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Abstract. We formulate some problems and conjectures about semigroups

of rational functions under composition. The considered problems arise in
different contexts, but most of them are united by a certain relationship to the

concept of amenability.

1. Introduction

The goal of this paper is twofold. First, we propose a number of problems and
conjectures about semigroups of rational functions under composition. Second, and
not less importantly, we create bridges between some of these problems, which arise
in different contexts and apparently are not related. Most of the problems discussed
in the paper can be linked in some way to the concept of amenability. Nevertheless,
sometimes the corresponding link is rather indirect. The paper does not pretend to
be a review of existing papers about semigroups of rational functions, and the choice
of considered problems is determined only by the tastes and interests of the author.
In particular, we do not consider problems related to dynamics of semigroups of
rational functions (see [31]). On the other hand, we discuss some problems arising
in arithmetical dynamics (see [60]).

We recall that a semigroup S is called left amenable if it admits a finitely additive
probability measure µ, defined on all the subsets of S, which is left invariant in the
following sense. For all T Ď S and A P S the equality

µpA´1Tq “ µpTq

holds, where the set A´1T is defined by the formula

A´1T “ tW P S |AW P Tu.

Equivalently, S is left amenable if there is a mean on l8pSq, which is invariant
under the natural left action of S on the dual space l8pSq˚ (see e.g. [55]). The
right amenability is defined similarly. A semigroup is called amenable if there exists
a mean on l8pSq, which is invariant under the left and the right action of S on
l8pSq˚. By the theorem of Day (see [12], [13]), this is equivalent to the condition
that S is left and right amenable, and in this paper we will use the last condition
as the definition of amenability.

To our best knowledge, amenability in semigroups of rational functions started
to be studied only recently in the papers [9], [10], [52]. Some close questions were
considered also in the paper [4]. Let P be a rational function of degree at least two.
The results of the above mentioned papers show that the most interesting semi-
groups of rational functions related to the concept of amenability are semigroups
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CpP q, C8pP q, and EpP q, which can be defined correspondingly as semigroups con-
sisting of rational functions commuting with P , commuting with some iterate of
P , and sharing a measure of maximal entropy with P . On the other hand, the
most interesting property of amenable semigroups in the context of semigroups of
rational functions is the property of being reversible. We recall that a semigroup S
is called left reversible if for all A,B P S there exist X,Y P S such that

(1) AX “ BY.

The right reversibility is defined similarly. It is well-known and follows easily from
the definition that any left (resp. right) amenable semigroup is left (resp. right)
reversible (see e.g. [55]).

What is said above suggests to consider problems related to amenable semigroups
of rational functions in conjunction with problems related to reversible semigroups
and semigroups CpP q, C8pP q, EpP q. This paper is organized accordingly and
has the following structure. In the second section, after recalling the classical
theorem of Ritt about commuting rational functions, we review recent results about
CpP q and propose some related problems. In the third section, we discuss some
conjectures about semigroups C8pP q and EpP q. In the fourth section, we discuss
problems and conjectures concerning reversible semigroups of rational functions. In
particular, we relate the left reversibility with some problems arising in arithmetical
dynamics. Finally, in the fifth section, we propose some conjectures describing
amenable semigroups of rational functions, generalizing previous results obtained
in the polynomial case.

2. Semigroups CpP q

In this paper, by a rational function we always mean a non-constant rational
function. For a rational function P of degree at least two, we denote by CpP q the
set of rational functions commuting with P . It is clear that CpP q is a semigroup.
The subsemigroup of CpP q consisting of Möbius transformations will be denoted
by AutpP q. It is easy to see that AutpP q is a group. Moreover, since elements
of AutpP q permute fixed points of P ˝k, k ě 1, and any Möbius transformation is
defined by its values at any three points, the group AutpP q is finite. We will call a
rational function special if it is either a Lattès map or it is conjugate to z˘n, n ě 2,
or ˘Tn, n ě 2, where Tn is the nth Chebyshev polynomial.

The central result about commuting rational functions is the theorem of Ritt
(see [56] and also [27], [49], [51]). In brief, it states that if rational functions X
and P of degree at least two commute, then either they both are special or they
have an iterate in common. Moreover, the Ritt theorem provides a full description
of pairs of commuting special functions, implying a description of the semigroup
CpP q in case P is special. Nevertheless, the only information about the structure
of CpP q for a non-special rational function P provided by the Ritt theorem is that
every X P CpP q has a common iterate with P . Further results about CpP q were
obtained in the recent papers [49], [51]. Below, we shortly describe these results
and formulate some related problems.

The following theorem was obtained in the paper [49] as a corollary of a more
general theorem concerning semiconjugate rational functions. It can be regarded
as a “semigroup” counterpart of the Ritt theorem and implies the latter theorem
in its part concerning non-special rational functions.
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Theorem 2.1. Let P be a non-special rational function of degree at least two.
Then there exist finitely many rational functions X1, X2, . . . , Xr such that a rational
function X belongs to CpP q if and only if

X “ Xj ˝ P ˝k

for some j, 1 ď j ď r, and k ě 0.

To see that Theorem 2.1 implies the Ritt theorem, let us observe that if X
commutes with P , then any iterate X˝l, l ě 1, does. Thus, by the Dirichlet box
principle, there exist l2 ą l1 ě 1 such that

X˝l1 “ Xj ˝ P ˝k1 , X˝l2 “ Xj ˝ P ˝k2

for the same j and some k2 ą k1 ě 0, implying that

(2) X˝l2 “ X˝l1 ˝ P ˝pk2´k1q.

Since X and P commute, it follows from (2) that

(3) X˝l2 “ P ˝pk2´k1q ˝ X˝l1 ,

implying that

(4) X˝pl2´l1q “ P ˝pk2´k1q.

The passage from (3) to (4) is possible since the semigroup of rational functions is
obviously right cancellative, that is, the equality

X ˝ A “ Y ˝ A,

where X,Y,A are rational functions, implies that X “ Y. Notice, however, that
this semigroup is not left cancellative (see Section 3 below).

It was shown in [51] that with the semigroup CpP q one can associate a finite
group as follows. For a non-special rational function of degree at least two P , we
define an equivalence relation „

P
on the semigroup CpP q, setting Q1 „

P
Q2 if

Q1 ˝ P ˝l1 “ Q2 ˝ P ˝l2

for some l1 ě 0, l2 ě 0. It follows easily from the right cancellativity that if X is
an equivalence class of „

P
and X0 P X is a function of minimum possible degree,

then every X P X has the form X “ X0 ˝ P ˝l, l ě 0. Moreover, the multiplication
of classes induced by the functional composition of their representatives provides
CB{ „

B
with the structure of a finite group.

In more detail, let us recall that a congruence on a semigroup is an equivalence
relation that is compatible with the semigroup operation. In this notation, the
following statement holds.

Theorem 2.2. Let P be a non-special rational function of degree at least two. Then
the relation „

P
is a congruence on the semigroup CpP q, and the quotient semigroup

is a finite group.

It is clear that describing the semigroup CpP q is equivalent to describing the
corresponding group, which will be denoted by GP . On the other hand, one may
expect that the analysis of GP may have some advantages in view of the presence
of the group structure. Thus, probably, the most interesting problem concerning
the semigroups CpP q is following.
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Problem 2.3. Which finite groups occur as groups GP for non-special rational
functions P?

Note that the group GP is trivial if and only if any element of CpP q is an iterate
of P. In particular, if P “ Q˝l for some Q P Cpzq, then GP is non-trivial since Q
belongs to CpP q. The group GP is also non-trivial whenever the group AutpP q

is non-trivial, since GP contains an isomorphic copy of AutpP q (see [51] for more
detail).

Let us mention some known results related to Problem 2.3. First, if P is a non-
special polynomial, then CpP q “ xAutpP q, Ry for some R P CpP q. Correspondingly,
the group GP is metacyclic (see [51], Section 6.2, and [52], Section 7.1). Further, if
a non-special rational function P is indecomposable, that is, cannot be represented
in the form P “ V ˝ U , where U and V are rational functions of degree greater
than one, then GP is isomorphic to AutpP q. Equivalently, X P CpP q if and only
if X “ µ ˝ P l for some µ P AutpP q and l ě 1 (see [51], Section 6.1). Thus, for an
indecomposable rational function P the group GP is one of the five finite subgroups
of AutpCP1q. Moreover, every finite subgroup of AutpCP1q can be realized as the
group AutpP q for some rational function P (see [15]).

It was shown in [51] that calculating GP reduces to calculating the generators
of the fundamental group of a special graph ΓP associated with P , which can be

described as follows. Let P be a rational function. A rational function pP is called
an elementary transformation of P if there exist rational functions U and V such

that P “ V ˝ U and pP “ U ˝ V . We say that rational functions P and A are
equivalent and write A „ P if there exists a chain of elementary transformations
between P and A. Since for any Möbius transformation µ the equality

P “ pP ˝ µ´1q ˝ µ

holds, the equivalence class rP s of a rational function P is a union of conjugacy
classes. Thus, the relation „ can be considered as a weaker form of the classical
conjugacy relation. The graph ΓP is defined as a multigraph whose vertices are in a
one-to-one correspondence with some fixed representatives Pi of conjugacy classes
in rP s, and whose multiple edges connecting the vertices corresponding to Pi to Pj

are in a one-to-one correspondence with solutions of the system

Pi “ V ˝ U, Pj “ U ˝ V

in rational functions. Since the equivalence class rP s contains infinitely many con-
jugacy classes if and only if P is a flexible Lattès map ([47]), for any non-special
rational function P the graph ΓP is finite.

It follows from the relation between GP and the fundamental group of ΓP estab-
lished in [51] that the groups GP and GP 1 are isomorphic whenever P „ P 1. This
fact permits to reveal reasons for the non-triviality of GP by studying the graph
GP , which represents the totality of all functions from the class rP s together with
their decompositions and automorphisms. As an example of such an approach, we
mention the following interesting fact. The group GP is always non-trivial whenever
for some P 1 „ P the group AutpP 1q is non-trivial. Thus, if under these circum-
stances the group AutpP q itself is trivial, the semigroup CpP q necessarily contains
functions of degree at least two that are not iterates of P (see [51] for more detail).

A “combinatorial” counterpart of Problem 2.3 is the following problem.
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Problem 2.4. Which finite graphs occur as graphs ΓP for non-special rational
functions P?

Let us also mention the following problem closely related to the problem of
describing semigroups CpP q.

Problem 2.5. Describe commutative semigroups of rational functions.

For the solution of Problem 2.5 in the polynomial case, we refer the reader to
[26] and [52], Section 7.1.

Finally, let us mention that the Ritt theorem has multidimensional analogues
(see [14], [36], [61]). It would be interesting to find out if there are any analogues
of Theorem 2.1 and Theorem 2.2 in this context.

3. Semigroups C8pP q and EpP q

For a rational function P , let us define the sets C8pP q and Aut8pP q by the
formulas

C8pP q “

8
ď

i“1

CpP ˝kq, Aut8pP q “

8
ď

k“1

AutpP ˝kq.

Since obviously

CpP ˝kq, CpP ˝lq Ď CpP ˝LCMpk,lqq

and

AutpP ˝kq, AutpP ˝lq Ď AutpP ˝LCMpk,lqq,

the set C8pP q is a semigroup, and the set Aut8pP q is a group. Let us notice that if
P is non-special, then a rational function X of degree at least two belongs to C8pP q

if and only if X and P share an iterate. Indeed, the “only if” part follows from the
Ritt theorem. On the other hand, if there exist k, l P N such that X˝k “ P ˝l, then
X obviously commutes with P ˝l.

We conjecture that the following analogue of Theorem 2.1 holds for semigroups
C8pP q.

Conjecture 3.1. Let P be a non-special rational function of degree at least two.
Then there exist finitely many rational functions X1, X2, . . . , Xr such that a rational
function X belongs to C8pP q if and only if

X “ Xj ˝ P ˝k

for some j, 1 ď j ď r, and k ě 0.

Conjecture 3.1 is equivalent to the following conjecture.

Conjecture 3.2. Let P be a non-special rational function of degree at least two.
Then C8pP q “ CpP ˝sq for some s ě 1.

Indeed, if Conjecture 3.2 is true, then applying Theorem 2.1 to P ˝s one can
easily see that Conjecture 3.1 is also true. On the other hand, if X1, X2, . . . , Xr are
rational functions from Conjecture 3.1, and the function Xi, 1 ď i ď r, commutes
with P ˝ki , ki ě 1, then Xi also commutes with PN , where

N “ LCMpk1, k2, . . . , krq.

Therefore, C8pP q Ď CpP ˝N q, implying that C8pP q “ CpP ˝N q.
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Let us recall that by the results of the papers [29] and [42], for every rational
function P of degree n ě 2 there exists a unique probability measure µP on CP1,
which is invariant under P , has support equal to the Julia set JP , and achieves
maximal entropy logn among all P -invariant probability measures. For a rational
function P of degree at least two, we denote by µP the measure of maximal entropy
for P , and by EpP q the set of rational functions Q of degree at least two such that
µQ “ µP , completed by µP -invariant Möbius transformations. The set EpP q is a
semigroup (see e.g. [52]).

Algebraic conditions for non-special rational functions X and P to share a mea-
sure of maximal entropy were obtained in the papers [40], [41], and can be formu-
lated as follows (see [62] for more detail).

Theorem 3.3. Let X and P be non-special rational functions of degree at least
two. Then µX “ µP if and only if there exist k, l ě 1 such that the equalities

(5) X˝2k “ X˝k ˝ P ˝l, P ˝2l “ P ˝l ˝ X˝l,

hold. □

Setting F “ X˝k, G “ P ˝l, we can rewrite system (5) in the form

(6) F ˝ F “ F ˝ G, G ˝ G “ G ˝ F.

The problem of describing rational solutions of this system with F ‰ G is closely
related to the problem of describing rational solutions of the functional equation

(7) A ˝ X “ A ˝ Y,

distinct from the trivial solution X “ Y. Specifically, it was observed in the paper
[62] that if X, Y , and A are rational functions such that equality (7) holds, then
the functions

F “ X ˝ A, G “ Y ˝ A

satisfy (6). Moreover, it was proved in [50] that all solutions of (6) can be obtained
in this way.

A comprehensive classification of rational functions satisfying (7) is not known.
The most complete result in this direction, obtained in the paper [2], is the classi-
fication of solutions of (7) under the assumption that A is a polynomial. For some
partial results we refer the reader to [2], [50], [58], [59]. It is instructive to consider
the following more general problem. Let A be a rational function of degree at least
two. We say that A is tame if the algebraic curve

(8)
Apxq ´ Apyq

x ´ y
“ 0

has no factors of genus zero or one. Otherwise, we say that A is wild. Note that by
the Picard theorem, the condition that A is tame is equivalent to the condition that
equality (7), where X, Y are functions meromorphic on C, implies that X ” Y.

What is said above shows that the problem of describing the semigroup EpP q is
closely related to the following problem.

Problem 3.4. Describe wild rational functions.

Let us remark that Problem 3.4 also can be linked to the question about possible
decompositions of “even” rational functions (cf. [3], [32], [33]). Specifically, let F
be an “even” rational function, that is, a rational function of the form F “ U ˝ z2,
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where U P Cpzq, and let F “ A ˝ X be an arbitrary decomposition of F into a
composition of rational functions. Then the equality

F “ U ˝ z2 “ A ˝ X

implies that (7) holds for Y “ X ˝ ´z. Of course, if the rational function X is also
even, then Y “ X. However, if X is not even, we obtain a non-trivial solution of
(7). This construction can be generalized to the case where instead of z2 any Galois
covering from a torus or CP1 to CP1 is used (see [53]). Moreover, if curve (8) is
irreducible, then all solutions of (7) can be obtained in this way ([50]).

Rational functions sharing an iterate share a measure of maximal entropy, and
the system (5) can be regarded as a generalization of the condition that X and P
share an iterate. Accordingly, Conjecture 3.1 is a particular case of the following
conjecture.

Conjecture 3.5. Let P be a non-special rational function of degree at least two.
Then there exist finitely many rational functions X1, X2, . . . , Xr such that X belongs
to EpP q if and only if

X “ Xj ˝ P ˝k

for some j, 1 ď j ď r, and k ě 0.

Note that Conjecture 3.5 implies Theorem 3.3 in the same way as Theorem 2.1
implies the Ritt theorem. Indeed, if Conjecture 3.5 is true and X P EpP q, then
we conclude that equality (2) holds for some l2 ą l1 ě 1 and k2 ą k1 ě 0. By
symmetry, we also have

(9) P ˝l1
2 “ P ˝l1

1 ˝ X˝pk1
2´k1

1q

for some l12 ą l11 ě 1 and k1
2 ą k1

1 ě 0. Finally, equalities (2) and (9) imply that
equalities (5) hold for some k, l ě 1 (see [52], Lemma 2.10).

4. Reversible semigroups

It follows from the definition (1) that if a semigroup of rational functions S is
left reversible, then for all A,B P S the “separated variable” curve

(10) Apxq ´ Bpyq “ 0

has a factor of genus zero. More generally, since S is a semigroup, the left reversibil-
ity condition implies that for all A,B P S all algebraic curves

(11) A˝npxq ´ Bpyq “ 0, n ě 1,

have a factor of genus zero.
Separated variable curves with a factor of genus zero have been intensively stud-

ied (see e. g. [2], [5], [8], [17], [19], [21], [38], [39], [44], [46], [54]), but their full
description is not known. Notice also that the irreducibility problem for curves
(10), the so-called Davenport-Lewis-Schinzel problem, is also very difficult and is
widely open (see [7], [8], [18], [20], [37]). On the other hand, the problem of de-
scribing A and B such that all curves (11) have a factor of genus zero or one is
a geometric counterpart of the following problem of the arithmetic nature posed
in [11]: which rational functions A defined over a number field K have a K-orbit
containing infinitely many points from the value set BpP1pKqq? These problems
have been studied in the papers [11], [34], [48]. In particular, in [48], a description
of such A and B in terms of semiconjugacies and Galois coverings was obtained.
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It is easy to see that all curves (11) have a factor of genus zero whenever B is a
“compositional left factor” of some iterate of A, where by a compositional left factor
of a rational function F we mean any rational function G such that F “ G ˝ H for
some rational function H. Moreover, if A is non-special, the main result of [48] in
a slightly simplified form can be formulated as follows (see [48], Theorem 1.2).

Theorem 4.1. Let A be a non-special rational function of degree at least two.
Then there exist rational functions X and F such that X is a Galois covering, the
diagram

CP1 F
ÝÝÝÝÑ CP1

§

§

đ
X

§

§

đ
X

CP1 A
ÝÝÝÝÑ CP1

commutes, and for a rational function B of degree at least two all algebraic curves
(11) have a factor of genus zero or one if and only if B is a compositional left factor
of A˝ℓ ˝ X for some l ě 0.

Finally, let us observe that if a semigroup of rational functions S is left reversible,
then the following condition holds: for all A,B P S all algebraic curves

(12) A˝npxq ´ B˝mpyq “ 0, n,m ě 1,

have a factor of genus zero. This condition is stronger than the previous two
conditions, and we conjecture that for such A and B the following stronger version
of Theorem 4.1 holds.

Conjecture 4.2. Let A and B be rational functions of degree at least two such
that all algebraic curves (12) have a factor of genus zero or one. Then either both
A and B are special or there exist k, l ě 1 such that A˝k “ B˝l.

If true, Conjecture 4.2 implies the following conjecture.

Conjecture 4.3. Let S be a semigroup of rational functions of degree at least two
containing at least one non-special function. Then S is left reversible if and only if
any two elements of S have a common iterate.

Indeed, Conjecture 4.2 implies the “only if” part of Conjecture 4.3. On the
other hand, the “if” part is obvious, since the equality A˝k “ B˝l implies that (1)
is satisfied for X “ A˝pk´1q and Y “ B˝pl´1q. Moreover, since A˝k “ B˝l implies
A˝2k “ B˝2l, we can assume that k, l ě 2 ensuring that X P S and Y P S.

Furthermore, Conjecture 4.2 implies the following conjecture.

Conjecture 4.4. Let A and B be rational functions of degree at least two such
that an orbit of A has an infinite intersection with an orbit of B. Then A and B
have a common iterate.

In case A and B are polynomials, Conjecture 4.3 is the theorem proved in the
papers [22], [23]. This result was extended to tame rational functions in the paper
[53]. Similarly, Conjecture 4.2 and Conjecture 4.3 are true if the functions involved
are polynomials or tame rational functions ([52]).

To see that Conjecture 4.2 implies Conjecture 4.4, we recall that, by the Faltings
theorem ([28]), if an irreducible algebraic curve C defined over a finitely generated
field K of characteristic zero has infinitely many K-points, then gpCq ď 1. On the
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other hand, it is easy to see that if the orbit intersection OApz1qXOBpz2q is infinite,
then all curves (12) have infinitely many points px, yq P OApz1q ˆOBpz2q. Since the
orbits OApz1q, OBpz2q belong to the field K finitely generated over Q by z1, z2,
and the coefficients of A, B, this implies that all curves (12) have a factor of genus
zero or one. Taking into account that Conjecture 4.4 is true for special A and B
([53]), this shows that Conjecture 4.2 implies Conjecture 4.4.

Switching to right reversible semigroups, instead of the condition that for all
A,B P S the algebraic curve (10) has a factor of genus zero, we obtain the condition
that for all A,B P S the field CpAqXCpBq contains a non-constant rational function.
Thus, we face the following problem.

Problem 4.5. Given rational functions A and B of degree at least two, under what
conditions does the field CpAq X CpBq contain a non-constant rational function?

Despite a very natural setting of this problem, essentially nothing is known
about its solutions unless both A and B are polynomials, in which case a complete
description of such A and B is known. Specifically, if CpAq X CpBq contains a
polynomial the answer is given by the Ritt theory ([57]), and the general case
reduces to this one ([45]). For some other related results we refer the reader to the
papers [1], [6], [30], [43].

The analogues of the other two problems about algebraic curves considered above
can be formulated as follows: given rational functions A and B, under what condi-
tions all the fields

(13) CpA˝nq X CpBq, n ě 1,

and, more generally, all the fields

CpA˝nq X CpB˝mq, n,m ě 1,

do contain a non-constant rational function?
We conjecture that the first problem has the following solution, “symmetric” to

the one provided by Theorem 4.1.

Conjecture 4.6. Let A be a non-special rational function of degree at least two.
Then there exist rational functions X and F such that X is a Galois covering, the
diagram

(14)

CP1 A
ÝÝÝÝÑ CP1

§

§

đ
X

§

§

đ
X

CP1 F
ÝÝÝÝÑ CP1

commutes, and for a rational function B of degree at least two all fields (13) contain
a non-constant rational function if and only if B is a compositional right factor of
X ˝ A˝ℓ for some l ě 0.

Notice that the “if” part of Conjecture 4.6 is obtained by a direct calculation.
Indeed, it follows from (14) and

X ˝ A˝l “ U ˝ B

that for every k ě 0 the equality

F ˝k ˝ U ˝ B “ F ˝k ˝ X ˝ A˝l “ X ˝ A˝l`k
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holds, implying that all fields (13) contain a non-constant rational function. In
particular, they contain a non-constant rational function whenever U is a compo-
sitional right factor of some iterate A˝l, l ě 1 (the case where F “ A and X “ z).

Finally, analogues of Conjecture 4.2 and Conjecture 4.3 are the following conjec-
tures, which are known to be true in the polynomial case ([52]).

Conjecture 4.7. Let A and B be rational functions of degree at least two such that
all fields (13) contain a non-constant rational function. Then either both A and B
are special or there exist k, l ě 1 such that the equalities

A˝2k “ A˝k ˝ B˝l, B˝2l “ B˝l ˝ A˝k

hold.

Conjecture 4.8. Let S be a semigroup of rational functions of degree at least two
containing at least one non-special function. Then S is right reversible if and only
if for any two elements A,B of S there exist k, l ě 1 such that the equalities

A˝2k “ A˝k ˝ B˝l, B˝2l “ B˝l ˝ A˝k

hold.

5. Amenable semigroups

The following conjecture, generalizing the corresponding result for polynomials
proved in [52], presumably describes amenable and left amenable semigroups of
rational functions.

Conjecture 5.1. Let S be a semigroup of rational functions of degree at least two
containing at least one non-special rational function. Then the following conditions
are equivalent.

1) The semigroup S is amenable.
2) The semigroup S is left amenable.
3) The semigroup S is left reversible.
4) Any two elements of S have a common iterate.
5) The semigroup S is a subsemigroup of C8pP q for some non-special rational

function P of degree at least two.

Notice that to prove Conjecture 5.1 it is enough to prove the implication 3 ñ 4
only. Indeed, the implication 1 ñ 2 is obvious, the implication 2 ñ 3 is well-known,
and it is easy to see that if 4q holds, then S Ď C8pP q for any P P S, implying
the implication 4 ñ 5. Finally, the implication 5 ñ 1 is proved in [52]. Note that
since Conjecture 4.2 implies through Conjecture 4.3 the implication 3 ñ 4, to prove
Conjecture 5.1 it is enough to prove Conjecture 4.2.

The next conjecture describes right amenable semigroups of rational functions,
generalizing results proved in [9], [52] in the polynomial case.

Conjecture 5.2. Let S be a semigroup of rational functions of degree at least two
containing at least one non-special rational function. Then the following conditions
are equivalent.

1) The semigroup S is right amenable.
2) The semigroup S is right reversible.
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3) For any two elements A,B of S there exist k, l ě 1 such that the equalities

A˝2k “ A˝k ˝ B˝l, B˝2l “ B˝l ˝ A˝k

hold.
4) The semigroup S contains no free subsemigroup of rank two.
5) The semigroup S is a subsemigroup of EpP q for some non-special rational

function P of degree at least two.

Let us list the implications in Conjecture 5.2, which are known to be true. The
implication 1 ñ 2 is well-known. The implications 3 ñ 4 and 3 ñ 2 are obvious.
The equivalence 3 ô 5 follows easily from Theorem 3.3. Finally, the proof of the
implication 4 ñ 2 can be found in [16] (Theorem 8.9) or [24] (Corollary 4.2).

In conclusion, let us mention the following problem.

Problem 5.3. Under what conditions a semigroup of rational functions is free, or
contains a free subsemigroup ?

For some particular results related to this problem, we refer the reader to the
papers [4], [25], [35], [52].
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