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Abstract. Let A be a rational function of one complex variable of degree at

least two, and z0 its repelling fixed point with the multiplier λ. A Poincaré
function associated with z0 is a function PA,z0,λ meromorphic on C such that

PA,z0,λ(0) = z0, P′
A,z0,λ

(0) ̸= 0, and PA,z0,λ(λz) = A◦PA,z0,λ(z). In this pa-

per, we study the following problem: given Poincaré functions PA1,z1,λ1
and

PA2,z2,λ2
, find out if there is an algebraic relation f(PA1,z1,λ1

,PA2,z2,λ2
) = 0

between them and, if such a relation exists, describe the corresponding al-
gebraic curve f(x, y) = 0. We provide a solution, which can be viewed as a

refinement of the classical theorem of Ritt about commuting rational functions.
We also reprove and extend previous results concerning algebraic dependencies

between Böttcher functions.

1. Introduction

Let A be a rational function of one complex variable of degree at least two, and
z0 its repelling fixed point with the multiplier λ. We recall that a Poincaré function
PA,z0,λ associated with z0 is a function meromorphic on C such that PA,z0,λ(0) = z0,
P′
A,z0,λ

(0) ̸= 0, and the diagram

C λz−−−−→ C

PA,z0,λ

y yPA,z0,λ

CP1 A−−−−→ CP1

commutes. The Poincaré function exists and is defined up to the transformation
of argument z → cz, where c ∈ C∗ (see e. g. [12]). In particular, it is defined in
a unique way if to assume that P′

A,z0,λ
(0) = 1. Such Poincaré functions are called

normalized. In this paper, we will consider non-normalized Poincaré functions, so
the explicit meaning of the notation PA,z0,λ is following: PA,z0,λ is some meromor-
phic function satisfying the above conditions. We say that a rational function A
is special if it is either a Lattès map, or it is conjugate to z±n or ±Tn. Poincaré
functions associated with special functions can be described in terms of classical
functions. Moreover, by the result of Ritt [29], these functions are the only Poincaré
functions that are periodic.

In this paper, we study the following problem. Let A1, A2 be non-special rational
functions of degree at least two with repelling fixed points z1, z2, and PA1,z1,λ1

,
PA2,z2,λ2

corresponding Poincaré functions. Under what conditions there exists an
algebraic curve f(x, y) = 0 such that

(1) f(PA1,z1,λ1
,PA2,z2,λ2

) = 0
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and, if such a curve exists, how it can be described? The simplest example of
relation (1) is just the equality

(2) PA1,z0,λ1 = PA2,z0,λ2 ,

which is known to have strong dynamical consequences. Specifically, equality (2)
implies that A1 and A2 commute. On the other hand, by the theorem of Ritt (see
[28] and also [6], [23]), every two non-special commuting rational functions of degree
at least two have a common iterate. Thus, equality (2) implies that

(3) A◦l1
1 = A◦l2

2

for some integers l1, l2 ≥ 1. Moreover, the Ritt theorem essentially is equivalent to
the statement that equality (2) implies equality (3), since it was observed already
by Fatou and Julia ([8], [9]) that if two rational functions commute, then some of
their iterates share a repelling fixed point and a corresponding Poincaré function.

To our best knowledge, the problem of describing algebraic dependencies between
Poincaré functions has never been considered in the literature. Nevertheless, the
problem of describing algebraic dependencies between Böttcher functions, similar in
spirit, has been investigated in the papers [2], [14]. We recall that for a polynomial
P of degree n a corresponding Böttcher function BP is a Laurent series

(4) BP = a−1z + a0 +
a1
z

+
a2
z2

+ · · · ∈ zC[[1/z]], a−1 ̸= 0,

that makes the diagram

(5)

C zn

−−−−→ C

BA

y yBA

CP1 A−−−−→ CP1

commutative. In this notation, the result of Becker and Bergweiler [2] (see also [3]),
states that if A1 and A2 are polynomials of the same degree d, then the function
β = BA1 ◦B−1

A2
is transcendental, unless either β is linear, or A1 and A2 are special

(notice that since a polynomial cannot be a Lattès map, a polynomial is special if
and only if it is conjugate to zn or ±Tn). Since the equality

f(BA1(z),BA2(z)) = 0

holds for some f(x, y) ∈ C[x, y] if and only if the function β is algebraic, this result
implies the absence of algebraic dependencies of degree greater than one between
BA1

(z) and BA2
(z) for non-special A1 and A2 of the same degree.

Subsequently, it was proved by Nguyen in the paper [14] that the equality

(6) f(BA1(z
d1),BA2(z

d2)) = 0

holds for some integers d1, d2 ≥ 1 if and only if there exist polynomials X1, X2, B
and integers l1, l2 ≥ 1 such that the diagram

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A

◦l1
1 ,A

◦l2
2 )

−−−−−−−→ (CP1)2
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commutes. Notice that although the result of Nguyen deals with the more general
situation than the result of Becker and Bergweiler, the former does not formally
imply the latter.

Let us recall that an algebraic curve C : f(x, y) = 0 has genus zero if and only
if it admits a parametrization z → (X1(z), X2(z)) by rational functions X1, X2.
Such a parametrization is called generically one-to-one if it is one-to-one except for
finitely many points. By the Lüroth theorem, this equivalent to say that X1 and
X2 generate the whole field of rational functions C(z). In this notation, our main
result is the following analogue of the result of Nguyen.

Theorem 1.1. Let A1, A2 be non-special rational functions of degree at least two,
z1, z2 their repelling fixed points with multipliers λ1, λ2, and PA1,z1,λ1

, PA2,z2,λ2

Poincaré functions. Assume that C : f(x, y) = 0 is an irreducible algebraic curve,
and d1, d2 are coprime positive integers such that the equality

(7) f
(
PA1,z1,λ1

(zd1),PA2,z2,λ2
(zd2)

)
= 0

holds. Then C has genus zero. Furthermore, if C : f(x, y) = 0 is an irreducible
algebraic curve of genus zero with a generically one-to-one parametrization by ra-
tional functions z → (X1(z), X2(z)), and d1, d2 are coprime positive integers, then
equality (7) holds for some Poincaré functions PA1,z1,λ1 , PA2,z2,λ2 if and only if
there exist positive integers l1, l2, k and a rational function B with a repelling fixed
point z0 such that the diagram

(8)

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A

◦l1
1 ,A

◦l2
2 )

−−−−−−−→ (CP1)2,

commutes and the equalities

(9) X1(z0) = z1, X2(z0) = z2,

(10) ordz0X1 = d1k, ordz0X2 = d2k

hold.

Notice that Theorem 1.1 can be considered as a refinement of the Ritt theorem.
Indeed, equality (2) is a particular case of the condition (7), where

f(x, y) = x− y = 0

is parametrized by the functions X1 = z, X2 = z. Thus, in this case diagram (8)
reduces to equality (3). More generally, considering the curve x−R(y) = 0, where
R is a rational function, we conclude that the equality

PA1,z1,λ1
= R ◦ PA2,z2,λ2

implies that there exist l1, l2 ≥ 1 such that the diagram

CP1 A
◦l2
2−−−−→ CP1yR

yR

CP1 A
◦l1
1−−−−→ CP1

commutes.
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Notice also that Theorem 1.1 implies the following handy criterion for the alge-
braic independence of Poincaré functions.

Corollary 1.2. Let A1, A2 be non-special rational functions of degrees n1 ≥ 2,
n2 ≥ 2, and z1, z2 their repelling fixed points with multipliers λ1, λ2. Then Poincaré
functions PA1,z1,λ1

, PA2,z2,λ2
are algebraically independent, unless there exist posi-

tive integers l1, l2 and l′1, l
′
2 such that nl1

1 = nl2
2 and λ

l′1
1 = λ

l′2
2 .

In addition to Theorem 1.1, we prove the following more precise version of the
theorem of Nguyen, which formally includes and generalizes the result of Becker
and Bergweiler.

Theorem 1.3. Let A1, A2 be non-special polynomials of degree at least two, and
BA1

, PA2
Böttcher functions. Assume that C : f(x, y) = 0 is an irreducible alge-

braic curve, and d1, d2 are coprime positive integers such that the equality

(11) f
(
BA1(z

d1),BA2(z
d2)

)
= 0

holds. Then C has the form Y1(x) − Y2(y) = 0, where Y1, Y2 are polynomi-
als of coprime degrees, and can be parametrized by polynomials. Furthermore, if
C : f(x, y) = 0 is an irreducible algebraic curve as above with a generically one-
to-one parametrization by polynomials z → (X1(z), X2(z)), and d1, d2 are coprime
positive integers, then equality (11) holds for some Böttcher functions BA1

, BA2

if and only if there exist positive integers l1, l2 and a polynomial B such that the
diagram

(12)

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A

◦l1
1 ,A

◦l2
2 )

−−−−−−−→ (CP1)2,

commutes, and the equalities

(13) degX1 = d1, degX2 = d2

hold. In particular, the equality

f (BA1(z),BA2(z)) = 0

implies that C : f(x, y) = 0 has degree one and some iterates of A1 and A2 are
conjugate.

Notice that the parameters d1, d2 appear in conclusions of both Theorem 1.1 and
Theorem 1.3. However, the condition (10) is less restrictive than the condition (13).
In particular, applying Theorem 1.3 for d1 = d2 = 1 we conclude that algebraic
dependencies between Bötcher functions are essentially trivial. On the other hand,
algebraic dependencies between Poincaré functions do exist (see Section 3).

The approach of Nguyen to the study of algebraic dependencies (6) relies on
the fact that such dependencies give rise to invariant algebraic curves for endomor-
phisms

(14) (A1, A2) : (CP1)2 → (CP1)2,

given by the formula

(15) (z1, z2) → (A1(z1), A2(z2)),
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where A1 and A2 are polynomials. Say, for A1 and A2 of the same degree n, this
can be seen immediately, since after substituting zn for z into (6) we obtain the
equality

f(A1 ◦BA1
(zd1), A2 ◦BA2

(zd2)) = 0,

implying that f(x, y) = 0 is (A1, A2)-invariant. Invariant curves for endomorphisms
(14) were classified by Medvedev and Scanlon in the paper [11], and the proof of
the theorem of Nguyen relies crucially on this classification.

Our approach the the study of algebraic dependencies (1) is similar. However,
instead of the paper [11] we use the results of the recent paper [24] providing
a classification of invariant curves for endomorphisms (15) defined by arbitrary
non-special rational functions A1, A2. Notice that the paper [11] is based on the
Ritt theory of polynomial decompositions ([27]), which does not extend to rational
functions. Accordingly, the approach of [24] is completely different and relies on
the recent results [16], [18], [19], [20], [21] about semiconjugate rational functions,
which appear naturally in a variety of different contexts (see e. g. [4], [7], [10], [11],
[14], [17], [20], [22], [24]).

This paper is organized as follows. In the second section, we review the notion of
a generalized Lattès map, introduced in [20], and recall some results about semicon-
jugate rational functions and invariant curves proved in [24]. In the third section,
we prove Theorem 1.1. We also show that for rational functions that are not gen-
eralized Lattès maps equality (7) under the condition GCD(d1, d2) = 1 implies the
equality d1 = d2 = 1 (Theorem 3.6). Finally, in the fourth section, basing on results
of the paper [17], which complements some of results of [11], we reconsider algebraic
dependencies between Böttcher functions and prove Theorem 1.3.

2. Generalized Lattès maps and invariant curves

2.1. Generalized Lattès maps and semiconjugacies. Let us recall that a
Riemann surface orbifold is a pair O = (R, ν) consisting of a Riemann surface R
and a ramification function ν : R → N, which takes the value ν(z) = 1 except at
isolated points. For an orbifold O = (R, ν), the Euler characteristic of O is the
number

χ(O) = χ(R) +
∑
z∈R

(
1

ν(z)
− 1

)
.

For orbifolds O1 = (R1, ν1) and O2 = (R2, ν2), we write O1 ⪯ O2 if R1 = R2 and
for any z ∈ R1 the condition ν1(z) | ν2(z) holds.

Let O1 = (R1, ν1) and O2 = (R2, ν2) be orbifolds, and let f : R1 → R2 be a
holomorphic branched covering map. We say that f : O1 → O2 is a covering map
between orbifolds if for any z ∈ R1 the equality

ν2(f(z)) = ν1(z)deg zf

holds, where deg zf is the local degree of f at the point z. If for any z ∈ R1 the
weaker condition

(16) ν2(f(z)) | ν1(z)deg zf

is satisfied, we say that f : O1 → O2 is a holomorphic map between orbifolds. If
f : O1 → O2 is a covering map between orbifolds with compact supports, then the
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Riemann-Hurwitz formula implies that

(17) χ(O1) = χ(O2)deg f.

More generally, if f : O1 → O2 is a holomorphic map, then

(18) χ(O1) ≤ χ(O2) deg f,

and the equality is attained if and only if f : O1 → O2 is a covering map between
orbifolds (see [16], Proposition 3.2).

Let R1, R2 be Riemann surfaces and f : R1 → R2 a holomorphic branched
covering map. Assume that R2 is provided with a ramification function ν2. In
order to define a ramification function ν1 on R1 so that f would be a holomorphic
map between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2) we must satisfy condition
(16), and it is easy to see that for any z ∈ R1 a minimum possible value for ν1(z)
is defined by the equality

(19) ν2(f(z)) = ν1(z)GCD(deg zf, ν2(f(z)).

In case (19) is satisfied for any z ∈ R1, we say that f is a minimal holomorphic
map between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2).

We recall that a Lattès map can be defined as a rational function A such that
A : O → O is a covering self-map for some orbifold O on CP1 (see [13], [20]). Thus,
A is a Lattès map if there exists an orbifold O = (CP1, ν) such that for any z ∈ CP1

the equality

ν(A(z)) = ν(z)deg zA

holds. By formula (17), such O necessarily satisfies χ(O) = 0. Following [20], we
say that a rational function A of degree at least two is a generalized Lattès map if
there exists an orbifold O = (CP1, ν), distinct from the non-ramified sphere, such
that A : O → O is a minimal holomorphic self-map between orbifolds; that is, for
any z ∈ CP1, the equality

ν(A(z)) = ν(z)GCD(deg zA, ν(A(z)))

holds. By inequality (18), such O satisfies χ(O) ≥ 0. Notice that any special
rational function is a generalized Lattès map and that some iterate A◦l, l ≥ 1, of
a rational function A is a generalized Lattès map if and only if A is a generalized
Lattès map (see [24], Section 2.3).

Generalized Lattès map are closely related to the problem of describing semi-
conjugate rational functions, that is, rational functions that make the diagram

(20)

CP1 B−−−−→ CP1

X

y yX

CP1 A−−−−→ CP1

commutative. For a general theory we refer the reader to the papers [16], [18],
[19], [20], [21]. Below we need only the following two results, which are simplified
reformulations of Proposition 3.3 and Theorem 4.14 in [24].

The first result states that if the function A in (20) is not a generalized Lattès
map, then (20) can be completed to a diagram of the very special form.
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Proposition 2.1. Let A be a rational function of degree at least two that is not a
generalized Lattes map, and X,B rational functions such that diagram (20) com-
mutes. Then there exists a rational function Y such that the diagram

CP1 B−−−−→ CP1

X

y yX

CP1 A−−−−→ CP1

Y

y yY

CP1 B−−−−→ CP1

commutes, and the equalities

Y ◦X = B◦d X ◦ Y = A◦d,

hold for some d ≥ 0.

The second result relates an arbitrary non-special rational function with some
rational function that is not a generalized Lattès map through the semiconjugacy
relation.

Theorem 2.2. Let A be a non-special rational function of degree at least two. Then
there exist rational functions θ and F such that F is not a generalized Lattès map
and the diagram

CP1 F−−−−→ CP1

θ

y yθ

CP1 A−−−−→ CP1.
commutes. □

2.2. Invariant curves. Let A1, A2 be rational functions, (A1, A2) the map given
by formulas (14), (15), and C an irreducible algebraic curve in (CP1)2. We say
that C is (A1, A2)-invariant if (A1, A2)(C) = C. We recall that a desingularization

of C is a compact Riemann surface C̃ together with a map π : C̃ → C, which is a
biholomorphic except for finitely many points.

The simplest (A1, A2)-invariant curves are vertical lines x = a, where a is a fixed
point of A1, and horizontal lines y = b, where b is a fixed point of A2. Other
invariant curves are described as follows (see [24], Theorem 4.1).

Theorem 2.3. Let A1, A2 be rational functions of degree at least two, and C an
irreducible (A1, A2)-invariant curve that is not a vertical or horizontal line. Then

the desingularization C̃ of C has genus zero or one, and there exist non-constant

holomorphic maps X1, X2 : C̃ → CP1 and B : C̃ → C̃ such that the diagram

(C̃)2
(B,B)−−−−→ (C̃)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A1,A2)−−−−−→ (CP1)2

commutes and the map t → (X1(t), X2(t)) is a generically one-to-one parametriza-

tion of C. Finally, unless both A1, A2 are Lattès maps, C̃ has genus zero. □
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For a general description of (A1, A2)-invariant curves we refer the reader to the
paper [24]. Below we need only the following description of invariant curves in case
A1 = A2 (see [24], Theorem 1.2).

Theorem 2.4. Let A be a rational function of degree at least two that is not a
generalized Lattès map, and C an irreducible algebraic curve in (CP1)2 that is not
a vertical or horizontal line. Then C is (A,A)-invariant if and only if there exist
rational functions U1, U2, V1, V2 commuting with A such that the equalities

U1 ◦ V1 = U2 ◦ V2 = A◦d,

V1 ◦ U1 = V2 ◦ U2 = A◦d

hold for some d ≥ 0 and the map t → (U1(t), U2(t)) is a parametrization of C. □

Notice that in general the parametrization t → (U1(t), U2(t)) provided by The-
orem 2.4 is not generically one-to-one.

3. Algebraic dependencies between Poincaré functions

Our proof of Theorem 1.1 is based on the results of Section 2 and the lemmas
below.

Lemma 3.1. Let C : f(x, y) = 0 be an irreducible algebraic curve that admits
a parametrization z → (φ1(z), φ2(z)) by functions meromorphic on C. Then the

desingularization C̃ of C has genus zero or one and there exist meromorphic func-

tions φ : C → C̃ and φ̃1 : C̃ → CP1, φ̃2 : C̃ → CP1 such that

φ1 = φ̃1 ◦ φ, φ2 = φ̃2 ◦ φ,

and the map z → (φ̃1(z), φ̃2(z)) from C̃ to C is generically one-to-one.

Proof. The lemma follows from the Picard theorem (see [1], Theorem 1 and Theo-
rem 2). □

Lemma 3.2. Let A be a non-special rational function of degree at least two, and
z0 its fixed point with the multiplier λ. Assume that W is a rational function of
degree at least two commuting with A such that z0 is a fixed point of W with the
multiplier µ. Then there exist positive integers l and k such that µl = λk.

Proof. By the theorem of Ritt, there exist positive integers l and k such that
W ◦l = A◦k, and differentiating this equality at z0 we conclude that µl = λk. □

Lemma 3.3. Let A, B be rational functions of degree at least two, and X a non-
constant rational function such that the diagram

CP1 B−−−−→ CP1yX

yX

CP1 A−−−−→ CP1

commutes. Assume that z0 is a fixed point of B with the multiplier λ0. Then
z1 = X(z0) is a fixed point z1 of A with the multiplier

(21) λ1 = λ
ordz0

X
0 .
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In particular, z0 is repelling if and only if z1 is repelling. Furthermore, if z0 is
repelling and PB,z0,λ is a Poincaré function, then the equality

(22) PA,z1,λ1
(zordz0X) = X ◦ PB,z0,λ0

holds for some Poincaré function PA,z1,λ1
.

Proof. It is clear that z1 is a fixed point of A, and a local calculation shows that
equality (21) holds. Thus, z1 is a repelling fixed point of A if and only if z0 is a
repelling fixed point of B.

The rest of the proof is obtained by a modification of the proof of the uniqueness
of a Poincaré function (see e.g. [12]). Namely, considering the function

G = P−1
A,z1,λ1

◦X ◦ PB,z0,λ0

holomorphic in a neighborhood of zero and satisfying G(0) = 0, we see that

G(λ0z) = P−1
A,z1,λ1

◦X ◦B ◦ PB,z0,λ0
= P−1

A,z1,λ1
◦A ◦X ◦ PB,z0,λ0

=

= λ1 ◦ P−1
A,z1,λ1

◦X ◦ PB,z0,λ0 = λ
ordz0

X
0 G(z).

Comparing now coefficients of the Taylor expansions in the left and the right parts
of this equality and taking into account that λ0 is not a root of unity, we conclude
that G = zordz0

X , implying (22). □

Lemma 3.4. Let A be a rational function of degree at least two, z0 its repelling
fixed point with the multiplier λ, and PA,z0,λ a Poincaré function. Assume that
C : f(x, y) = 0 is an irreducible algebraic curve, and d1, d2 are positive integers
such that the equality

(23) f
(
PA,z0,λ0

(zd1),PA,z0,λ0
(zd2)

)
= 0

holds. Then d1 = d2, and C is the diagonal x = y.

Proof. Since

(24) z →
(
PA,z0,λ0

(zd1),PA,z0,λ0
(zd2)

)
is a parametrization of C, it is clear that C is not a vertical or horizontal line. Fur-
thermore, substituting λ0z for z into (23), we see that the curve C is (A◦d1 , A◦d2)-
invariant. Therefore, by Theorem 2.3, there exist non-constant holomorphic maps

X1, X2 : C̃ → CP1 and B : C̃ → C̃ such that the diagram

(C̃)2 (B,B)−−−−→ (C̃)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A◦d1 ,A◦d2 )−−−−−−−−→ (CP1)2

commutes. Thus,

degA◦d1 = degA◦d2 = degB,

and hence d1 = d2. Since the parametrization of C has the form (24), this implies
that C is the diagonal. □
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Corollary 3.5. Let A1, A2 be rational functions of degree at least two, z1, z2 their
repelling fixed points with multipliers λ1, λ2, and PA1,z1,λ1 , PA2,z2,λ2 Poincaré func-

tions. Assume that C : f(x, y) = 0 is an irreducible algebraic curve and d1, d2, d̃1, d̃2
are positive integers such that GCD(d1, d2) = 1 and the equalities

(25) f
(
PA1,z1,λ1

(zd1),PA2,z2,λ2
(zd2)

)
= 0,

(26) f
(
PA1,z1,λ1

(zd̃1),PA2,z2,λ2
(zd̃2)

)
= 0

hold. Then there exists a positive integer k such that the equalities

(27) d̃1 = kd1, d̃2 = kd2

hold.

Proof. It is clear that equalities (25), (26) imply the equalities

f
(
PA1,z1,λ1(z

d1d̃1),PA2,z2,λ2(z
d2d̃1)

)
= 0

and

f
(
PA1,z1,λ1

(zd1d̃1),PA2,z2,λ2
(zd1d̃2)

)
= 0.

Eliminating now from these equalities PA1,z1,λ1(z
d1d̃1), we conclude that the func-

tions PA2,z2,λ2(z
d2d̃1) and PA2,z2,λ2(z

d1d̃2) are algebraically dependent. Therefore,

d̃1d2 = d1d̃2 by Lemma 3.4, implying (27). □

Proof of Theorem 1.1. Let C : f(x, y) = 0 be an irreducible algebraic curve with
a generically one-to-one parametrization by rational functions z → (X1(z), X2(z)),
and d1, d2 coprime positive integers. Assume that diagram (8) commutes for some
rational function B with a repelling fixed point z0 and equalities (9), (10) hold.
Then denoting the multiplier of z0 by λ and using Lemma 3.3, we see that

(28) λl1
1 = λordz0

X1 , λl2
2 = λordz0

X2 ,

and

0 = f(X1, X2) = f(X1 ◦ PB,z,λ, X2 ◦ PB,z,λ) =

=
(
P
A

◦l1
1 ,z1,λ

l1
1

(
zordz0

X1
)
,P

A
◦l2
2 ,z2,λ

l2
2

(
zordz0

X2
) )

.

Since
P
A

◦l1
1 ,z1,λ

l1
1
(z) = PA1,z1,λ1

(z), P
A

◦l2
2 ,z2,λ

l2
2
(z) = PA2,z2,λ2

(z),

this implies that

(29) f
(
PA1,z1,λ1

(
zordz0

X1
)
,PA2,z2,λ2

(
zordz0

X2
) )

= 0.

Finally, (10) implies that if (29) holds, then (7) also holds. This proves the “if”
part of the theorem.

To prove the “only if” part, it is enough to show that equality (7) implies that
there exist positive integers r1, r2 such that

(30) λr1
1 = λr2

2 = λ.

Indeed, in this case substituting λz for z into (7) we obtain the equality

f
(
A◦d1r1

1 ◦ PA1,z1,λ1(z
d1), A◦d2r2

2 ◦ PA2,z2,λ2(z
d2)

)
= 0.
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Therefore, for

l1 = d1r1, l2 = d2r2,

the curve C is (A◦l1
1 , A◦l2

2 )-invariant, implying by Theorem 2.3 that C has genus zero
and there exist rational functions X1, X2 and B such that diagram (8) commutes
and the map z → (X1(z), X2(z)) is a generically one-to-one parametrization of C.
Further, it follows from Lemma 3.1 that there exists a meromorphic function φ
such that the equalities

PA1,z1,λ1
(zd1) = X1 ◦ φ(z), PA2,z2,λ2

(zd2) = X2 ◦ φ(z).
hold. Thus,

z1 = PA1,z1,λ1
(0) = X1 ◦ φ(0), z2 = PA2,z2,λ2

(0) = X2 ◦ φ(0),
implying that equalities (9) hold for the point z0 = φ(0).

Since z1 and z2 are fixed points of A1 and A2, the point z0 is a preperiodic point
of B. Thus, changing in (8) the functions B and A◦l1

1 , A◦l2
2 to some of their iterates,

and the point z0 to some point in its B-orbit, we may assume that z0 is a fixed
point of B. Moreover, z0 is repelling by Lemma 3.3. Let us recall now that, by
what is proved above, (8) and (9) imply (29). Thus, equalities (7) and (29) hold
simultaneously and hence equalities (10) hold by Corollary 3.5.

Let us show now that (7) implies (30). Assume first that A1 and A2 are not
generalized Lattès maps. Substituting λ2z for z into equality (7) we obtain the
equality

f
(
PA1,z1,λ1

◦ (λ2z)
d1 ,PA2,z2,λ2

◦ (λ2z)
d2

)
=

= f
(
PA1,z1,λ1

◦ (λ2z)
d1 , A◦d2

2 ◦ PA2,z2,λ2
◦ zd2

)
= 0,

implying that the functions PA1,z1,λ1
◦(λ2z)

d1 and PA2,z2,λ2
◦zd2 satisfy the equality

(31) g
(
PA1,z1,λ1 ◦ (λ2z)

d1 ,PA2,z2,λ2 ◦ zd2

)
= 0,

where g(x, y) = f(x,A◦d2
2 (y)). Eliminating now from (7) and (31) the function

PA2,z2,λ2 ◦zd2 , we conclude that the functions PA1,z1,λ1 ◦zd1 and PA1,z1,λ1 ◦ (λ2z)
d1

are algebraically dependent. In turn, this implies that the functions PA1,z1,λ1(z)

and PA1,z1,λ1
(λd1

2 z) also are algebraically dependent.

Let C̃ : f̃(x, y) = 0 be a curve such that

f̃
(
PA1,z1,λ1(z),PA1,z1,λ1(λ

d1
2 z)

)
= 0.

Then substituting λ1z for z we see that f̃ is (A1, A1)-invariant. Therefore, by
Theorem 2.4, there exist rational function V1 and V2 commuting with A1 such that

C̃ is a component of the curve

V1(x)− V2(y) = 0,

implying that the equality

(32) V1 ◦ PA1,z1,λ1
(z) = V2 ◦ PA1,z1,λ1

(λd1
2 z)

holds. Furthermore, it follows from the Ritt theorem that there exist positive
integers s1, s2, and s such that

(33) V ◦s1
1 = V ◦s2

2 = A◦s
1 .
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Since (32) implies that for every l ≥ 1 the equality

V ◦l
1 ◦ V1 ◦ PA1,z1,λ1(z) = V ◦l

1 ◦ V2 ◦ PA1,z1,λ1(λ
d1
2 z)

holds, setting

W1 = V ◦s1
1 , W2 = V

◦(s1−1)
1 ◦ V2,

we see that W1 and W2 also commute with A1 and satisfy

(34) W1 ◦ PA1,z1,λ1
(z) = W2 ◦ PA1,z1,λ1

(λd1
2 z).

In addition, z1 is a fixed point of W1 by (33). Finally, since equality (34) implies
the equality

W1(z1) = W2(z1),

the point z1 is also a fixed point of W2.
Differentiating equality (34) at zero, we see that the multipliers

µ1 = W ′
1(z1), µ2 = W ′

2(z1)

satisfy the equality

(35) µ1 = µ2λ
d1
2 .

On the other hand, Lemma 3.2 yields that there exist positive integer k1, k2, and
k such that

(36) µk1
1 = µk2

2 = λk
1 .

It follows now from (35) and (36) that

λkk2
1 = µk1k2

1 = µk1k2
2 λd1k1k2

2 = λkk1
1 λd1k1k2

2 ,

implying that

λ
k(k2−k1)
1 = λd1k1k2

2 .

Moreover, since |λ1| > 1, |λ2| > 1, the number k2 − k1 is positive. This proves the
implication (7)⇒(30) in case A1 and A2 are not generalized Lattès maps.

Assume now that A1, A2 are arbitrary non-special rational functions. Then, by
Theorem 2.2, there exist rational functions F1, F2, θ1, θ2 such that the diagrams

C F1−−−−→ Cyθ1

yθ1

CP1 A1−−−−→ CP1 ,

C F2−−−−→ Cyθ2

yθ2

CP1 A2−−−−→ CP1

commute, and F1, F2 are not generalized Lattès maps. Further, since all the points
in the preimage θ−1

Ai
{zi}, i = 1, 2, are Fi-preperiodic, there exist a positive integer

N and fixed points z′1, z
′
2 of F ◦N

1 , F ◦N
2 such that the diagrams

C
F◦N

1−−−−→ Cyθ1

yθ1

CP1 A◦N
1−−−−→ CP1 ,

C
F◦N

2−−−−→ Cyθ2

yθ2

CP1 A◦N
2−−−−→ CP1

commute, and the equalities

θ1(z
′
1) = z1, θ1(z

′
2) = z2
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hold. Moreover, if µi is the multiplier of F ◦N
i at z′i, i = 1, 2, then, by Lemma 3.3,

the equalities

(37) µ
ordz′1

θ1

1 = λN
1 , µ

ordz′2
θ2

2 = λN
2 ,

(38) PA◦N
1 ,z1,λN

1
(z

ordz′1
θ1) = θ1 ◦ PF◦N

1 ,z′
1,µ1

(z),

(39) PA◦N
2 ,z2,λN

2
(z

ordz′2
θ2) = θ2 ◦ PF◦N

2 ,z′
2,µ2

(z)

hold.
Setting

f1 = ordz′
1
θ1, f2 = ordz′

2
θ2, f = f1f2,

and substituting zd1f2 and zd2f1 for z into equalities (38) and (39), we obtain that

PA1,z1,λ1
(zd1f ) = PA◦N

1 ,z1,λN
1
(zd1f ) = θ1 ◦ PF◦N

1 ,z′
1,µ1

(zd1f2),

PA2,z2,λ2
(zd2f ) = PA◦N

2 ,z2,λN
2
(zd2f ) = θ2 ◦ PF◦N

2 ,z′
2,µ2

(zd2f1).

Thus, equality (7) implies that the functions PF◦N
1 ,z′

1,µ1
(zd1f2) and PF◦N

2 ,z′
2,µ2

(zd2f1)
satisfy the equality

f̃
(
PF◦N

1 ,z′
1,µ1

(zd1f2),PF◦N
2 ,z′

2,µ2
(zd2f1)

)
= 0,

where

f̃(x, y) = f (θ1(x), θ2(y)) .

Since F ◦N
1 , F ◦N

2 are not generalized Lattès maps, by what is proved above there
exist positive integers p1, p2 such that µp1

1 = µp2

2 , implying by (37) that

λp1f2N
1 = µp1f1f2

1 = µp2f1f2
2 = λp2f1N

2 .

Thus, equality (30) holds for the integers

r1 = p1f2N, r2 = p2f1N. □

Proof of Corollary 1.2. If PA1,z1,λ1 , PA2,z2,λ2 are algebraically dependent, then it
follows from the commutativity of diagram (8) that

(degA1)
l1 = (degA2)

l2 = degB,

implying that nl1
1 = nl2

2 . Furthermore, it follows from equalities (28) that

λ
l1ordz0

X2

1 = λ
l2ordz0

X1

2 . □

The following result shows that if A1 and A2 are not generalized Lattès maps,
then dependencies (7) actually reduce to dependencies (1).

Theorem 3.6. Let A1, A2 be rational functions of degree at least two that are not
generalized Lattès maps, z1, z2 their repelling fixed points with multipliers λ1, λ2,
and PA1,z1,λ1

, PA2,z2,λ2
Poincaré functions. Assume that C : f(x, y) = 0 is an

irreducible algebraic curve, and d1, d2 are coprime positive integers such that the
equality

f
(
PA1,z1,λ1

(zd1),PA2,z2,λ2
(zd2)

)
= 0
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holds. Then d1 = d2 = 1 and C has genus zero. Furthermore, if C : f(x, y) = 0 is
an irreducible curve of genus zero with a generically one-to-one parametrization by
rational functions z → (X1(z), X2(z)), then the equality

f (PA1,z1,λ1(z),PA2,z2,λ2(z)) = 0

holds for some Poincaré functions PA1,z1,λ1
, PA2,z2,λ2

if and only if there exist
positive integers l1, l2 and a rational function B with a repelling fixed point z0 such
that the diagram

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A

◦l1
1 ,A

◦l2
2 )

−−−−−−−→ (CP1)2,

commutes, and the equalities

X1(z0) = z1, X2(z0) = z2,

(40) X ′
1(z0) ̸= 0, X ′

2(z0) ̸= 0

hold.

Proof. The proof if obtained by a modification of the proof of Theorem 1.1, taking
into account that if A1, A2 are not generalized Lattès maps, then it follows from the
commutativity of diagram (8) by Proposition 2.1 that there exist rational functions
Y1 and Y2 such that the equalities

Y1 ◦X1 = B◦d1 Y2 ◦X2 = B◦d2

hold for some d1, d2 ≥ 0. Therefore, for any repelling fixed point z0 of B the
inequalities (40) hold by the chain rule. Thus, d1 = d2 = 1 by (10). □

Notice that unlike the case of Böttcher functions, algebraic dependencies (1) of
degree greater than one between Poincaré functions do exist. The simplest of them
are graphs constructed as follows. Let us take any two rational functions U and V ,
and set

(41) A1 = U ◦ V, A2 = V ◦ U.

Then the diagram

CP1 A1−−−−→ CP1

V

y yV

CP1 A2−−−−→ CP1

obviously commutes. Moreover, if z0 is a repelling fixed point of A1, then the point
z1 = V (z0) is a repelling fixed point of A2 by Lemma 3.3. Finally, the first equality
in (41) implies that V ′(z1) ̸= 0. Therefore,

PA2,z2,λ2
= V ◦ PA1,z1,λ1

,

by Lemma 3.3.
Notice also that the equality d1 = d2 provided by Theorem 3.6 does not hold

for arbitrary non-special A1, A2. For example, let A be any rational function of
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the form A = zRd(z), where R ∈ C(z) and d > 1. Then one can easily check that
A : O → O, where O is defined by the equalities

ν(0) = d, ν(∞) = d,

is a minimal holomorphic map between orbifolds. Thus, A is a generalized Lattès.
Furthermore, the diagram

CP1 zR(zd)−−−−→ CP1yzd

yzd

CP1 zRd(z)−−−−→ CP1.
obviously commutes. Choosing now R in such a way that zero is a repelling fixed
point of zR(zd) and denoting by λ the multiplier of zRd(z) at zero, we obtain by
Lemma 3.3 that

PzRd(z),0,λd(zd) = zd ◦ PzR(zd),0,λ(z).

Thus, PzRd(z),0,λd(zd) and PzR(zd),0,λ(z) are algebraically dependent.

4. Algebraic dependencies between Böttcher functions

4.1. Polynomial semiconjugacies and invariant curves. If A1, A2 are non-
special polynomials of degree at least two, then any irreducible (A1, A2)-invariant
curve C that is not a vertical or horizontal line has genus zero and allows for a
generically one-to-one parametrization by polynomialsX1, X2 such that the diagram

(42)

(CP1)2
(B,B)−−−−→ (CP1)2

(X1,X2)

y y(X1,X2)

(CP1)2
(A1,A2)−−−−−→ (CP1)2

commutes for some polynomial B (see Proposition 2.34 of [11] or Section 4.3 of
[17]).

For fixed polynomials A, B of degree at least two, we denote by E(A,B) the
set (possibly empty) consisting of polynomials X of degree at least two such that
diagram (20) commutes. The following result was proved in the paper [17] as a
corollary of results of the paper [15].

Theorem 4.1. Let A and B be fixed non-special polynomials of degree at least two
such that the set E(A,B) is non-empty, and let X0 be an element of E(A,B) of the
minimum possible degree. Then a polynomial X belongs to E(A,B) if and only if

X = Ã ◦X0 for some polynomial Ã commuting with A. □

Notice that applying Theorem 4.1 for B = A one can reprove the classification
of commuting polynomials and, more generally, of commutative semigroups of C[z]
obtained in the papers [26], [28], [5] (see [25], Section 7.1, for more detail). On the
other hand, applying Theorem 4.1 to system (42) with A1 = A2 = A, we see that
X1, X2 cannot provide a generically one-to-one parametrization of C, unless one of
the polynomials X1, X2 has degree one. Moreover if, say, X1 has degree one, then
without loss of generality we may assume that X1 = z, implying that B = A and
X2 commutes with A. Thus, we obtain the following result obtained by Medvedev
and Scanlon in the paper [11].
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Theorem 4.2. Let A be a non-special polynomial of degree at least two, and C
an irreducible algebraic curve that is not a vertical or horizontal line. Then C is
(A,A)-invariant if and only if C has the form x = P (y) or y = P (x), where P is
a polynomial commuting with A. □

Finally, yet another corollary of Theorem 4.1 is the following result, which com-
plements the classification of (A1, A2)-invariant curves obtained in [11] (see [17],
Theorem 1.4).

Theorem 4.3. Let A1, A2 be non-special polynomials of degree at least two, and C
a curve. Then C is an irreducible (A1, A2)-invariant curve if and only if C has the
form Y1(x)− Y2(y) = 0, where Y1, Y2 are polynomials of coprime degrees satisfying
the equations

T ◦ Y1 = Y1 ◦A1, T ◦ Y2 = Y2 ◦A2

for some polynomial T. □

4.2. Proof of Theorem 1.3. As in the case of Poincaré functions, we do not
assume that considered Böttcher functions are normalized. Thus, the notation BP

is used to denote some function satisfying conditions (4), (5).
To prove Theorem 1.3 we need the following two lemmas.

Lemma 4.4. Let A, B be polynomials of degree at least two, and X a non-constant
polynomial such that the diagram

CP1 B−−−−→ CP1yX

yX

CP1 A−−−−→ CP1

commutes. Assume that BB is a Böttcher function. Then

X ◦BB(z) = BA(z
degX)

for some Böttcher function BA.

Proof. The lemma follows from Lemma 2.1 of [14]. □

Lemma 4.5. Let A be a polynomial of degree n ≥ 2, and BA a Böttcher function.
Assume that C : f(x, y) = 0 is an irreducible algebraic curve and d1, d2 are positive
integers such that d1 ≤ d2 and the equality

(43) f
(
BA(z

d1),BA(z
d2)

)
= 0

holds. Then C is a graph

(44) P (x)− y = 0,

where P is a polynomial commuting with A, and the equality

(45) d1 degP = d2

holds.

Proof. Substituting zn for z in (43), we see that the curve C is (A,A)-invariant.
Therefore, by Theorem 4.2, C is a graph of the form x = P (y) or y = P (x), where P
is a polynomial commuting with A. Taking into account that d1 ≤ d2, this implies
that (44) and (45) hold. □
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Corollary 4.6. Let A1, A2 be polynomials of degree at least two, and BA1
, BA2

Böttcher functions. Assume that C : f(x, y) = 0 is an irreducible algebraic curve

of genus zero and d1, d2, d̃1, d̃2 are positive integers such that GCD(d1, d2) = 1 and
the equalities

(46) f
(
BA1

(zd1),BA2
(zd2)

)
= 0,

(47) f
(
BA1

(zd̃1),BA2
(zd̃2)

)
= 0

hold. Then there exists a positive integer k such that the equalities

(48) d̃1 = kd1, d̃2 = kd2

hold.

Proof. It is clear that equalities (46), (47) imply the equalities

(49) f
(
BA1(z

d1d̃1),BA2(z
d2d̃1)

)
= 0

and

f
(
BA1

(zd1d̃1),BA2
(zd1d̃2)

)
= 0,

and eliminating from these equalities the function BA1
(zd1d̃1), we conclude that

the functions BA2(z
d2d̃1) and BA2(z

d1d̃2) are algebraically dependent. Therefore,
by Lemma 4.5, one of these functions is a polynomial in the other.

Assume, say, that

(50) BA2(z
d2d̃1) = R ◦BA2(z

d1d̃2)

(the other case is considered similarly). Then substituting the right part of this
equality for the left part into (49), we conclude that

f
(
BA1(z

d1d̃1), R ◦BA2(z
d1d̃2)

)
= 0,

implying that

(51) f
(
BA1

(zd̃1), R ◦BA2
(zd̃2)

)
= 0.

Let us observe now that equalities (47) and (51) imply that the curve f(x, y) = 0
is invariant under the map

(z1, z2) → (Â1(z1), Â2(z2)) = (z1, R(z2)).

Since the commutativity of (42) implies that degA1 = degA2, this yields that
degR = 1. It follows now from (50) that

d2d̃1 = d1d̃2,

implying (48). □

Proof of Theorem 1.3. To prove the “if” part, let us observe that (12) implies

that z → (X1(z), X2(z)) is a parametrization of some (A◦l1
1 , A◦l2

2 )-invariant curve
C : f(x, y) = 0. Moreover, by Theorem 4.3, this curve has the form

(52) Y1(x)− Y2(y) = 0,
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where Y1, Y2 are polynomials of coprime degrees. Finally, by Lemma 4.4, the equal-
ity f(X1, X2) = 0 implies the equality

f(X1 ◦BB(z), X2 ◦BB(z)) = f(BA1
(zdegX1),BA2

(zdegX2)) = 0.

In the other direction, if (11) holds, then setting n1 = degA1, n2 = degA2, and
substituting zn2 for z into (11) we obtain the equality

(53) f(BA1
(zd1n2), A2 ◦BA2

(zd2)) = 0.

Eliminating now BA2
(zd2) from (11) and (53), we conclude that the functions

BA1
(zd1) and BA1

(zd1n2) are algebraically dependent. Since the corresponding

algebraic curve f̃(x, y) = 0 such that

f̃(BA1
(zd1),BA1

(zd1n2)) = 0

is (A1, A1)-invariant, it follows from Theorem 4.2 that

(54) BA1(z
d1n2) = P ◦BA1(z

d1)

for some polynomial P commuting with A1. Clearly, equality (54) implies that
degP = n2. On the other hand, by the Ritt theorem, P and A1 have a common
iterate. Therefore, there exist positive integers l1, l2 such nl1

1 = nl2
2 .

Setting now
n = nl1

1 = nl2
2

and substituting zn for z into (11) we obtain that f(x, y) = 0 is (A◦l1
1 , A◦l2

2 )-
invariant, implying that (12) holds. Moreover, by Theorem 4.3, f(x, y) = 0 has
the form (52), where Y1, Y2 are polynomials of coprime degrees. Since a generically
one-to-one parametrization z → (X1(z), X2(z)) of (52) satisfies the conditions

degX1 = deg Y2, degX2 = deg Y1,

we conclude that the degrees

degX1 = d′1, degX2 = d′2

of the functions X1 and X2 in (12) satisfy GCD(d′1, d
′
2) = 1. Using now the “if”

part of the theorem, we see that equalities (11) and

f(BA1
(zd

′
1),BA2

(zd
′
2)) = 0

hold simultaneously, implying by Corollary 4.6 that equalities d′1 = d1, d
′
2 = d2,

and (13) hold. □
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