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1. Introduction

Let Rt[θ] be the ring of trigonometric polynomials over R, that is the ring generated 
over R by the functions cos θ, sin θ. The center problem for the Abel differential equation

dr

dθ
= l̂(θ)r3 + m̂(θ)r2, (1)

where l̂, m̂ ∈ Rt[θ], is to find conditions implying that all its solutions are periodic 
on [0, 2π] whenever the initial condition is small enough. This problem is of a great 
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interest because of its relation with the classical Poincaré center-focus problem about 
the characterization of planar vector fields

{
ẋ = −y + F (x, y),
ẏ = x + G(x, y),

(2)

where F (x, y), G(x, y) are polynomials without constant and linear terms, whose integral 
trajectories are closed in a neighborhood of the origin. Namely, it was shown in [8] that 
in the case where F (x, y), G(x, y) are homogeneous and of the same degree, the Poincaré
problem reduces to the center problem for Abel equation (1). The center problem for 
the Abel equation and its modifications is the subject of many recent papers involving 
different approaches and techniques (see e.g. [1,4–7,9–12] and the bibliography therein).

Set

l(θ) =
θ∫

0

l̂(s)ds, m(θ) =
θ∫

0

m̂(s)ds. (3)

The following “composition condition” introduced in [2] is sufficient for Eq. (1) to have 
a center: there exist C1-functions l̃, m̃, w with w being 2π-periodic such that

l(θ) = l̃
(
w(θ)

)
, m(θ) = m̃

(
w(θ)

)
. (4)

Indeed, if (4) holds, then any solution of (1) has the form y(θ) = ỹ(w(θ)), where ỹ is a 
solution of the equation

dr

dθ
= l̃′(θ)r3 + m̃′(θ)r2,

implying that y(0) = y(2π).
In general, the composition condition is not necessary for (1) to have a center [3,4]. 

However, the composition condition is necessary and sufficient for some stronger forms of 
the center condition as well as for some other conditions related to the center problem (see 
e.g. [9,12]). In fact, in all such cases the following apparently stronger condition imposed 
on l and m is satisfied: there exist a trigonometric polynomial w and polynomials l̃, m̃ such 
that equalities (4) hold. In this note we show that the last condition is actually equivalent 
to the composition condition. More precisely, we prove the following statement:

Theorem 1.1. Let l, m ∈ Rt[θ]. Assume that there exist continuous functions l̃, m̃, w with 
w being 2π-periodic such that the equalities

l(θ) = l̃
(
w(θ)

)
, m(θ) = m̃

(
w(θ)

)
hold. Then they hold for some l̃, m̃ ∈ R[x] and w ∈ Rt[θ].
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Thus, despite its analytic nature the composition condition turns out to be essentially 
algebraic. In particular, it can be expressed in terms of algebraic conditions imposed on 
coefficients of corresponding trigonometric polynomials.

2. Proof of Theorem 1.1

Denote by Rt(θ) the quotient field of Rt[θ]. It is well known that Rt(θ) is isomorphic 
to the field R(x), where the isomorphism ψ : Rt(θ) → R(x) is given by formulas

ψ(sin θ) = 2x
1 + x2 , ψ(cos θ) = 1 − x2

1 + x2 , ψ−1(x) = tan
(
θ

2

)
.

In particular, this implies by the Lüroth theorem that any subfield k of Rt(θ) has the 
form k = R(b) for some b ∈ Rt(θ).

Lemma 2.1. Let l, m be non-constant trigonometric polynomials. Assume that there exist 
continuous functions ̃l, m̃, w such that equalities (4) hold. Then the field R(l, m) is distinct 
from the field R(tan(nθ2 )) for any n ≥ 1.

Proof. Assume that R(l, m) = R(tan(nθ2 )) for some n ≥ 1. Then there exists u ∈ R(x, y)
such that

tan
(
nθ

2

)
= u(l,m). (5)

Clearly, conditions (4) and (5) imply that for any θ1, θ2 ∈ R the equality

tan
(
nθ1

2

)
= tan

(
nθ2

2

)
(6)

holds whenever

w(θ1) = w(θ2). (7)

On the other hand, equality (6) holds if and only if

θ1 − θ2 ≡ 0 mod 2π
n
.

Therefore, in order to prove the lemma it is enough to find θ1, θ2 ∈ R such that (7) holds 
but

θ1 − θ2 �≡ 0 mod 2π
n
. (8)

Since the function w is continuous and 2π-periodic, it attains its maximum value x0
on R. Furthermore, it follows easily from the intermediate value theorem that for any 
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positive ε which is small enough the equation w(θ) = x0 − ε has at least two distinct 
roots θ1, θ2 which satisfy (8). �

The following lemma, describing subfields of Rt(θ) containing trigonometric polyno-
mials, is proved in the paper [12, Proposition 21] and in the paper [9, Theorem 5]. 
However, the proofs given in [12,9] are quite complicated and occupy several pages. Be-
low we provide a short independent proof which is based on the fact that the ring Rt[θ]
is isomorphic to a subring of the ring C[z, 1/z] of complex Laurent polynomials, where 
an isomorphism ϕ : Rt[θ] → C[z, 1/z] is given by the formulas:

cos θ →
(
z + 1/z

2

)
, sin θ →

(
z − 1/z

2i

)
. (9)

Notice that the isomorphism ϕ can be used for a construction of a comprehensive de-
composition theory of trigonometric polynomials (see [13]).

Lemma 2.2. Let k be a subfield of Rt(θ) containing a non-constant trigonometric polyno-
mial. Then either k = R(tan(nθ2 )) for some n ∈ N, or k = R(b) for some trigonometric 
polynomial b.

Proof. For brevity, we will denote the ring C[z, 1/z] by L[z] and the image of Rt[θ] in 
L under the isomorphism ϕ by LR[z]. It is easy to see that LR[z] consists of Laurent 
polynomials L such that L̄(1/z) = L(z), where L̄ denotes the Laurent polynomial ob-
tained from L by complex conjugation of all its coefficients. The isomorphism ϕ extends 
to an isomorphism between the quotient field Rt(θ) of Rt[θ] and the quotient field LR(z)
of LR[z]. Clearly, the field LR(z) consists of rational functions R satisfying the equality 
R̄(1/z) = R(z).

Assume that k is a subfield of Rt(θ) containing a non-constant trigonometric polyno-
mial l. Let b be an element of Rt(θ) such that k = R(b) and let A ∈ R(x) be a rational 
function such that l(θ) = A(b(θ)). Set L = ϕ(l), B = ϕ(b). Clearly, L(z) = A(B(z)). 
Further, since L is a Laurent polynomial we have:

L−1{∞} = B−1{A−1{∞}
}

= {0,∞},

implying that the set A−1{∞} contains at most two points. In more details, either

A−1{∞} = {a} and B−1{a} = {0,∞},

for some a ∈ CP
1, or

A−1{∞} = {a, b} and B−1{a, b} = {0,∞},

for some a, b ∈ CP
1.
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It is easy to see that in the first case there exists a rational function μ ∈ C(z) of 
degree one such that A(μ(z)) is a polynomial and μ−1(B(z)) is a Laurent polynomial, 
while in the second case there exists a rational function μ ∈ C(z) of degree one such that 
A(μ(z)) is a Laurent polynomial and μ−1(B(z)) = zd, d > 1.

Since A ∈ R(x), if a is a pole of A, then ā is also a pole. Therefore, in the first 
case the equality A−1{∞} = {a} implies that a ∈ R, unless a = ∞. Hence, setting 
μ(z) = a +1/z, we can assume that μ has real coefficients. Since B ∈ LR(z), this implies 
that the function μ−1(B(z)) is contained in LR[z], and hence μ−1(b(θ)) is a trigonometric 
polynomial, since ϕ is an isomorphism. Clearly, this polynomial generates the field k.

In the second case, composing μ with an other rational function of degree one, we 
obtain a rational function μ1 ∈ C(z) of degree one such that

μ−1
1

(
B(z)

)
= 1

i

zd − 1
zd + 1 = 1

i

(
zd/2 − z−d/2

zd/2 + z−d/2

)
= ϕ

(
tan(dθ/2)

)
.

Since the rational functions ϕ(tan(dθ/2)) and B(z) are contained in LR(z), the last equal-
ity implies easily that μ̄−1

1 = μ−1
1 . Therefore, μ−1

1 ∈ R(x) and μ−1
1 (b) = tan(dθ/2). �

Theorem 1.1 follows from the above lemmas. Indeed, by Lemma 2.1, the field k =
R(l, m) is distinct from the field R(tan(nθ2 )) for any n ≥ 1. Therefore, by Lemma 2.2
this field is generated by some trigonometric polynomial w implying that equalities (4)
hold for some l̃, m̃ ∈ R(x) and w ∈ Rt[θ]. Moreover, using the isomorphism ϕ, it is easy 
to see that in fact l̃, m̃ ∈ R[x].
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