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RATIONAL FUNCTIONS SHARING PREIMAGES AND

HEIGHT FUNCTIONS

FEDOR PAKOVICH

Abstract. Let A and B be non-constant rational functions over C, and let
K ⊂ P1(C) be an infinite set. Using height functions, we prove that the
inclusion A

−1(K) ⊆ B
−1(K) implies the inequality degB ≥ degA in the

following two cases: the set K is contained in P1(k), where k is a finitely
generated subfield of C, or the set K is discrete in C, and A and B are polyno-
mials. In particular, this implies that for A, B, and K as above, the equality
A

−1(K) = B
−1(K) is impossible, unless degA = degB.

1. Introduction

Let A and B be polynomials over C, and let K ⊂ C be a compact set, either
finite or infinite. The problem of characterizing collections A, B, and K such that
A and B share the preimages of K, i.e.,

(1) A−1(K) = B−1(K),

was solved in a series of papers [6], [7], [10], [11], [12]. Notice that this problem
can be viewed as describing compact, completely invariant sets of polynomial cor-
respondences. It also includes, as a special case, the classification of polynomials
that share Julia sets (see [1], [2], [3], [4], [8], [16]).

The results of [6], [7], [10], [11], [12] can be summarized as follows. It was shown
in [10], [11] that for any compact set K ⊂ C containing at least two points and for
polynomials A and B of the same degree, the equality (1) implies that A = σ◦B for
some polynomial σ of degree one satisfying σ(K) = K. For polynomials of arbitrary
degrees, a description of solutions to (1) for infinite compact sets K ⊂ C was given
in [6], [7]. Namely, it was shown that if K is not a union of circles or a segment
and degB ≥ degA, then there exists a polynomial G(z) such that B = G ◦ A and
G−1(K) = K.

A description of solutions to a more general set-theoretic equation

(2) A−1(K1) = B−1(K2),

where A and B are polynomials and K1 and K2 are arbitrary compact subsets of
C, not necessarily equal, was obtained in [12]. Specifically, in [12], condition (2)
was related to the functional equation

(3) G ◦A = F ◦B,

in polynomials. It is clear that for any polynomial solution of (3) and any compact
set K ⊂ C, one obtains a solution of (2) by setting

K1 = G−1(K), K2 = F−1(K),

This research was supported by ISF Grant No. 1092/22.

1

http://arxiv.org/abs/2503.14413v1


2 F. PAKOVICH

and the main result of [12] states that all solutions to (2) can be constructed in
this way, provided that the compact set defined by either side of (2) contains at
least LCM(degA, degB) points. Since solutions to (3) are characterized by Ritt’s
theory of polynomial factorization [14], this provides a rather precise description
of solutions to (2), which can then be applied to various related problems (see [12]
and [13] for further details).

The methods employed in the aforementioned papers are restricted to the poly-
nomial case, and the problem of finding solutions to (1) and (2) when A and B

are rational functions and K1 and K2 are compact subsets of C or P1(C) remains
largely unresolved. It appears that the only significant result in this direction is due
to Belläıche ([5]), who investigates the broader problem of describing invariant sets
of correspondences. In this note, we consider a particular class of correspondences
defined by a pair of rational functions A and B on P1(C). For such a correspondence
(P1, A,B), its forward and backward maps are given by the multivalued functions
B(A−1(z)) and A(B−1(z)), respectively. In this context, the problem of describ-
ing the sets K satisfying (1) is clearly equivalent to characterizing the completely
invariant sets of the correspondence (P1, A,B), that is, the sets stable under both
the forward and backward maps of (P1, A,B).

When applied to equation (1), the main result of [5] implies that if for rational
functions A and B equality (1) holds for infinitely many finite sets K, then there
exists a rational function F such that

(4) F ◦A = F ◦B.

Notice that in the last case (1) is satisfied for every set of the form K = F−1(K̂),

where K̂ ⊂ P1(C). Notice also that equality (4) obviously implies the equality
degA = degB.

In this note, we consider solutions to (1), where A and B are arbitrary non-
constant rational functions. However, instead of assuming that K is compact, we
assume that K is an infinite set contained in P1(k), where k is a finitely generated
subfield of C—for instance, a number field. In fact, instead of condition (1), we
consider the more general condition

(5) A−1(K) ⊆ B−1(K),

and establish the following result.

Theorem 1.1. Let A and B be non-constant rational functions over C, and let

K be an infinite subset of P1(k), where k is a finitely generated subfield of C. If

A−1(K) ⊆ B−1(K), then degB ≥ degA. In particular, A−1(K) 6= B−1(K), unless
degA = degB.

As an immediate corollary, we obtain the following.

Corollary 1.2. Let A and B be non-constant rational functions over C. Then the

correspondence (CP1, A,B) can have an infinite completely invariant set contained

in a finitely generated subfield of C only if degA = degB.

We also prove a result concerning solutions to (5), where A and B are polyno-
mials, and K satisfies a condition that is, in a sense, opposite to compactness—
discreteness. We show that the same conclusion as in Theorem 1.1 holds in this
setting as well.
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Theorem 1.3. Let A and B be non-constant polynomials over C, and let K be

an infinite discrete subset of C. If A−1(K) ⊆ B−1(K), then degB ≥ degA. In

particular, A−1(K) 6= B−1(K), unless degA = degB.

Again, the following corollary is immediate.

Corollary 1.4. Let A and B be non-constant polynomials over C. Then the corre-

spondence (CP1, A,B) can have an infinite completely invariant set that is discrete

in C only if degA = degB.

Notice that examples of A and B of equal degree satisfying (1) for sets K as
described above do exist. For example, if K is the set of squares of integers, then
for the polynomials

A = z2, B = (z + 1)2,

we clearly have
A−1(K) = B−1(K) = Z.

Here, K is both discrete in C and contained in Q. Let us mention that, in contrast
to the case where K is compact, the polynomial A cannot be represented as σ ◦B
for some polynomial σ of degree one, since A and B have different critical points.
The equality (4) is also impossible because, if it held, the rational function defined
by any part of this equality would be invariant under z → z + 1.

Our proof of Theorem 1.1 is similar to the proof, based on the Weil height,
of the well-known fact that the inverse orbit of a point x ∈ Q under a rational
function F ∈ Q(z) can contain only finitely many points in any finite extension
of Q. However, instead of the orbit of a rational function, we consider the orbit
of the algebraic function B(A−1(z)), and instead of the Weil height on P1(Q) we
use the Moriwaki height on P(k). The use of the Moriwaki height eliminates any
restrictions on the coefficients of frunctions A and B, allowing Theorem 1.1 and
Corollary 1.2 to apply to a wide variety of infinite sets K. For example, K can be
a subset of a number field, a subset of the field Q(π, e), a subset of an orbit of a
rational function, etc.

Notice that if K is a compact subset of CP1, the condition (5) does not generally
imply the inequality degB ≥ degA, since there exist rational functions of different
degrees satisfying (1). Indeed, it is enough to take any rational function P and a
set K satisfying P−1(K) = K, and set A = Q, B = P ◦Q, where Q is any rational
function.

The proof of Theorem 1.3 is somewhat similar to that of Theorem 1.1, as we
use the function h(z) = log(max{1, |z|}) as an analogue of the height function.
However, instead of seeking a contradiction with the Northcott property, which is
not present in this setting, we instead deduce the contradiction from the absence
of limit points. In both cases, however, the key point is the inequality

∣∣h(R(z))− degR · h(z)
∣∣ < C,

where C = C(R) is a constant, which holds for any R in a suitable subset of C(z)
and any z in a suitable subset of P1(C).

2. Proofs

For non-constant rational functions A and B over C, we define the multi-valued
function H = HA,B by the formula

H(z) = B(A−1(z)).
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More precisely, for a point z ∈ P1(C) or, more generally, for a subset K of P1(C),
the notation H(z) or H(K) refers to the set B(A−1(z)) or B(A−1(K)), respectively.
Inductively, we define the set H◦k(K) for k ≥ 2 by

H◦k(K) = H(H◦(k−1)(K)), k ≥ 2.

Finally, we call the set
∞⋃

i=1

H◦i(K)

the orbit of K under H .
To establish our results, we make use of the existence of a finite setK whose orbit

under H is infinite. Notice that such a set K may not always exist. For instance,
if A and B satisfy (4) for some rational function F , then it is easy to see that for
any set K, the orbit of K under H is contained in F−1(F (K)). Nevertheless, if
degA 6= degB, such sets always exist, as the following elementary lemma shows.

Lemma 2.1. Let A and B be rational functions over C of degrees n and m with

n > m > 0, and let K be a finite subset of P1(C). Then the orbit of K under H is

infinite whenever

(6) |K| >
2n− 2

n−m

Proof. It follows easily from the Riemann-Hurwitz formula that for a rational
function F of degree d and a finite subset K of P1(C), the inequality

|F−1(K)| ≥ d(|K| − 2) + 2

holds. On the other hand, setting K = F (T ) in an obvious inequality

|F−1(K)| ≤ d|K|,

we obtain that for any finite subset T of P1(C), the inequality

|F (T )| ≥
|F−1(F (T ))|

d
≥

|T |

d

holds.
These inequalities imply that

(7) |H(K)| ≥
|A−1(K)|

m
≥

n(|K| − 2) + 2

m
.

Since inequality (6) implies the inequality

n(|K| − 2) + 2 > m|K|,

it follows from (7) that |H(K)| > |K| whenever (6) holds. Applying this inequality
recursively, we conclude that the orbit of K under H is infinite. �

Let A and B be non-constant rational functions over C, and let k be an infi-
nite subset of P1(C) such that A−1(k) ⊆ k. Assume that there exist a function
h : k → R≥0 and constants C1, C2 > 0 such that for every z ∈ k the inequalities

(8) |h(A(z)) − degA · h(z)| < C1, |h(B(z))− degB · h(z)| < C2

hold.
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Proposition 2.2. Under the above assumptions on k, A, B, and h, suppose

that there exists an infinite subset K ⊆ k such that A−1(K) ⊆ B−1(K) and

degA > degB. Then there exists a constant M > 0 such that the inequality

h(z) < M holds for infinitely many z ∈ K.

Proof. We apply inequalities (8) to the orbit H(z) with z ∈ K, noting that the
condition A−1(K) ⊆ B−1(K) ensures that such an orbit remains in K. Let us set
n = degA and m = degB. For z ∈ K, substituting any z′ ∈ A−1(z) into the first
inequality in (8), we obtain

h(z)

n
−

C1

n
< h(z′) <

h(z)

n
+

C1

n
.

Next, applying the second inequality in (8), we find that for any ẑ ∈ H(z), the
inequality

mh(z′)− C2 < h(ẑ) < mh(z′) + C2

holds. Thus,

(9)
(m
n

)
h(z)− C < h(ẑ) <

(m
n

)
h(z) + C,

where C = m
n
C1 + C2.

Applying (9) recursively, we conclude that if z is a point of K, then for any point
ẑ ∈ H◦k(z) the inequality

(10) h(ẑ) <
(m
n

)k

h(z) + C

((m
n

)k−1

+
(m
n

)k−2

+ · · ·+ 1

)
< h(z) +

C

1− m
n

holds. Furthermore, if K is a finite subset of k such that inequality (6) holds and
M = maxz∈K h(z), then (10) implies that for every point ẑ ∈ H◦k(K) we have

h(ẑ) < M +
C

1− m
n

.

Since the orbit of K is infinite by Lemma 2.1, this completes the proof. �

Theorem 1.1 and 1.3 are obtained from Proposition 2.2 by using appropriate k

and h. To prove Theorem 1.3, we set k = C and define h by the formula

h(z) = log(max{1, |z|}).

It is well known that for every non-constant polynomial R there exists C > 0 such
that the inequality

(11)
∣∣h(R(z))− degR · h(z)

∣∣ < C

holds for every z ∈ C. Thus, since R−1(C) = C, Proposition 2.2 is applicable.

Proof of Theorem 1.3. It follows from Proposition 2.2 that if degA > degB, then
there exists M > 0 such that the inequality |z| < M holds for infinitely many z in
K. Since K is infinite, this implies that K has a limit point in C. �

To prove Theorem 1.1, we use the Moriwaki height, which generalizes the Weil
height. Let us recall that one can define the (logarithmic) Weil height h(x) on
points of P1(Q), satisfying the following two properties (see, e.g., [15]). First, for
any rational function R ∈ Q(z), there exists C > 0 such that (11) holds for every
z ∈ Q. Second, for any numbers D1, D2 > 0, there are only finitely many points
x ∈ P1(Q) satisfying the conditions

h(x) ≤ D1, [Q(x) : Q] ≤ D2
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(Northcott’s theorem). Furthermore, it follows from the results of Moriwaki ([9])
that one can define a height function h with similar properties on P1(k) for any
field k finitely generated over Q.

Referring the reader to [17] for more detail on the Moriwaki height in the con-
sidered context, we state only properties of h needed for our purpose (see [9], [17]).

First, if h is the Moriwaki height on P1(k), then for any rational function R ∈ k(z),
there exists C > 0 such that (11) holds for every z ∈ k. Second, for any D1, D2 > 0,
only finitely many points x ∈ P1(k) satisfy the conditions

h(x) ≤ D1, [k(x) : k] ≤ D2.

Proof of Theorem 1.1. Adjoining to k coefficients of A and B, without loss of
generality we may assume that A,B ∈ k(z), and it clear that A−1(k) ⊂ k. Setting
now k = k and using Proposition 2.2 we see that if degA > degB, then there
exists M > 0 such that the inequality h(z) < M holds for infinitely many z in K

in contradiction with the Northcott property, as K ⊆ k. �
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