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FUNCTIONAL EQUATIONS IN FORMAL POWER SERIES

FEDOR PAKOVICH

Abstract. Let k be an algebraically closed field of characteristic zero, and
k[[z]] the ring of formal power series over k. In this paper, we study equations
in the semigroup z2k[[z]] with the semigroup operation being composition. We
prove a number of general results about such equations and provide some ap-
plications. In particular, we answer a question of Horwitz and Rubel about
decompositions of “even” formal power series. We also show that every right
amenable subsemigroup of z2k[[z]] is conjugate to a subsemigroup of the semi-
group of monomials.

1. Introduction

Let k be an algebraically closed field of characteristic zero, and k[[z]] the ring of
formal power series over k. For an element A(z) =

∑
n≥0 cnz

n of k[[z]], we define

its order by the formula ordA = min{n ≥ 0 | cn 6= 0}. We will denote by kn[[z]],
n ≥ 0, the subset of k[[z]] consisting of formal power series of order n, and by Γ
the subset of k[[z]] consisting of formal power series of order at least two. If A and
B are elements of k[[z]] with ordB ≥ 1, then the operation A ◦B of composition of
A and B is well defined. In particular, with respect to this operation the set k1[[z]]
is a group, and the set Γ is a semigroup.

The group k1[[z]] has been intensively studied (see e. g. [2], [3], [4], [9], [20], [21],
[22], [25], [35], [40], [41]). In this paper, we focus on the less studied semigroup Γ
with an emphasis on equations in Γ. In other words, we study functional equations
in formal powers series of order at least two. An example of such an equation is
simply the equation

(1) A = A1 ◦A2 ◦ · · · ◦Ar, r ≥ 2,

where A ∈ Γ is a given and A1, A2, . . . , Ar ∈ Γ are unknown, describing the ways in
which an element A of Γ can be represented as a composition of other elements of
Γ. Although the problem of characterizing solutions of (1) is fundamental, we were
unable to find relevant references in the literature, and provide an answer in this
paper. Specifically, we describe equivalence classes of decompositions (1), where
two decompositions

(2) A = A1 ◦A2 ◦ · · · ◦Ak and A = Â1 ◦ Â2 ◦ · · · ◦ Âm,

are considered as equivalent if k = m and there exist elements µi, 1 ≤ i ≤ k− 1, of
k1[[z]] such that

(3) A1 = Â1 ◦ µ
−1
1 , Ai = µi−1 ◦ Âi ◦ µ

−1
i , 1 < i < k, and Ak = µk−1 ◦ Âk.
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Let us recall that for every A ∈ Γ of order n there exists an element βA of k1[[z]],
called the Böttcher function, such that

β−1
A ◦A ◦ βA = zn.

The Böttcher function is not defined in a unique way, but if βA is some Böttcher
function, then any other Böttcher function has the form βA ◦ εz, where εn−1 = 1.
In this notation, our main result about equation (1) is the following.

Theorem 1.1. Let A ∈ Γ be a formal power series of order n, and βA some

Bötcher function. Then every decomposition

A = A1 ◦A2 ◦ · · · ◦Ar

of A into a composition of elements A1, A2, . . . , Ar of Γ is equivalent to the decom-

position

A = (βA ◦ zordA1) ◦ zordA2 ◦ · · · ◦ (zordAr ◦ β−1
A ).

Thus, equivalence classes of decompositions of A are in a one-to-one correspondence

with ordered factorizations of n.

The main motivation for writing this paper was to construct in the formal power
series setting an analogue of the decomposition theory of rational functions. Cor-
respondingly, the definition of the equivalency of decompositions of elements of
Γ given above mimics the corresponding definition from the decomposition the-
ory of rational functions, in which two decompositions (2) of a rational function
of degree at least two A into compositions of rational functions of degree at least

two A1, A2, . . . , Ak and Â1, Â2, . . . , Âm are considered as equivalent if (3) holds for
some Möbius transformations µi, 1 ≤ i ≤ k− 1. Expectably, the results obtained in
this paper are quite different from the corresponding results for rational functions,
and in general turn out to be simpler. For example, already for decompositions
of polynomials the analogue of Theorem 1.1 obtained by Ritt ([38]) is much more
complicated. On the other hand, for arbitrary rational functions such an analogue
is not known, and typical results in the area mostly concern either decompositions
of special types of functions or functional equations of a special form (see e.g. [1],
[7], [15], [16], [26], [27], [28], [29], [30], [39]).

The main method in the study of decompositions of rational functions is the
monodromy method, which involves the study of the monodromy group associated
with a rational function. On the other hand, the main technical tool in the study of
equations in formal power series are the Böttcher functions. Our approach consists
in the systematic use along with the Böttcher functions what we call the transition
functions. By definition, the transitions functions for A ∈ Γ are elements ϕA of
k1[[z]] satisfying

A ◦ ϕA = A.

For A ∈ Γ of order n there exist exactly n transition functions forming a cyclic
group with respect to the operation of composition. We will call this group the
transition group and denote it by GA. Although the transition groups are very
simple from the group theoretic perspective, they turn out to be very convenient
for studying equations in Γ since the relative position of these groups inside the
group k1[[z]] reflects mutual compositional properties of corresponding elements of
Γ. We illustrate this statement by the following two results, which we consider as
some of the main results of the paper.
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The first result concerns the functional equation F = X ◦A, where F,A are given
and X is unknown.

Theorem 1.2. Let A ∈ kn[[z]], n ≥ 2, and F ∈ knm[[z]], m ≥ 1. Then the equation

F = X ◦A

has a solution in X ∈ km[[z]] if and only if GA ⊆ GF . In particular, for A,B ∈ Γ
of the same order the equality GA = GB holds if and only if B = µ ◦ A for some

µ ∈ k1[[z]]

The second result concerns the functional equation X ◦ A = Y ◦B, where A,B

are given and X,Y are unknown.

Theorem 1.3. Let A,B ∈ Γ. Then the equation

X ◦A = Y ◦B

has a solution in X,Y ∈ zk[[z]] if and only if

ϕA ◦ ϕB = ϕB ◦ ϕA

for all ϕA ∈ GA and ϕB ∈ GB .

Along with decompositions of general elements of Γ, we study decompositions
of elements of a special form. Namely, we address the following problem posed by
Horwitz and Rubel in [18]: if h is the composition of two formal power series f

and g, and if h is even, what can be said about f and g? Some partial results on
this problem and its modifications concerning decompositions of entire functions or
polynomials were obtained in the papers [5], [6], [18], [19].

In this paper, we give a full solution of the problem of Horwitz and Rubel in
the case where h and f, g are elements of Γ. In fact, along with even formal power
series, that is, series having the form R(z2) for some R ∈ k[[z]], we also consider
odd series having the form zR(z2) and, more generally, symmetric series having the
form zrR(zm), where m ≥ 2, r ≥ 0 are integers. Specifically, we prove the following
result.

Theorem 1.4. Let A ∈ Γ be a formal power series of the form A = zrR(zm),
where R ∈ k[[z]] and m ≥ 2, r ≥ 0 are integers. Then for any decomposition

A = A1 ◦A2, where A1, A2 ∈ Γ, there exist µ ∈ k1[[z]] and R1, R2 ∈ k[[z]] such that

A1 = zr1R1(z
m

gcd(r2,m) ) ◦ µ−1, A2 = µ ◦ zr2R2(z
m)

for some integers r1, r2 ≥ 0 satisfying the condition r1r2 ≡ r (mod m).

Notice that Theorem 1.4 implies that if A = A1 ◦ A2 is even, then either A2 is
even, or there exists µ ∈ k1[[z]] such that µ−1 ◦ A2 is odd and A1 ◦ µ is even. On
the other hand, if A = A1 ◦ A2 is odd, then Theorem 1.4 implies that there exists
µ ∈ k1[[z]] such that A1 ◦ µ and µ−1 ◦A2 are odd (see Corollary 6.5).

As an application of our results about functional equations in Γ, we provide a
handy necessary condition for a subsemigroup of Γ to be right amenable, that is,
to admit a finitely additive probability measure µ defined on all the subsets of S
such that for all a ∈ S and T ⊆ S the equality

µ(Ta−1) = µ(T )

holds, where the set Ta−1 is defined by the formula

Ta−1 = {s ∈ S | sa ∈ T }.
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Let us denote by Z the subsemigroup of Γ consisting of monomials azn, where
a ∈ k∗ and n ≥ 2, and by Z

U the subsemigroup consisting of all monomials of the
form ωzn, n ≥ 2, where ω is a root of unity. We say that two subsemigroups S1

and S2 of Γ are conjugate if there exists a formal power series α ∈ k1[[z]] such that

α ◦ S1 ◦ α
−1 = S2.

It was shown in [33] that a finitely generated subsemigroup of Γ is right amenable
if and only if it is conjugate to a subsemigroup of ZU . Still, it was observed that an
infinitely generated right amenable subsemigroup of Γ is not necessarily conjugate
to a subsemigroup of ZU . In this paper, we prove the following result.

Theorem 1.5. Every right amenable subsemigroup S of Γ is conjugate to a sub-

semigroup of Z.

Moreover, we show that the conclusion of Theorem 1.5 holds already under the
assumption that S is right reversible, which is weaker than the assumption that S
is right amenable (see Theorem 7.2). We deduce these results from the following
statement of independent interest.

Theorem 1.6. Let A,B ∈ Γ be formal power series, and βA, βB some Bötcher

functions. Then the equation

(4) X ◦A◦l = Y ◦B◦s

has a solution in X,Y ∈ zk[[z]] for all s, l ≥ 1 if and only if βA = βB ◦ cz for some

c ∈ k∗.

Notice that Theorem 1.6 includes the characterization of commuting elements
of Γ in terms of their Böttcher functions, obtained by Dorfer and Woracek ([13]).
Specifically, it implies that A,B ∈ Γ commute if and only if βA = βB ◦ εz for some
ε satisfying

ε(ordA−1)(ordB−1) = 1

(see Corollary 7.1).
This paper is organized as follows. In the second section, after recalling several

elementary facts about the semigroup k1[[z]] we discuss Bötcher functions and some
of their immediate applications to functional equations. In the third section, we
introduce transition functions and establish their basic properties. In the fourth
section, we solve the functional equations

F = A ◦X and F = X ◦A,

where F,A ∈ Γ are given and X ∈ zk[[z]] is unknown, in terms of the corresponding
Böttcher functions. We also prove Theorem 1.2 and several of its corollaries.

In the fifth section, we apply the obtained results to decompositions of elements
of Γ, and prove Theorem 1.1. In the sixths section, we characterize symmetric
series in terms of their Bötcher and transition functions, and prove Theorem 1.4.
We also reprove the result of Reznick ([36]) stating that if an iterate of A ∈ Γ
is symmetric, then A is also symmetric. In the seventh section, we consider the
functional equation

X ◦A = Y ◦B,

where A,B ∈ Γ are given and X,Y ∈ zk[[z]] are unknown, and prove Theorem 1.3
and Theorem 1.6. Finally, we establish the above mentioned necessary condition
for the right amenability and the right reversibility of subsemigroups of Γ.
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2. Böttcher functions

2.1. Lemmata about formal power series. In this paper, k always denotes an
algebraically closed field of characteristic zero. Notice that the number of nth roots
of unity in such k equals n for every n ≥ 1. We will denote by Un the group of nth
roots of unity in k, and by UP

n the subset of Un consisting of primitive nth roots
of unity.

For elementary properties of the ring of formal power series k[[z]] and the semi-
group zk[[z]] under the composition operation ◦, we refer the reader to the first
paragraph of [12]. In particular, we will use the fact that k[[z]] is an integer domain
and that an element A of zk[[z]] is invertible with respect to ◦ if and only if A
belongs to k1[[z]]. Below we collect some further simple facts about k[[z]].

Lemma 2.1. Formal power series µ1, µ2 ∈ k[[z]] satisfy the equality

zn ◦ µ1 = zn ◦ µ2, n ≥ 2,

if and only if µ1 = εµ2 for some ε ∈ Un.

Proof. Since

µn
1 − µn

2 =
∏

ε∈Un

(µ1 − εµ2),

the lemma follows from the fact that k[[z]] is an integer domain. �

Lemma 2.2. Let µ ∈ k[[z]] \ k and a, b ∈ k∗ satisfy the equality

(5) µ ◦ az = bz ◦ µ.

Then b = ar for some r ∈ N. Furthermore, either µ = czr, r ≥ 1, for some c ∈ k∗,

or a is a root of unity. Finally, µ satisfies the equality

(6) µ ◦ εz = ε rz ◦ µ

for some ε ∈ UP
n and r, 0 ≤ r ≤ n − 1, if and only if there exists a formal power

series R ∈ k[[z]] such that µ = zrR(zn).

Proof. The proof is obtained by a comparison of coefficients in the left and the
right parts of (5) and (6). �

Lemma 2.3. A formal power series µ ∈ k[[z]] satisfies the equality

(7) zn ◦ µ = µ ◦ zn, n ≥ 2,

if and only if µ = εzm for some ε ∈ Un−1 and m ≥ 0.

Proof. Setting m = ord µ and substituting µ =
∑∞

i=m ciz
i into (7) we see that

cnm = cm. Furthermore, if µ 6= cmzm we obtain a contradiction as follows. Let
l > m be the minimum number such that cl 6= 0. Then

µ = cmzm + clz
l + higher terms,

implying that
µ ◦ zn = cmzmn + clz

ln + higher terms.

On the other hand,

zn ◦ µ = cnmzmn + ncn−1
m clz

m(n−1)+l + higher terms.

Since
m(n− 1) + l < l(n− 1) + l = ln,

this is impossible, and hence µ = cmzm. �
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Lemma 2.4. Formal power series µ1, µ2 ∈ k[[z]] \ k satisfy the equality

(8) zn ◦ µ1 = µ2 ◦ z
n, n ≥ 2,

if and only if there exist R ∈ k[[z]] and r, 0 ≤ r ≤ n− 1, such that

µ1 = zrR(zn), µ2 = zrRn(z).

Proof. The identity

(9) zn ◦ zrR(zn) = zrRn(z) ◦ zn

is checked by a direct calculation. To prove the “only if” part, we observe that for
any εn ∈ UP

n equality (8) implies the equality

zn ◦ µ1 = zn ◦ (µ1 ◦ εnz).

Therefore, by Lemma 2.1, there exists r, 0 ≤ r ≤ n− 1, such that

µ1 ◦ εnz = εrnz ◦ µ1,

implying by Lemma 2.2 that µ1 = zrR(zn) for some R ∈ k[[z]]. It follows now from
(8) that

µ2 ◦ z
n = zn ◦ µ1 = zrnRn(zn) = zrRn(z) ◦ zn,

implying that µ2 = zrRn(z). �

Notice that the representation µ2 = zrRn(z) appearing in Lemma 2.4 defines
the series R only up to a multiplication by an nth root of unity. Accordingly, to µ2

correspond n different µ1 such that (8) holds.

2.2. Böttcher functions and the equation A ◦ X = Y ◦ B. Let A ∈ Γ be a
formal power series of order n. Then the corresponding Böttcher function is defined
as a formal power series βA ∈ k1[[z]] such that the equality

(10) A ◦ βA = βA ◦ zn

holds. It is well known that such a function exists and is defined in a unique way up
to the change βA → βA ◦ εz, where ε ∈ Un−1. In the context of complex dynamics,
this fact is widely used and goes back to Böttcher (see [8], [37], [24]). For the proof
in the algebraic setting, see [23] (Hilffsatz 4). Notice that the map

(11) A → β−1
X ◦A ◦ βX ,

where X is a fixed element of Γ, is a semigroup automorphism of Γ.
Among other things, the existence of Böttcher functions yields the following

statement.

Theorem 2.5. Let A1, A2 ∈ k[[z]] and X ∈ zk[[z]] be formal power series. Then

the equality

(12) A1 ◦X = A2 ◦X

holds if and only A1 = A2.

Proof. In case X is invertible in the semigroup zk[[z]], the statement is clear.
Otherwise setting n = ordX and conjugating (12) by βX , we obtain the equality

(β−1
X ◦A1 ◦ βX) ◦ zn = (β−1

X ◦A2 ◦ βX) ◦ zn,

which obviously implies that

β−1
X ◦A1 ◦ βX = β−1

X ◦A2 ◦ βX .
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Since (11) is an isomorphism, this implies in turn that A1 = A2. �

Using Böttcher functions, one can provide a solution in X,Y ∈ zk[[z]] of the
functional equation

A ◦X = Y ◦B,

where A and B are given elements of Γ of the same order, generalizing equation
(10). We start by considering the following particular case.

Theorem 2.6. Let A ∈ Γ be a formal power series of order n, and βA some

Böttcher function. Then solutions of the equation

(13) A ◦X = Y ◦ zn

in X,Y ∈ zk[[z]] are given by the formulas

(14) X = βA ◦ zrR(zn), Y = βA ◦ zrRn(z),

where R ∈ k[[z]] and 0 ≤ r ≤ n− 1. Furthermore, if X = Y , then solutions of (13)
are given by the formula

X = βA ◦ εzl, ε ∈ Un−1,

where l = ordX.

Proof. The fact that X and Y defined by (14) satisfy (13) follows from equalities
(9) and (10). On the other hand, if (13) holds, then taking an arbitrary Böttcher
function βA and substituting βA ◦ zn ◦ β−1

A for A in (13), we obtain

βA ◦ zn ◦ β−1
A ◦X = Y ◦ zn,

implying that
zn ◦ (β−1

A ◦X) = (β−1
A ◦ Y ) ◦ zn.

Thus, equalities (14) hold by Lemma 2.4.
Furthermore, if X = Y, then (14) implies that

zrR(zn) = zrRn(z).

In turn, this yields thatR commutes with zn, implying by Lemma 2.3 thatR = εzm,
where ε ∈ Un−1 and m ≥ 0. Therefore,

X = zrR(zn) = εzl,

where
l = ord zrR(zn) = ordX. �

Theorem 2.6 implies the following more general statement.

Theorem 2.7. Let A,B ∈ Γ be formal power series of the same order n, and βA,

βB some Böttcher functions. Then solutions of the equation

(15) A ◦X = Y ◦B

in X,Y ∈ zk[[z]] are given by the formulas

X = βA ◦ zrR(zn) ◦ β−1
B , Y = βA ◦ zrRn(z) ◦ β−1

B ,

where R ∈ k[[z]] and 0 ≤ r ≤ n− 1. Furthermore, if X = Y , then solutions of (15)
are given by the formula

X = βA ◦ εzl ◦ β−1
B , ε ∈ Un−1,

where l = ordX.
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Proof. For an arbitrary Böttcher function βB, equality (15) is equivalent to the
equality

A ◦ (X ◦ βB) = (Y ◦ βB) ◦ z
n.

Thus, the theorem follows from Theorem 2.6. �

3. Transition functions

Let A ∈ Γ be a formal power series of order n. We recall that we defined
transition functions for A as formal series ϕA satisfying

(16) A ◦ ϕA = A.

It is clear that such series necessarily belong to k1[[z]] and form a group, which we
denote by GA.

The following two lemmas are modifications of the results of Section 2 in [17]
characterizing solutions of (16) in the analytical setting.

Lemma 3.1. Let A ∈ Γ be a formal power series, and βA some Böttcher function.

Then

(17) GA = {βA ◦ εz ◦ β−1
A | ε ∈ Un}.

Proof. It follows from equality (10) that for every ε ∈ Un we have

A ◦ βA = A ◦ βA ◦ εz,

implying that

A = A ◦ (βA ◦ εz ◦ β−1
A ).

On the other hand, if equality (16) holds, then conjugating its parts by βA, we
obtain

zn ◦ (β−1
A ◦ ϕA ◦ βA) = zn,

implying by Lemma 2.1 that β−1
A ◦ ϕA ◦ βA = εz for some ε ∈ Un. �

For a formal power series ϕ ∈ k1[[z]], we denote by |ϕ| the order of ϕ in the
group k1[[z]]. Thus, |ϕ| equals the minimum number d such that ϕ◦d = z, if such
a number exists, and |ϕ| equals ∞, if ϕ◦d is distinct from z for every d ≥ 1.

Lemma 3.2. Let ϕ ∈ k1[[z]] be a formal power series with |ϕ| = d. Then ϕ = ϕA

for some formal power series A ∈ Γ if and only if 1 < d < ∞. Moreover, in the

last case ϕ = ϕA for some A of order d.

Proof. Since the functions defined by (17) satisfy ϕ◦n
A = z, the “only if” part follows

from Lemma 3.1. On the other hand, if 1 < d < ∞, then setting

A = z · ϕ · ϕ◦2 · . . . · ϕ◦(d−1),

we see that A ∈ kd[[z]] and the equality A ◦ ϕ = A holds. �

The following lemma follows immediately from Lemma 3.1.

Lemma 3.3. Let A ∈ Γ. Then GA is a cyclic group of order n, whose generators

are βA ◦ εnz ◦ β
−1
A , where εn ∈ UP

n . �

The following lemma relates the transition group for A ∈ Γ with the transition
groups for A◦l, l ≥ 1, and

Aµ = µ−1 ◦A ◦ µ, µ ∈ k1[[z]].
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Lemma 3.4. Let A ∈ Γ be a formal power series of order n, and βA some Böttcher

function. Then

(18) GA◦l = {βA ◦ εz ◦ β−1
A | ε ∈ Unl}, l ≥ 1,

and

(19) GAµ
= µ−1 ◦GA ◦ µ, µ ∈ k1[[z]].

Proof. Equality (18) follows from Lemma 3.1 and the fact that βA remains a
Böttcher function for A◦l, l ≥ 1. On the other hand, since ordA = ordAµ = n,

equality (19) follows from the equality

Aµ ◦ (µ−1 ◦ ϕA ◦ µ) = Aµ, ϕA ∈ GA,

which is obtained by a direct calculation. �

The following statement is a counterpart of Theorem 2.5 for the functional equa-
tion A ◦X1 = A ◦X2.

Theorem 3.5. Let A ∈ Γ and X1, X2 ∈ zk[[z]]. Then the equality

(20) A ◦X1 = A ◦X2

holds if and only if

X2 = ϕA ◦X1

for some ϕA ∈ GA.

Proof. The “if” part is obvious. On the other hand if equality (20) holds, then
conjugating its parts by βA we obtain

zn ◦ (β−1
A ◦X1 ◦ βA) = zn ◦ (β−1

A ◦X2 ◦ βA),

implying that

β−1
A ◦X2 ◦ βA = εz ◦ β−1

A ◦X1 ◦ βA

for some ε ∈ Un by Lemma 2.1. Therefore,

X2 = βA ◦ εz ◦ β−1
A ◦X1 = ϕA ◦X1

by Lemma 3.1. �

4. Functional equations F = A ◦X and F = X ◦A

The next two results provide solutions of the functional equations F = A ◦ X

and F = X ◦A, where F,A ∈ Γ are given and X ∈ zk[[z]] is unknown, in terms of
the corresponding Böttcher functions βF and βA.

Theorem 4.1. Let A ∈ kn[[z]], n ≥ 2, and F ∈ knm[[z]], m ≥ 1, be formal power

series, and βA, βF some Böttcher functions. Then the equation

(21) F = X ◦A

has a solution in X ∈ km[[z]] if and only if there exist R ∈ k[[z]] and r, 0 ≤ r ≤ n−1,
such that

(22) zm ◦ β−1
F ◦ βA = zrR(zn).

Furthermore, if (22) holds, then (21) has a unique solution X given by the formula

(23) X = βF ◦ zrRn(z) ◦ β−1
A .
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Proof. Substituting βF ◦ znm ◦β−1
F for F and βA ◦ zn ◦β−1

A for A to (21), we obtain
the equality

βF ◦ znm ◦ β−1
F = X ◦ βA ◦ zn ◦ β−1

A ,

which in turn implies the equality

zn ◦ (zm ◦ β−1
F ◦ βA) = (β−1

F ◦X ◦ βA) ◦ z
n.

Hence, the “only if” part follows from Lemma 2.4.
In the other direction, (22) implies that

F = βF ◦ znm ◦ β−1
F = βF ◦ zn ◦ zm ◦ β−1

F = βF ◦ zn ◦ zrR(zn) ◦ β−1
A =

= βF ◦ zrRn(z) ◦ zn ◦ β−1
A = βF ◦ zrRn(z) ◦ β−1

A ◦A.

Thus, (21) holds for X given by (23). Finally, the function X is defined by formula
(23) in a unique way by Theorem 2.5. �

Theorem 4.2. Let A ∈ kn[[z]], n ≥ 2, and F ∈ knm[[z]], m ≥ 1, be formal power

series, and βA, βF some Böttcher functions. Then the equation

(24) F = A ◦X

has a solution in X ∈ km[[z]] if and only if there exist L ∈ k[[z]] and r, 0 ≤ r ≤ n−1,
such that

(25) β−1
A ◦ βF ◦ zm = zrLn(z).

Furthermore, if (25) holds, then (24) has n solutions given by the formula

X = βA ◦ εz ◦ zrL(zn) ◦ β−1
F , ε ∈ Un.

Proof. Equality (24) implies the equality

βF ◦ znm ◦ β−1
F = βA ◦ zn ◦ β−1

A ◦X,

which in turn implies the equality

(β−1
A ◦ βF ◦ zm) ◦ zn = zn ◦ (β−1

A ◦X ◦ βF ).

Therefore, the “only if” part follows from Lemma 2.4.
In the other direction, (25) implies that

F = βF ◦ znm ◦ β−1
F = βF ◦ zm ◦ zn ◦ β−1

F = βA ◦ zrLn(z) ◦ zn ◦ β−1
F =

= βA ◦ zn ◦ zrL(zn) ◦ β−1
F = A ◦ βA ◦ zrL(zn) ◦ β−1

F .

Thus, (24) holds for

X = βA ◦ zrL(zn) ◦ β−1
F .

Finally, by Theorem 3.5 and Lemma 3.1, any other solution of (23) has the form

X = ϕA ◦ βA ◦ zrL(zn) ◦ β−1
F = βA ◦ εz ◦ β−1

A ◦ βA ◦ zrL(zn) ◦ β−1
F =

= βA ◦ εz ◦ zrL(zn) ◦ β−1
F , ε ∈ Un. �

Proof of Theorem 1.2. If F = X ◦A, then for any ϕA ∈ GA we have

F ◦ ϕA = X ◦A ◦ ϕA = X ◦A = F,

implying that GA ⊆ GF .

In the other direction, the equality F ◦ ϕ̂A = F for some generator ϕ̂A of GA

implies that

(26) βF ◦ znm ◦ β−1
F ◦ βA ◦ εnz ◦ β

−1
A = βF ◦ znm ◦ β−1

F
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for some Böttcher functions βA, βF and εn ∈ UP
n . It is clear that equality (26)

implies the equalities

znm ◦ β−1
F ◦ βA ◦ εnz = znm ◦ β−1

F ◦ βA

and

zn ◦ (zm ◦ β−1
F ◦ βA ◦ εnz) = zn ◦ (zm ◦ β−1

F ◦ βA).

In turn, the last equality implies by Lemma 2.1 that

(zm ◦ β−1
F ◦ βA) ◦ εnz = εrnz ◦ (z

m ◦ β−1
F ◦ βA)

for some r, 0 ≤ r ≤ n−1. It follows now from Lemma 2.2 that there exists R ∈ k[[z]]
such that (22) holds. Therefore, the equality F = X ◦A holds for some X ∈ km[[z]]
by Theorem 4.1. �

For brevity, we will say that A ∈ Γ is a compositional right factor of F ∈ Γ is
there exists X ∈ zk[[z]] such that F = X ◦A. Compositional left factors are defined
similarly.

Corollary 4.3. Let F ∈ Γ be a formal power series, and A,B ∈ Γ some composi-

tional right factors of F . Then any ϕA ∈ GA and ϕB ∈ GB commute.

Proof. By Theorem 1.2, any ϕA ∈ GA and ϕB ∈ GB are elements of the commuta-
tive group GF . �

The following corollary provides a criterion for two elements of Γ to have a
“common” compositional right factor in Γ.

Corollary 4.4. Let A ∈ kn[[z]], B ∈ km[[z]], n,m ≥ 2, be formal power series,

and d ≥ 2 a common divisor of n and m. Then the system

(27) A = Ã ◦W, B = B̃ ◦W,

has a solution in Ã ∈ kn/d[[z]], B̃ ∈ km/d[[z]], and W ∈ kd[[z]] if and only if the

intersection of the groups GA and GB contains a group of order d.

Proof. Assume that (27) holds and let ϕ̂W be a generator of GW . Then by the
“only if” part of Theorem 1.2

ϕ̂W = ϕ̂
◦n/d
A = ϕ̂

◦m/d
B

for some generator ϕ̂A of GA and some generator ϕ̂B of GB. Thus, GA ∩ GB

contains a cyclic group of order d generated by ϕ̂W .

In the other direction, if GA ∩ GB contains a group of order d, and ϕ is its
generator, then

ϕ = ϕ̂
◦n/d
A = ϕ̂

◦m/d
B

for some generator ϕ̂A of GA and some generator ϕ̂B of GB. On the other hand,
since |ϕ| = d, it follows from Lemma 3.2 that ϕ = ϕ̂W for some W ∈ kd[[z]]. Using
now the “if” part of Theorem 1.2, we conclude that (27) holds. �

We finish this section by the following result, providing a criterion for a formal
power series D ∈ Γ to be a compositional right factor of a composition of formal
power series A,C ∈ Γ.
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Theorem 4.5. Let A,C,D ∈ Γ be formal power series. Then the equation

(28) A ◦ C = X ◦D

has a solution in X ∈ k[[z]] if and only if for any ϕD ∈ GD there exists ϕA ∈ GA

such that

(29) C ◦ ϕD = ϕA ◦ C.

Proof. If for any ϕD ∈ GD equality (29) holds for some ϕA ∈ GA, then for any
ϕD ∈ GD we have

A ◦ C ◦ ϕD = A ◦ ϕA ◦ C = A ◦ C.

Therefore, GD ⊆ GA◦C and hence (28) has a solution by Theorem 1.2.
In the other direction, equality (28) implies that

A ◦ C = A ◦ C ◦ ϕD.

Thus, (29) holds by Theorem 3.5. �

5. Equivalency classes of decompositions of formal power series

In this section, we prove Theorem 1.1 and deduce from it a corollary, which can
be considered as an analogue of the result of Engstrom ([14]) about polynomial
solutions of the equation A ◦ C = B ◦D.

Proof of Theorem 1.1. Let

(30) A = A1 ◦A2 ◦ · · · ◦Ar

be a decomposition of A ∈ Γ with

ordAk = nk, 1 ≤ k ≤ r.

Since

β−1
A ◦A ◦ βA = zn = (β−1

A ◦A1) ◦A2 ◦ · · · ◦ (Ar ◦ βA),

to prove the theorem it is enough to show that for A = zn every decomposition
(30) is equivalent to the decomposition

(31) zn = zn1 ◦ zn2 ◦ · · · ◦ znr .

We prove the last statement by induction on r.
Clearly, Gzn = {εz | ε ∈ Un}. Since |GAr

| = nr and GAr
is a subgroup of Gzn by

Theorem 1.2, this implies that GAr
= {εz | ε ∈ Unr

}. Thus, GAr
= Gznr , implying

by Theorem 1.2 that

(32) Ar = µr−1 ◦ z
nr

for some µr−1 ∈ k1[[z]]. Hence, if r = 2, we have

zn1n2 = A1 ◦ µ1 ◦ z
n2 ,

implying by Theorem 2.5 that A1 = zn1 ◦ µ−1
1 . On the other hand, if r > 2, then

in a similar way we obtain the equalities (32) and

(33) zn1n2...nr−1 = A1 ◦A2 . . . (Ar−1 ◦ µr−1).

By the induction assumption, the decomposition in the right part of (33) is equiv-
alent to the decomposition zn1 ◦ zn2 ◦ · · · ◦ znr−1 , and in virtue of (32) this implies
that for A = zn every decomposition (30) is equivalent to decomposition (31). �
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Corollary 5.1. Assume that A,B,C,D ∈ Γ satisfy

A ◦ C = B ◦D.

Then there exist U, V, Ã, C̃, B̃, D̃ ∈ zk[[z]], where

ordU = GCD(ordA, ordB), ordV = GCD(ordC, ordD),

such that

A = U ◦ Ã, B = U ◦ B̃, C = C̃ ◦ V, D = D̃ ◦ V,

and

Ã ◦ C̃ = B̃ ◦ D̃.

Proof. Let us set

F = A ◦ C = B ◦D,

n = ordF, a = ordA, b = ordB, c = ordC, d = ordD,

u = gcd(a, b), v = gcd(c, d).

Taking a Bötcher function βF and applying Theorem 1.1, we see that there exist
ν, µ ∈ k1[[z]] such that

A = βF ◦ za ◦ ν−1, C = ν ◦ zc ◦ β−1
F ,

and

B = βF ◦ zb ◦ µ−1, D = µ ◦ zd ◦ β−1
F .

Therefore, the statement of the corollary is true for

U = βF ◦ zu, V = zv ◦ β−1
F

and

Ã = z◦
a
u ◦ ν−1, C̃ = ν ◦ z◦

c
v , B̃ = z◦

b
u ◦ µ−1, D̃ = µ ◦ z◦

d
v .

6. Formal power series with symmetries

6.1. Characterizations of formal powers series with symmetries. The fol-
lowing result characterizes elements of Γ of the form A = zrR(zm), where R ∈ k[[z]]
and m ≥ 2, r ≥ 0 are integers, in terms of the corresponding Bötcher functions.

Theorem 6.1. Let A ∈ Γ. Then A has the form A = zrR(zm) for some R ∈ k[[z]]
and integers m ≥ 2, r ≥ 0 if and only if any Bötcher function βA has the form

βA = zL(zm) for some L ∈ k0[[z]].

Proof. Assume that for some Bötcher function βA the equality βA = zL(zm) holds.
Then βA commutes with εmz for any εm ∈ UP

m, whence

(A ◦ εmz) ◦ βA = A ◦ βA ◦ εmz = βA ◦ zn ◦ εmz = βA ◦ εnmz ◦ zn =

= εnmz ◦ βA ◦ zn = (εnmz ◦A) ◦ βA.

Therefore,

A ◦ εmz = εnmz ◦A,

implying by Lemma 2.2 that A = zrR(zm).

In the other direction, let us assume that A = zrR(zm) and set Â = zrRm(z).
Since

Â ◦ zm = zm ◦A,
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for any Bötcher function βA we have

Â ◦ (zm ◦ βA) = zm ◦A ◦ βA = (zm ◦ βA) ◦ z
n,

where n = ordA, implying by Theorem 2.6 that

zm ◦ βA = βÂ ◦ εzm = (βÂ ◦ εz) ◦ zm

for some Bötcher function β̂A and ε ∈ Un−1. By Lemma 2.4, this implies that
βA = zlL(zm), where L ∈ k[[z]] and 0 ≤ l ≤ m − 1. Finally, since βA ∈ k1[[z]], we
conclude that l = 1 and L ∈ k0[[z]]. �

Notice that if some Bötcher function has the form βA = zL(zm), then all Bötcher
functions have such a form.

The following result is a counterpart of Theorem 6.1 in the context of transition
functions.

Theorem 6.2. Let A ∈ Γ. Then A has the form A = µ ◦ zrR(zm) for some

µ ∈ k1[[z]], R ∈ k[[z]], and integers m ≥ 2, r ≥ 0 if and only if any transition

function ϕA has the form ϕA = zM(zm) for some M ∈ k0[[z]].

Proof. Let us fix εm ∈ UP
m. If some ϕA ∈ GA has the form ϕA = zM(zm), then ϕA

commutes with εmz, implying that

A ◦ εmz = A ◦ ϕA ◦ εmz = (A ◦ εmz) ◦ ϕA.

Thus, ϕA belongs to GA◦εmz. Therefore, if any ϕA ∈ GA has the above form, then
GA = GA◦εmz , implying by Theorem 1.2 that

(34) A ◦ εmz = ν ◦A

for some ν ∈ k1[[z]].
Since (34) implies that

A ◦ (εmz)◦l = ν◦l ◦A, l ≥ 1,

the number d = |ν| is finite and divides m. If d = 1, that is, if ν = z, then applying
Lemma 2.2 to equality (34) we conclude that A = R(zm) for some R ∈ k[[z]]. On
the other hand, if d > 1, then ν = ϕF for some F ∈ kd[[z]] by Lemma 3.2, and
hence

ν = βF ◦ εz ◦ β−1
F

for some Bötcher function βF and ε ∈ Ud by Lemma 3.1. Moreover, since d divides
m, the equalities ε = εrm and

ν = βF ◦ εrmz ◦ β−1
F

hold for some r, 0 ≤ r ≤ m− 1. Substituting the right part of the last equality for
ν in (34), we see that

(β−1
F ◦A) ◦ εmz = εrmz ◦ (β−1

F ◦A).

Hence, by Lemma 2.2,

β−1
F ◦A = zrR(zm),

for some R ∈ k[[z]]. Thus, the equality A = µ ◦ zrR(zm) holds for µ = βF .
In the other direction, if A = µ ◦ zrR(zm), then applying Corollary 4.3 to the

function

F = Â ◦ zm = zm ◦ µ−1 ◦A,
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where Â = zrRm(z), we conclude that any ϕA ∈ GA commutes with ϕzm = εmz.
Therefore, any ϕA has the form ϕA = zM(zm) by Lemma 2.2. �

Corollary 6.3. Let A ∈ Γ. Then A has a compositional right factor C ∈ Γ of the

form C = zrR(zm) for some R ∈ k[[z]] and integers m ≥ 2, r ≥ 0 if and only if

some transition function ϕA 6= z has the form ϕA = zM(zm) for some M ∈ k0[[z]].

Proof. If A has such a factor, then by Theorem 1.2 the group GA contains the
non-trivial group GC as a subgroup. Moreover, all elements of the last group have
the form zM(zm) by Theorem 6.2.

In the other direction, let us assume that some transition function ϕA 6= z has
the form ϕA = zM(zm) and set d = |ϕA|. By Lemma 3.2, ϕA = ϕC for some C ∈ Γ
of order d, and it is clear that GC = 〈ϕA〉. Thus, A = B ◦ C for some B ∈ zk[[z]]
by Theorem 1.2. Moreover, since any iterate of a series of the form zM(zm) also
has such form, it follows from GC = 〈ϕA〉 by Theorem 6.2 that C has the form
µ ◦ zrR(zm) for some µ ∈ k1[[z]]. Finally, changing B to B ◦ µ, we may assume
that C = zrR(zm). �

6.2. Decompositions of formal powers series with symmetries. Below, we
provide some applications of Theorem 6.1 and Theorem 6.2. We start by proving
Theorem 1.4.

Proof of Theorem 1.4. Let us fix εm ∈ UP
m. Let

(35) A = A1 ◦A2,

be a decomposition of A with A1, A2 ∈ Γ. Considering the equality

Â ◦ zm = (zm ◦A1) ◦A2,

where Â = zrRm(z), and using Corollary 4.3, we see that any ϕA2 ∈ GA2 commutes
with the transition function ϕzm = εmz. Thus, any ϕA2 ∈ GA2 has the form
zM(zm) for some M ∈ k0[[z]] by Lemma 2.2, and hence

(36) A2 = µ ◦ zr2R2(z
m)

for some µ ∈ k1[[z]], R2 ∈ k[[z]], and r2 ≥ 0, by Theorem 6.2.
Furthermore, it follows from the equality

zrR(zm) = A1 ◦ µ ◦ zr2R2(z
m)

that (
A1 ◦ µ ◦ zr2R2(z

m)
)
◦ εmz = εrmz ◦

(
A1 ◦ µ ◦ zr2R2(z

m)
)
,

implying that

A1 ◦ µ ◦ εr2mz ◦ zr2R2(z
m) = εrmz ◦A1 ◦ µ ◦ zr2R2(z

m)

and
A1 ◦ µ ◦ εr2mz = εrmz ◦A1 ◦ µ.

Since εr2m is a primitive m
gcd(r2,m) th root of unity, it follows now from Lemma 2.2

that
A1 ◦ µ = zr1R1(z

m
gcd(r2,m) )

for some R1 ∈ k[[z]] and r1 ≥ 0. Thus,

(37) A1 = zr1R1(z
m

gcd(r2,m) ) ◦ µ−1.

Finally, it follows from (35) and (36), (37) that r1r2 ≡ r (mod m). �
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Notice that in general the series A1 in a decomposition A = A1 ◦ A2 of a sym-
metric series A is “less symmetric” than A. Moreover, if r2 = 0, then A1 may be
not symmetric at all. Nevertheless, the following statement is true.

Corollary 6.4. Let A ∈ Γ be a formal power series of the form A = zrR(zm),
where R ∈ k[[z]] and m ≥ 2, r ≥ 1 are integers such that gcd(r,m) = 1. Then for

any decomposition A = A1 ◦ A2, where A1, A2 ∈ Γ, there exist R1, R2 ∈ k[[z]] and
µ ∈ k1[[z]] such that

A1 = zr1R1(z
m) ◦ µ−1, A2 = µ ◦ zr2R2(z

m)

for some integers r1, r2 ≥ 1 such that gcd(r1,m) = 1 and gcd(r2,m) = 1.

Proof. Since the numbers r1, r2 appearing in formulas (36), (37) satisfy the con-
dition r1r2 ≡ r (mod m), it follows from gcd(r,m) = 1 that gcd(r1,m) = 1 and
gcd(r2,m) = 1. Moreover, since gcd(r2,m) = 1 implies that

(38)
m

gcd(r2,m)
= m,

the series A1 has the required form. �

Corollary 6.5. Let A ∈ Γ be an even formal power series. Then for any decompo-

sition A = A1 ◦A2, where A1, A2 ∈ Γ, either A2 is even, or there exists µ ∈ k1[[z]]
such that µ−1 ◦A2 is odd and A1 ◦ µ is even. On the other hand, if A is odd, then

there exists µ ∈ k1[[z]] such that A1 ◦ µ and µ−1 ◦A2 are odd.

Proof. If A is even, then m = 2 and r ≡ 0 (mod 2). Therefore, the condition
r1r2 ≡ r (mod m) implies that either r2 ≡ 0 (mod 2), in which case A2 is even,
or r2 ≡ 1 (mod 2) but r1 ≡ 0 (mod 2), in which case µ−1 ◦ A2 is odd and A1 ◦ µ
is even by (38). On the other hand, if A is odd, then m = 2 and r ≡ 1 (mod 2).
Thus, the corollary follows from Corollary 6.4. �

It was shown by Reznick in [36] that if A ∈ zk[[z]] is a formal power series such
that some iterate of A has the form A◦s = zrR(zm) for some R ∈ zk[[z]] and
integers m ≥ 2, r ≥ 0, then either A itself has a similar form, or ordA = 1 and
|A| is finite. We finish this section by showing that the part of the Reznick result
concerning formal power series of order at least two is an immediate corollary of
Theorem 6.1.

Theorem 6.6. Let A ∈ Γ. Then some iterate A◦s, s ≥ 1, has the form

A◦s = zrR(zm) for some R ∈ k[[z]] and integers m ≥ 2, r ≥ 0 if and only if

A = zr0R0(z
m) for some R0 ∈ k[[z]] and integer r0 ≥ 0.

Proof. The “if” part is obvious. To prove the “only if” part we observe that if βA is
some Böttcher function for A, then βA remains a Böttcher function for A◦s, s ≥ 1.
Thus, if A◦s = zrR(zm) for some s ≥ 1, the “only if” part of Theorem 6.1 implies
that βA = zL(zm) for some L ∈ k0[[z]]. Using now the “if” part, we conclude that
A has the required form. �

Let us mention that for everym ≥ 2 there exist series A ∈ Γ that do not have the
form zrR(zm) but have compositional right factors of this form. Indeed, arguing
as in the proof of Theorem 1.4, one can easily see that a composition of series
A = B ◦ zrR(zm) with gcd(r,m) = 1 has the form zr1R1(z

m) if and only if B has
the form zr2R2(z

m). Thus, if B does not have such a form, the same is true for A.
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Notice that for series A as above some transition functions have the form zM(zm)
and some do not. Indeed, all functions ϕA cannot have the form zM(zm) by
Theorem 6.2, but some of them have this form by Corollary 6.3. Since GA is a
cyclic group, this gives us examples of series of order one for which Theorem 6.6 is
not true.

7. Functional equation X ◦A = Y ◦B and reversibility

7.1. Functional equation X ◦ A = Y ◦ B. We start this section by proving
Theorem 1.3 and Theorem 1.6.

Proof of Theorem 1.3. If

(39) X ◦A = Y ◦B,

has a solution, then setting

F = X ◦A = Y ◦B

and applying Corollary 4.3, we see that

(40) ϕA ◦ ϕB = ϕB ◦ ϕA

for all ϕA ∈ GA and ϕB ∈ GB .

To prove the “if” part, let us observe that Lemma 3.4 implies that condition
(40) is equivalent to the condition that

ϕAµ
◦ ϕBµ

= ϕBµ
◦ ϕAµ

for all ϕAµ
∈ GAµ

and ϕBµ
∈ GBµ

for some µ ∈ k1[[z]]. Similarly, equation (39)
has a solution for A and B if and only if it has a solution for Aµ and Bµ for some
µ ∈ k1[[z]]. Thus, conjugating A and B by µ = βA, without loss of generality we
can assume that A = zn, n ≥ 2.

Applying Lemma 2.2 to equality (40) for ϕA = ϕzn = εnz, where εn ∈ UP
n ,

we see that any ϕB ∈ GB has the form ϕB = zM(zn) for some M ∈ k0[[z]]. By
Theorem 6.2, this yields that B has the form B = µ ◦ zrR(zn) for some µ ∈ k1[[z]],
R ∈ k[[z]], and r ≥ 0. Therefore, equality (39) holds for

X = zrRn(z), Y = zn ◦ µ−1. �

Proof of Theorem 1.6. Let us set n = ordA, m = ordB. If (4) has a solution in
X,Y ∈ zk[[z]] for all s, l ≥ 1, then by Theorem 1.3 the transition functions

(41) ϕA◦l = βA ◦ εnlz ◦ β
−1
A , ϕB◦s = βB ◦ εmsz ◦ β

−1
B , s, l ≥ 1,

where εnl ∈ UP
nl and εms ∈ UP

ms, commute, implying that

(β−1
B ◦ βA ◦ εnlz ◦ β

−1
A ◦ βB) ◦ εmsz = εmsz ◦ (β

−1
B ◦ βA ◦ εnlz ◦ β

−1
A ◦ βB).

Fixing now l and εnl and applying Lemma 2.2, we see that for every s ≥ 1 there
exists Rs ∈ k[[z]] such that

β−1
B ◦ βA ◦ εnlz ◦ β

−1
A ◦ βB = zRs(z

ms).

Clearly, this is possible only if

β−1
B ◦ βA ◦ εnlz ◦ β

−1
A ◦ βB = cz,

for some c ∈ k∗, and comparing coefficients in the parts of this equality we conclude
that

β−1
B ◦ βA ◦ εnlz ◦ β

−1
A ◦ βB = εnlz.
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The last equality implies that β−1
B ◦ βA commutes with εnlz. Since this is true

for every l ≥ 1 and εnl ∈ UP
nl, using again Lemma 2.2, we conclude that for every

l ≥ 1 there exists Ml ∈ k0[[z]] such that

β−1
B ◦ βA = zMl(z

nl),

implying that βA = βB ◦ cz for some c ∈ k∗.

In the other direction, it is easy to see that if βA = βB ◦ cz for some c ∈ k∗, then
for all s, l ≥ 1 transition functions (41) commute, implying by Theorem 1.3 that
(4) has a solution. �

Theorem 1.6 implies the following result, obtained by Dorfer and Woracek (see
[13], Proposition 3.11).

Corollary 7.1. Let A,B ∈ Γ be formal power series, and βA, βB some Bötcher

functions. Then A and B commute if and only if βA = βB ◦εz for some ε satisfying

ε(ordA−1)(ordB−1) = 1.

Proof. Let us set n = ordA, m = ordB. If A and B commute, then for all s, l ≥ 1
the iterates A◦l and B◦s also commute, implying that (4) has the solution X = B◦s,
Y = A◦l. Thus, βA = βB ◦ cz for some c ∈ k∗ by Theorem 1.6. Furthermore, since

(42) A = βB ◦ cz ◦ zn ◦ c−1z ◦ β−1
B , B = βB ◦ zm ◦ β−1

B ,

it follows from the commutativity of A and B that

c−(n−1) = c−(n−1)m.

On the other hand, if βA = βB ◦ cz for some c satisfying c(n−1)(m−1) = 1, then (42)
implies that A and B commute. �

7.2. Right reversibility of subsemigroups of Γ. Let us recall that a semigroup
S is called right amenable if it admits a finitely additive probability measure µ

defined on all the subsets of S such that for all a ∈ S and T ⊆ S the equality

µ(Ta−1) = µ(T )

holds, where the set Ta−1 is defined by the formula

Ta−1 = {s ∈ S | sa ∈ T }.

A semigroup S is called right reversible if for all a, b ∈ S the left ideals Sa and
Sb have a non-empty intersection, that is, if for all a, b ∈ S there exist x, y ∈ S

such that xa = yb. It is well known and follows easily from the definition (see [34],
Proposition 1.23) that every right amenable semigroup is right reversible.

The problems of describing right reversible and right amenable semigroups of
polynomials and rational functions have been studied in the recent papers [10],
[11], [32]. Some analogues of the results of these papers for finitely generated
subsemigroups of Γ were obtained in the paper [33], mentioned in the introduction.
The approach of [33] relies on the results of [31], for which the assumption that
S is finitely generated is essential. Theorem 1.6 provides another approach to
the problem, which works equally well for infinitely generated subsemigroups of Γ.
Specifically, Theorem 1.6 implies the following result, which contains Theorem 1.5
from the introduction.
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Theorem 7.2. Every right reversible subsemigroup S of Γ is conjugate to a sub-

semigroup of Z. In particular, every right amenable subsemigroup S of Γ is conju-

gate to a subsemigroup of Z.

Proof. Let us fix an arbitrary element A of S. Then for every B ∈ S and all
s, l ≥ 1, we can apply the right reversibility condition to the elements A◦l and B◦s

of S concluding that there exist X,Y ∈ S such that equality (4) holds. Therefore,
by Theorem 1.6, for every B ∈ S the equality βA = βB ◦ cz holds for some c ∈ k∗,

implying that

β−1
A ◦B ◦ βA = (βB ◦ cz)−1 ◦B ◦ (βB ◦ cz) = c−1z ◦ β−1

B ◦ (B ◦ βB) ◦ cz =

= c−1z ◦ β−1
B ◦ (βB ◦ zm) ◦ cz = cm−1zm,

where m = ordB. Thus, the semigroup β−1
A ◦ S ◦ βA is a subsemigroup of Z. �
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