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The concepts of differentiation and integration for matrices 
are known. As far as each matrix is differentiable, it is not clear 
a priori whether a given matrix is integrable or not. Recently 
some progress was obtained for diagonalizable matrices, how-
ever general problem remained open. In this paper, we present 
a full solution of the integrability problem. Namely, we pro-
vide necessary and sufficient conditions for a given matrix to 
be integrable in terms of its characteristic polynomial. Fur-
thermore, we find necessary and sufficient conditions for the 
existence of integrable and non-integrable matrices with given 
geometric multiplicities of eigenvalues. Our approach relies 
on properties of some special classes of polynomials, namely, 
Shabat polynomials and conservative polynomials, arising in 
number theory and dynamics.
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1. Introduction

The concepts of differentiation and integration for matrices were introduced for study-
ing zeros and critical points of complex polynomials. The notion of matrix differentiability 
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was introduced by Davis in [6] and further investigated in [1–3,9,12]. The converse oper-
ation, namely, the operation of integration, is due to Bhat and Mukherjee ([1]). Notice 
that the integrability of matrices has applications to the nonnegative inverse eigenvalue 
problem and to inequalities like the dual Schoenberg type inequality (see [5,7] and ref-
erences therein).

Originally, differentiability and integrability of matrices were defined for matrices 
over the field of complex numbers C. In this paper, we allow the main field K to be 
an arbitrary algebraically closed subfield of C. Notice that such K contains Q and its 
algebraic closure Q. We denote the set of n × n matrices over K by Mn := Mn(K), the 
set of row vectors of the length n over K by Kn, and the set of polynomials in x over K
by K[x]. Accordingly, our main definition is the following.

Definition 1.1. Let B ∈ Mn(K). Then A ∈ Mn+1(K) is called an integral of B if there 

exist u, v ∈ Kn and b ∈ K such that A =
[
B u�

v b

]
and pB(x) = 1

n+1p
′
A(x), where pM (x)

denotes the characteristic polynomial of a matrix M , and p′ is the formal derivative of 
p. We say that B is integrable if there exists an integral of B.

Integrability of matrices was firstly investigated in [1]. In particular, it was proved 
in [1] that non-derogatory matrices, that is, matrices that have only one Jordan cell for 
each eigenvalue, are always integrable. Thus, the remaining problem was to determine if 
a matrix having several Jordan cells with the same eigenvalue is integrable or not. In the 
subsequent paper [5], the integrability problem was solved for diagonalizable matrices by 
using methods of matrix analysis and linear algebra. However, the general case remained 
open. In this paper, we provide a complete solution of the integrability problem for 
arbitrary matrices.

2. Main results and plan of the paper

Our first main result is the following statement.

Theorem 2.1. Let B ∈ Mn be a matrix, and S = {λ | dim ker(B − λI) > 1} the set of 
eigenvalues of B such that there exist more than one Jordan cells with the eigenvalue 
λ. Then B is integrable if and only if an integral 

∫
pB(x)dx takes the same value on all 

elements of S.

Solving the integrability problem for any given matrix, Theorem 2.1 also reduces find-
ing necessary and sufficient conditions for the existence of integrable and non-integrable 
matrices with given geometric multiplicities of eigenvalues to solving the corresponding 
problem about integrals of polynomials. In more detail, let us introduce the concept of 
S-full integral of a polynomial by the following definition.
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Definition 2.2. Let f(x) ∈ K[x] be a polynomial, Z ′(f) the set of zeros of f of multiplicity 
at least two, and S a subset of Z ′(f). A polynomial F (x) ∈ K[x] is called an S-full integral 
of f(x) if

1. F ′(x) = f(x),
2. F (t) = 0 for any t ∈ S.

We say that f(x) is S-full integrable if there exists an S-full integral of B.

In view of Theorem 2.1, the existence problem for integrable and non-integrable ma-
trices with given geometric multiplicities of eigenvalues is equivalent to the existence 
problem for S-full integrals of a polynomial with given multiplicities of zeros, and much 
of the paper is devoted to the solution of the last problem. A particular case of this 
problem with S = Z ′(f) was solved in the recent paper [4]. As a corollary, the relations 
between the spectrum of a diagonalizable matrix and its integrability were established 
(see [5, Theorem 3.13]).

In this paper, we solve the existence problem for S-full integral of a polynomial with 
given multiplicities of zeros. We write the polynomials under consideration in the form

f(x) = (x− a1)α1 . . . (x− am)αm(x− b1)β1 . . . (x− bk)βk , (1)

where the zeros a1, . . . , am, b1, . . . , bk are pairwise distinct, and the multiplicities satisfy 
the conditions α1, . . . , αm ≥ 2, β1, . . . , βk ≥ 1, so that the zeros a1, . . . , am are multiple, 
and the zeros b1, . . . , bk can be arbitrary. Thus, the set S = {a1, . . . , am} is always a 
subset of Z ′(f), and we can consider the question about S-full integrability of f .

Our main result concerning the existence of S-full integrals is the following.

Theorem 2.3. Let m, k ≥ 0, α1, . . . , αm ≥ 2, β1, . . . , βk ≥ 1 be integers, and

n =
m∑
j=1

αj +
k∑

i=1
βi, M =

m∑
j=1

αj .

Then the following statements are true.

1. If m = 0, then for all pairwise distinct b1, . . . , bk ∈ K the polynomial

f(x) = (x− b1)β1 . . . (x− bk)βk

has an S-full integral with respect to S = ∅.
2. If m = 1, then for all pairwise distinct a, b1, . . . , bk ∈ K the polynomial

f(x) = (x− a)α1(x− b1)β1 . . . (x− bk)βk ,
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has an S-full integral with respect to S = {a}.
3. If 2 ≤ m ≤ n −M + 1, then there exist pairwise distinct a1, . . . , am, b1, . . . , bk ∈ Q

such that the polynomial f1(x) = (x −a1)α1 . . . (x −am)αm(x −b1)β1 . . . (x −bk)βk has 
an S-full integral with respect to S = {a1, . . . , am}, and there exist pairwise distinct 
{a′1, . . . , a′m, b′1, . . . , b

′
k} ∈ Q such that the polynomial f2(x) = (x − a′1)α1 . . . (x −

a′m)αm(x − b′1)β1 . . . (x − b′k)βk does not have an S-full integral with respect to S =
{a′1, . . . , a′m}.

4. If m > n −M + 1 then for all pairwise distinct a1, . . . , am, b1, . . . , bk ∈ K the poly-
nomial

f(x) = (x− a1)α1 . . . (x− am)αm(x− b1)β1 . . . (x− bk)βk

does not have an S-full integral with respect to S = {a1, . . . , am}.

In particular, an S-full integrable polynomial of the form (1) exists if and only if m ≤
n −M + 1.

We remark that the main difficulty (as well as the main interest) in proving Theo-
rem 2.3 is to establish the existence of integrable and non-integrable polynomials in the 
third part. Our approach to the proof of this part relies on some techniques having their 
origin in number theory and dynamics. Namely, we use the beautiful relations between 
plane trees and two types of complex polynomials: Shabat polynomials arising in the 
Grothendieck “dessin d’enfant” theory and conservative polynomials arising in dynam-
ics. To construct polynomials that posses S-full integrals we use Shabat polynomial, 
while to construct polynomials that do not possess S-full integrals we use conservative 
polynomials.

Finally, combining Theorem 2.1 and Theorem 2.3 we obtain the following result.

Theorem 2.4. Let m, k ≥ 0 and α1, . . . , αm ≥ 2, β1, . . . , βk ≥ 1 be integers,

n =
m∑
j=1

αj +
k∑

i=1
βi, M =

m∑
j=1

αj ,

and M the subset of Mn consisting of all matrices B with pairwise different eigenval-
ues (λ1, . . . , λm, μ1, . . . , μk) of the multiplicities α1, . . . , αm, β1, . . . , βk, correspondingly, 
satisfying the conditions

dim(Ker (B − λiI)) > 1, 1 ≤ i ≤ m, and dim(Ker (B − μjI)) = 1, 1 ≤ j ≤ k.

Then the following statements are true.

1. If m ≤ 1, then all matrices in M are integrable.
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2. If 2 ≤ m ≤ n −M +1, then M contains both integrable and non-integrable matrices.
3. If m > n −M + 1, then all matrices in M are non-integrable.

In particular, M contains an integrable matrix if and only if m ≤ n −M + 1.

Let us mention that applying Theorem 2.4 for m = 0 we obtain the result of [1] that 
each non-derogatory matrix is integrable. On the other hand, for diagonalizable matrices, 
Theorem 2.4 implies the main result of [5], see Theorem 4.11.

The paper is organized as follows. In Section 3, we firstly recall some properties of plane 
trees, Shabat polynomials, and conservative polynomials used in the paper. In particular, 
we discuss the relations between these classes of polynomials and plane trees. Then, we 
prove Theorem 2.3. In Section 4, we prove Theorems 2.1 and 2.4 and some additional 
results. In particular, we prove that if a matrix is diagonalizable and integrable, then 
each matrix with the same spectrum is integrable.

3. S-full integrals of polynomials

3.1. Plane trees

We recall that a tree is a connected graph without cycles, and a plane tree is a tree 
embedded into the plane. Two plane trees λ1, λ2 are called equivalent if there exists an 
orientation preserving homeomorphism μ of the plane such that μ(λ1) = λ2. A trivial 
induction shows that a tree with n edges has n + 1 vertices. Let λ be a plane tree and 
(γ1, γ2, . . . , γn+1) the sequence of valencies of vertices of λ. Since λ has no loops, every 
edge of λ is adjacent exactly to two vertices of λ, implying that

n+1∑
i=1

γi = 2n. (2)

We will refer to this fact by saying that (γ1, γ2, . . . , γn+1) is a partition of 2n.
The following two lemmas are known (see Section 1.5.2 and Section 1.6.1 of [10] for 

more detail and generalizations). We provide full proofs of these results since their ideas 
are of importance for our proof of Theorem 2.3.

Lemma 3.1. Let n be a positive integer. Then for any partition (γ1, γ2, . . . , γn+1) of 
2n there exists a plane tree λ with n edges and the sequence of valencies of vertices 
(γ1, γ2, . . . , γn+1).

Proof. The proof is by induction on n. For n = 1 the statement is clearly true. To 
prove the inductive step, we observe that for n > 1 equality (2) implies that at least 
one element of (γ1, γ2, . . . , γn+1) is equal to 1 and at least one does not. Assuming that 
γ1 = 1, γ2 > 1, let us consider the partition (γ2−1, γ3, . . . , γn+1) of the number 2(n −1). 
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By the induction assumption, there exists a tree λ′ with n − 1 edges and the sequence of 
valencies of vertices (γ2 − 1, γ3, . . . , γn+1). To obtain now a required tree, λ it is enough 
to glue an extra edge to the vertex of valency γ2 − 1 of λ′. �

In this paper, instead of ordinary plane trees, we consider bicolored plane trees. By 
definition, a bicolored plane tree is a plane tree whose vertices are colored in black and 
white colors in such a way that any edge connects vertices of different colors. Two bicol-
ored plane trees λ1, λ2 are called equivalent if they are equivalent as plane trees and the 
corresponding homeomorphism μ preserves the colors of vertices. Any plane tree λ can 
be “bicolored” by choosing one of two possible colorings for an arbitrary vertex of λ and 
expanding coloring to the remaining vertices.

One can easily see that if (α1, . . . , αp) and (β1, . . . , βq) are the sequences of valencies 
of white and black vertices of a bicolored plane tree with n edges, then the equalities

p∑
i=1

αj =
q∑

i=1
βi = n (3)

and

p + q = n + 1 (4)

holds. In turn, the analogue of Lemma 3.1 is the following statement.

Lemma 3.2. Let n be a positive integer. Then for any partitions (α1, . . . , αp) and 
(β1, . . . , βq) of n such that p + q = n +1 there exists a bicolored plane tree λ with n edges 
and the valency sequences of white and black vertices (α1, . . . , αp) and (β1, . . . , βq).

Proof. As above, the proof is by induction on n. For n = 1 the statement is true. To 
prove the inductive step we observe that if n > 1, then (3) and (4) still imply that at 
least one of the numbers αj , βi is equal to one. Furthermore, if, say, α1 = 1, then it 
follows from (3) and (4) that at least one of the numbers βi, say β1, is greater than one. 
By the induction assumption, there exists a bicolored plane tree λ′ with n − 1 edges and 
the sets of valencies of white and black vertices (α2, . . . , αp) and (β1 − 1, . . . , βq). Gluing 
now an extra edge to the vertex of valency β1 − 1 of λ′, we obtain a required tree λ. If 
instead of α1 one of the numbers βi is equal to one, then the proof is obtained by an 
obvious modification. �

The main result of this section, which is used in the proof of Theorem 2.3, is the 
following variation of the above lemmas.

Lemma 3.3. Let n be a positive integer and (γ1, γ2, . . . , γn+1) be a partition of 2n. Assume 
that for an integer l, 1 ≤ l ≤ n, the inequality
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γ1 + γ2 + · · · + γl ≤ n (5)

holds. Then there exist p ≥ l and a bicolored plane tree λ with n edges and the sequences 
of valencies of white and black vertices (α1, . . . , αp) and (β1, . . . , βq) such that:

(γ1, γ2, . . . , γn+1) = (α1, . . . , αp, β1, . . . , βq).

Proof. The proof is by induction on n. For n = 1 the statement is true. Furthermore, it 
follows from Lemma 3.1 that if l = 1, then it is true for any n, since any plane tree can 
be bicolored.

To prove the inductive step in case l > 1, let us observe first that conditions of the 
theorem imply that at least one of the following conditions holds:

(a): the sequence (γ1, γ2, . . . , γl) contains 1 and (γl+1, γl+2, . . . , γn+1) contains an el-
ement different from 1,

(b): the sequence (γl+1, γl+2, . . . , γn+1) contains 1 and (γ1, γ2, . . . , γl) contains an el-
ement different from 1.

Indeed, 1 belongs to the set (γ1, γ2, . . . , γn+1) and hence belongs to at least 
one of the sets (γ1, γ2, . . . , γl) and (γl+1, γl+2, . . . , γn+1). If 1 ∈ (γ1, γ2, . . . , γl) and 
(γl+1, γ2, . . . , γn+1) contains a non-unit, then (a) takes place. On the other hand, if 
all elements of the set (γl+1, γl+2, . . . , γn+1) are units, then necessarily at least one of 
the elements of the set (γ1, γ2, . . . , γl) is not a unit, so that (b) takes place. In case 
1 ∈ (γl+1, γl+2, . . . , γn+1), the proof is similar.

In case (a) holds, the inductive step goes as follows. Without loss of generality we 
may assume that γ1 = 1 and γl+1 > 1. Defining now a partition of the integer 2(n − 1)
by the formula

(γ2, . . . , γl, γl+1 − 1, γl+2, . . . , γn+1) (6)

and observing that (5) implies that

γ2 + γ3 + · · · + γl ≤ n− 1,

we conclude by the induction assumption that there exists a bicolored plane tree λ′

with n − 1 edges, whose sequence of valencies of vertices coincides with (6), and whose 
sequence of valencies of white vertices “contains” (γ2, . . . , γl). Therefore, gluing an extra 
edge to the vertex of valency γl+1−1 of λ′ we obtain a required tree λ. In case (b) holds, 
the proof is obtained by an obvious modification. �
3.2. Shabat polynomials

Let P (z) be a complex polynomial. We recall that zeros w1, . . . , wn of P ′(x) are called 
(finite) critical points of P (z) and the values P (w1), . . . , P (wn) are called (finite) critical 
values of P (z).
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Definition 3.4. A complex polynomial P (z) is called a Shabat polynomial if it has at most 
two (finite) critical values. Two Shabat polynomials P1(z), P2(z) are called equivalent if 
there exist polynomials μ1 and μ2 of degree one such that P2 = μ1◦P1◦μ2 := μ1(P1(μ2)).

Notice that by choosing an appropriate polynomial μ1 it is always possible to assume 
that critical values of P (z) are 0 and 1.

The following statement is a particular case of the correspondence between Belyi pairs 
and “dessins d’enfants” (see [10], [14], [13] for more detail).

Theorem 3.5. There is a bijective correspondence between the equivalence classes of Sha-
bat polynomials and the equivalence classes of bicolored plane trees.

We briefly recall how this correspondence is constructed. Let P (x) be a Shabat poly-
nomial with critical values 0 and 1. Then the corresponding plane tree λP is defined 
as the preimage λP = P−1([0, 1]) of the segment [0, 1] with respect to the function 
P (x) : C → C. By definition, white (resp., black) vertices of λP are preimages of the 
point 0 (resp., of the point 1) and edges of λP are preimages of the segment [0, 1].

In the other direction, if λ is a bicolored tree with n edges and the sequences of 
valencies of white and of black vertices α1, . . . , αp and β1, . . . , βq, correspondingly, then 
the corresponding Shabat polynomial P (x) ∈ C[x] with critical values 0 and 1 is defined 
by the conditions ⎧⎨⎩P (x) = c(x− a1)α1 . . . (x− ap)αp

P (x) − 1 = c(x− b1)β1 . . . (x− bq)βq ,

where a1, . . . , ap, b1, . . . , bq ∈ C are pairwise distinct and c ∈ C is distinct from zero. 
Thus, a system that determines a Shabat polynomial of a tree is a system of polynomial 
equations with the unknowns a1, . . . , ap, b1, . . . , bq, c obtained from equating coefficients 
of like terms in the equality

c(x− a1)α1 . . . (x− ap)αp − 1 = c(x− b1)β1 . . . (x− bq)βq . (7)

Notice that there could be several trees with the same sequences α1, . . . , αp and 
β1, . . . , βq. All corresponding Shabat polynomials satisfy the same system (7).

After fixing critical values of a Shabat polynomial, we still have a “degree of freedom” 
corresponding to a choice of μ2. Thus, we can impose some further restrictions on system 
(7). For example, we can assume that a1 = 0 and b1 = 1. Theorem 3.5 implies that in this 
case the system (7) has only finitely many solutions. Since (7) provide us with equations 
in a1, . . . , ap, b1, . . . , bq, c with rational and even integer coefficients, this implies that 
solutions are necessarily algebraic numbers. Thus, for any plane tree the corresponding 
equivalence class of Shabat polynomials contains polynomials with algebraic coefficients 
(see [10], [14]).
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Theorem 3.5 combined with Lemma 3.3 allows us to prove the following statement, 
which is used for the proof of Theorem 2.3.

Corollary 3.6. Let m, k ≥ 1 and α1, . . . , αm ≥ 2, β1, . . . , βk ≥ 1 be integers, and

n =
m∑
j=1

αj +
k∑

i=1
βi, M =

m∑
j=1

αj .

Assume that m ≤ n −M + 1. Then there exist pairwise distinct a1, . . . , am, b1, . . . , bk ∈
Q ⊆ K and a Shabat polynomial P (x) ∈ Q[x] ⊆ K[x] of degree n + 1 such that

P ′(x) = (x− a1)α1 . . . (x− am)αm(x− b1)β1 . . . (x− bk)βk (8)

and

P (a1) = . . . = P (am) = 0. (9)

Proof. Let us set

(γ1, γ2, . . . , γn+2) = (α1 + 1, . . . , αm + 1, β1 + 1, . . . , βk + 1, 1, . . . , 1︸ ︷︷ ︸
n−(m+k)+2

). (10)

It is easy to see that (10) is a partition of 2(n + 1). Indeed, the definition of n implies 
that n ≥ m + k, so that (10) is well-defined. In addition,

m∑
j=1

(αj + 1) +
k∑

i=1
(βi + 1) + n− (m + k) + 2 =

m∑
j=1

αj +
k∑

i=1
βi + n + 2 = 2n + 2.

Since there are n + 2 elements in (10) and

m∑
j=1

(αj + 1) = M + m ≤ n + 1

by the condition, it follows from Lemma 3.3 that there exists a bicolored plane tree λ
with n +1 edges and sequences of white and black valencies (μ1, . . . , μp) and (ν1, . . . , νq), 
where p ≥ m, such that

(γ1, γ2, . . . , γn+2) = (μ1, . . . , μp, ν1, . . . , νq),

(α1 + 1, . . . , αm + 1) = (μ1, . . . , μm),

and
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(β1 + 1, . . . , βk + 1, 1, . . . , 1︸ ︷︷ ︸
n−(m+k)+2

) = (μm+1, . . . , μp, ν1, . . . , νq).

Applying Theorem 3.5, we see that there exists a Shabat polynomial P̃ (z) ∈ Q[z] of 
degree n + 1 such that

P̃ (x) = c(x− x1)μ1 . . . (x− xp)μp (11)

and

P̃ (x) − 1 = c(x− y1)ν1 . . . (x− yq)νq ,

for some pairwise distinct x1, . . . , xp, y1, . . . , bq ∈ Q and 0 	= c ∈ Q.
By construction, among the points xm+1, . . . , xp, y1, y2, . . . , yq there are exactly k

points that are zeros of P ′(x). Denoting these points by z1, z2, . . . , zk and setting

(a1, a2, . . . , am) = (x1, x2, . . . , xm) and (b1, b2, . . . , bk) = (z1, z2, . . . , zk),

we see that P̃ ′(x) is divisible by

(x− a1)α1 . . . (x− am)αm(x− b1)β1 . . . (x− bk)βk .

Moreover, since the degree of the last polynomial is n, the equality

P̃ ′(x) = c(n + 1)(x− a1)α1 . . . (x− am)αm(x− b1)β1 . . . (x− bk)βk (12)

holds. Finally, it follows from (11) and (12) that for the Shabat polynomial

P (x) = P̃ (x)
c(n + 1)

equalities (8) and (9) hold, and P (x) ∈ Q[x]. �
3.3. Conservative polynomials

In addition to a Shabat polynomial, with every plane tree one can associate a poly-
nomial of a different type, described by the following definition.

Definition 3.7. A complex polynomial C(x) is called conservative if all its critical points 
are fixed, that is, if the equality C ′(ζ) = 0, ζ ∈ C, implies that C(ζ) = ζ. A conservative 
polynomials C(x) is called normalized if C(x) is monic and C(0) = 0. Two conservative 
polynomials C1(x) and C2(x) are called equivalent if there exists a complex polynomial 
μ of degree one such that C2 = μ−1 ◦ C1 ◦ μ.
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Conservative polynomials were introduced by Smale [15] in connection with his “mean 
value conjecture”. Motivated by Smale’s conjecture Kostrikin proposed in [8] several 
conjectures concerning conservative polynomials. In particular, he conjectured that the 
number of normalized conservative polynomials of degree n is finite and is equal to Cn−1

2n−2. 
This conjecture was proved by Tischler in the paper [16]. In fact, he proved the following 
statement, implying the Kostrikin conjecture, see [16, Theorem 4.2].

Theorem 3.8. There is a bijective correspondence between the equivalence classes of con-
servative polynomials of degree n and the equivalence classes of bicolored plane trees with 
n − 1 edges.

For a conservative polynomial C, the corresponding plane tree λC is constructed as 
follows (see [16] for more detail and [11] for some pictures). Let ζ be a critical point 
of C(x) and d ≥ 2 the local multiplicity of C(x) at ζ. Then one can show that the 
immediate attractive basin Bζ of ζ is a disk and that there is an analytic conjugation of 
C(x) on Bζ to x → xd on the unit disk D such that the conjugating map φζ : D → Bζ

extends continuously to the closed unit disk D. Let U be a union of d −1 radial segments 
which are forward invariant under the map x → xd on D, and Uζ the image of U under 
the map φζ , considered as a bicolored graph with a unique white vertex, which is the 
image of zero, and d − 1 black vertices, which are the images of end-points of U . In 
this notation, λC is defined as a union λC = ∪p

i=1Uζi , where ζi, 1 ≤ i ≤ p, are all 
finite critical points of C(x). Note that by construction λC is a forward invariant of 
C(x), and white (resp. black) vertices of λC are attractive (resp. repelling) fixed points 
of C(x).

In the other direction, if λ is a bicolored plane tree with n − 1 edges and the sequence 
of valencies of white vertices α1, . . . , αp, then a corresponding conservative polynomial 
C(x) satisfies the system

⎧⎨⎩C ′(x) = c(x− c1)α1 . . . (x− cp)αp

C(ci) = ci,
(13)

where c1, . . . , cp ∈ C are pairwise distinct and c ∈ C is distinct from zero.
Notice that in distinction with system (7) the valencies of black vertices do not appear 

in system (13). In addition, the number of edges of a tree corresponding to a conservative 
polynomial of degree n is n − 1 instead of n. Nevertheless, similar to system (7), system 
(13) reduces to a system of equations in c1, . . . , cp, c with rational coefficients. Further-
more, if C(x) is normalized, then the number of solutions of (13) is finite and these 
solutions are algebraic numbers. Thus, for any plane tree the corresponding equivalence 
class of conservative polynomials contains polynomials with algebraic coefficients.

A counterpart of Corollary 3.6, which follows from Theorem 3.8, is the next statement.
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Corollary 3.9. Let l ≥ 1 and γ1, . . . , γl ≥ 1 be integers, and n =
l∑

i=1
γi. Then there exist 

pairwise distinct c1, . . . , cl ∈ Q ⊆ K and a conservative polynomial C(x) ∈ Q[x] ⊆ K[x]
of degree n + 1 such that

C ′(x) = (x− c1)γ1 . . . (x− cl)γl (14)

and

C(ci) = ci, 1 ≤ i ≤ l. (15)

Proof. Let (δ1, . . . , δn+1−l) be an arbitrary partition of the number n containing n +1 − l

elements. For example, we can take

(δ1, . . . , δn+1−l) = (l, 1, . . . , 1︸ ︷︷ ︸
n−l

).

By Lemma 3.2, there exists a bicolored plane tree λ with n edges and the sequences of 
white and black valencies (γ1, . . . , γl) and (δ1, . . . , δn+1−l). Therefore, by Theorem 3.8, 
there exist pairwise distinct c̃1, . . . , ̃cl ∈ Q and a conservative polynomial C̃(x) ∈ Q[x]
of degree n + 1 such that

C̃ ′(x) = c(x− c̃1)γ1 . . . (x− c̃l)γl

for some 0 	= c ∈ Q. Setting now μ = εx, where ε satisfies εn−1 = 1, we see that the 
conservative polynomial C = μ−1 ◦ C̃ ◦μ has algebraic coefficients and satisfies (14) and 
(15) for ci = c̃i/ε, 1 ≤ i ≤ l. �
3.4. Proof of Theorem 2.3

Since the condition S = ∅ provides no restrictions, the first part of the theorem is 
trivially true. The second part is also true since for any polynomial F (x) ∈ K[x] such 
that

F ′(x) = f(x) = (x− a)α1(x− b1)β1 . . . (x− bk)βk ,

the polynomial F (x) − F (a) obviously is an S-full integral of f(x) for S = {a}.
To prove the fourth part, we observe that if F (x) is an S-full integral of f(x), then

(x− ai)αi+1 |F (x), i = 1, . . . ,m.

Therefore,

degF (x) ≥ M + m,
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implying that

m ≤ degF (x) −M = n + 1 −M.

Let us prove now the third part. Notice that the condition

2 ≤ m ≤ n−M + 1 (16)

implies that k > 0, for otherwise n = M and (16) leads to a contradictory inequality 
2 ≤ m ≤ 1. Since k > 0 and m ≥ 2, it follows from Corollary 3.6 that there exist pairwise 
distinct a1, . . . , am, b1, . . . , bk ∈ Q ⊆ K and a Shabat polynomial P (z) ∈ Q[z] ⊆ K[z] of 
degree n + 1 such that the equalities (8) and (9) hold. Thus, P (z) is an S-full integral 
of P ′(z) for S = {a1, . . . , am}, and hence the first statement of the third part is true.

Further, since k > 0 and m ≥ 2 imply that k +m ≥ 1, we can apply Corollary 3.9 for

(γ1, . . . , γl) = (α1, . . . , αm, β1, . . . , βk),

and find pairwise distinct c1, . . . , cl ∈ Q ⊆ K and a conservative polynomial C(z) ∈
Q[z] ⊆ K[z] of degree n + 1 such that

C ′(z) = (x− c1)α1 . . . (x− cm)αm(x− cm+1)β1 . . . (x− cm+k)βk

and

C(ci) = ci, 1 ≤ i ≤ m + k. (17)

Since any primitive F (z) of C ′(z) has the form F (z) = C(z) + c, c ∈ K, it follows from 
(17) that C ′(z) does not have an S-full integral for any subset S of {c1, . . . , cm+k} that 
contains at least two elements. Thus, to prove the second statement of the third part of 
the theorem, we can set for example

ai = ci, 1 ≤ i ≤ m, bi = ci+m, 1 ≤ i ≤ k. �
Corollary 3.10. For all values of multiplicities α1, . . . , αm ≥ 2, β1, . . . , βk ≥ 1 satisfying

2 ≤ m ≤ n−M + 1

there exist infinitely many polynomials that have S-full integrals and infinitely many 
polynomials that do not have S-full integrals.

Proof. If P is a polynomial, S = {a1, . . . , am} is a set, and μ = az + b is a non-constant 
linear map, then P has an S-full integral if and only if the polynomial P ◦ μ has an 
S̃-full integral for the set S̃ = {μ−1(a1), . . . , μ−1(am)}. Then Theorem 2.3 implies the 
result. �
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4. S-full integrals and matrix integrability

In this section, we prove Theorem 2.1 and Theorem 2.4. Notice that our proof of 
Theorem 2.1 is effective: it shows how a matrix integral is constructed from an S-full 
integral of the characteristic polynomial. In this relation, we remark that some integrable 
matrices may have infinitely many integrals. For more detail, we refer the reader to [1].

Let Eij ∈ Mk be (i, j)-th matrix unit, i.e., the matrix with 1 on the (i, j)-th position 
and 0 elsewhere, Jk = E12+E23+. . .+Ek−1k ∈ Mk the Jordan matrix of the size k if k ≥
2, and J1 = 0 ∈ M1. We denote by X� the transposed matrix and by pX(x) = det(xI −
X) the characteristic polynomial of X ∈ Mn. Finally, we denote by diag (X1, . . . , Xn)
the block-diagonal matrix with the blocks X1, . . . , Xn.

4.1. Proofs of Theorems 2.1 and 2.4

The following lemma is proved in [1, Lemma 7].

Lemma 4.1. If B ∈ Mn has an integral A, then 
(

X 0ᵀ

0 1

)
A 
(

X−1 0ᵀ

0 1

)
is an integral of 

XBX−1 for any invertible X ∈ Mn.

The following corollary is straightforward:

Corollary 4.2. 1. If B ∈ Mn is integrable, then for any invertible X ∈ Mn the matrix 
XBX−1 is integrable.

2. If B has an integral A and the matrix X commutes with B, then 
(

X 0ᵀ

0 1

)
A 
(

X−1 0ᵀ

0 1

)
is also an integral of B.

Lemma 4.3. For any non-zero vector v ∈ Kn, let k be the smallest positive integer such 
that vk 	= 0, i.e., v = (0, . . . , 0︸ ︷︷ ︸

k−1

, vk, vk+1, . . . , vn), where 1 ≤ k ≤ n, vk 	= 0. Then there 

exists a polynomial h(x) ∈ K[x] of degree at most (n − k) such that h(Jn) is invertible 
and v · h(Jn) = (0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

).

Proof. It is well-known that

h(Jn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(0) h′(0)
1!

h′′(0)
2!

h′′′(0)
3! . . . h(n−2)(0)

(n−2)!
h(n−1)(0)
(n−1)!

0 h(0) h′(0)
1!

h′′(0)
2! . . . h(n−3)(0)

(n−3)!
h(n−2)(0)
(n−2)!

0 0 h(0) h′(0)
1! . . . h(n−4)(0)

(n−4)!
h(n−3)(0)
(n−3)!

· · · · · · . . . . . . · · · · · ·
· · · · · · . . . . . . · · · · · ·
0 0 . . . . . . 0 h(0) h′(0)

1!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 0 . . . . . . 0 0 h(0)
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and a direct computation shows that

v · h(Jn) =

⎛⎜⎝0, . . . , 0︸ ︷︷ ︸
k−1

, vkh(0), vk
h′(0)

1! + vk+1h(0), . . . ,

n∑
i=k

vi
h(n−i)(0)
(n− i)!

⎞⎟⎠ .

Thus, the equality v · h(Jn) = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

) is equivalent to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(0) = 1
vk

h′(0) = − 1!
vk
vk+1h(0)

h′′(0) = − 2!
vk

(
vk+2h(0) + vk+1

h′(0)
1!

)
...

hn−k(0) = − (n−k)!
vk

n∑
i=k+1

vi
h(n−i)(0)

(n−i)!

(18)

Writing h(x) as h(x) = c0 +c1x + . . .+cn−kx
n−k with unknown coefficients c0, . . . , cn−k, 

we see that (18) transforms into the triangular linear system for c0, . . . , cn−k, which 
is solvable since the determinant of this system is equal to 

∏n−k
l=0 l! 	= 0. Moreover 

det(h(Jn)) = (h(0))n = 1
vn
k
	= 0 and hence h(Jn) is invertible as desired. �

Definition 4.4. Let B ∈ Mn. Any matrix A ∈ Mn+1 of the form A =
(

B uᵀ

v b

)
is called an 

integral extension of the matrix B.

Notice that an integral extension is not necessarily an integral of the matrix B, but 
any integral of B is an integral extension by the definition. Note also that if a matrix A
is an integral of B then necessarily b = tr(B)

n . Indeed, b = tr(A) − tr(B). On the other 
hand, p′A(x) = (n + 1)pB(x) implies tr(A) · n = (n + 1) tr(B).

By Corollary 4.2(1), if a matrix B is integrable, then all matrices similar to B are 
integrable as well. Thus, we may assume that the matrix B ∈ Mn is in the Jordan normal 
form. Namely,

B = diag (B1, . . . , Bm), (19)

where Bi is the Jordan block for bi, i.e. the union of all Jordan cells of B with the 
eigenvalue bi ordered in non-increasing order of block sizes. We denote the number of 
Jordan cells in Bi by βi, and the sizes of the Jordan cells of Bi by ki,1 ≥ . . . ≥ ki,βi

. 
Then

Bi = diag (biIki,1 + Jki,1 , biIki,2 + Jki,2 , . . . , biIki,βi
+ Jki,βi

) ∈ Mαi
(20)

where
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αi = ki,1 + . . . + ki,βi
, i = 1, . . . ,m. (21)

Note that in the introduced notations the characteristic polynomial of B is

pB(x) = (x− b1)α1 . . . (x− bm)αm ,

where b1, . . . , bm are pairwise distinct.
Let A =

(
B uᵀ

v b

)
∈ Mn+1 be an integral extension of B. Then in accordance with the 

introduced notations

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1Ik1,1+Jk1,1 (u1,1)�

. . .
...

b1Ik1,β1
+Jk1,β1

(u1,β1 )�

. . .
...

bmIkm,1+Jkm,1 (um,1)�

. . .
...

bmIkm,βm
+Jkm,βm

(um,βm )�

v1,1 ... v1,β1 ... vm,1 ... vm,βm b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Mn+1, (22)

where vi,j , ui,j ∈ Kki,j .

Definition 4.5. In the above notations if

vi,j = (0, . . . , 0︸ ︷︷ ︸
ri,j

, 1, 0, . . . , 0) ∈ Kki,j (23)

for some ri,j , 0 ≤ ri,j ≤ ki,j , then the matrix A is called a normalized integral extension 
of B.

Notice that in case ri,j = ki,j we have vi,j = 0.

Lemma 4.6. Let A =
(

B uᵀ

v b

)
∈ Mn+1 be an integral extension of B ∈ Mn. Then there 

exists a normalized integral extension Ã ∈ Mn+1 of B such that the matrices A and Ã
are similar and the similarity matrix C = diag (C1, 1) satisfies C1B = BC1.

Proof. Let B and A be determined by the equalities (19) and (22), correspondingly. For 
each pair (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ βi, we consider the vector vi,j ∈ Kki,j and define a 
matrix Ci,j ∈ Mki,j

as follows. If vi,j = 0, then we set Cij = Iki,j
. If vi,j 	= 0, then by 

Lemma 4.3 there exists hi,j ∈ Kki,j
[x] such that hi,j(Jki,j

) is invertible and vi,j ·hi,j(Jki,j
)

has only one nonzero entry. In this case, we set Cij = hi,j(Jki,j
). Note that Ci,j commutes 

with biIki,j
+ Jki,j

since the matrix Jki,j
commutes with a polynomial of itself. Hence,
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B · diag (C1,1, . . . , Cm,βm
) = diag (C1,1, . . . , Cm,βm

) ·B.

Let us consider the matrix

C = diag (C1,1, . . . , Cm,βm
, 1) ∈ Mn+1

and the matrix Ã = CAC−1. By the choice of the blocks Ci,j , we have:

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1Ik1,1+Jk1,1 (ũ1,1)�

. . .
...

b1Ik1,β1
+Jk1,β1

(ũ1,β1 )�

. . .
...

bmIkm,1+Jkm,1 (ũm,1)�

. . .
...

bmIkm,βm
+Jkm,βm

(ũm,βm )�

ṽ1,1 ... ṽ1,β1 ... ṽm,1 ... ṽm,βm b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Mn+1,

where ṽi,j = (0, . . . , 0︸ ︷︷ ︸
ri,j

, 1, 0, . . . , 0) ∈ Kki,j , as required. �

Corollary 4.7. Assume that B ∈ Mn is integrable, and let A ∈ Mn+1 be its integral. Then 
there exists an integral Ã ∈ Mn+1 of B such that Ã is a normalized integral extension 
of B and pÃ(x) = pA(x).

Proof. Let A ∈ Mn+1 be an integral of B. By Lemma 4.6, there exists a normalized 
integral extension Ã of B. By Corollary 4.2(2), the matrix Ã is an integral of B since 
diag (C1,1, . . . , Cm,βm

) commutes with B. Finally, pA(x) = pÃ(x) since the matrices A
and Ã are similar. �

We denote by K(y) the field of formal rational functions in the variable y over the 
field K.

Lemma 4.8. Let k ≥ 1, 0 ≤ r ≤ k be integers, and X = (yIk−Jk) ∈ Mk(K(y)). Then for 
the vector v = (0, . . . , 0︸ ︷︷ ︸

r

, 1, 0, . . . , 0︸ ︷︷ ︸
k−r−1

) ∈ Kk and an arbitrary vector u = (u1, . . . , uk) ∈ Kk

it holds that

vX−1u� =
k−r∑
t=1

ut+ry
−t. (24)

Proof. We use the notation J0
k = Ik. Note that in case k = r the vector v is the zero 

vector. Otherwise the direct multiplication



54 S. Danielyan et al. / Linear Algebra and its Applications 684 (2024) 37–62
(yIk − Jk)
k∑

t=1
y−tJ t−1

k =
k∑

t=1
(y1−tJ t−1

k − y−tJ t
k) = Ik − y−kJk

k = Ik

shows that X−1 =
∑k

t=1 y
−tJ t−1

k .
Therefore,

vX−1 =

⎛⎝0, . . . , 0︸ ︷︷ ︸
r

, y−1, y−2, . . . , y−(k−r)

⎞⎠
since it is the (r + 1)-th row of X−1. Hence, we obtain:

(vX−1)u� =
k−r∑
t=1

ut+ry
−t,

as desired. �
Lemma 4.9. Assume B ∈ Mn is in the Jordan normal form, and let A =

(
B uᵀ

v b

)
∈ Mn+1

be its normalized integral extension. Then in the notation (19) – (23) the characteristic 
polynomial of A is

pA(x) = (x− b)pB(x) −
m∑
i=1

βi∑
j=1

ki,j−ri,j∑
t=1

ui,j
t+ri,j

pB(x)
(x− bi)t

. (25)

Proof. Using the formula for the determinant of a block matrix with invertible block X1

det
(

X1 X2
X3 X4

)
= det(X1) det(X4 −X3X

−1
1 X2),

we obtain that

pA(x) = det(xIn+1−A) = det
(

xIn−B −uᵀ

−v x−b

)
= det(xIn−B) det((x−b)−v(xIn−B)−1u�),

and therefore

pA(x) = pB(x)
(
(x− b) − v(xIn −B)−1u�) . (26)

Considering (xIn−B) as an element of Mn(K(x)), in the notation (19) – (23) we obtain:

(xIn −B)−1 =
[
xIn − diag (b1Ik1,1 + Jk1,1 , . . . , bmIkm,βm

+ Jkm,βm
)
]−1

,

(xIn −B)−1 =
[
diag ((x− b1)Ik1,1 − Jk1,1 , . . . , (x− bm)Ikm,βm

− Jkm,βm
)
]−1

,

(xIn −B)−1 = diag (
[
(x− b1)Ik1,1 − Jk1,1

]−1
, . . . ,

[
(x− bm)Ikm,β

− Jkm,β

]−1).

m m
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Hence,

v(xIn −B)−1u� =
m∑
i=1

βi∑
j=1

vi,i
[
(x− bi)Iki,j

− Jki,j

]−1 (ui,j)�. (27)

Now we apply the formula (24) with k = ki,j , r = ri,j , y = (x − bi) to each summand 
and obtain that

vi,i
[
(x− bi)Iki,j

− Jki,j

]−1 (ui,j)� =
ki,j−ri,j∑

t=1
ui,j
t+ri,j (x− bi)−t. (28)

It remains to substitute the expressions (27) and (28) into the equality (26), and the 
result follows. �
Lemma 4.10. Let f(x), g(x) ∈ K[x] be polynomials, and deg g(x) > deg f(x). Then for 
any t ∈ K satisfying f(t) 	= 0 and for any k, 0 ≤ k ≤ deg g(x) − deg f(x), there exists a 
polynomial h(x) ∈ K[x], deg(h(x)) ≤ k, such that

(fh)(i)(t) = g(i)(t), i = 0, . . . , k. (29)

Proof. Let us write h(x) = a0 + a1(x − t) + . . . + ak(x − t)k with unknown coefficients 
a0, . . . , ak ∈ K. Then h(i)(t) = i!ai, i = 0, . . . , k. Further,

(fh)(s)(t) =
s∑

i=0
f (s−i)h(i)(t) =

s∑
i=0

i!aif (s−i)(t).

Thus, the condition (29) is equivalent to the equality

⎛⎜⎜⎜⎝
0!f(t) 0 0 . . . 0
0!f ′(t) 1!f(t) 0 . . . 0

...
...

...
. . .

...
0!f (k)(t) 1!f (k−1)(t) 2!f (k−2)(t) . . . k!f(t)

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
a0
a1
...
ak

⎞⎟⎟⎠ =

⎛⎜⎜⎝
g(t)
g′(t)

...
g(k)(t)

⎞⎟⎟⎠
The determinant of this linear system is equal to 0!f(t) · 1!f(t) · . . . · k!f(t). Hence the 
matrix of the system is invertible, since f(t) 	= 0. Then (29) is satisfied for

⎛⎜⎜⎝
a0
a1
...
ak

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
0!f(t) 0 0 . . . 0
0!f ′(t) 1!f(t) 0 . . . 0

...
...

...
. . .

...
0!f (k)(t) 1!f (k−1)(t) 2!f (k−2)(t) . . . k!f(t)

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎝

g(t)
g′(t)

...
g(k)(t)

⎞⎟⎟⎠ . �
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Proof of Theorem 2.1. In the notation (19) – (23), we set S = {bi | βi > 1}.
1. First, we show that if A is an integral of B, then pA(x) is an S-full integral of 

(n + 1)pB(x). By Corollary 4.7, we can assume that A is normalized.
Since A is an integral of B, the equality p′A(x) = (n + 1)pB(x) follows from the 

definition. It remains to show that pA(x) is an S-full integral, i.e., that pA(bi) = 0 for 
all bi ∈ S. Observe that βi > 1 since bi ∈ S. Hence, there are at least two summands in 
the equality (21) for αi. Since ki,j > 0, we obtain

αi =
βi∑
j=1

ki,j > max
1≤j≤βi

(ki,j).

Since t ranges from 1 till (ki,j − ri,j) in the decomposition (25), it follows that

t ≤ max
1≤j≤βi

(ki,j − ri,j) ≤ max
1≤j≤βi

(ki,j) < αi.

Since bi is the zero of the polynomial pB(x) of multiplicity αi, we have

(x− bi) |
pB(x)

(x− bi)t
∈ K[x]

for each t = 1, . . . , (ki,j −ri,j). Thus, every summand in the decomposition (25) of pA(x)
is divisible by (x − bi), and hence pA(bi) = 0. Therefore, pA(x) is an S-full integral of 
(n + 1)pB(x) as desired.

2. Now let us assume that F (x) is an S-full integral of (n + 1)pB(x) and prove that 
there exist vectors u, v ∈ Kn such that for A =

(
B uᵀ

v b

)
∈ Mn+1, where b = tr(B)

n , the 

equality pA(x) = F (x) holds. Let us observe first that to prove the theorem it is enough 
to find u, v such that

p
(j)
A (bi) = F (j)(bi), i = 1, . . . ,m; j = 0, . . . αi − 1. (30)

Indeed, (30) implies that the polynomial (pA − F )(x) has 
m∑
i=1

αi = n zeros counting 

with the multiplicities. Notice that the coefficient at xn−1 of pB(x) is equal to (−tr(B)). 
Hence, since F ′(x) = (n +1)pB(x), the coefficient at xn of F (x) is equal to (−n+1

n tr(B)). 
On the other hand, the coefficient at xn of pA(x) is equal to

−tr(A) = −(tr(B) + b) = −n + 1
n

tr(B).

Thus, since both pA(x) and F (x) are monic and the coefficient at xn of both polynomials 
is equal to n+1

n tr(B), we obtain that deg((pA − F )(x)) ≤ n + 1 − 2 = n − 1. Therefore, 
(pA − F )(x) ≡ 0, and so pA(x) = F (x) as desired.

Now, let us prove (30).
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2.1. At first, we consider bi ∈ S. Let us set vi,j = ui,j = 0 ∈ Kki,j for each j = 1, . . . , βi

and each i = 1, . . . , m satisfying bi ∈ S. Then by the formula (25) we obtain that 
(x − bi)αi | pA(x) for any values of the other coordinates of the vectors u, v. Observe 
that by definition of F (x) and properties of zeros of derivatives for any bi ∈ S it holds 
that (x − bi)αi | F (x) or, equivalently, F (j)(bi) = 0, 0 ≤ j < αi. Hence, for any bi ∈ S

we obtain

p
(j)
A (bi) = F (j)(bi) = 0, 0 ≤ j < αi. (31)

2.2. Now let us consider an eigenvalue bi of B such that bi /∈ S. According to the 
notation (19) – (23) this means that βi = 1 and ki,1 = αi. Let us set f(x) = pB(x)

(x−bi)αi
. 

Then f(x) ∈ Kn−αi [x] is a polynomial with the property f(bi) 	= 0. Since

deg(F (x)) − deg(f(x)) = n + 1 − (n− αi) = αi + 1 > αi − 1 ≥ 0,

it follows from Lemma 4.10 that the system of equations

(f(x)h(x))(l) (bi) = F (l)(bi), 0 ≤ l < αi,

on the coefficients of a polynomial h(x) has a solution h0(x) ∈ Kαi−1[x] of degree 
deg h0(x) = q with 0 ≤ q ≤ αi − 1.

Now we define the elements wt ∈ K, t = 0, . . . , αi − 1, as follows. Let us expand 
the polynomial h0(x) on the degrees of x − bi, i.e., h0(x) =

∑q
t=0 wt(x − bi)t. This 

expansion defines w0, . . . , wq. For q + 1 ≤ t ≤ αi − 1, we set wt = 0. Let us show that 
for vi,1 = (1, 0, . . . , 0) and ui,1

t+1 = wαi−t it holds that

p
(l)
A (bi) = (f(x)h0(x))(l) (bi) = F (l)(bi), 0 ≤ l < αl. (32)

Indeed, let us consider

p̃A(x) =
βi∑
j=1

ki,j−ri,j∑
t=1

ui,j
t+ri,j

pB(x)
(x− bi)t

. (33)

Then by the decomposition (25)

pA(x) + p̃A(x) = (x− b)pB(x) −
∑

ϕ=1,...,m
ϕ�=i

βϕ∑
j=1

kϕ,j−rϕ,j∑
t=1

uϕ,j
t+rϕ,j

pB(x)
(x− bϕ)t ,

and using the fact that (x − bi)αi | pB(x), we obtain

(x− bi)αi | (pA(x) + p̃A(x)). (34)
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Since βi = 1 and ki,1 = αi, we can remove the first summation in (33) and simplify the 
second as follows:

p̃A(x) =
ki,1−ri,1∑

t=1
ui,1
t+ri,1

pB(x)
(x− bi)t

=
αi−ri,1∑

t=1
ui,1
t+ri,1

pB(x)
(x− bi)t

.

By the choice of vi,1, ui,1, we have ri,1 = 0 and ui,1
t = wαi−t. Therefore,

p̃A(x) =
αi∑
t=1

ui,1
t

pB(x)
(x− bi)t

=
αi∑
t=1

wαi−t
pB(x)

(x− bi)t
=

αi−1∑
s=0

ws
pB(x)

(x− bi)αi−s

=
αi−1∑
s=0

ws(x− bi)s
pB(x)

(x− bi)αi
= (f · h0)(x),

where the last equality in the first row is due to the substitution s = αi − t. Now (34)
implies that

p
(l)
A (bi) = (f · h0)(l) (bi), 0 ≤ l < αl.

Therefore, by the choice of h0(x) we get

p
(l)
A (bi) = (f · h0)(l) (bi) = F (l)(bi), 0 ≤ l < αl.

Combining the equalities (31) and (32) we obtain (30), and the result follows. �
Proof of Theorem 2.4. By Theorem 2.1, the matrix B is integrable if and only if an 
integral 

∫
pB(x)dx takes the same value on all elements of S = {λ1, . . . , λm}, which 

means that pB(x) has an S-full integral. It remains to apply Theorem 2.3 to get the 
desired statement. �

Notice that Theorem 2.4 implies the following result proved in [5, Theorem 3.13].

Theorem 4.11. Let m, k ≥ 0 and α1, . . . , αm ≥ 2 be integers, n = k +
m∑
j=1

αj, and M the 

subset of Mn consisting of diagonalizable matrices B with pairwise different eigenvalues 
(λ1, . . . , λm, μ1, . . . , μk) of the multiplicities α1, . . . , αm, 1, . . . , 1, correspondingly.

Then M contains an integrable matrix if and only if m ≤ k + 1, and contains a 
non-integrable matrix if and only if m ≥ 2. Moreover,

1. If m ≤ 1, then all matrices in M are integrable.
2. If 2 ≤ m ≤ k + 1, then M contains both integrable and non-integrable matrices.
3. If m > k + 1, then all matrices in M are non-integrable.
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Proof. If B is diagonalizable, then, in the notations of Theorem 2.4, we have β1 = . . . =
βk = 1 and hence n −M +1 = k+1. Thus, Theorem 2.4 provides the desired result. �
4.2. Supplements

The main aim of this section is to prove the following theorem:

Theorem 4.12. Let B ∈ Mn be diagonalizable, and B′ ∈ Mn have the same eigenvalues 
as B counting the multiplicities, i.e., pB′(x) = pB(x). If B is integrable, then B′ is 
integrable.

Since by [5, Corollary 5.2] an integrable diagonalizable matrix has a diagonalizable 
integral, Theorem 4.12 follows from the lemma below.

Lemma 4.13. Let B ∈ Mn be diagonalizable, and let B′ ∈ Mn have the same eigenvalues 
as B counting the multiplicities, i.e., pB′(x) = pB(x). If B is integrable and A =

(
B uᵀ

v b

)
is a diagonalizable integral of B, then there exists X ∈ GLn(K) and there exists an 

integral A′ of XB′X−1 such that A′ =
(

XB′X−1 uᵀ

v b

)
with the same vectors (u, v) and 

an element b as A has.

Proof. Without loss of generality, we assume that

B = diag (b1, . . . , b1︸ ︷︷ ︸
α1

, . . . , bm, . . . , bm︸ ︷︷ ︸
αm

).

By Lemma 4.6, without loss of generality we may assume that A is a normalized in-
tegral extension of B. Since B is diagonalizable, in the notations of the formula (22)
we have that ki,j = 1 for all i, j. Thus βi = αi, and vi,j , ui,j ∈ K. By the criterion 
of diagonalizability of an integral [5, Theorem 4.1], we obtain that if αi > 1, then 
vi,j = ui,j = 0, j = 1, . . . , αi. By Lemma 4.9, these equalities imply that

pA(x) = (x− b)pB(x) −
m∑

s=1:
αs=1

us,1
pB(x)
x− bs

.

Let B′′ be the Jordan normal form of B′ such that the order of the diagonal elements of 
B′′ coincides with the order of the diagonal elements of B. Let us consider A′ =

(
B′′ uᵀ

v b

)
. 

Since A is a normalized extension of B and vi,j = ui,j = 0, j = 2, . . . , αi, it follows that 
A′ is a normalized extension of B′′ by definition. Hence, by Lemma 4.9, we obtain

pA′(x) = (x− b)pB′′(x) −
m∑

s=1:
us,1

pB′′(x)
x− bs

.

αs=1
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Since pB′′(x) = pB′(x) = pB(x), this implies pA′(x) = pA(x), and therefore

p′A′(x) = (n + 1)pB(x) = (n + 1)pB′′(x).

Thus, A′ is an integral of B′′. �
Remark 4.14. Even if A =

(
B uᵀ

v b

)
is a diagonalizable integral of B, the integral A′ =(

B′ uᵀ

v b

)
of B′ can be non-diagonalizable. Consider, for example, B =

(
a 0
0 a

)
, B′ =

(
a 1
0 a

)
. 

Then pB(x) = pB′(x) and the vectors u = v = (0, 0) provide a diagonal integral 
(

a 0 0
0 a 0
0 0 a

)
of B. However, 

(
a 1 0
0 a 0
0 0 a

)
is not diagonalizable.

Corollary 4.15. Consider an arbitrary (not necessarily diagonalizable) B ∈ Mn. If pB(x)
has an S-full integral, where S is the set of all multiple zeros of pB(x), then B is inte-
grable.

Proof. If pB(x) has a full integral, then a diagonal matrix B′ with the same spectrum as 
B is integrable by Theorem 2.1. Hence, the matrix B is integrable by Theorem 4.12. �
Remark 4.16. The assertion opposite to Corollary 4.15 is not true. Consider the non-
diagonalizable matrix

B =
( 1 0 0 0

0 1 0 0
0 0 −1 1
0 0 0 −1

)
.

Since pB(x) = (x − 1)2(x + 1)2, it follows from [5, Theorem 2.14] that the matrix 
B′ = diag (1, 1, −1, −1) is not integrable. Nevertheless, the matrix

A =

⎛⎝ 1 0 0 0 0
0 1 0 0 0
0 0 −1 1 0
0 0 0 −1 4

3
0 0 1 1 0

⎞⎠
is an integral of B, since pA(x) = (x − 1)2(x3 + 2x2 − 1

3x + 8
3 ) = x5 − 10

3 x3 + 5x − 8
3 and

p′A(x) = 5(x4 − 2x2 + 1) = 5(x− 1)2(x + 1)2 = 5pB(x).

As a conclusion, we made the following observation:

Remark 4.17. Consider an ordered set of matrices {B1, . . . , Bm} ⊂ Mn having the same 
eigenvalues counting the multiplicities. Let us assume that the following conditions are 
satisfied:
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dim(Ker(Bi − λI)) ≥ dim(Ker(Bi+1 − λI))

for any λ, and

dim(Ker(Bi − λI)) > dim(Ker(Bi+1 − λI))

for at least one value of λ, i.e., the number of Jordan cells in a Jordan block does not 
increase with the growth of i, and decreases for at least one block for each i. In this 
case, similarly to the proof of Theorem 2.1, it can be shown that if Bi is integrable for 
a certain index i, then Bi+1 is integrable. Since the number of cells in a certain block 
decreases, we obtain just 1 cell on a certain step. Therefore, that if m is big enough, then 
Bm is non-derogatory, and hence integrable. Thus, if B1 is not integrable, then there 
exists a positive integer k such that the matrices B1, . . . , Bk are not integrable, but the 
matrices Bk+1, . . . , Bm are integrable.

Remark 4.18. We notice that the main results of this paper can be extended to an 
arbitrary algebraically closed field K̂ of zero characteristic, not necessarily contained in C. 
Indeed, since the proof of Theorem 2.1 uses only linear algebra techniques, its conclusion 
remains true over K̂. The same is true for the parts 1, 2, and 4 of Theorem 2.3. To prove 
the part 3, we constructed special polynomials f(x) ∈ Q[x], where Q was considered as 
a subset of K and C. However, an arbitrary algebraically closed field of characteristic 
zero K̂ contains Q, and therefore it also contains a subfield Q

′ isomorphic to Q. It is 
straightforward to check that the image of a polynomial f(x) from Q[x] in Q

′[x] has the 
same properties of S-full integrability as f(x). Therefore, Theorem 2.3 remains true over 
K̂, and the same is true for Theorem 2.4 obtained as a combination of Theorem 2.1 and 
Theorem 2.3.
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