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ON AMENABLE SEMIGROUPS OF RATIONAL FUNCTIONS

FEDOR PAKOVICH

ABSTRACT. We characterize left and right amenable semigroups of polynomi-
als of one complex variable with respect to the composition operation. We
also prove a number of results about amenable semigroups of arbitrary ratio-
nal functions. In particular, we show that under quite general conditions a
semigroup of rational functions is amenable if and only if it is a subsemigroup
of the centralizer of some rational function.

1. INTRODUCTION

The concept of amenable group was introduced by von Neumann in 1929 in the
paper [45]. Defined initially in terms of invariant measures in relation with the
Banach-Tarski paradox, nowadays the group amenability is known to be equivalent
to variety of different conditions and to have connections to numerous branches
of mathematics (see e.g. [44], [24] and the bibliography therein). The notion of
amenability was extended to semigroups by Day [10], who also introduced the term
itself. Naturally, the absence of inverse elements in semigroups requires substantial
changes in definitions and leads to new phenomenons. For example, a semigroup
can be left amenable but not right amenable, amenable semigroups can contain
non-amenable subsemigroups etc. (see e.g. [39]).

Let us recall that a semigroup S is called left amenable if it admits a finitely
additive probability measure p defined on all the subsets of S such that for alla € S
and T C S the equality

(1) pla™'T) = u(T)
holds, where the set a7 is defined by the formula
a'T={se€S|aseT}.

Equivalently, S is left amenable if there is a mean on [ (S), which is invariant
under the natural left action of S on the dual space I (S)* (see e.g. [39]). The
right amenability is defined similarly. A semigroup is called amenable if there exists
a mean on [ (.5), which is invariant under the left and the right action of S on
loo(S)*. By the theorem of Day (see [9], [10]), this is equivalent to the condition
that S is left and right amenable.

In this paper, we investigate the amenability of semigroups of polynomials and
more generally of rational functions of one complex variable with respect to the
composition operation. To our best knowledge, for the first time this topic was
investigated only recently by Cabrera and Makienko in the paper [7]. Among other
things, they proved that if S is a semigroup generated by finitely many polynomials
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at least one of which is of degree greater than one and is not conjugate to z™ or
+T,,, then S is right amenable if and only if there exists an S-invariant probabil-
ity measure y on CP! such that the measure of maximal entropy of every element
of S of degree at least two coincides with p. Cabrera and Makienko also pro-
vided conditions for amenability of semigroups of polynomials and more generally
of semigroups of rational functions if, an addition to the amenability, some extra
conditions are satisfied.

In this paper, we obtain a full description of left and right amenable semigroups
of polynomials, complementing and generalizing the results of [7]. In particular,
we show that for semigroups of polynomials the left amenability implies the right
amenability, and that amenability conditions are equivalent to weaker algebraic
reversibility conditions. To formulate our results explicitly we introduce several
definitions. Let us recall that a semigroup S is called left reversible if for all a,b € S
the right ideals a.S and bS have a non-empty intersection, that is, if for all a,b € S
there exist =,y € S such that

(2) ar = by.

It is well-known and follows easily from the definition that any left amenable semi-
group is left reversible.

For a rational function R of degree at least two, we denote by C(R) the semi-
group of rational functions commuting with R, and by G(R) the group of M&bius
transformations ¢ such that R oo = v o R for some Mdbius transformations v. It
is easy to see that G(R) is indeed a group and that the map vg : 0 — v, is a
homomorphism from G(R) to the group Aut(CP'). For a subgroup I' of G(R) such
that vg(I') C T', we denote by Sr g the semigroup of rational functions generated
by I' and R. We will say that a polynomial P is special if it is conjugate to 2™,
n > 2, or £7T,,, n > 2, where T, is the nth Chebyshev polynomial.

In this notation, our main result about left amenable and amenable semigroups
of polynomials is following.

Theorem 1.1. Let S be a semigroup of polynomials containing at least one non-
special polynomial of degree greater than one. Then the following conditions are
equivalent:
(1) The semigroup S is left reversible.
) The semigroup S is left amenable.
) The semigroup S is amenable.
) The semigroup S is a subsemigroup of St r for some non-special polynomial
R of degree at least two and a group T' C G(R) such that yg(T') =T.
(5) The semigroup S is a subsemigroup of C'(P) for some non-special polyno-
mial P of degree at least two.
Furthermore, if S contains only polynomials of degree at least two, then any of
the above conditions is equivalent to the condition that for all A, B € S there exist
k.1 > 1 such that A% = B°.

To formulate the analogue of Theorem [l for right amenable semigroups of
polynomials we introduce two other types of special semigroups. Let us recall that
by the results of Freire, Lopes, Mané ([14]) and Ljubich ([28]), for every rational
function P of degree n > 2 there exists a unique probability measure pp on CP*,
which is invariant under P, has support equal to the Julia set Jp, and achieves
maximal entropy logn among all P-invariant probability measures.
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For a rational function P of degree at least two, we denote by E(P) the semigroup
consisting of rational functions @) of degree at least two such that pg = pp, com-
pleted by pp-invariant Mobius transformations. Finally, for a compact set K C C,
we denote by I(K) the semigroup of all polynomials A satisfying A~{ K} = K.

Our main result about right amenable semigroups of polynomials is following.

Theorem 1.2. Let S be a semigroup of polynomials containing at least one non-
special polynomial of degree greater than one. Then the following conditions are
equivalent:

(1) The semigroup S is right reversible.

(2) The semigroup S is right amenable.

(3) The semigroup S is a subsemigroup of St g for some non-special polynomial
R of degree at least two and a group I' C G(R) such that yr(I') C T.

(4) The semigroup S is subsemigroup of I(K) for some compact set K C C,
which is neither a union of concentric circles nor a segment.

(5) The semigroup S is a subsemigroup of E(P) for some non-special polyno-
mial P of degree at least two.

(6) The semigroup S contains no free subsemigroup of rank two.

Furthermore, if S contains only polynomials of degree at least two, then any of
the above conditions is equivalent to the condition that for all A, B € S there exist
k.1 > 1 such that A°%* = A°% o B° and B°% = B o A°F.

The simplest examples of left and right amenable semigroups of polynomials
can be constructed as follows. Let T be any non-special polynomial of the form
T = W (2?%), where W € C[z], and T the subgroup of Aut(CP!) generated by the
transformation z — —z. Then the condition 47 (") C T is obviously satisfied,
implying by Theorem that the semigroup S generated by 7" and —7 is right
amenable. However, since T' and —T do not have a common iterate, it follows from
Theorem [[LT] that S is not left amenable. On the other hand, if Tisa polynomial
of the form T = 2W (z?), then the semigroup generated by T and —T is left and
right amenable since y#(I') =T

Notice that for semigroups of polynomials of degree at least two the fifth condi-
tion of Theorem is equivalent to the requirement that all elements of S share
a measure of maximal entropy. Thus, Theorem implies the following corollary,
which confirms in the polynomial case the conjecture proposed in [7].

Corollary 1.3. If a semigroup of polynomials of degree at least two S contains no
free subsemigroup of rank two, then all elements of S share a measure of mazimal
entropy.

Theorem also implies the following statement in spirit of von Neumann con-
jecture for amenable groups.

Corollary 1.4. If a semigroup of polynomials S is not right amenable, then S has
a free subsemigroup of rank two.

Finally, since in the polynomial case having the same measure of maximal entropy
is equivalent to having the same Julia set, Theorem yields the following result.

Corollary 1.5. If the Julia sets of polynomials A and B are not equal, then the
semigroup (A, B) contains a free subsemigroup of rank two.
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In addition to the polynomial case, we study the amenability of semigroups of
arbitrary rational functions and prove a partial generalization of Theorem [[.T] to a
wide class of such functions. Recall that a semigroup S is called left cancellative
if the equality ab = ac, where a,b,c € S, implies that b = c¢. Right cancellative
semigroups are defined similarly. Any semigroup of rational functions is obviously
right cancellative but not necessarily left cancellative. Following [37], we say that
a rational function A of degree at least two is tame if the algebraic curve

A(z) — Aly) = 0

has no factors of genus zero or one distinct from the diagonal. By the Picard
theorem, this condition is equivalent to the condition that the equality

Aof=Aogy,

where f and g are functions meromorphic on C, implies that f = g. We say that a
semigroup of rational functions S is tame if S' consists of tame rational functions.
Clearly, any tame semigroup of rational functions S is cancellative, so the tameness
condition can be regarded as a strengthening of the cancellativity condition. Notice
that tame rational functions form a subsemigroup of C(z).

In the above notation, our main result about left amenable semigroups of rational
functions is following.

Theorem 1.6. Let S be a tame semigroup of rational functions. Then the following

conditions are equivalent.
(1) The semigroup S is left reversible.

(2) The semigroup S is left amenable.

(3) The semigroup S is amenable.

(4) The semigroup S is a subsemigroup of C(P) for some tame rational
function P.

(5) For all A, B € S there exist k,1 > 1 such that A°* = B°L.

(6) The semigroup S contains no free subsemigroup of rank two.

Our approach to the study of left amenable semigroups of rational functions
relies on using the reversibility condition. Specifically, applying condition (2] to
powers of a and b, we conclude that if a semigroup of rational functions S is left
amenable, then for all A, B € S of degree at least two the algebraic curves

(3) A(z) = Bly) =0, n=>1,
and, more generally, the algebraic curves
(4) A (z) =B (y)=0, n>1, m>1,

have a factor of genus zero.

The problems of describing pairs of rational functions satisfying the above condi-
tions arose recently in the context of arithmetic dynamics. Specifically, the problem
of describing A and B such that all curves ([B]) have a factor of genus zero or one
is a geometric counterpart of the following problem of the arithmetic nature posed
in [8): which rational functions A defined over a number field K have a K-orbit
containing infinitely many points from the value set B(P*(K))? These problems
have been studied in [§], [23], [33]. In particular, in [33], a description of such A
and B in terms of semiconjugacies and Galois coverings was obtained.

In turn, the problem of describing pairs of rational functions A and B such that
all curves (@) have a factor of genus zero or one is a geometric counterpart of the
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problem of describing pairs of rational functions A and B having orbits with infinite
intersection. In case A and B are polynomials, the last problem was solved in the
papers [16], [I7], where it was shown that such orbits exist if and only if A and B
have a common iterate. This result was extended to tame rational functions in the
paper [37], and our approach to the proof of Theorem is based on ideas and
results of this paper.

Notice that in the context of right amenability the analogues of the above prob-
lems about algebraic curves can be formulated in terms of intersections of subfields
of rational functions as follows: given rational functions A and B, under what
conditions the fields

CA°")yNnC(B), n=>1,
and, more generally, the fields
CA°")yNC(B°™), mn>1,

contain a non-constant rational function? These problems however have a different
flavor, and are not considered in this paper.

The last class of semigroups of rational functions whose amenability is charac-
terized in this paper is the class of semigroups St . In a sense, these semigroups
are the simplest examples of non-cyclic semigroups of rational functions, and the
polynomial case suggests that they play an important role in the whole theory. Our
main result concerning semigroups Sr g is following.

Theorem 1.7. Let R be a rational function of degree n > 2 not conjugate to z*",
andI" a subgroup of G(R) such that yr(I') CT'. Then every subsemigroup of Sr g is
right amenable. On the other hand, St g is left amenable if and only if yr(I') =T.
Moreover, in the last case every subsemigroup of Sr g is amenable.

The paper is organized as follows. In the second section, after recalling some basic
definitions and results about abstract amenable semigroups, we study semigroups
Cw(P) consisting of rational functions commuting with some iterate of a fixed
rational function P of degree at least two. Assuming that P is not a Lattés map
and is not conjugate to 2" or +T},, we describe basic properties of such semigroups
basing on results about commuting rational functions from the papers [42] and [36].
In particular, we prove the amenability of C(P) and all its subsemigroups.

In the third section, we discuss properties of semigroups E(P). Our approach
to these semigroups is based on the link, established by Levin and Przytycki ([26],
[27]), between rational functions sharing a measure of maximal entropy and the
system of functional equations

AoZk _ Aok o BOZ, Ble _ Bol o AOZ.

In fact, in this paper we deal with this system of equations rather than with the
original definition of the maximal entropy. In particular, the corresponding equiv-
alency in Theorem is a direct consequence of the results of [26], [27].

In the fourth section, we study the semigroups St g, and prove Theorem [[7
We also show that St r C E(R), and that St r C Cx(R), whenever yp(I') =T
In the fifth section, we study tame semigroups of rational functions and prove an
extended version of Theorem The proof is based on results of the paper [37]
completed by the following stabilization result of independent interest: for a tame
rational function P the semigroup C,(P) coincides with the semigroup C(P°*) for
some k > 1.

Licensed to Ben Gurion Univesity of the Negev. Prepared on Mon Jan 2 10:47:33 EST 2023 for download from IP 132.72.202.22.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7950 FEDOR PAKOVICH

Finally, in the sixth and the seventh sections, we consider semigroups of polyno-
mials. Specifically, in the sixth section, we characterize reversible and Archimedean
semigroups of polynomials. Then, in the seventh section, using the results of the
papers [30] and [32], we characterize the semigroups C(P) and I(K). Finally, we
prove extended versions of Theorem [[.T] and Theorem

2. AMENABILITY OF SEMIGROUPS Coo(f) AND THEIR SUBSEMIGROUPS

2.1. Amenable semigroups. We recall that a semigroup S is called left amenable
if it admits a finitely additive probability measure u, defined on all the subsets of .5,
which is left invariant in the following sense. For all T C S and a € S the equality

(5) p(a™T) = u(T)
holds, where the set a =T is defined by the formula
a'T={se€S|aseT}.

Equivalently, S is left amenable if there is a mean on l.(S) which is invariant
under the natural left action of S on the dual space I (S)* (see e.g. [39]). The
right amenability is defined similarly. A semigroup is called amenable if there
exists a mean on [, (S), which is invariant under the left and the right action
of S on l(S)*. By the theorem of Day (see [9], [I0]), this is equivalent to the
condition that S is left and right amenable, and in this paper we will use the last
condition as the definition of amenability. For a given semigroup S, the left or
the right amenability does not imply in general the opposite type of amenability.
However, any statement concerning the left amenability of semigroups has a “right”
counterpart, which is obtained by switching between a semigroup S with a binary
operation f(x,y) and a semigroup S’ with the same set of elements and a binary
operation f'(z,y) = f(y, ).

We start by recalling some definitions and results concerning abstract amenable
semigroups. Mostly, we will discuss the “left” case, leaving the formulations in the
“right” case to the reader. Nevertheless, the results used only in the “right” case
will be given accordingly.

The following statement lists some types of amenable and not amenable semi-
groups (see [10], [39]).

Theorem 2.1. Every abelian semigroup is amenable. Every finite group is ame-
nable. The free semigroup of rank two is not left or right amenable. |

We recall that a semigroup S is called left cancellative if the equality
ab = ac

for a,b,c € S implies the equality b = c¢. A semigroup S is said to satisfy the left
Folner condition if for every finite subset H of S and every € > 0 there is a finite
subset F' of S with

[sF'\ F| < e|F]|
for all s € H. If for every finite subset H of S and every € > 0 there is a finite
subset F' of S with

|F'\ sF| < el F|
for all s € H, then S is said to satisfy the strong left Folner condition. 1t is known
that the strong Fglner condition implies the left amenability ([2]), while the left
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amenability implies the Fglner condition ([15], [29]). In case S is left cancellative,
the sets F' and sF' have the same cardinality, implying that

|sF'\ F|=|F\ sF|.
Thus, the following criterion holds.

Theorem 2.2. A left cancellative semigroup is left amenable if and only if it sat-
isfies the left Folner condition. O

In addition to Theorem [Z2] we will use the following criterion (see [10, p. 516]).

Lemma 2.3. If ¥, is a set of left amenable subsemigroups in a semigroup ¥ such
that for every m,n there exists p such that ¥,,%,, C X, and ¥ = Ufil >, then &
is left amenable.

We recall that a semigroup S is called left reversible if for all a,b € S the

condition

aSNbS #0
holds, or, equivalently, if for all a,b € S there exist x,y € S such that
(6) ar = by.

The following statement is obtained easily from the definitions (see [39, Propo-
sition 1.23]).

Proposition 2.4. Every left amenable semigroup is left reversible. O

In distinction with the group case, a subsemigroup of a left amenable semigroup
or even of an amenable group is not necessarily left amenable. However, the fol-
lowing result holds (see [15], [11]).

Theorem 2.5. Let S be a cancellative semigroup such that S contains no free
subsemigroup on two generators. If S is left amenable, then every subsemigroup of
S is left amenable. |

For a semigroup U, we denote by End(U) the set of endomorphisms of U. Sup-
pose that U and T are semigroups with a homomorphism p : T'— End(U). Denot-
ing for a € T the endomorphism p(a) of U by p,, we define the semidirect product
of U by T as the semigroup S = U x T of ordered pairs (u,a), where v € U and

P

a € T, with the operation
(u,a)(v,b) = (upg(v), ab).
The following result was proved in [25].

Theorem 2.6. If U and T are right amenable semigroups with a homomorphism
p:T — End(U), then S = U x T is right amenable. O
P

Let us recall that a congruence on a semigroup S is an equivalence relation on S
compatible with the structure of semigroup. Let S be a right reversible semigroup,
and let ~ be the relation on S, which identifies x and y if there exists s € S for
which

(7) sox=so0y.

In this notation, the following criterion for the right amenability holds (see [39,
Proposition 1.24 and Proposition 1.25]).
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Theorem 2.7. Let S be a right reversible semigroup. Then the relation ~ is a
congruence on S and the semigroup S/ ~ is left cancellative. Moreover, S is right
amenable if and only if S/ ~ is right amenable. O

Finally, we need the following statement (see [15, Theorem 8.9], or [22], Corollary
4.2]).

Lemma 2.8. Let S be a left cancellative semigroup that contains no free subsemi-
group of rank two. Then S is left reversible. ]

2.2. Archimedean, power joined, and power twisted semigroups of ratio-
nal functions. Let F' and G be rational functions. We say that G is a composi-
tional left factor of a F', if F' = G o H for some rational function H. Compositional
right factors are defined in a similar way. For a semigroup of rational functions .S,
we denote by S and by S the subsets of S consisting of rational functions of degree
one and of degree greater than one, correspondingly. It is easy to see that S and S
are subsemigroups of S.

We recall that a semigroup S is called power joined if for all a,b € S there exist
k,l > 1 such that

(8) ab =¥,
and it is called power twisted if for all a,b € S there exist ki, ks,l > 1 such that
(9) at = ak2p'.

Since (8) implies that a**! = ab', any power joined semigroup is power twisted,
but the inverse is not true in general. A semigroup S is called left (resp. right)
Archimedean if for all a,b € S there exist n > 1 and u € S such that a™ = ub (resp.
a™ = bu).

Lemma 2.9. Let S be a semigroup. If S is power joined, then S is left and right
Archimedean. On the other hand, if S is power twisted, then S is left Archimedean.
Finally, if S is right (resp. left) Archimedean, then S is left (resp. right) reversible.

Proof. By definition, if S is power joined, then for all a,b € S there exist k,l > 1
such that (§) holds. Moreover, since equality (§) implies the equality a?* = b,
without loss of generality we may assume that [ > 2, implying that the equalities

(10) a®* =bu, " =ub
hold for u = b= € S (the assumption [ > 2 is necessary since S may not contain
a unit element, and thus the expression b'~! is defined only for [ > 1).
Similarly, the second part of the lemma is true since equality (@) implies the
equality
a® = (aF2p=V)p,
if I > 1, or the equality

akt = a¥2p,
ifl =1.
Finally, the equality a” = bu implies the equality "™ = bua, and hence (@]
holds for £ = a™ and y = ua. The proof in the “left” case is similar. |

The above definitions imply that a semigroup S of rational functions is power
joined if for all A, B € S there exist k,l > 1 such that

(11) A°k = Bl
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or in other words if any two elements of S share an iterate. On the other hand, S
is power twisted if for all A, B € S there exist ki, k2,! > 1 such that

(12) AOk?l _ Aok2 ° BOZ.

Finally, S is left (resp. right) Archimedean if for all A,B € S the function B
is a compositional right (resp. left) factor of some iterate of A. Notice that if a
semigroup S of rational functions is power joined or power twisted and S is not
empty, then S = S, since for a rational function A such that deg A = 1 any of
equalities ([II), (I2) implies that deg B = 1.

For a semigroup of rational functions S the condition that S is power twisted
can be replaced by an apparently stronger condition, which naturally arises in the
study of rational functions sharing a measure of maximal entropy. Namely, the
following statement holds.

Lemma 2.10. Let S be a semigroup of rational functions of degree at least two.
Then S is power twisted if and only if for all A, B € S there exist k,1 > 1 such that
the equalities

(13) AoZk _ Aok o BOZ, Ble _ Bol OAol
hold.

Proof. The “if” part is obvious. To prove the “only if” part, let us show first that
equality (I2)) implies that there exists k,I > 1 such that the first equality in (I3)
holds. Comparing degrees in ([I2)), we see that k; > k. Therefore, (I2) can be
rewritten in the form

(14) A% o Aok — A° o Bol
for some s, k,! > 1. Clearly, (I4) implies that
(15) Ao(s+t) o0 A°F — Ao(s+t) o B°!

for every t > 0. If K — s > 0, then setting ¢t = k — s in ([H)), we obtain the needed
equality. The general case reduces to this one, since (I4) implies that for every
r > 1 the equality

(16) A°% o Aok:r — A° o Bolr

holds. Thus, for r big enough, ([[4) holds for ¥’ = kr and I’ = Ir with k¥’ — s > 0.
By symmetry, the above implies that for all A, B € S there exist k1,l; > 1 and
ko, lo > 1 such that the equalities

(17) Ao2k1 _ Aok1 OBoll7 B0212 — BOlQ OAOkZ
hold. Moreover, since (7)) implies that
(deg A)™ = (deg B)"",  (degA)** = (deg B)",

the equality l1ko = l2kq holds.
Since equalities (IT) imply that for all s, > 1 the equalities

(18) Aoles _ AOk1S o BOl157 Bo2l2r _ Bolzr o Aokzr

hold, setting s = ko and r = k1, we see that the equalities (I3]) hold for k = kiko
and [ = llkg = lgkl. O

Licensed to Ben Gurion Univesity of the Negev. Prepared on Mon Jan 2 10:47:33 EST 2023 for download from IP 132.72.202.22.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



7954 FEDOR PAKOVICH

Lemma 2.11. Let S be a semigroup of rational functions such that S is finite. If
S is power joined, then S is left and right reversible. On the other hand, if S is
power twisted, then S is right reversible.

Proof. If S is power joined, then S is left and right reversible by Lemma 29 Thus,
to prove the first part of the lemma we only must construct solutions X,Y € S of
the equations

(19) AoX =BoY and XoA=YoB

in case if at least one of the functions A, B € S is of degree one.
Assume, say, that deg A = 1. Then it follows from the finiteness of S that

(20) A%k =2

for some k£ > 1, implying in particular that the function z belongs to S. Therefore,
equalities (I9) hold for X,Y € S given by the formulas

X=4*VoB Y=g, and X =BoA°* D y—gz

correspondingly (in case k = 1 we set A°(F—1D = 2).
Similarly, if S is power twisted, then S is right reversible by Lemma 2.9 and,
assuming that (20) holds, we see that the second equality in (9] is satisfied for

X =BoA°k1 y—_
O

2.3. Semigroups C(P). We will call a rational function special if it is either a
Lattes map or it is conjugate to 2", n > 2, or £T),, n > 2, where T}, is the nth
Chebyshev polynomial. Since a polynomial cannot be a Lattes map, this definition
is consistent with the definition of special polynomials given in the introduction.
For a rational function of degree at least two, we denote by C'(P) the collection of
rational functions, including rational functions of degree one, commuting with P. It
is clear that C'(P) is a semigroup. For the subsemigroup C(P) of C(P) we will use
the standard notation Aut(P). It is easy to see that Aut(P) is a group. Moreover,
since elements of Aut(P) permute fixed points of P°*, k& > 1, and any Mobius
transformation is defined by its values at any three points, the group Aut(P) is
finite. In particular, for every A € Aut(P) equality (20) holds for some k > 1.
The following fact is proved easily by a direct calculation (see [36, Lemma 2.1]).

Lemma 2.12. If A and U are rational functions such that Ao U € C(P) and
U € C(P), then A € C(P). O

Let us define the sets Co (P) and Auto(P) by the formulas

(21) Coo(P) = U C(Pok)’ Autoo(P) _ U Aut(POk).
=1 k=1

Since obviously

(22) C(P°%), C(P°) C O(P°LeM(kD)

and

(23) Aut(P°F), Aut(P°!) C Aut(P°LeMKkD),

the set Coo (P) is a semigroup, and the set Auto,(P) is a group.
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Lemma 2.13. Let P be a polynomial of degree at least two, and S a semigroup of
polynomials such that the semigroup S is non-empty. Then S is contained in C(P)
if and only if S is contained in W Similarly, S is contained in Coo(P) if and
only if S is contained in Coo(P).

Proof. The “only if” parts of the lemma are clear. To prove the “if” parts, we
observe that if Q is any fixed element of S, then for every o € S the function oo Q
belongs to S. Therefore, if S is contained in m, then both @ and « o @ belong
to C(P), implying by Lemma that « belongs to Aut(P). Thus, S C C(P).
Similarly, if S is contained in Cu (P), then ao@Q € C(P°F) for some k > 1, implying
that o € Aut(P°F). O

We recall that, by the Ritt theorem (see [42] and also [20], [36]), if rational func-
tions A and B of degree at least two commute, then either they both are special or
they have an iterate in common. This result implies the following characterization
of semigroups Coo(P).

Lemma 2.14. For every non-special rational function P of degree at least two the

semigroup Coo(P) coincides with the set of rational functions sharing an iterate
with P.

Proof. If A commutes with some iterate of P, then the Ritt theorem implies that
A and P share an iterate. On the other hand, if there exist k,I € N such that
A°k = Pl then A obviously commutes with P, |

In turn, subsemigroups of C (P) can be characterized as follows.

Theorem 2.15. Let S be a power joined semigroup of rational functions of degree
at least two. Then S is a subsemigroup of the semigroup Co (P) for every P € S.
In the other direction, every subsemigroup of the semigroup Coo(P), where P is a
non-special rational function of degree at least two, is power joined.

Proof. If S is power joined and P € S, then for an arbitrary element A € S the
equality A°* = P°! holds for some k,I € N, implying that A commutes with P°..
Therefore,

SC

o

Il
—

C(PF) = O (P).

3

In the other direction, if S C Co(P), then ([22) implies that for all A, B € S there
exist | € N such that both A and B commute with P°. It follows now from the
Ritt theorem that there exist ki, ko, 71,72 € N such that the equalities

Aok1 — Polrl Bok2 _ POl'I"Q
)

hold, implying that
AOk}l’I"z _ BOszl.

O

Theorem 2.16. Let P be a non-special rational function of degree at least two.
Then every subsemigroup S of the semigroup Cs(P) is cancellative and left and
right reversible.
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Proof. Suppose that
(24) FoX=FoY

for some F, X,Y € Coo(P). Clearly, if deg F = 1, then X =Y, so we can assume
that deg F > 1. Let k,! € N be numbers such that F°* = P° and s € N a number
such that both X,Y commute with P°°.
Obviously, both X,Y commute with P°* = F°ks_ Since equality (24]) implies
the equality
Foks o X = Foks OK
this yields that
X o Foks _ YOFOkS,
implying that X = Y. Therefore, the semigroup Cw,(P) is cancellative, implying
that every its subsemigroup is also cancellative.
Further, since C (P) is power joined by Theorem 215 and Auty, (P) = Coo(P)
is finite (see [3§], or Section below), for every subsemigroup S of Coo(P) the

semigroup
S=5NCx(P)
is power joined, and the semigroup
S=5SNCx(P)

is finite. Thus, the left and the right reversibility of S follow from Lemma[ZTIl O
2.4. Amenability of semigroups C.(P). Let P be a non-special rational func-
tion of degree at least two. Following [36], we define an equivalence relation ~ on

the semigroup C(P), setting Q4 > Q- if

(25) Q10 Pt = Qg0 P

for some Iy > 0, I3 > 0.
Lemma [ZT7 is an easy corollary of the right cancellativity of semigroups of
rational functions (see [36], Lemma 3.1]).

Lemma 2.17. Let A be an equivalence class of et For any n > 1 the class A

contains at most one rational function of degree n. Furthermore, if Ag € A is a
function of minimum possible degree, then any A € A has the form A = Ag o P°,
1>0. |

The following result was proved in [36].
Theorem 2.18. Let P be a non-special rational function of degree at least two.
Then the relation ~ is a congruence on the semigroup C(P), and the quotient
semigroup is a finite group. O
It was shown in the paper [7] that every power joined subsemigroup of rational
functions is amenable. Below we reprove this result in a slightly more general form.

As in the paper [17], our proof relies on Theorem I8 However, our reduction to
Theorem 218 is different and uses the Fglner criterion.

Theorem 2.19. Let P be a non-special rational function of degree at least two.
Then every subsemigroup S of the semigroup Coo(P) is amenable.
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Proof. By Theorem 216l the semigroup C.(P) is cancellative. Furthermore,
Co(P) cannot contain a free subsemigroup on two generators. Indeed, if A, B € S
are of degree greater than one, then A and B have a common iterate and hence
(A, B) is not free. On the other hand, if say A is of degree one, then (A, B) is not
free since (20) implies that A°**1) = A. Therefore, by Theorem F, to prove the
theorem we only must show that Coo(P) is amenable. Moreover, it follows from
@2) by Lemma 23 that it is enough to prove the amenability of the semigroups
C(P°*), k > 1. Finally, since iterates of a non-special rational function P are non-
special (see [35, Lemma 2.12]), it is enough to prove only the amenability of C(P)
for an arbitrary non-special rational function P.

By Lemma 217 and Theorem [ZT8] there exist X7, Xo, ..., X,, € C(P) such that

n
c(P) = | | M,
i=1
where _
M; = {X € C(P)| X = X;0 PI, j > 0}.
For N >0and i, 1 <i<n, we set
M;y={X€eC(P)|X=X;0P, 0<j<N}
and
Fy=||Mn.
i=1

Let us show that for every finite subset H of C'(P) and every € > 0 the set Fy with
N big enough satisfies the condition

(26) |[Fn \ X o Fn| <e|Fy|

forall X € H.
By Theorem 28 for every j,4, 1 < j,i < n there exist m(j,7) € N and k(j,1),
1 < k(j,4) < n, such that

(27) Xj o Xy = Xy(jiy 0 PO
Moreover, for fixed j the map ¢ — k(j,¢) is a bijection of the set {1,2,...,n}. Set

L, = 1%12};(” m(j,1).

Since H is a subset of C(P), every element X of H can be represented in the form
(28) X =X;0pP%

for some j, 1 < j <n, and | > 0, and we define Lo as the maximum number [ in
such a representation (since H is finite, such a number exists). Clearly,

|FN| = (N—'_]-)na
and it follows from (27)) and ([28) that for every X € H the inequality
|FN\XOFN| < TL(Ll +L2)

holds. Therefore, (26]) holds for N big enough and hence C'(P) is left amenable by
Theorem Since the set M;, 1 < j < n, coincides with the set

M]={XeS|X=PoX; j>0}

a symmetric argument shows that C(P) is right amenable. (Il
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3. SEMIGROUPS E(P)

Let us recall that for a rational function P of degree at least two, we denote
by wup the measure of maximal entropy for P, and we denote by E(P) the set
of rational functions @) of degree at least two such that ug = pp, completed by
pp-invariant Mobius transformations.

Lemma 3.1. Let P be a rational function of degree at least two. Then the set
E(P) is a semigroup.

Proof. Let A and B be elements of F(P) of degree n and m correspondingly. As-
sume first that n,m > 2. We recall that the measure pup is characterized by the
balancedness property that

pp(P(B)) = pp(B) deg P

for any Borel set B on which P is injective ([I4]). Therefore, we only must show
that if pp is the balanced measure for A and B, then pp is the balanced measure
for Ao B. Let B be a Borel set on which A o B is injective. Then B is injective on
S and A is injective on B(B), implying that

HP((A © B)(B)) = HP(A(B(B)) = nMP(B(B)) = nmpp(B).

Thus, pp is the balanced measure for A o B.
Further, if A € E(P) is a function of degree n > 2, and o is a pp-invariant
Mobius transformation, then for any Borel set B on which Aoo is injective we have

up (A0 0)(B)) = up(A(0(B)) = npup(o(B)) = npup(B).

Similarly, for any Borel set B on which ¢ o A is injective we have

pp((0 0 A)(B)) = pp(a(AB)) = up(AB)) = nup(B).

Thus, pup is the balanced measure for A oo and o o A.
Finally, it is clear that if o; and o9 are pp-invariant Mobius transformation,
then o7 o 09 is also such a transformation. O

Algebraic conditions for non-special rational functions A and B to share a mea-
sure of maximal entropy were obtained in the papers [26], [27], and can be formu-
lated as follows (see [47]).

Theorem 3.2. Let A and B be non-special rational functions of degree at least
two. Then ua = pp if and only if there exist k,1 > 1 such that the equalities

(29) AoQk _ Aok ° BOZ, BO2l _ Bol ° Aol,
hold. |

Notice that either of equalities in (29) is sufficient for the equality pa = ug,
regardless whether A and B are special or not ([26]). Notice also that in a sense
describing solutions of the system (29) reduces to describing rational functions
which are not tame (see [47], [34]).

Rational functions sharing an iterate share a measure of maximal entropy, and
the system (29) can be regarded as a generalization of the condition that A and
B share an iterate. Correspondingly, the following statement takes the place of
Theorem
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Theorem 3.3. Let S be a power twisted semigroup of rational functions of degree
at least two. Then S is a subsemigroup of the semigroup E(P) for every P € S.
In the other direction, every subsemigroup of the semigroup E(P), where P is a
non-special rational function of degree at least two, is power twisted.

Proof. If S is power twisted and P € S, then by Lemma 210 for every A € S there
exist k and [ such that A°2% = A°% o P°!| implying that A € E(P).

In the other direction, it is well known that if P is non-special, then all rational
functions sharing a measure of maximal entropy with P also are non-special. More-
over, if A, B are such functions, then by Theorem B2l equalities (29)) hold, implying

that every subsemigroup of F(P) is power twisted. a

Finally, Lemma [3.4] is the analogue of Lemma [Z.13]

Lemma 3.4. Let P be a polynomial of degree at least two, and S a semigroup of
polynomials such that the semigroup S is non-empty. Then S is contained in E(P)

if and only if S is contained in E(P).

Proof. The “only if” part is clear. To prove the “if” part, we observe that if @ is
any fixed element of .S, then for every o € S the function QQ o @ € S belongs to S.
Thus, by the invariance of pp, for any Borel set B we have:

1p((Q o)~ (B)) = up(B).
On the other hand,
up((Qoa) ™ (B)) = up(QH(a™(B)) = up(a™'(B)).
Therefore,

implying that o € E(P). O

4. SEMIDIRECT PRODUCTS

Let us recall that for a rational function R of degree at least two, the group G(R)
is defined as the group of Mobius transformations o such that

(30) Roo=voR

for some Mobius transformations v. It is easy to see that G(R) is indeed a group
and that the map

(31) YR:O0 = Vg

is a homomorphism from G(R) to the group Aut(CP'). Notice that the group
Aut(R) is a subgroup of G(R). We say that a rational function R of degree n > 2
is a quasi-power if there exist o, 3 € Aut(CR!) such that

R=aoz"op.

The following statement was proved in [35] (see also [38] for more results about
G(R) and related groups).

Theorem 4.1. Let R be a rational function of degree at least two that is not a
quasi-power. Then the group G(R) is finite. |
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Assume that I' a subgroup of G(R) such that yg(I') C I'. Then (3I)) is an endo-
morphism of G(R). Furthermore, v defines in an obvious way a homomorphism

(32) pr : (R) = End(T).

We denote by Sr g the semigroup generated by I' and R. It is clear that a rational
function A belongs to Sr g if and only if

(33) A=05oR*®
for some s > 0 and § € I'. Moreover, in the notation of Section B.I], we have:

SI",R =TI x <R>
PR

Lemma 4.2. Let R be a rational function of degree n > 2 not conjugate to z*™,
and I a subgroup of G(R) such that yg(I') CT'. Then I is finite.

Proof. By Theorem 1] G(R) is finite and hence T is finite, unless R is a quasi-
power. On the other hand, since the group G(z") consists of the Mébius transfor-
mations czt!, ¢ € C\ {0} (see [35, Lemma 4.1]), it is easy to see that the condition
vr(T) C T holds for a quasi-power R only if R is conjugate to z*". |

The following two results provide conditions for amenability of subsemigroups
of Sr r according to whether the condition vg(I') =T" or the condition yg(I') C T
is satisfied. In particular, they imply Theorem [[.7] from the introduction.

Theorem 4.3. Let R be a rational function of degree n > 2 not conjugate to z*",
and T' o subgroup of G(R) such that ygr(T') C T'. Then Sr g is left amenable if
and only if yr(I') = T'. Moreover, if yr(I') =T, then Sr.r C Cx(R) and every
subsemigroup of Sr g is amenable.

Proof. Since all elements of St g have the form B3), if g € T’ but o9 ¢ Im g, the
equation

RoX =(ogoR)oY
has no solutions X,Y in Sr r. Therefore, whenever yg(I') is a proper subset of T,
the semigroup St g is not left reversible and hence is not left amenable.

On the other hand, since the group I is finite by Lemma 2] if yg(T') =T, then
the restriction v : I' — I' is an automorphism. Moreover, since the automorphism
group of a finite group is finite, there exists [ > 1 such that the iterate 7}’{ is the
identical automorphism. Therefore, since

R'oo=~%(0)o R, o€T,
the group I' is a subgroup of Aut(R°!). In turn, this implies that for every element
A € Sr g the iterate A°! commute with R°!, since
Aol —go Rosl
for some o € T" and s > 1 by [33)). Hence, by the Ritt theorem, A and R share an
iterate. Therefore, Sr g C Co(R) by LemmaZ14] implying that Sr p € Coo(R) by
Lemma 213l In particular, if S’ is a subsemigroup of S, then S’ is a subsemigroup

of Co(R), implying that S’ is amenable by Theorem O

Theorem 4.4. Let R be a rational function of degree n > 2 not conjugate to z*™,
and I' a subgroup of G(R) such that yr(I') C T'. Then Sr.r C E(R) and every
subsemigroup of Sr g is right amenable.
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Proof. By Lemma 3.4l and Theorem B3] to prove that Sr r C E(R) it is enough to
show that Sr g is power twisted, that is, that for all A, B € Sr g there exist k,{ > 1
such that (T2 holds. It follows from the representation (B3] that considering instead

of A and B some of their iterates without loss of generality we may assume that
deg A = deg B and

(34) A=coB

for some o € T'. Furthermore, it follows from ([B3) and ([B4) that for every k > 1
there exists o € I' such that

Aok = 0} © Bok.
Therefore, since I is finite, there exist k1, ko > 1 such that k; > ko and
A" = §o0 Bt A%k = 5o BOk2

for the same § € T, implying that ([I2)) holds for | = k1 — ko.
Set
Ty = 7%(T).
Since I is finite, it follows from

I'D>Ir DIy D ...
that there exists ko such that I'y, = I'y, for all k > kg. We set T = Iy, and

Ok‘o

Iy = Kervy™,

sothat T =T /To. Since g : [ »Tisan isomorphism, the above definitions imply
that for aq,as € ' the equality

(35) % (1) = & (az)
holds for some k > kg if and only if elements o1 and ay belong to the same coset
of 'gin T

Since Sr,gr = I is finite and St r is power twisted, St g is right reversible by
Lemma 211l Thus, by the first part of Theorem [27 equivalence classes on Sr g
corresponding to equivalence relation ([f]) form a semigroup Sr r/ ~. Let us show
that Sp g/ ~ is isomorphic to the semigroup Sf,R' For this purpose, it is enough
to prove the following statement: for oy, as € I' and s1, 82 > 0 the equality
(36) (Bo R*) o (a1 0 B™) = (B0 R**) o (a3 0 R™)
holds for some s > 0 and 8 € I' if and only if s; = sy and a1, as belong to the
same coset of I'g in I'. To prove the “if” part, we observe that if as = § o a1, where

6 € Ty, then [BA) holds for s = kg and any 8. On the other hand, if equality (B8]
holds, then obviously s; = s2 and

(37) R°® o (a1 0 R°**) = R°® o (axg 0 R°%?),
implying that for every [ > 0 the equality
Ro(s+l) o (al ° Rosl) — Ro(s+l) o (042 ° Rosz)

holds. Thus, without loss of generality we may assume that s > ko in (87)), implying

that a; and @y belong to the same coset of I'y in T
Since Sr r/ ~ is isomorphic to the semigroup Sg g,

part of Theorem 2.7] that to prove that any subsemigfoup of St g is right amenable

it follows from the second
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it is enough to prove that any subsemigroup of Sg j is right amenable. In turn, the
last statement follows from Theorem B3] which implies that S , is amenable. [

Notice that the proofs of Theorem 3] and Theorem 4] remain true for R con-
jugate to z*™ if to require the finiteness of I'. Thus, for example, the semigroup
generated by the polynomial 22 and the Mé&bius transformation z — —z is a right
amenable semigroup of rational functions that is not left amenable. On the other

hand, for example, the semigroup generated by 23 and the Mobius transformation
27

i .
z — €75 z is amenable.

5. TAME SEMIGROUPS OF RATIONAL FUNCTIONS

5.1. Tame rational functions. We recall that a rational function A of degree at
least two is called tame if the algebraic curve

Az) — A(y) =0

has no factors of genus zero or one distinct from the diagonal. By the Picard
theorem, this condition is equivalent to the condition that the equality

(38) Aof=Aoyg,

where f and g are functions meromorphic on C, implies that f = g. Notice that
any rational function of degree two is not tame since the curve
Alz) — Aly)
r—y
has degree one, implying that its genus is zero. Thus, a tame rational function has
degree at least three. Notice that a general rational function of degree at least four
is tame. Specifically, a rational function of degree at least four is tame whenever it
has only simple critical values ([31]).
We say that a semigroup of rational functions S is tame if it contains tame ratio-
nal functions only. Clearly, the tameness condition can be regarded as a strength-
ening of the cancellativity condition.

=0

Lemma 5.1. Tame rational functions form a cancellative subsemigroup of C(z).

Proof. Let us assume that A, B are tame rational functions and f, g are meromor-
phic on C functions such that the equality

(BoA)of=(BoA)og

holds. Since B is tame and A o g and A o f are meromorphic on C, this equality
implies equality (38). In turn, equality (B8]) implies that f = g, since A is tame.
Thus, tame rational functions form a subsemigroup of C(z), and it is clear that this
subsemigroup is cancellative. (|

Our approach to the amenability of tame semigroups of rational functions is
based on the three results about tame rational functions from the paper [37] given
below.

Let P°¢ = U oV be a decomposition of an iterate P°?® of a rational function P
into a composition of rational functions U and V. We say that this decomposition
is induced by a decomposition P°d = 'o V', where d < d, if there exist ki, ks > 0
such that

U=ProU, V=V oPpk
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The first statement we need is following (see [37, Theorem 1.1]).

Theorem 5.2. Let P be a tame rational function of degree n. Then there exists an
integer N, depending on n only, such that any decomposition of P°* with d > N is
induced by a decomposition of P°N. |

We recall that functional decompositions R = U oV of a rational function R into
compositions of rational functions U and V', considered up to the equivalence

(39) U—=Uoa, V—=aloV, «acAut(CP"),

are in a one-to-one correspondence with imprimitivity systems of the monodromy
group of R. In particular, the number of such classes is finite. Consequently, The-
orem implies that for every tame rational function P there exist finitely many
rational functions Fi, Fs, ..., F} such that a rational function F' is a compositional
right factor of an iterate of P if and only if F' has the form

(40) F=aoF;oP% [1>0, 1<i<t, ac Aut(CP").

It is easy to see that if rational functions A and B have a common iterate, then
each iterate of B is a compositional left and right factor of some iterate of A. The
following result provides a partial converse statement (see [37, Theorem 1.4]).

Theorem 5.3. Let A and B be tame rational functions. Then the following con-
ditions are equivalent.

(1) Each iterate of B is a compositional left factor of some iterate of A.
(2) Each iterate of B is a compositional right factor of some iterate of A.
(3) The functions A and B have a common iterate. O

For rational functions A and B, let us define an algebraic curve C4 p by the
formula
Cap: A(z) — B(y) =0.
The last result about tame rational functions we need below is following (see [37],
Corollary 3.6).

Theorem 5.4. Let A and B be rational functions such that the curve Caos g has
an irreducible factor C of genus zero or one for some s > 1. Assume in addition
that B is tame, deg A > 2, and

(41) 5 > log, [84(deg B — 1)(deg B)!].
Then A°® = BoQ for some rational function @, and C is the graph Q(x)—y =0. O

5.2. Stabilization of semigroups C(P°%). For a rational function P of degree
at least two, the groups in the sequence G(P°%), k > 1, in general are different.
Nevertheless, the following statement holds ([38]).

Theorem 5.5. Let P be a rational function of degree n > 2. Then the sequence
G(P°%), k > 1, contains only finitely many non-isomorphic groups, and, unless P
is a quasi-power, the orders of these groups are finite and uniformly bounded in
terms of n only. |

Among other things, Theorem implies that, unless P is conjugate to z*",
the group Aut..(P) is finite, so that

(42) Autoo (P) = Aut(P°?)
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for some s > 1 (see [38] for more detail). In this section, we prove the following
generalization of equality ([@2]) for tame rational functions.

Theorem 5.6. Let P be a tame rational function. Then Coo(P) = C(P°%) for
some s > 1.

Proof. Assume that F' € Coo (P). Then, by the Ritt theorem, F is a compositional
right factor of some iterate of P. On the other hand, by Theorem [£.2] there exist
rational functions Fi, Fs, ..., F; such that any compositional right factor of an
iterate of P has the form (@0). Furthermore, by Lemma[ZIZ the function ao Fo P°!
commutes with P°%, s > 1, if and only if « o F; commutes with P°.

Let us observe now that if avo F; commutes with P°%, and o o F; commutes with
P’ for some o,/ € Aut(CP') and s,s’ > 1, then the both functions « o F; and
o' o F; commute with P° LCM(s,s") Therefore, since

o oF;=(doaNHoaokF,

Lemma 212 implies that o/ o~ ! also commutes with P°XCM(s") Thus, o/ = voa
for some v € Auto,(P). Since the group Auts(P) is finite, this yields that there
exist finitely many rational functions G1,Ga, ..., G, € Cx(P) such that F' belongs
to C(P) if and only if F' has the form

GioP°, 1<i<r 1>0.

Finally, if G;, 1 < i < r, commutes with P°*_ k; > 1, then G; also commutes
with PV where N = LCM(ky, ka, . . ., k). Thus, Coo(P) C C(P°VN), implying that
Co(P) = C(P°N). O

5.3. Amenable semigroups. The following result is an extended version of The-
orem from the introduction.

Theorem 5.7. Let S be a tame semigroup of rational functions. Then the following
conditions are equivalent.

(1) The semigroup S is left reversible.

) The semigroup S is left amenable.

) The semigroup S is amenable.

) The semigroup S is a subsemigroup of C(P) for some tame rational
function P.

5) The semigroup S is power joined.

6) The semigroup S is left or right Archimedean.

7) The semigroup S contains no free subsemigroup of rank two.

8) Forall A, B € S there exist 21,z € CP! such that the forward orbits O (z1)

and Op(z2) have an infinite intersection.

Proof. If S is a power joined semigroup of rational functions, then S is a subsemi-
group of Cu (F) for every F' € S, by Theorem Moreover, if S is tame, then
every F' € S has degree at least two and is not special, since special rational func-
tions are wild (see [37, Corollary 2.5]). Therefore, by Theorem[5.0] C (F) = C(P),
where P = F°% for some s > 1. Since F°® is tame by Lemma [5.1] this proves the
implication 5 = 4. The implication 4 = 3 holds by Theorem The implication
3 = 2 is clear. The implication 2 = 1 holds by Proposition 2-4

The implication 1 = 5 follows from Theorem (.3 and Theorem 5.4l Indeed, let A
and B be arbitrary elements of S. It follows from the left reversibility of S that for
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every s > 1 there exist Cy, Ds € S such that the equality A°* o Cs = B o D, holds,
implying that the curve €405 p has an irreducible factor of genus zero. Since for
s big enough inequality ([Il) holds, it follows from Theorem 4] that the function
B is a compositional left factor of some iterate of A (notice that this fact does not
immediately imply that S is right Archimedean, since in the equality A°" = Bo X
the function X may not belong to S). Moreover, using the same reasoning for
iterates of B we conclude that each iterate of B is a compositional left factor of
some iterate of A, implying that A and B have a common iterate by Theorem 5.3
This finishes the proof of the equivalences 1 & 2 < 3 & 4 < 5.

The implication 5 = 6 follows from Lemma On the other hand, if S is left
(resp. right) Archimedean, then for all A, B € S each iterate of B is a compositional
right (resp. left) factor of some iterate of A, implying by Theorem (5.3 that A and B
share an iterate. Thus, 5 < 6. Further, it is clear that 5 = 8. On the other hand,
it was proved in [37] that if for tame rational functions A and B there exist orbits
O4(z1) and Op(z2) with an infinite intersection, then A and B share an iterate. For
the reader convenience, we repeat the proof which relies on the Faltings theorem
combined with Theorem [B.3] and Theorem [5.4l We recall that by the Faltings
theorem ([21]) if an irreducible algebraic curve C' defined over a finitely generated
field K of characteristic zero has infinitely many K-points, then g(C') < 1. On the
other hand, it is easy to see that if O4(z1) N Op(22) is infinite, then for every pair
(i,7) € N x N the algebraic curve

(43) A% (x) = B (y) = 0

has infinitely many points (z,y) € Oa(z1) X Op(22). Defining now K as the field
generated over Q by z1, 22, and the coefficients of A, B, and observing that the
orbits O 4(z1) and Op(z2) belong to K, we conclude that for every pair (i,7) € NxN
curve ([A3)) has a factor of genus zero or one. It follows now from Theorem [54] that
each iterate of B is a compositional left factor of some iterate of A, implying that
A and B have a common iterate by Theorem 5.3l Thus, 5 < 8

Since any tame semigroup of rational functions is left cancellative, the implica-
tion 7 = 1 follows from Lemma [Z8 Finally, let us observe that a subsemigroup
S of C(P) cannot contain a free subsemigroup of rank two S’, since such S’ is
also a subsemigroup of C'(P) and hence is power joined by Theorem Thus,
4=1. g

6. ARCHIMEDEAN AND REVERSIBLE SEMIGROUPS OF POLYNOMIALS

6.1. Functional equations in polynomials. We recall that a polynomial A is
called special if it is conjugate to 2", n > 2 or to £7},, n > 2. The following two
lemmas follow easily from from the characterization of the polynomials z™ and T,
in terms of their ramification (see e.g. [I7, Lemma 3.5 and Lemma 3.9]).

Lemma 6.1. Any decomposition of z™, n > 2, into a composition of polynomials
has the form

(44) 2= ("o p)o (ut o2,

where din and p is a polynomial of degree one. On the other hand, any decomposi-
tion of T,, n > 2, has the form

(45) To = (Thyqopm) o (u ' oTy),

where din and p is a polynomial of degree one. ([l
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For brevity, we will say that two polynomials A and B are linearly equivalent if
there exist polynomials of degree one ¢ and v such that the equality
A=coBov
holds.

Lemma 6.2. Let A be a polynomials of degree d > 2 such that A, 1 > 1, is
linearly equivalent to 2. Then A is conjugate to z%. Similarly, if A°, 1 > 2, is
linearly equivalent to Ty, then A is conjugate to +Ty. O

Since a rational function A is a polynomial if and only if A='{oo0} = oo, for any
decomposition A = UoV of a polynomial A into a composition of rational functions
U and V, there exists a Mdbius transformation p such that U oy and =t o V are
polynomials. Thus, considering decompositions of polynomials into compositions of
rational functions, we can restrict ourselves by the consideration of decompositions
into compositions of polynomials.

Unlike the general case, polynomial solutions of the functional equation

(46) AoC=BoD

admit essentially a complete description.
Specifically, the following result follows easily from the fact that the monodromy
group of a polynomial of degree n contains a cycle of length n.

Theorem 6.3 ([19]). Let A, g, B,D @ve polynomials such that AoC = BoD. Then
there exist polynomials U,V A, C, B, D, where
degU = GCD(deg A,deg B), degV = GCD(degC,degD),
such that B B B B
A=UocA, B=UoB, C=CoV, D=DoV,
and o
AoC =BoD.
Notice that Theorem [6:3]implies that if deg B | deg A in (@6), then the equalities
A=BoR, D=RoC
hold for some polynomial R.
Theorem [63lreduces describing solutions of (@8] to describing solutions satisfying
(47) GCD(deg A,deg B) =1, GCD(degC,degD) = 1.
The following result called “the second Ritt theorem” ([41]) describes such solutions.
Theorem 6.4 ([41]). Let A,C, B, D be polynomials such that @) and @) hold.

Then there exist polynomials 01,09, u, v of degree one such that, up to a possible
replacement of A by B and of C by D, either

(48) A=voz*R"(2)o0;", C=o010z"op

(49) B=voz"o0;", D =0902°R(2") o p,
where R is a polynomial, n > 1, s > 0, and GCD(s,n) =1, or

(50) A:yonoal_l, C=o010T,0pu,
(51) B:I/OTnOUEI D=o0y0T,,0pu,

where T,,, T, are the Chebyshev polynomials, n,m > 1, and GCD(n,m) = 1.

Licensed to Ben Gurion Univesity of the Negev. Prepared on Mon Jan 2 10:47:33 EST 2023 for download from IP 132.72.202.22.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON AMENABLE SEMIGROUPS OF RATIONAL FUNCTIONS 7967

Theorem implies the following corollary.

Corollary 6.5. Let A,C, B, D be polynomials such that {A8) and {Z) hold and
deg A > deg B. Then B and C' are linearly equivalent either to powers or to Cheby-
shev polynomials. |

6.2. Decompositions of iterates. Below we will use the polynomial versions of
Theorem [5.2] Theorem [£.3] and Theorem given below. These versions are more
precise since they hold for all non-special polynomials, not only for tame ones.

The more precise version of Theorem for polynomials is the following result
(see [46], and also [32], [37]).

Theorem 6.6. Let A be a polynomial of degree n > 2 not conjugate to z" or £T,,.
Then there exists an integer N, depending on n only, such that any decomposition
of A°* with d > N is induced by a decomposition of A°N. |

Theorem implies the following useful criterion.

Theorem 6.7. Let B be a polynomial of degree at least two. Assume that there
ezists a sequence of polynomials F;, © > 1, such that:

(1) Each F;, i > 1, is a compositional left factor of some iterate of B.

(2) Each F;, i > 1, is linearly equivalent to a special polynomial.

(3) mz—mo deg I; = oo.
Then B is special. Moreover, the same conclusion holds if to replace the first
condition by the condition that each F;, i > 1, is a compositional right factor of
some iterate of B.

Proof. We consider the “left” case. The proof in the “right” case is similar. Assume
that B is not special. Then Theorem [6.6limplies that there exist a left compositional
factor C of some iterate of B and different 41,45 > 1 such that

(52) F;, = B o(Co 41, F;, = B2 6(Co o

for some ly,l > 1 and p1, po € Aut(C). Moreover, we can find 47 and is such that
l1 — Iz > 2. Equalities (52]) yield that

Fil = BO(llilz) o Fiz © (ﬂ;l O:ul)a

implying by Lemma that B°(1=12) ig linearly equivalent to a special polyno-
mial. However, in this case B is special by Lemma [6.2] in contradiction with the
assumption. O

The following analogue of Theorem [5.0lis obtained from Theorem [6.6]in the same
way as Theorem is obtained from Theorem

Theorem 6.8. Let P be a non-special polynomial of degree at least two. Then
Coo(P) = C(P°?) for some s > 1. O

Finally, the next two results are the “left” and the “right” polynomial analogues
of Theorem 531 The first of them was established previously in the papers [16],
[T7] (see [16, Proposition 3.3] and [I7, Proposition 4.1]). The proof given below is
somewhat shorter and is easily modified to fit the “right” case. It mimics the proof
of Theorem 1.4 in [37].

Theorem 6.9. Let A and B be polynomials of degree at least two such that each
iterate of B is a compositional left factor of some iterate of A. Then either both A
and B are special, or there exist k,1 > 1 such that A°* = B°!,
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Proof. Let us observe first that if one of the polynomials A, B is special, then the
other one is also special. Indeed, by condition, for every i > 1 there exist s; > 1
and R; € C[z] such that the equality

(53) A% = B° o R;

holds. Therefore, if B is special, then considering the sequence of special polyno-
mials F; = B°, i > 1, and applying Theorem [6.7, we conclude that A is special.
On the other hand, if A is a special, then each B;, i > 1, is linearly equivalent to a
special polynomial by Lemma [6.1] implying that B is special by Lemma

Let us assume now that both A and B are not special. In this case, without loss
of generality we may assume that the group G(B) is finite. Indeed, it is easy to see
that if B is a quasi-power, then B°? is not a quasi-power, unless B is conjugate to
a power. Therefore, considering instead of B its second iterate we may assume that
B is not a quasi-power, implying by Theorem 1] that G(B) is finite. Furthermore,
Lemma [6.2] implies that all the groups G(B°%), i > 1, are also finite.

It follows from (B3]) by Theorem that there exist a rational function U and
increasing sequences of non-negative integers fi, k > 0, and vg, k > 0, such that

(54) BMv = A% oUomy, k>0,

for some n, € Aut(CP!). In turn, this implies that there exists an increasing
sequence of non-negative integers ri, k > 1, such that

(55) Bofr = A°mr o Bofo oy, k>1,

for some uy, € Aut(CP'). Furthermore, since (55)) implies that for every k > 1 the
function B°/o oy, is a compositional right factor of an iterate of B, there exist a
rational function V' and an increasing sequence of non-negative integers k;, [ > 0,
such that

Bofooﬂklzglo‘/’ ZZO’
for some 6; € Aut(CP'), implying that
Bofoo,ukl :5loB°f°ouk0, [>1,

for some §; € Aut(CP').
Clearly, the Mobius transformations pg, o u;ﬂl, [ > 1, belong to the group

G(B°/0). Therefore, the finiteness of G(B°/) yields that
Fkyy © fiy = fiky, © iy
for some l > [y, implying that uy,, = pg,, . It follows now from E5) that
BoTry — 20k, —Tr,) OBofkll’
implying that

(56) Bo(fkl2 —fry, ) AO(TkLQ —Tkll).
Since I3 > l; and the sequences k;, | > 1, and fx, k > 1, are increasing, the
inequality fk,, > fk,, holds, and therefore A and B have a common iterate. ]

Since equality (4] implies equality (L6, if rational functions A and B satisfy
condition (I2)), then each iterate of B is a compositional right factor of some iterate
of A. Correspondingly, the “right” counterpart of Theorem is the following
statement.
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Theorem 6.10. Let A and B be polynomials of degree at least two such that each
iterate of B is a compositional right factor of some iterate of A. Then either
both A and B are special, or there exist k,1 > 1 such that A°** = A°* o B°! and
BoZl — Bol o Aok'

Proof. In the same way as in the proof of Theorem [6.9] we conclude first that it
is enough to prove the theorem assuming that both A and B are non-special and
the group G(B) is finite. The rest of the proof is obtained by a modification of the
proof of Theorem as follows. Assuming that for every ¢ > 1 there exist s; > 1
and R; € C[z] such that

(57) Aosi _ RZ ° BOi,
we conclude that there exists a sequence f, k> 0, such that
(58) Bk = 0 Bofoo ATk k> 1,

for some py, € Aut(CP') and 7, > 1, implying that there exists an increasing
sequence k;, [ > 0, such that

fig, © B0 =y, 0 B0 0§y, 1>1,

for some §; € Aut(CP'). In turn, this yields that for some Iy > I3 the equalities
1, = &1, and py,, = pg, hold, implying by (BS) that

(59) Bz = B o A% )

Since (BY) implies that each iterate of A is a compositional right factor of some
iterate of B, repeating the above reasoning we conclude that (I2) holds for some
k1, ko,l > 1. Finally, arguing as in the proof of Lemma 2T0l we conclude that (I2])
and (59) imply that there exist k,I > 1 such that the equalities A°2% = A°F o B°!
and B°% = B° o A°F hold. |

6.3. Reversible semigroups of polynomials. In this section, we characterize
left or right reversible semigroups of polynomials by studying the corresponding
functional equations.

The following result was proved in the paper [I7] (see [I7, Proposition 6.3]). As
above, we give an independent proof which can be modified to fit the “right” case.

Theorem 6.11. Let A and B be polynomials of degree n > 2 and m > 2 respectively
such that for any i,j > 1 there exist polynomials C; j, D; ; satisfying

(60) AOi oli = Boj o} Di,j-

Then either both A and B are special, or there exist k,1 > 1 such that A°* = B°l.

Proof. For an integer n > 2, let us denote by P(n) the set of prime factors of n.
Assume first that

(61) P(deg B) C P(deg A).

In this case, for every j > 1 the number deg B%/ is a divisor of the number deg A°?
for 7 big enough. Therefore, by Theorem[B.3lapplied to equality (60Q), for every j > 1
the polynomial B’ is a compositional left factor of some iterate of A, implying by
Theorem that either both A and B are special, or A and B share an iterate.
By symmetry, the same conclusion holds if

(62) P(deg A) C P(deg B).
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Assume now that neither of conditions (€II), ([62) holds. In this case, there
exist p; € P(degA) such that p; € P(degB), and py € P(degB) such that
pe & P(deg A). Applying Theorem to equality (60), we can find polynomi-
als Ui’j, Vvi’jy Ai’j, C'i’j7 Bi’j7 Di’j, where
(63)  degU;; = GCD(deg A°*,deg B%), degV;; = GCD(degC; j,deg D; ;),
such that
(64) A =Uij0A;;, B =UjjoB;;, Cij=CijoVij, D=D;;oVij

and
(65) Z” o 5” = gu o 5”
Moreover,
ged(deg Zli,j,deg f?”) =1, ged(deg CN'i’j,deg INDU) =1,
and
(66) deg A;; > pi, degBi; >pj.

Since the second equality in (64]) implies that
deg Eu < deg B,
the degree deg Eu is bounded for fixed j. On the other hand, the first inequality
in (B6) implies that deg A, ; — oo as ¢ — oo. Therefore, applying Corollary
to equality (63]) for fixed j and ¢ = i(j) big enough, we see that B, ; is linearly
equivalent to a special polynomial. It follows now from the second inequality in
(66) and the second equality in (64]) that there exists a sequence of polynomials

Fj, j > 1, where F; = B, ; for some i = i(j), satisfying conditions of Theorem
Thus, B is special. Moreover, by symmetry, A is also special. O

Theorem 6.12. Let A and B be polynomials of degree n > 2 and m > 2 respectively
such that for any i,j > 1 there exist polynomials C; j, D; ; satisfying

(67) CijoA® = D;;joB.

Then either both A and B are special, or there exist k,1 > 1 such that A°?F =
Aok o Bol and Bo2l — Bol ° Aok.

Proof. If at least one of conditions (€1l), ([G2) holds, then modifying the proof of
Theorem using Theorem and Theorem [6.10, we conclude that the theorem
is true.

On the other hand, if neither of conditions (G1l), (62) holds, then we can find
polynomials Ui’j, V;"j, AiJ7 Ci’j, Bi’j, Di’j, where
(68)  deglU;; = GCD(degC; j,deg D; ;), degVi; = GCD(deg A, deg B%),
such that
(69) C@j - Ui,j o} 6i,j7 Di,j — Ui,j ] ﬁi,jv AOi = gi,j ] ‘/7;7]-, Boj - Ei,j [¢] ‘/ivj’
(70) CijoAiy = DijoBij,

and inequalities (66]) hold for some primes p1, p2. Now a modification of the proof
of Theorem [6.11] shows that A and B are special. (]
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Theorem [6.11] and Theorem [6.12]imply the following characterizations of left and
right reversible semigroups.

Corollary 6.13. Let S be a semigroup of polynomials of degree at least two con-
taining at least one non-special polynomial. Then the following conditions are equiv-
alent.

(1) The semigroup S is left reversible.
(2) The semigroup S is right Archimedean.
(3) The semigroup S is power joined.

Proof. The implications 3 = 2 and 2 = 1 follow from Lemma Finally, in view
of Theorem [6.T1] to prove the implication 1 = 3, it is enough to show that if a left
reversible semigroup of polynomials S contains a non-special polynomial P, then
all elements of S are non-special. In turn, the last statement also follows from
Theorem applied to an arbitrary element A of S and B = P. O

Corollary 6.14. Let S be a semigroup of polynomials of degree at least two con-
taining at least one non-special polynomial. Then the following conditions are equiv-
alent.

(1) The semigroup S is right reversible.
(2) The semigroup S is left Archimedean.
(3) The semigroup S is power twisted.

Proof. The proof is similar to the proof of Corollary [6.13] with the use of Theorem
6.12] instead of Theorem [6.1Tl O

Notice that Corollary and Corollary are not true for semigroups con-
taining special polynomials. Indeed, for example, the semigroup of all Chebyshev
polynomials is commutative and therefore is left and right inversible. However, not
all Chebyshev polynomials share an iterate. Similarly, one can easily see that the
semigroup S generated by Tg and Tio, say, is left and right Archimedean, but is
not power joined or power twisted since 6% # 12! for all k,1 > 1.

7. AMENABLE SEMIGROUPS OF POLYNOMIALS

7.1. Semigroups C(P). In this section, we describe in terms of semidirect prod-
ucts the structure of the semigroup C(P) for a non-special polynomial P. We will
deduce this description from the following result (see [32, Theorem 1.3]).

Theorem 7.1. Let P and B be fized non-special polynomials of degree at least
two, and let E(P, B) be the set of all polynomials of degree at least two X such
that P o X = X o B. Then, cither (P, B) is empty, or there exists R € E(P, B)
such that a polynomial X belongs to E(P, B) if and only if X = Ao R for some
polynomial A commuting with P. (Il

Theorem [l implies the following statement.

Theorem 7.2. Let P be a non-special polynomial of degree at least two. Then
for every A € C(P) the group Aut(P) is a subgroup of the group G(A) such that

va(Aut(P)) = Aut(P). Furthermore, there exists a polynomial R € C(P) such that
C(P) = Sau(p),R-
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Proof. Since E(P, P) = C(P), it follows from Theorem [[T] that there exists R €
C(P) such that every A € C'(P) has the form

(71) A=UoR,

where U € C(P). In turn, this implies that every A € C'(P) can be represented in
the form

(72) A=00R

for some s > 0 and o € Aut(P). Indeed, if degU = 1 in (), then (72) holds for
s = 1. Otherwise, applying Theorem [Z.1] again to the polynomial U and so on, we
obtain (72) for some s > 1.

Further, if A € C(P) and w € Aut(P), then A ow € C(P), implying by (72)
that there exist s > 1 such that

A=010R%, Aow=o0y0R"®

for some 01,09 € Aut(P). Therefore,
Aow=00A,

where § = 03 0 07! € Aut(P), and hence y4(Aut(P)) C Aut(P). Moreover,
since C'(P) is cancellative by Theorem 216 to different w correspond different 4.
Thus, for every A € C(P) the group Aut(P) is a subgroup of G(A) such that
Ya(Aut(P)) = Aut(P). Finally, it follows from (Z2) that C'(P) C Sau(p),r, and it
is clear that Sau(p),r € C(P). Hence, Saui(py,r = C(P). O

Corollary 7.3. Let P be a non-special polynomial of degree at least two, and
Ay, Ay € C(P) polynomials such that deg As > deg Ay. Then there exists a uniquely
defined polynomial U such that Ay = U o Ay. Moreover, U € C(P).

Proof. Indeed, since
A; =010R%®, Ay =090 R%?,

for some $1,82 > 0 and 01, 09 € Aut(P) the equality Ay = U o A; holds for
U=o0y0RE2"50 005 € C(P).

The uniqueness of U follows from the right cancellativity of C|[z]. ]

Let us recall that the classical theorem of Ritt about commuting polynomials
(see [0], [42]) states that if Py, P> is a pair of commuting polynomials of degrees
dy > 2 and dy > 2, then up to the change

(73) P XoPioA™t, Py AoPyol!,
where ) is a polynomial of degree one, either
P =21 Py=ez?,
where ¢ is a (dy — 1)th root of unity, or
P =+T,, P,=+T,,,
where T, and Ty, are the Chebyshev polynomials, or
(74) Py =g R, Py =R,

where R = 2S5(z%) for some polynomial S and I > 1, and €1, 5 are Ith root of unity.
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Notice that condition (74]) is equivalent to the condition that there exists a
polynomial R such that

(75) P1 ZO'loROSl, P2 :UQOROS2,

where 01,09 € Aut(R). Indeed, every polynomial of degree at least two is conjugate
to a polynomial of the form

(76) R=2"4cp 22" 2+ +co,
where ¢,, = 1 and ¢,,_1 = 0. Furthermore, one can easily see that if
c=az+b

commutes with such R, then b = 0 and a is a root of unity, implying that either
R =2z", or R = zS(z%) for some polynomial S and [ > 1, and an Ith root of unity a.
Theorem implies the Ritt theorem about commuting polynomials. Moreover,
it implies the classification of commutative semigroups of polynomials obtained
by Eigenthaler and Woracek ([I8]). To formulate the corresponding result, we
introduce some notation. We denote by Z the semigroup consisting of polynomials
of the form az", where a € C* and n > 1, and by T the semigroup consisting of
polynomials of the form £7;,, n > 1. We say that two semigroups of polynomials
Sy and Sy are conjugate if there exists a € Aut(C) such that a0 S; o™t = S,.

Theorem 7.4. Let S be a commutative semigroup of polynomials containing at
least one polynomial of degree greater than one. Then either S is conjugate to a
subsemigroup of Z or T, or S is a subsemigroup of Sau(r),r for some non-special
polynomial R of degree at least two.

Proof. In case S contains at least one special polynomial P, the theorem follows
from the following simple fact: if the unite circle is a completely invariant set for
a polynomial P, then P = az™, where |a] = 1 (see [B, Theorem 1.3.1]). Since
commuting polynomials have the same Julia sets, this implies that if some P € S
is conjugate to 2", then S is conjugate to a subsemigroup of Z. Similarly, since
+T,, are the only polynomials whose Julia set is the unit segment, if some P € S
is conjugate to £7,, then S is conjugate to a subsemigroup of 7.

The above shows that we can assume that S contains no special polynomials.
Let us consider the semigroup

F=[)c(P).

PeS

Since S is commutative, S belongs to F. Thus, F contains a polynomial of degree
greater than one, and therefore contains a polynomial of minimum possible degree
greater than one. Let R be any such a polynomial, and P an arbitrary element of S.
Since P, R € ¥ and deg P > deg R by construction, Corollary [[.3] yields that there
exists a polynomial Q € F such that P = @ o R. Moreover, since the inequality
1 < deg @ < deg R contradicts to the choice of R, one of the equalities deg @ =1
or deg @ > deg R holds. In case deg @ > deg R, we can apply the same reasoning
to @ and so on, eventually obtaining a representation P = p o R°® for some s > 1
and a polynomial of degree one p € F. Furthermore, since P, R € C(R), it follows
from Lemma [2.12] that 4 € C(R). Thus, every P € S belongs to Sau(r),r, and
hence S is a subsemigroup of Saut(r),r- O
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Notice that the fact that Theorem [.1] implies the Ritt theorem was already
mentioned in the paper [32]. However, the proof given there is not complete since
it provides a representation ([7hl), where actually only us belongs to Aut(R), while u
belongs to Aut(P). To correct it, one has to define R as a polynomial of minimum

possible degree commuting with both P; and Ps, and to argue as in the proof of
Theorem [7.4]

7.2. Semigroups I(K). For a compact set K C C, we denote by I(K) the set of
polynomials A such that A='{K} = K, and by Qf the subset of I(K) consisting
of polynomials of degree one. It is clear that I(K) is a semigroup, and Qk is a
group. In this section, we describe in terms of semidirect products the structure
of the semigroup I(K) for a compact set K that is neither a union of concentric
circles nor a segment. Our approach is based on the following result from the paper
[30] (see [30, Theorem 3], and also the related papers [12], [13]).

Theorem 7.5. Let K C C be a compact set that is neither a union of concentric
circles nor a segment, and A1, A polynomials of degree greater than one such that

(77) ATHK)Y = A HK) =K.

Then the group Q is finite and there exists a polynomial F such that F~1{K} = K
and

(78) Ay =p1 0 F°', Ay = g o F°%2

for some p1, ps € Qg and s1, 2 > 0. O

Theorem implies the following result.

Theorem 7.6. Let K C C be a compact set that is neither a union of concentric
circles nor a segment such that I(K) # (. Then for every A € I(K) the group Q
is a subgroup of the group G(A) such that va(x) C Q. Furthermore, there exists
R € I(K) such that I(K) = Sa, g

Proof. Let u be an arbitrary element of Q. Then Aoy € I(K) for every A € I(K),

implying by Theorem that there exist s > 1 and F' € I(K) such that
A=poF®, Aop=pgol®
for some pq, o € Q. Therefore,
Aopu=490A,
where § = ps o ufl € Q, and hence v4 (k) C Qk.
Further, it is clear that S, r C I(K) for every element R of I(K). On the
other hand, if R is any polynomial of minimum possible degree which belong to

I(K), then Theorem implies that for every A € I(K) there exists F' € I(K)
such that the equalities

A=p1oF*”, R=pyol
hold for some p1, s € Q and s > 1, implying that
A= o (43" o R)*™ € San.
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Theorem can be regarded as a generalization of the classification of pairs of
polynomials sharing Julia sets (see [1I, [3], [, [6], [43]). In particular, since for R
of the form (I76) the group G(R) is non-trivial if and only if R = 2"S(2*) for some
polynomial S and [ > 1, r > 0, Theorem [Z.6] implies that if P; and P is a pair of
non-special polynomials of degrees at least two sharing a Julia set, then, up to the

change ([@3)),
(79) Pl = €1R051, P2 = €2R052,

where R = 2"S(2*) for some polynomial S and [ > 1, 7 > 0, and €y, 5 are Ith root
of unity.

7.3. Left amenable semigroups. The following result is an extended version of
Theorem [IT] for semigroups of polynomials of degree at least two.

Theorem 7.7. Let S be a semigroup of polynomials of degree at least two containing
at least one non-special polynomial. Then the following conditions are equivalent.

(1) The semigroup S is left reversible.

(2) The semigroup S is left amenable.

(3) The semigroup S is amenable.

(4) The semigroup S is a subsemigroup of St g for some non-special polynomial

R of degree at least two and a subgroup I’ of G(R) such that yg(T') =T.

(5) The semigroup S is a subsemigroup of C(P) for some non-special polyno-
mial P of degree at least two.

(6) The semigroup S is power joined.

(7) The semigroup S is right Archimedean.

(8) Forall A, B € S there exist z1, 2o € CP' such that the forward orbits O z(z1)
and Op(z2) have an infinite intersection.

Proof. Let @ be a non-special polynomial that belongs to S. It follows from The-
orem that if S is power joined, then S is a subsemigroup of Cwo(Q), and
Theorem [6.8] implies that

where P = Q°° for some s > 1. Moreover, since P and () share a Julia set, P is
non-special. Thus, 6 = 5. The implication 5 = 4 follows from Theorem The
implication 4 = 3 follows from Theorem 3] The implication 3 = 2 is obvious.
The implication 2 = 1 follows from Proposition 2.4l Since 1 < 6 < 7 by Corollary
[6.I3] this shows that the first seven conditions of the theorem are equivalent.

The implication 6 = 8 is clear. Finally, it was shown in the papers [16], [17]
(see also [37] for another proof) that if A and B are polynomials of degree at least
two having orbits with infinite intersection, then A and B have a common iterate.
Thus, 8 = 6. ]

Proof of Theorem [Tl The implications 5 = 4 = 3 = 2 = 1 are proved in the
same way as the corresponding implications in Theorem [.7l On the other hand,
by Lemma [ZI3] to prove the implication 1 = 5 it is enough to prove that S is a
subsemigroup of C'(P). Therefore, this implication is a corollary of the correspond-
ing implication from Theorem [[ 7l Finally, it is clear that the final statement of
the theorem also follows from Theorem [T O
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7.4. Right amenable semigroups. The following result is the analogue of The-
orem [Z.7] for right amenable semigroups.

Theorem 7.8. Let S be a semigroup of polynomials of degree at least two containing
at least one non-special polynomial. Then the following conditions are equivalent.

(1) The semigroup S is right reversible.

(2) The semigroup S is right amenable.

(3) The semigroup S is a subsemigroup ofm for some non-special polynomial
R of degree at least two and a subgroup I' of G(R) such that yg(I') C T

(4) The semigroup S is a subsemigroup of I(K) for some compact set K C C,
which is neither a union of concentric circles nor a segment.

(5) The semigroup S is a subsemigroup of E(P) for some non-special polyno-
mial R of degree at least two.

(6) The semigroup S is power twisted.

(7) The semigroup S is left Archimedean.

(8) The semigroup S contains no free subsemigroup of rank two.

Proof. Let P be a non-special polynomial that belongs to S. If S is power twisted,
then S is a subsemigroup of E(P) by Theorem B3l Therefore, 6 = 5. Further,
since for every rational function P the support of up coincides with J(P), rational
functions sharing the measure of maximal entropy with P share the Julia set with
P, implying that

(80) E(P) C I(J(P)).

On the other hand, since the Julia set J(P) of a polynomial P is the boundary of
its filled-in Julia set, if J(P) is a union of circles, then J(P) is a circle. Thus, taking
into account the above mentioned fact that the Julia set of a non-special polynomial
P cannot be a circle or a segment, we conclude that 5 = 4. The implication 4 = 3
follows from Theorem The implication 3 = 2 follows from Theorem [£4] The
implication 2 = 1 follows from Proposition 24l Since 1 < 6 < 7 by Corollary
[6.14] this shows that the first seven conditions of the theorem are equivalent.

The implication 8 = 1 follows from Lemma 2.8 since any semigroup of rational
functions is right cancellative. Finally, to prove the implication 3 = 8, we observe
that if S is a subsemigroup of St g, then every subsemigroup S’ of S is also a
subsemigroup of St . Therefore, S’ is right amenable by Theorem 4] and hence
S’ is not free by Theorem 211 O

Proof of Theorem [L2. In view of (80), to prove the implication 5 = 4 it is enough
to show that (E(P)) C I(J(P)). Let u be an element of E(P). Then, Pou € E(P)

and hence P oy € I(J(P)) by @0). It follows now from the invariance of J(P)
with respect to P and P o u that

J(P) = (Pop) ' (J(P)) = u~ (P~M(J(P)) = " (J(P)).

The implications 4 = 3 = 2 = 1 are proved in the same way as in the proof
of Theorem [7.8 The implication 1 = 5 follows from Lemma [3.4] combined with
Theorem [[.8 The implications 6 = 1 and 3 = 6 are obtained in the same way as
the implications 8 = 1 and 3 = 8 in Theorem [Z.8l Finally, the last statement of
the theorem follows from Theorem [7.§ and Lemma 210 O
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