1 ◦ h2 ◦ · · · ◦ hN ◦ W −1
N

satisfies

A◦N = X ◦ R1, (80)

implying that

A◦N ◦ θOA
0

= X ◦ (R1 ◦ θOA
0
).

In the second case, the equality

A◦ j1 ◦ W j1 = X ◦ R2 (81)

holds for the function

R2 = h1 ◦ h2 ◦ · · · ◦ h j1 .

Furthermore, since D j1, j2 is good, it follows from (78) by Theorem 2.4 that

A◦( j2− j1) : OW j1
2 → O

W j1
2

is a minimal holomorphic map, and hence

O
W j1
2 	 OA

0 , (82)
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by Theorem 2.7. It follows now from Lemma 6.5 that the equality

θOA
0

= W j1 ◦ T

holds for some rational function T , implying by (81) that

A◦ j1 ◦ θOA
0

= X ◦ R2 ◦ T .

Thus,

A◦N ◦ θOA
0

= X ◦ R2 ◦ T ◦ F◦(N− j1),

where F is a rational function, which makes the diagram (32) commutative.

Proof of Theorem 6.2. We recall that if R is a compact Riemann surface and
f : R → P

1(C) is a holomorphic map, then functional decompositions f = U ◦ V ,
where V : R → R′ and U : R′ → P

1(C) are holomorphic maps between compact
Riemann surfaces, considered up to the equivalence

U → U ◦ μ, V → μ−1 ◦ V , μ ∈ Aut(R′),

are in a one-to-one correspondence with imprimitivity systems of the monodromy
group of f . Thus, Theorem 6.1 implies that for non-special A the number of μ-
equivalence classes of rational functions X of degree n such that for every d ≥ 1
the algebraic curve (62) has a factor of genus zero is bounded by the number of
imprimitivity systems in the monodromy group of the function A◦N ◦ θOA

0
. In turn,

this number is bounded in terms of m and n.

Assume now that A is a Lattès map. In this case, it is still true that if N satisfies
(76), then either conditions (77) and (80), or conditions (81) and (82) hold. Moreover,

deg W j1 ≤ deg W0 = n,

and (82) implies that

χ(O
W j1
2 ) ≥ χ(OA

0 ) = 0.

It follows now from Lemma 6.6 that the considered number of μ-equivalence classes
is bounded by the total number of imprimitivity systems in the monodromy groups
of a finite number of rational functions of the form A◦ j1 ◦ W , where deg W ≤ n,
OW
2 	 OA

0 , and j1 ≤ N .

Finally, by Theorem 3.6 of [29], if A is conjugate to z±m , then any X satisfying the
conditions of the theorem has the form X = zn ◦ μ for some μ ∈ Aut(P1(C)), while
if A is conjugate to ±Tm , then either X = ±Tn ◦ μ, or
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X = 1

2

(

zn/2 + 1

zn/2

)

◦ μ,

for some μ ∈ Aut(P1(C)). Thus, the theorem is true also in this case.

Proof of Theorem 1.4 It follows from equality (16) that the map

t → (A◦(d−1)(t), R(t))

is a parametrization of some irreducible component of the curve

A(x) − X(y) = 0.

This parametrization is not necessary one-to-one. However, we can find a parametri-
zation W1, h1 such that C(W1, h1) = C(z). Moreover, the functions W1, h1 satisfy
the equalities

A◦(d−1)(t) = W1 ◦ H1, R = h1 ◦ H1

for some rational function H1. In particular, the diagram

P
1(C)

H1−−−−→ P
1(C)

h1−−−−→ P
1(C)

⏐
⏐
�z

⏐
⏐
�W1

⏐
⏐
�X

P
1(C)

A◦(d−1)−−−−→ P
1(C)

A−−−−→ P
1(C)

commutes. Similarly, the map

t → (A◦(d−2)(t), H1(t))

is a parametrization of some irreducible component of the curve

A(x) − W1(y) = 0,

implying that there exist rational functions W2, h2 and H2 such that the equalities

A◦(d−2)(t) = W2 ◦ H2, H1 = h2 ◦ H2, C(W2, h2) = C(z)

hold and the diagram

P
1(C)

H2−−−−→ P
1(C)

h2−−−−→ P
1(C)

h1−−−−→ P
1(C)

⏐
⏐
�z

⏐
⏐
�W2

⏐
⏐
�W1

⏐
⏐
�X

P
1(C)

A◦(d−2)−−−−→ P
1(C)

A−−−−→ P
1(C)

A−−−−→ P
1(C),
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commutes.‘ Continuing arguing in the same way, for every N ≤ d we obtain diagram
(64), such that

W0 = X , WN = z,

and the conditions (69), (71) hold.
Now, as in the proof of Theorem 6.1 and Theorem 6.2, we conclude that if N

satisfies (76), then either equalities (77), (80) hold, or there exist integers j1, j2,
1 ≤ j1 < j2 ≤ N , such that (78) and (79) hold. However, the last case is impossible.
Indeed, if (78) holds, then Lemma 6.7 applied to the diagram D j1,d implies that

deg Wd = deg W j1 ,

in contradiction with the conditions

deg Wd = 1, deg W j1 ≥ 2.

6.4 Finiteness of the number of invariant curves of a given bi-degree

Let R be a compact Riemann surface of genus zero or one, and B : R → R
a holomorphic map. We denote by G1(B) the subgroup of Aut(R) consisting of
μ ∈ Aut(R) such that

B ◦ μ = B,

and by G2(B) the subgroup consisting of μ such that

μ−1 ◦ B ◦ μ = B.

Lemma 6.8 The group G1(B) is finite, and its order can be bounded in terms of the
degree of B. The same conclusion holds for the group G2(B) whenever the degree of
B is at least two.

Proof Assume first that g(R) = 0, so that B is a rational function and elements
of G1(B) and G2(B) are Möbius transformations. If deg B = 1, then the group
G1(B) is trivial. So, assume that deg B ≥ 2. Let us observe that any μ ∈ G1(B)

permutes preimages of (B◦k)−1(z0) for any z0 ∈ P
1(C) and k ≥ 1. Since each

Möbius transformation is determined by specifying its value at three distinct points,
this implies that the group G1(B) is finite and its order can be bounded in terms of
deg B. Similarly, any μ ∈ G2(B) permutes B-periodic points of any given period
k ≥ 1, implying that the group G2(B) is finite.

If g(R) = 1, then any μ ∈ G1(B) still permutes preimages of (B◦k)−1(z0), while
anyμ ∈ G2(B) permutes B-periodic points. Furthermore, anyμ ∈ Aut(R) is induced
by a linear map
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F = ωz + c, ω, c ∈ C,

where ω is an lth root of unity with l = 1, 2, 3, 4, or 6. Such μ has |ω − 1|2 fixed
points, implying that it is determined by its values at |ω−1|2+1 distinct points. Thus,
the same argument as above shows the finiteness of G1(B) and G2(B).

Lemma 6.9 Let A be a rational function of degree at least two, R a compact Riemann
surface of genus zero or one, and X : R → P

1(C) a holomorphic map. Then the
number of holomorphic maps B : R → R such that the diagram

R
B−−−−→ R

⏐
⏐
�X

⏐
⏐
�X

P
1(C)

A−−−−→ P
1(C)

(83)

commutes is finite and can be bounded in terms of degrees of A and X.

Proof Setting F = A ◦ X , we see that any two functions B and B ′ making diagram
(83) commutative satisfy the equality

F = X ◦ B = X ◦ B ′.

Since the number of imprimitivity systems in the monodromy group of F is finite,
this implies that there exist holomorphic maps B1, B2, . . . , BN : R → R such that
the equality F = X ◦ B holds for a holomorphic map B : R → R if and only if there
exists μ ∈ Aut(R) such that

X = X ◦ μ, B = μ−1 ◦ B j (84)

for some j, 1 ≤ j ≤ N . Moreover, the number N is bounded in terms of degrees of
A and X , since deg F = deg A · deg X . Finally, the number of μ satisfying the first
equality in (84) is also bounded by Lemma 6.8.

Theorem 6.10 Let A1, A2 be rational functions of degree m ≥ 2. Then for any pair of
positive integers (d1, d2) there exist at most finitely many (A1, A2)-invariant curves
of bi-degree (d1, d2). Moreover, there exists a function γ : N×N×N → R such that
the number of these curves does not exceed γ (m, d1, d2).

Proof Assumefirst that A1, A2 are not bothLattèsmaps. Then byTheorem4.1 any irre-
ducible invariant curve C of bi-degree (d2, d1) has genus zero and can be parametrized
by rational functions X1 and X2 of degrees d1 and d2 correspondingly making the dia-
gram

(P1(C))2
(B,B)−−−−→ (P1(C))2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

123



F. Pakovich

commutative for some rational function B. It follows now from Theorem 6.2 that
there exist rational functions

X1,1, X1,2, . . . , X1,l1 and X2,1, X2,2, . . . , X2,l2

such that any irreducible invariant curve C of bi-degree (d2, d1) is parametrized by
rational functions X1 and X2 satisfying

X1 = X1, j1 ◦ μ1, X2 = X2, j2 ◦ μ2

for some j1, 1 ≤ j1 ≤ l1, j2, 1 ≤ j2 ≤ l2, and μ1, μ2 ∈ Aut(P1(C)). Moreover, the
numbers l1 and l2 can be bounded in terms of d1, d2, and m. Since a parametrization
X1, X2 of C is defined in a unique way up to the change

(X1, X2) → (X1 ◦ α, X2 ◦ α), α ∈ Aut(P1(C)),

this implies that to prove the theorem it is enough to show that for any fixed rational
functions X1, X2 there exist at most finitely many μ ∈ Aut(P1(C)) such that the
diagram

(P1(C))2
(C,C)−−−−→ (P1(C))2

(X1,X2◦μ)

⏐
⏐
�

⏐
⏐
�(X1,X2◦μ)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

(85)

commutes for some rational functionC , and that the number of suchμ can be bounded
in terms of the numbers m, d1, d2.

By Lemma 6.9, there exist B1,1, B1,2, . . . , B1,s1 and B2,1, B2,2, . . . , B2,s2 , where
s1 and s2 are bounded in terms of m, d1, d2, such that (85) holds if and only if

C = B1, j1, μ ◦ C ◦ μ−1 = B2, j2

for some j1, 1 ≤ j1 ≤ s1, j2, 1 ≤ j2 ≤ s2 and μ ∈ Aut(P1(C)). Thus, we only must
show that for each pair j1, j2 the number of μ ∈ Aut(P1(C)) such that

μ ◦ B1, j1 ◦ μ−1 = B2, j2 (86)

is finite and can be bounded in terms of m. For this purpose, we observe that if along
with (86) the equality
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μ̃ ◦ B1, j1 ◦ μ̃−1 = B2, j2

holds for some μ̃ ∈ Aut(P1(C)), then μ̃ ◦ μ−1 belongs to G2(B2, j2). Therefore, the
number ofμ ∈ Aut(P1(C)) satisfying (86) is equal to the order of the groupG2(B2, j2),
which is finite by Lemma 6.8.

Assume finally that both A1 and A2 are Lattès maps. In this case, by Theorem 4.1
there exist a compact Riemann surface R of genus zero or one, and holomorphic maps
X1 : R → P

1(C) and X2 : R → P
1(C) of degrees d1 and d2 correspondingly such

that the diagram

R2 (B,B)−−−−→ R2

(X1,X2)

⏐
⏐
�

⏐
⏐
�(X1,X2)

(P1(C))2
(A1,A2)−−−−→ (P1(C))2

commutes for some holomorphic map B : R → R. In turn, the commutativity of this
diagram implies that for every d ≥ 1 the algebraic curves

A◦d
i (x) − B(y) = 0, i = 1, 2,

have a factor of genus zero or one. By Theorem 3.5 of [29], this implies that Xi is
a compositional left factor of θ

O
Ai
0
. Therefore, OXi

2 	 O
Ai
0 , by Lemma 6.5. Thus,

χ(O
Xi
2 ) ≥ 0, and arguing as in Lemma 6.6 we see that, up to the change

X → X ◦ α, α ∈ Aut(R),

there exist only finitely many choices for Xi . Now we can finish the proof as above
using the full versions of Lemma 6.8 and Lemma 6.9.
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