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In this article, we give several conditions implying the irreducibility of the
algebraic curve P(x)�Q(y)¼ 0, where P, Q are rational functions. We also
apply the results obtained to the functional equations P( f )¼Q(g) and
P( f )¼ cP(g), where c2C. For example, we show that for a generic pair of
rational functions P, Q the first equation has no non-constant solutions f, g
meromorphic on C whenever (degP� 1)(degQ� 1)� 2.

Keywords: algebraic curves; meromorphic functions; functional equations;
compositions; strong uniqueness polynomials; monodromy groups

AMS Subject Classifications: 30D05; 39B32

1. Introduction

In the article [1] Ha and Yang proved that if P, Q is a pair of polynomials such that
P and Q have no common finite critical values and n¼ degP and m¼ degQ satisfy
some constraints, then the functional equation

Pð f Þ ¼ Qð gÞ ð1Þ

has no non-constant solutions f, g meromorphic on C. This result yields in particular
that for given n, m satisfying above constraints there exists a proper algebraic subset
��C

nþmþ2 such that for any pair of polynomials

PðzÞ ¼ anz
n þ an�1z

n�1 þ � � � þ a1zþ a0, QðzÞ ¼ bmz
m þ am�1z

m�1 þ � � � þ b1zþ b0

with (an, . . . , a0, bm, . . . , b0) =2� Equation (1) has no non-constant solutions f, g
meromorphic on C. Some further results concerning Equation (1) were obtained in
the papers [2–5].

The approach of [1] is based on the Picard theorem which states that an algebraic
curve q(x, y)¼ 0 of genus� 2 cannot be parametrized by non-constant functions f, g
meromorphic on C. The Picard theorem implies that for given polynomials P, Q
Equation (1) has non-constant meromorphic solutions f, g if and only if the
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algebraic curve

PðxÞ �Qð yÞ ¼ 0 ð2Þ

has an irreducible component of genus� 1. Indeed, any non-constant solution f, g of
(1) parametrizes an irreducible component of (2) and the genus of this component
equals 0 or 1 by the Picard theorem. On the other hand, any irreducible component

of genus 0 or 1 of curve (2) may be parametrized correspondingly by rational or
elliptic functions f, g. Clearly, these functions satisfy (1) and hence (1) has
meromorphic solutions.

A question closely related to Equation (1) is the problem of description of the
so-called ‘strong uniqueness polynomials’ for meromorphic functions that is of
polynomials P such that the equality

Pð f Þ ¼ cPð gÞ ð3Þ

for c2C and non-constant functions f, g meromorphic on C implies that c¼ 1 and

f� g. This problem arose in connection with the problem of description of
‘uniqueness range sets’ for meromorphic functions and was studied in recent papers
[1,3–14]. Clearly, the Picard theorem is applicable to this problem too. Namely, it
follows from the Picard theorem that P is a strong uniqueness polynomial for

meromorphic functions if and only if for any c 6¼ 1 the curve P(x)� cP(y)¼ 0 has no
irreducible components of genus �1, and a unique such component of the curve
P(x)�P(y)¼ 0 is x� y¼ 0 (the last condition is obviously equivalent to the
condition that the curve

PðxÞ � Pð yÞ

x� y
¼ 0 ð4Þ

has no irreducible components of genus� 1).
Although the Picard theorem reduces the question about the existence of

meromorphic solutions of Equation (1) to an essentially algebraic question about

curve (2) most of the papers concerning Equation (1) or strong uniqueness
polynomials for meromorphic functions use the Nevanlinna value distribution
theory and other analytic methods. Actually, the algebraic methods seem to be
underestimated and one of the goals of this article is to show that these methods are

not less fruitful and sometimes lead to more precise results than the analytic ones.
In this article we consider Equations (1), (3) for arbitrary rational P and Q and

show that for ‘generic’ P, Q they have only ‘trivial’ meromorphic solutions whenever
the degrees of P and Q satisfy some mild restrictions. It is easy to see that the Picard
theorem is still applicable to Equations (1) and (3) with rational P, Q if instead of
curves (2) and (4) to consider correspondingly the curves

hP,Qðx, yÞ : P1ðxÞQ2ð yÞ � P2ðxÞQ1ð yÞ ¼ 0, ð5Þ

and

hPðx, yÞ :
P1ðxÞP2ð yÞ � P2ðxÞP1ð yÞ

x� y
¼ 0 ð6Þ

where P1, P2 and Q1, Q2 are pairs polynomials without common roots such that

P¼P1/P2, Q¼Q1/Q2. An explicit description of pairs of rational functions P, Q for
which the curve hP,Q(x, y) is irreducible is known only in the case where P, Q
are indecomposable polynomials [15]. On the other hand, in order to analyse
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Equations (1) and (3) for generic rational functions P, Q it is necessary to have
available conditions implying the irreducibility of curves (5) and (6) for wide classes of
P,Q. In this article, using the description of irreducible components of (5) given in [16],
we provide several such conditions and apply the results obtained to Equations (1) and
(3). Recall that a point s2CP

1 is called a critical value of a rational function F if the set
F�1{s} contains less than degF points, and s is called a simple critical value if F�1{s}
contains exactly degF� 1 points. We will denote the set of all critical values of F
by CðF Þ:

Our main result concerning curve (5) is a complete analysis of its irreducibility in
the case where CðPÞ \ CðQÞ contains ‘few’ elements. Namely, we show that curve (5)
is irreducible whenever CðPÞ \ CðQÞ is empty or contains one point and give an
explicit condition for its irreducibility in the case where CðPÞ \ CðQÞ contains two
points. Besides, we show that curve (6) is irreducible if P is indecomposable and has
at least one simple critical value, or if all critical values of P are simple.

As an application of our results about curves (5) and (6) we obtain several results
concerning Equations (1) and (3). In particular, we prove analogues of the results of [1]
for rational P, Q. Our main result concerning Equation (1) is the following theorem.

THEOREM 1.1 Let P, Q be a pair of rational functions such that CðPÞ \ CðQÞ ¼ ;.
Then functional equation (1) has non-constant solutions f, g meromorphic on C if and
only if n¼degP and m¼ degQ satisfy the inequality (n� 1)(m� 1)52.

From Theorem 1.1 we deduce the following result.1

THEOREM 1.2 Let n, m by any integer non-negative numbers such that the inequality
(m� 1)(n� 1)� 2 holds. Then there exists a proper algebraic subset
��CP

2nþ1
�CP

2mþ1 such that for any pair of rational functions

PðzÞ ¼
anz

n þ an�1z
n�1 þ � � � þ a0

bnzn þ bn�1zn�1 þ � � � þ b0
, QðzÞ ¼

cmz
m þ cm�1z

m�1 þ � � � þ c0
dmzm þ dm�1zm�1 þ � � � þ d0

with (an, . . . , a0, bn, . . . , b0, cm, . . . , c0, dm, . . . , d0) =2� Equation (1) has no non-constant
solutions f, g meromorphic on C.

Furthermore, we prove an analogue of Theorem 1.1 for the functional equation

Pð f Þ ¼ Pð gÞ, ð7Þ

where P is a rational function, generalizing the previous result of paper [13]
concerning the case where P is a polynomial.

THEOREM 1.3 Let P be a rational function of degree n which has only simple critical
values. Then functional equation (7) has non-constant solutions f, g such that f� g and
f, g are meromorphic on C if and only if n54.

Finally, from Theorems 1.1 and 1.3 we deduce the following theorem.

THEOREM 1.4 For any n� 4 there exists a proper algebraic subset ��CP
2nþ1 such

that for any rational function

PðzÞ ¼
anz

n þ an�1z
n�1 þ � � � þ a0

bnzn þ bn�1zn�1 þ � � � þ b0

with (an, . . . , a0, bn, . . . , b0) =2� equality (3), where f, g are non-constant functions
meromorphic on C, implies that c¼ 1 and f� g.
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The article is organized as follows. In Section 2, we recall a construction from [16]
which permits to describe irreducible components of (5) and (6) and to calculate
their genuses. In Section 3, we give several conditions implying the irreducibility of
curves (5) and (6). Finally, in Section 4, we prove our results concerning Equations (1)
and (3).

2. Components of hP,Q(x, y) and hP(x, y)

In this section, we recall a construction from [16] which permits to describe
irreducible components of the curves hP,Q(x, y) and hP(x, y).

For rational functions P andQ denote by S¼ {z1, z2, . . . , zr} the union of CðPÞ and
CðQÞ. Fix a point z0 from CP

1nS and small loops � i around zi, 1� i� r, such that
�1�2. . .�r¼ 1 in �1(CP

1nS, z0). Set n¼ degP, m¼degQ. For i, 1� i� r, denote by
�i2Sn (respectively �i2Sm) a permutation of points of P�1{z0} (respectively of
Q�1{z0}) induced by the lifting of � i by P (respectivelyQ). Clearly, the permutations �i
(respectively �i), 1� i� r, generate the monodromy group of P (respectively ofQ) and

�1�2 . . .�r ¼ 1, �1�2 . . .�r ¼ 1: ð8Þ

Notice that since S ¼ CðPÞ [ CðQÞ some of permutations �i, �i, 1� i� r, may be
identical permutations.

Define now permutations �1, �2, . . . , �r2Snm as follows: consider the set of mn
elements cj1, j2, 1� j1� n, 1� j2�m, and set ðcj1, j2 Þ

�i ¼ cj0
1
, j0
2
, where

j01 ¼ j�i1 , j 02 ¼ j�i2 , 1 � i � r:

It is convenient to consider cj1, j2, 1� j1� n, 1� j2�m, as elements of a n�mmatrixM.
Then the action of the permutation �i, 1� i� r, reduces to the permutation of rows of
M in accordance with the permutation �i and the permutation of columns of M in
accordance with the permutation �i.

In general, the permutation group �(P,Q) generated by �i, 1� i� r, is not
transitive on the set cj1, j2, 1� j1� n, 1� j2�m. Denote by o(P,Q) the number of
transitivity sets of the group �(P,Q) and let �i( j ), 1� i� r, 1� j� o(P,Q), be the
permutation induced by the permutation �i, 1� i� r, on the transitivity set Uj,
1� j� o(P,Q). We will denote the permutation group generated by the permutations
�i( j ), 1� i� r, for some fixed j, 1� j� o(P,Q), by Gj.

By construction, the group Gj, 1� j� o(P,Q), is a transitive permutation group
on Uj. Furthermore, it follows from (8) that �1�2. . .�r¼ 1 and hence for any j,
1� j� o(P,Q), the equality

�1ð j Þ�2ð j Þ . . . �rð j Þ ¼ 1

holds. By the Riemann existence theorem (see e.g. [18, Corollary 4.10]) this implies
that there exist compact Riemann surfaces Rj and holomorphic functions
hj :Rj!CP

1, 1� j� o(P,Q), non-ramified outside of S, such that the permutation
�i( j ), 1� i� r, 1� j� o(P,Q), is induced by the lifting of � i by hj.

Moreover, it follows from the construction of the group �(P,Q) that for each j,
1� j� o(P,Q), the intersections of the transitivity set Uj with the rows of M form an
imprimitivity system �P( j ) for the group Gj such that the permutations of blocks of
�P( j ) induced by �i( j ), 1� i� r, coincide with �i. Similarly, the intersections of Uj
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with the columns of M form an imprimitivity system �Q( j ) such that the
permutations of blocks of �Q( j ) induced by �i( j ), 1� i� r, coincide with �i.
This implies that there exist holomorphic functions uj :Rj!CP

1 and vj :Rj!CP
1

such that

hj ¼ P 	 uj ¼ Q 	 vj, ð9Þ

where the symbol 	 denotes the superposition of functions, f1 	 f2¼ f1( f2).
Finally, notice that for any choice of points a2P�1{z0} and b2Q�1{z0} there

exist uniquely defined j, 1� j� o(P,Q), and c2 h�1j fz0g such that

uj ðcÞ ¼ a, vj ðcÞ ¼ b: ð10Þ

Indeed, it is easy to see that if l, 1� l� n, is the index which corresponds to the point
a under the identification of the set P�1{z0} with the set of rows of M, and k,
1� k�m, is the index which corresponds to the point b under the identification of
the set Q�1{z0} with the set of columns ofM, then the needed index j is defined by the
condition that the transitivity set Uj contains the element cl,k, and the needed point c
is defined by the condition that c corresponds to cl,k under the identification of the
set h�1j fz0g with the set of elements of Uj.

PROPOSITION 2.1 [16] The Riemann surfaces Rj, 1� j� o(P,Q), are in a one-to-one
correspondence with irreducible components of the curve hP,Q(x, y). Furthermore, each
Rj is a desingularization of the corresponding component. In particular, the curve
hP,Q(x, y) is irreducible if and only if the group �(P,Q) is transitive.

Proof For j, 1� j� o(P,Q), denote by Sj the union of poles of uj and vj and define
the mapping tj :Rj nSj!C

2 by the formula

z! ðuj ðzÞ, vj ðzÞÞ:

It follows from formula (9) that for each j, 1� j� o(P,Q), the mapping tj maps Rj

to an irreducible component of the curve hP,Q(x, y). Furthermore, for any point (a, b)
on hP,Q(x, y), such that z0¼P(a)¼Q(b) is not contained in S, there exist uniquely
defined j, 1� j� o(P,Q), and c2 h�1j fz0g satisfying (10). This implies that the
Riemann surfaces Rj, 1� j� o(P,Q), are in a one-to-one correspondence with
irreducible components of hP,Q(x, y) and that each mapping tj, 1� j� o(P,Q), is
generically injective. Since an injective mapping of Riemann surfaces is an
isomorphism onto an open subset we conclude that each Rj is a desingularization
of the corresponding component of hP,Q(x, y). g

For i, 1� i� r, denote by

�i ¼ ð pi,1, pi,2, . . . , pi,ui Þ

the collection of lengths of disjoint cycles in the permutation �i, by

�i ¼ ðqi,1, qi,2, . . . , qi,viÞ

the collection of lengths of disjoint cycles in the permutation �i and by ei( j ), 1� i� r,
1� j� o(P,Q), the number of disjoint cycles in the permutation �i( j ). The Riemann–
Hurwitz formula implies that for the genus gj, 1� j� o(P,Q), of the component of
hP,Q(x, y) corresponding to Rj we have

2� 2gðRj Þ ¼
Xr
i¼1

eið j Þ � cardfUjgðr� 2Þ:
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On the other hand, it easily follows from the definition that the permutation �i,
1� i� r, contains

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1qi, j2 Þ

disjointed cycles. In particular, in the case where the curve hP,Q(x, y) is irreducible
we obtain the following formula for its genus established earlier in [19].

COROLLARY 2.2 If the curve hP,Q(x, y) is irreducible then for its genus g the following
formula holds:

2� 2g ¼
Xr
i¼1

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1qi, j2 Þ � ðr� 2Þnm: ð11Þ

Similarly, we obtain the following corollary concerning the curve hP(x, y).

COROLLARY 2.3 The curve hP(x, y) is irreducible if and only if the monodromy group
G(P) of P is doubly transitive. Furthermore, if hP(x, y) is irreducible then for its genus g
the following formula holds:

4� 2g ¼
Xr
i¼1

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1pi, j2Þ � ðr� 2Þn2: ð12Þ

Proof Indeed, it follows from Proposition 2.1 that hP(x, y)¼ 0 is irreducible if and
only if the group �(P,P) has two transitivity sets on M: the diagonal

D : fcj, j j 1 � j � ng

(which is always a transitivity set) and its complement. On the other hand, it is easy
to see that the last condition is equivalent to the doubly transitivity of G(P).

Furthermore, the Riemann–Hurwitz formula implies that if hP(x, y) is
irreducible, then

2� 2g ¼
Xr
i¼1

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1pi, j2 Þ � �

 !
� ðr� 2Þðn2 � nÞ,

where � is the total number of disjointed cycles of permutations �i, 1� i� r, on D.
Since � coincides with the total number of disjointed cycles of permutations �i,
1� i� r, using the Riemann–Hurwitz formula again we see that �¼ 2þ (r� 2)n and
therefore (12) holds. g

3. Irreducibility of hP,Q(x, y) and hP(x, y)

3.1. Irreducibility of hP,Q(x, y)

PROPOSITION 3.1 Let P, Q be rational functions, degP¼ n, degQ¼m. Then any of
the conditions below implies the irreducibility of the curve hP,Q(x, y)¼ 0.

(1) CðPÞ \ CðQÞ contains at most one element,
(2) GCD(n,m)¼ 1,
(3) P is a polynomial and Q is a rational function with no multiple poles.
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Proof Suppose that (1) holds. Without loss of generality we may assume that

CðPÞ \ CðQÞ ¼ z1 (if CðPÞ \ CðQÞ ¼ ; the proof is similar) and that for some s,

2� s5r, the following condition holds: for i, 2� i� s, the point zi is a critical value of

P but is not a critical value of Q while for i, s5i� r, the point zi is a critical value of

Q but is not a critical value of P. This implies that for i, 2� i� s, the permutation �i
permutes rows of M in accordance with the permutation �i but transforms each

column of M to itself. Similarly, for i, s5i� r, the permutation �i permutes columns

of M in accordance with the permutation �i but transforms each row of M to itself.
Since by (8) the permutation �1 is contained in the group generated by �2,

�3, . . . ,�r the last group is transitive on the set P�1{z0}. This implies that the

subgroup �1 of �(P,Q) generated by �2, �3, . . . , �s acts transitively on the set of rows.

Similarly, the subgroup �2 of �(P,Q) generated by �sþ1, �sþ2, . . . , �r acts transitively
on the set of columns. If now ci1, j1 and ci2, j2 are two elements of M and �12�1

(respectively �22�2) is an element such that i�11 ¼ i2 (respectively j�21 ¼ j2) then

ðci1, j1 Þ
�1�2 ¼ ðci2, j1 Þ

�2 ¼ ci2, j2 :

Therefore, the subgroup of �(P,Q) generated by �2, �3, . . . , �r acts transitively on the

set of elements of M and hence the action of the group �(P,Q) is also transitive.
In order to prove the sufficiency of (2) it is enough to observe that since for any j,

1� j� o(P,Q), the imprimitivity system �P( j ) (respectively �Q( j )) contains n

(respectively m blocks), the cardinality of any set Uj, 1� j� o(P,Q), is divisible by the

LCM(n,m). On the other hand, if (2) holds then LCM(n,m)¼mn. Since M contains

mn elements this implies that the group �(P,Q) is transitive.
Suppose finally that (3) holds. Without loss of generality we may assume that

z1¼1. Let ci1, j2 and ci2, j2 be two elements of M. Since the group �1,�1, . . . ,�r is
transitive on the set Q�1{z0} there exists g2�(P,Q) such that (ci1, j1)

g
¼ ci, j2 for some i,

1� i� n. On the other hand, since P is a polynomial the permutation �1 is a full cycle
and hence there exists a number k, 1� k� n, such that i�

k
1 ¼ i2. Furthermore, since Q

has no multiple poles the permutation �1 transforms each column of M to itself.

Therefore,

ðci1, j1Þ
g�k

1 ¼ ðci, j1 Þ
�k
1 ¼ ci2, j2

and hence the group �(P,Q) is transitive. g

If rational functions P and Q have two common critical values then the curve

hP,Q(x, y) can be reducible. Nevertheless, it turns out that all reducible curves

hP,Q(x, y) for which CðPÞ \ CðQÞ contains two elements can be described explicitly. In

order to obtain such a description (and another proof of the first part of Proposition

3.1) we will use the following result which is due to Fried (see [20, Proposition 2], [21,

Lemma 4.3] or [16, Theorem 3.5]).
For a rational function F¼F1/F2 denote by �F the splitting field of the

polynomial F1(x)� zF2(x)¼ 0 over C(z).

PROPOSITION 3.2 [20]: Let P, Q be rational functions such that the curve hP,Q(x, y)

is reducible. Then there exist rational functions A,B, ~P, ~Q such that

P ¼ A 	 ~P, Q ¼ B 	 ~Q, oðA,BÞ ¼ oðP,QÞ, �A ¼ �B: ð13Þ

In particular, it follows from �A¼�B that CðAÞ ¼ CðBÞ:
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Notice that since for the functions A, B in Proposition 3.2 the inequality
o(A,B)¼ o(P,Q)41 holds, the degrees of A, B are greater than 1.

The proposition below supplements the first part of Proposition 3.1.

PROPOSITION 3.3 Let P, Q be rational functions such that CðPÞ \ CðQÞ contains two
elements. Then the curve hP,Q(x, y) is reducible if and only if there exist rational
functions P1, Q1 and a Möbius transformation � such that

P ¼ � 	 zd 	 P1, Q ¼ � 	 zd 	Q1 ð14Þ

for some integer d41.

Proof Suppose that hP,Q(x, y) is reducible and let A,B, ~P, ~Q be rational functions
from Proposition 3.2. Set C ¼ CðAÞ ¼ CðBÞ: By the chain rule

CðPÞ ¼ CðAÞ [ AðCð ~PÞÞ, CðQÞ ¼ CðBÞ [ BðCð ~QÞÞ

and therefore C 
 CðPÞ \ CðQÞ. Therefore, since cardfCðPÞ \ CðQÞg ¼ 2 and the
degrees of A,B are greater than 1, each of the functions A and B has exactly two
critical values.

It follows from equality (8) that for the permutations 	1, 	2 corresponding to the
critical values of A the equality 	1	2¼ 1 holds. Therefore each of these permutations
is a cycle of length d¼ degA and this implies easily that there exist Möbius
transformations � and 
 such that A¼� 	 zd 	 
. Similarly, B ¼ ~� 	 z

~d 	 ~
 for some
Möbius transformations ~�, ~
 and ~d ¼ degB: Furthermore, it follows from �A¼�B

that ~d ¼ d and the equality CðAÞ ¼ CðBÞ implies that ~� ¼ � 	 cz�1 for some c2C.
Setting now

P1 ¼ 
 	 ~P, Q1 ¼ c1=dz�1 	 ~
 	 ~Q

we conclude that (14) holds for some d41.
Finally, it is clear that if (14) holds then the curve hP,Q(x, y) is reducible. g

3.2. Irreducibility of hP(x, y)

Recall that a rational function P is called decomposable if there exist rational
functions P1, P2, degP141, degP241, such that P¼P1 	P2. Otherwise, P is called
indecomposable.

It is easy to see that if the curve hP(x, y) is irreducible then P is necessarily
indecomposable. Indeed, since the curve hP1,P1

(x, y)¼ 0 has the factor x� y, the curve
hP1	P2,P1	P2

(x, y)¼ 0 has the factor hP2,P2
(x, y)¼ 0 and hence the curve hP1	P2

(x, y) has
the factor hP2

(x, y).

PROPOSITION 3.4 Let P be an indecomposable rational function. Suppose that P has
at least one simple critical value. Then the curve hP(x, y) is irreducible.

Proof Indeed, a rational function P is indecomposable if and only if its monodromy
group G(P) is primitive. Furthermore, if P has a simple critical value zj, 1� j� r, then
the permutation �j which corresponds to this critical value is a transposition. On the
other hand, it is known (see e.g. [22, Theorem 13.3]) that a primitive permutation
group containing a transposition is a full symmetric group. Since a symmetric group
is doubly transitive Proposition 3.4 follows now from Corollary 2.3. g

Recall that a point y2CP
1 is called a critical point of a rational function P if the

local multiplicity of P at y is greater than 1. Say that a rational function P satisfies
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the separation condition if for any distinct critical points y1, y2 of P the inequality
P(y1) 6¼P(y2) holds. Notice that this condition is often assumed in the papers about
uniqueness polynomials for meromorphic functions (see e.g. [6,7,10–12]).
Proposition 3.5 below shows that the separation condition actually is closely related
to the indecomposability condition.

PROPOSITION 3.5 Let P be a rational function satisfying the separation condition.
Then either P is indecomposable or

P ¼ �1 	 z
n 	 �2 ð15Þ

for some Möbius transformations �1, �2 and a composite number n. In particular, if P
has at least one simple critical value then the curve hP(x, y) is irreducible.

Proof First of all observe that for any finite set T�CP
1 and any rational function

F of degree n the Riemann–Hurwitz formula implies that

cardfF�1fTgg � 2þ ðcardfTg � 2Þn ð16Þ

and the equality attains if and only if T ¼ CðF Þ: In particular, if n41 then
card{F�1{T}}4card{T} unless T ¼ CðF Þ and cardfCðF Þg ¼ 2. Recall that as it was
noted in the proof of Proposition 3.3 the equality cardfCðF Þg ¼ 2 implies that there
exist Möbius transformations � and 
 such that F¼� 	 zn 	 
.

Suppose now that a rational function P satisfying the separation condition is
decomposable and let P1, P2 be rational functions of degree greater than 1 such that
P¼P1 	P2. Denote by SðP1Þ the set of critical points of P1. It follows from the chain
rule that if � 2 SðP1Þ then any point � such that P2(�)¼ � is a critical point of P.
Therefore, the separation condition implies that for any � 2 SðP1Þ the set P�12 f�g
consists of a unique point and hence

cardfP�12 fSðP1Þgg ¼ cardfSðP1Þg: ð17Þ

As it was observed above (17) implies that SðP1Þ ¼ CðP2Þ, cardfCðP2Þg ¼ 2, and
P2 ¼ �2 	 z

d2 	 �2 for some Möbius transformations �2, �2 and d241.
Furthermore, it follows from cardfSðP1g ¼ 2 that cardfCðP1Þg ¼ 2 and therefore

P1 ¼ �1 	 z
d1 	 �1 for some Möbius transformations �1,�1 and d1 4 1. Since SðP1Þ ¼

CðP2Þ we have �1 	 �2 ¼ cz�1 and hence (15) holds for �1 ¼ �1 	 c
d1z�1, �2 ¼ �2,

n¼ d1d2. Finally, if P has at least one simple critical value then it may not have the
form (15) and hence the curve hP(x, y) is irreducible by Proposition 3.4. g

COROLLARY 3.6 Let P be a rational function which has only simple critical values.
Then the curve hP(x, y) is irreducible.

Proof Indeed, a critical value � of a rational function P is simple if and only if the
set P�1{�} contains a unique critical point and the local multiplicity of P at this point
is 2. Therefore, if P has only simple critical values, then P satisfies the separation
condition and hence hP(x, y) is irreducible by Proposition 3.5. g

4. Equations P # f¼Q # g and P # f¼ cP # g

4.1. Equation P # f¼Q # g

Proof of Theorem 1.1 Since CðPÞ \ CðQÞ ¼ ; it follows from the first part of
Proposition 3.1 that the curve hP,Q(x, y)¼ 0 is irreducible. Therefore, in view of the
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Picard theorem in order to prove the theorem it is enough to check that the genus

of hP,Q(x, y)¼ 0 equals (n� 1)(m� 1).
We will keep the notation of Section 2. Without loss of generality we may assume

that there exists s, 15s5r, such that for i, 1� i� s, the point zi is a critical value of P

but is not a critical value of Q while for i, s5i� r, the point zi is a critical value of Q

but is not a critical value of P. Then by Corollary 2.2 we have

2� 2g ¼
Xr
i¼1

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1qi, j2 Þ � ðr� 2Þnm

¼
Xs
i¼1

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1qi, j2 Þ þ
Xr
i¼sþ1

Xvi
j2¼1

Xui
j1¼1

GCDð pi, j1qi, j2 Þ � ðr� 2Þnm

¼
Xs
i¼1

Xui
j1¼1

Xm
j2¼1

1þ
Xs
i¼1

Xvi
j2¼1

Xn
j1¼1

1� ðr� 2Þnm

¼
Xs
i¼1

Xui
j1¼1

mþ
Xs
i¼1

Xvi
j2¼1

n� ðr� 2Þnm:

Since by the Riemann–Hurwitz formula we have

Xs
i¼1

Xui
j1¼1

1 ¼ ðs� 2Þnþ 2,
Xs
i¼1

Xvi
j2¼1

1 ¼ ðr� s� 2Þmþ 2,

this implies that

2� 2g ¼ ððs� 2Þnþ 2Þmþ ððr� s� 2Þmþ 2Þn� ðr� 2Þnm ¼ 2mþ 2n� 2mn:

Therefore,

g ¼ nm�m� nþ 1 ¼ ðm� 1Þðn� 1Þ: g

Proof of Theorem 1.2 First of all remove from CP
2nþ1
�CP

2mþ1 the hyperplanes

bn¼ 0 and dm¼ 0. Then we may set bn¼ 1, dm¼ 1 and identify the pair P, Q with the

point (an, . . . , a0, bn�1, . . . , b0, cm, . . . , c0, dm�1, . . . , d0) of the affine space C
2nþ2mþ2.

Notice that the condition bn 6¼ 0, dm 6¼ 0 implies that the point1 cannot be a critical

point of P or Q corresponding to the critical value 1. Furthermore, remove from

C
2nþ2mþ2 the hyperplanes �1 and �1 corresponding to the discriminants of the

polynomials

BðzÞ ¼ zn þ bn�1z
n�1 þ � � � þ b0, DðzÞ ¼ zm þ dm�1z

m�1 þ � � � þ d0:

Then for remaining pairs P, Q finite points from CP
1 also can not be critical points

corresponding to the critical value 1. Finally, remove the hyperplanes

�2: an�1� bn�1an¼ 0 and �2: cm�1� dm�1cm¼ 0 containing functions for which

the point 1 is a critical point. If now P, Q is a pair from C
2nþ2mþ2 n�, where

�¼�1[�2[�1[�2, then all critical values and critical points of P, Q are finite.
Set

EðzÞ ¼ A0ðzÞBðzÞ � AðzÞB0ðzÞ, FðzÞ ¼ C 0ðzÞDðzÞ � CðzÞD0ðzÞ,
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where

AðzÞ ¼ anz
n þ an�1z

n�1 þ � � � þ a0, CðzÞ ¼ cmz
m þ cm�1z

m�1 þ � � � þ c0:

By construction, if P, Q is a pair from C
2nþ2mþ2 n� then any critical point of P

(respectively of Q) is a zero of the polynomial E (respectively of F). Furthermore, the

set of critical values of P (respectively of Q) coincides with the set of zeros of the

polynomial U(x) (respectively of the polynomial V(x)), where

UðxÞ ¼ ReszðEðzÞ,AðzÞ � xBðzÞÞ VðxÞ ¼ ReszðFðzÞ,CðzÞ � xDðzÞÞ,

and the corresponding resultants are considered as polynomials in x. Therefore, after

removing from C
2nþ2mþ2 n� the hyperplane corresponding to

ResxðUðxÞ,VðxÞÞ

all remaining pairs P, Q have different critical values and corollary follows from

Theorem A. g

Clearly, using formula (11) one can obtain other criteria, similar to Theorem 1.1, for

Equation (1) to have only trivial solutions. However, the finding of a complete list

of rational functions for which the curve hP,Q(x, y) has a factor of genus 0 or 1, or

equivalently the equation P 	 g¼Q 	 g has non-constant meromorphic solutions,

seems to be a very difficult problem. Let us mention several particular cases where

the answer is known.
If P, Q are polynomials, then the description of curves hP,Q(x, y) having a factor

of genus zero with one point at infinity is equivalent to the classification of

polynomial solutions of the equation

P 	 F ¼ Q 	 G: ð18Þ

The last problem was essentially solved by Ritt in his classical paper [23]. Notice that

Equation (18) is closely connected with the problem of description of polynomials F,

G satisfying the equality F�1{S}¼G�1{T} for some compact sets S, T�C [24].
A more general question of description of curves hP,Q(x, y) with polynomial P, Q

having a factor of genus 0 with at most two points at infinity is related to the number

theory and was studied in the papers of Fried [25] and Bilu and Tichy [26]. In

particular, in [26] an explicit list of such curves was obtained. Finally, the

classification of solutions of the equation

L ¼ A 	 B ¼ C 	D,

where L is a rational function with at most two poles and A, B, C, D are arbitrary

rational functions, was obtained in the recent papers [16,27] (see also [28]). Notice

that this classification, generalizing the Ritt theorem and the classification of Bilu

and Tichy, also permits to describe solutions of the functional equation

h ¼ Pð f Þ ¼ Qð gÞ,

where P, Q are rational functions and f, g, h are entire functions [5]. In its turns it

gives an explicit description of strong uniqueness polynomials for entire functions [5].
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Another important result about curves hP,Q(x, y), obtained by Avanzi and
Zannier [29], is a classification of polynomials P such that the curve P(x)� cP(y)¼ 0
has a factor of genus zero for some c2C. Notice that this result solves ‘a half’ of the
problem of description of strong uniqueness polynomials for meromorphic
functions. However, an extension of the classification of [29] which would include
also factors of genus 1 does not seem to be an easy problem.

Finally, notice that in the other paper by Avanzi and Zannier [30] was obtained a
classification of curves hP,Q(x, y) of genus 1 under the condition that
GCD(degP, degQ)¼ 1. Observe that together with the Ritt theorem this gives a
complete classification of polynomials such that GCD(degP, degQ)¼ 1 and the
equation P 	 f¼Q 	 g has non-constant meromorphic solutions.

4.2. Equation P # f¼ cP # g

Proof of Theorem 1.3 We will keep the notation of Section 2. First of all observe
that all critical values of a rational function P, degP¼ n, are simple if and only if
for the number of critical values r of P the equality

r ¼ 2n� 2 ð19Þ

holds. Indeed, if all critical values of P are simple then

�i ¼ ð2, 1, 1, . . . , 1Þ, ui ¼ n� 1, 1 � i � r, ð20Þ

and therefore by the Riemann–Hurwitz formula we have

2 ¼
Xr
i¼1

ui � ðr� 2Þn ¼ 2n� r: ð21Þ

On the other hand, if (19) holds then the Riemann–Hurwitz formula implies that

X2n�2
i¼1

ui ¼ 2n2 � 4nþ 2 ¼ ðn� 1Þð2n� 2Þ: ð22Þ

Since for any i, 1� i� 2n� 2, the inequality ui� n� 1 holds and the equality attains
if and only if �i¼ (2, 1, 1, . . . , 1), it follows from (22) that all critical values of P are
simple.

Furthermore, by Corollary 3.6 the curve hP(x, y) is irreducible. Since (20) implies
that for any i, 1� i� r,

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1pi, j2 Þ ¼ n2 � 2nþ 2

it follows from Corollary 2.3 taking into account (19) that

4� 2g ¼
Xr
i¼1

Xui
j1¼1

Xvi
j2¼1

GCDð pi, j1pi, j2 Þ � ðr� 2Þn2 ¼ rðn2 � 2nþ 2Þ � ðr� 2Þn2

¼ ð2n� 2Þðn2 � 2nþ 2Þ � ð2n� 4Þn2 ¼ �2n2 þ 8n� 4:

Hence g¼ (n� 2)2 and therefore g is less than 2 if and only if n54. g
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Proof of Theorem 1.4 We will keep the notation used in the proof of Theorem 1.2.

First of all remove from CP
2nþ1 the hyperplane bn¼ 0 and identify a rational

function P with the point (an, . . . , a0, bn�1, . . . , b0) of the affine space C
2nþ1.

Furthermore, remove from C
2nþ1 the hyperplanes �1 and �2. As above if

P2C
2nþ1 n {�1[�2} then any critical point of P is a zero of the polynomial E(z)

and critical values of P coincide with zeros of the polynomial U(x).
Furthermore, after removing from C

2nþ1 n {�1[�2} the hyperplane �1 corre-
sponding to the discriminant of the polynomial U(x) any remaining function P has

degxU ¼ degzE ¼ 2n� 2

distinct critical values. As it was observed in the proof of Theorem 1.3 this implies

that all critical values of P are simple. In particular, by Theorem 1.3 the curve

hP(x, y) is irreducible and of genus41.
Consider a polynomial in y defined by the expression

Lð yÞ ¼ ResxðUðxÞ, y
2n�2Uðx=yÞÞ:

It is easy to see that degL(y)¼ (2n� 2)2 and that the set of zeros of L(y) coincides

with the set CP consisting of numbers �2C
* such that CðPÞ \ Cð�PÞ 6¼ ;:

Furthermore, it easily follows from the definition of the resultant that y¼ 1 is a

root of multiplicity 2n� 2 of L(y). Set

Wð yÞ ¼
Lð yÞ

ð y� 1Þ2n�2

and define �2 as the hyperplane of C
2nþ1 corresponding to the discriminant of W(y).

If P2C
2nþ1 n�, where �¼ {�1[�2[�1[�2}, then the set CP contains

degWð yÞ ¼ ð2n� 2Þ2 � ð2n� 2Þ ¼ ð2n� 2Þð2n� 3Þ

different elements distinct from 1. On the other hand, if

CðPÞ ¼ fz1, z2, . . . , z2n�2g

then any element �2CP, � 6¼ 1, should have the form zi/zj for some distinct i, j,
1� i, j� 2n� 2, and therefore CP n {1} contains at most

2C2
2n�2 ¼ ð2n� 2Þð2n� 3Þ

elements and the equality attains if and only if for any �2CP, � 6¼ 1, the set

CðPÞ \ Cð�PÞ contains exactly one element.
Hence, if P2C

2nþ1 n� then for any c2C, c 6¼ 1, the intersection CðPÞ \ CðcPÞ

contains at most one element and therefore the curve hP,cP(x, y) is irreducible by

Proposition 3.1. If CðPÞ \ CðcPÞ ¼ ; then by Theorem 1.1 the genus of hP,cP(x, y)
equals (n� 1)2. On the other hand, if CðPÞ \ CðcPÞ contains a single element then it is

easy to calculate using formula (11) and taking into account equalities (20) that the

genus of hP,cP(x, y) equals n2� 2n. In both cases the assumption n� 4 implies that

the genus of hP,cP(x, y) is greater than 1. g
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Note
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