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Abstract

In the recent paper by Pakovich and Muzychuk [Solution of the polynomial moment
problem, Proc. Lond. Math. Soc. (3) 99 (2009), 633–657] it was shown that any solution
of ‘the polynomial moment problem’, which asks to describe polynomials Q orthogonal
to all powers of a given polynomial P on a segment, may be obtained as a sum of
so-called ‘reducible’ solutions related to different decompositions of P into a composition
of two polynomials of lower degrees. However, the methods of that paper do not
permit us to estimate the number of necessary reducible solutions or to describe them
explicitly. In this paper we provide a description of polynomial solutions of the functional
equation P1 ◦W1 = P2 ◦W2 = · · ·= Pr ◦Wr, and on this base describe solutions of the
polynomial moment problem in an explicit form suitable for applications.

1. Introduction

About a decade ago, in the series of papers [BFY98, BFY99, BFY00a, BFY00b] the following
‘polynomial moment problem’ was posed: for a given complex polynomial P and complex
numbers a, b describe polynomials Q satisfying the system of equations∫ b

a
P k dQ= 0, k > 0. (1)

Despite its rather classical and simple setting this problem turned out to be quite difficult and
was intensively studied in many recent papers (see, e.g., [BFY99, BFY00a, BFY00b, BFY01,
Chr00, Pak03b, Pak02, Pak03a, Pak04, Pak05, PM09, PRY04, Roy01]).

The main motivation for the study of the polynomial moment problem is its relation with
the center problem for the Abel differential equation

dy

dz
= p(z)y2 + q(z)y3 (2)

with polynomial coefficients p, q in the complex domain. For given a, b ∈ C the center problem for
the Abel equation is to find necessary and sufficient conditions on p, q which imply the equality
y(b) = y(a) for any solution y(z) of (2) with y(a) small enough. This problem is closely related
to the classical center-focus problem of Poincaré and has been studied in many recent papers
(see e.g. [BBY05, BFY98, BFY99, BFY00a, BFY00b, BFY01, BRY10, BY05, Chr00, Yom03]).

The interrelation between the center problem for the Abel equation and the polynomial
moment problem is provided by the result of [BRY10] which states that ‘at infinity’ (under an
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appropriate projectivization of the parameter space) the system of equations on coefficients of p
and q describing the center set of (2) reduces to (1), where

P (z) =
∫
p(z) dz, Q(z) =

∫
q(z) dz. (3)

Notice also that for the parametric version

dy

dz
= p(z)y2 + εq(z)y3

of (2) the ‘infinitesimal’ center conditions with respect to ε also reduce to (1), where P and Q are
defined as above (see [BFY00a]). Other results relating the center problem and the polynomial
moment problem may be found in [BRY10].

There exists a natural condition on P and Q which reduces (1) and (2) to similar equations
with respect to polynomials of lower degrees. Namely, suppose that there exist polynomials
P̃ , Q̃, W, deg W > 1, such that

P = P̃ ◦W, Q= Q̃ ◦W, (4)

where the symbol ◦ denotes a superposition of functions: f1 ◦ f2 = f1(f2). Then after the change
of variable z→W (z) the equations (1) transform to the equations∫ W (b)

W (a)
P̃ k dQ̃= 0, k > 0, (5)

while (2) transforms to the equation

dỹ

dw
= P̃ ′(w)ỹ2 + Q̃′(w)ỹ3. (6)

Further, if the polynomial W in (4) satisfies the equality

W (a) =W (b), (7)

then it follows from the Cauchy theorem that all integrals in (5) vanish, implying that all integrals
in (1) also vanish. Similarly, since any solution y(z) of (2) is the pull-back

y(z) = ỹ(W (z))

of a solution ỹ(w) of (6), if W satisfies (7), then (2) has a center. A center for (2) or a solution of
system (1) is called reducible if there exist polynomials P̃ , Q̃, W such that conditions (4), (7)
hold. The main conjecture concerning the center problem for the Abel equation (‘the composition
conjecture for the Abel equation’) states that any center for the Abel equation is reducible
(see [BRY10] and the bibliography therein).

By analogy with the composition conjecture for the Abel equation it was suggested (‘the
composition conjecture for the polynomial moment problem’) that any solution of (1) is reducible.
This conjecture was shown to be true in many cases. For instance, it is true if a, b are not
critical points of P [Chr00], if P is indecomposable (that is P cannot be represented as a
composition of two polynomials of lower degrees [Pak03a]), and in some other special cases
(see e.g. [BFY00a, Pak05, PRY04, Roy01]). Nevertheless, in general the composition conjecture
for the polynomial moment problem fails to be true.

A class of counterexamples to the composition conjecture for the polynomial moment problem
was constructed in [Pak02]. These counterexamples use polynomials P which admit ‘double
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Generalized Ritt theorem and moment problem

decompositions’ of the form

P = P1 ◦W1 = P2 ◦W2, (8)

where P1, P2, W1, W2 are non-linear polynomials. If P is such a polynomial and, in addition, the
equalities

W1(a) =W1(b), W2(a) =W2(b)

hold, then for any polynomials V1, V2 the polynomial

Q= V1 ◦W1 + V2 ◦W2

satisfies (1) by linearity. On the other hand, it can be shown (see [Pak02]) that if deg W1 and
deg W2 are coprime, then condition (4) is not satisfied already for Q=W1 +W2.

Notice that the description of polynomial solutions of (8) reduces to the case where

GCD(deg P1, deg P2) = 1, GCD(deg W1, deg W2) = 1. (9)

Namely, if P1, P2, W1, W2 are polynomials such that (8) holds, then there exist polynomials
U, V, P̃1, P̃2, W̃1, W̃2, where

deg U = GCD(deg P1, deg P2), deg V = GCD(deg W1, deg W2),

such that

P1 = U ◦ P̃1, P2 = U ◦ P̃2, W1 = W̃1 ◦ V, W2 = W̃2 ◦ V,
and

P̃1 ◦ W̃1 = P̃2 ◦ W̃2

(see Theorem 2.1 below). On the other hand, polynomial solutions of (8) satisfying (9) are
described explicitly by the so-called ‘second Ritt theorem’, which states that for any such solution
there exist polynomials ν, µ, σ1, σ2 of degree one such that up to a possible replacement of P1

by P2 and W1 by W2 either

P1 = ν ◦ zn ◦ σ−1
1 , W1 = σ1 ◦ zsR(zn) ◦ µ, (10)

P2 = ν ◦ zsRn(z) ◦ σ−1
2 , W2 = σ2 ◦ zn ◦ µ, (11)

where R is a polynomial and s> 0, or

P1 = ν ◦ Tn ◦ σ−1
1 , W1 = σ1 ◦ Tm ◦ µ, (12)

P2 = ν ◦ Tm ◦ σ−1
2 , W2 = σ2 ◦ Tn ◦ µ, (13)

where Tn, Tm are the Chebyshev polynomials.
It was conjectured in [Pak03b] that any solution of (1) can be represented as a sum of reducible

ones, and recently this conjecture was proved in [PM09]. In more detail, it was proved in [PM09]
that non-zero polynomials P, Q satisfy system (1) if and only if

Q=
r∑

i=1

Qi (14)

where Qi, 1 6 i6 r, are polynomials such that

P = Pi ◦Wi, Qi = Vi ◦Wi, Wi(a) =Wi(b) (15)

for some polynomials Pi, Vi, Wi, 1 6 i6 r. Although this result in a sense solves the problem, it
does not provide any explicit description of polynomials P and Q satisfying (14), (15). On the
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other hand, in view of the results of [BRY10] relating (1) with the center equations for the Abel
equation, such a description would be highly desirable.

The problem of the explicit description of the solutions of the polynomial moment problem
naturally leads to the following two problems.

First, since the number r in (14) may be greater than 2, it is necessary to give a description
of polynomial solutions of the equation

P1 ◦W1 = P2 ◦W2 = · · ·= Pr ◦Wr (16)

for r > 2. Notice that, in the same way as in the case r = 2, this problem reduces to the case
where

GCD(deg P1, deg P2, . . . , deg Pr) = 1, (17)

and

GCD(deg W1, deg W2, . . . , deg Wr) = 1 (18)

(see Theorem 3.1 below). However, since conditions (17), (18) do not imply that the degrees of
polynomials Pi, 1 6 i6 r, as well as of Qi, 1 6 i6 r, are pairwise coprime, the Ritt theorem cited
above does not provide any immediate information about solutions of (16)–(18).

Second, since a solution of the polynomial moment problem may be represented in the form
of a sum of reducible solutions not in a unique way, it is desirable to find a canonical form for
such a representation, in particular, to find a representation for which the number r is minimal.

In this paper we solve both problems above. Our first result is an analogue of the second Ritt
theorem for the functional equation (16). Recall that two polynomials U , V are called linearly
equivalent if U = µ ◦ V ◦ ν for some polynomials µ, ν of degree one.

Theorem 1.1. Let Pi, Wi, 1 6 i6 r, be polynomials satisfying (16). If, additionally, (17) holds,
then at least one Pi, 1 6 i6 r, is linearly equivalent either to a Chebyshev polynomial or to a
power. Similarly, if (18) holds, then at least one Wi, 1 6 i6 r, is linearly equivalent either to a
Chebyshev polynomial or to a power.

Notice that although in distinction with the second Ritt theorem this result does not provide
a full description of all polynomials involved in (16), it still implies their ‘partial’ description
sufficient for applications (see § 4.1).

Theorem 1.1 permits us to bound the number of necessary reducible solutions in the
representation Q=

∑r
i=1 Qi and to show that, roughly speaking, any non-reducible solution of

the polynomial moment problem may be represented either as a sum of two reducible solutions
related to double decomposition (8), where P1, P2, W1, W2 are given by (10)–(13), or as a sum
of three reducible solutions related to the ‘triple’ decomposition

P1 ◦W1 = P2 ◦W2 = P3 ◦W3, (19)

with

W1 = T2n, W2 = T2m, W3 = zR(z2) ◦ Tmn,

and

P1 =
z + 1

2
R2

(
z + 1

2

)
◦ Tm, P2 =

z + 1
2

R2

(
z + 1

2

)
◦ Tn, P3 = z2,

where R is an arbitrary polynomial (see § 4.2).
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Theorem 1.2. Let P, Q be non-constant complex polynomials and a, b distinct complex
numbers such that the equalities in (1) hold. Then, either Q is a reducible solution of (1),
or there exist polynomials Pi, Qi, Vi, Wi, 1 6 i6 r, such that

Q=
r∑

i=1

Qi, P = Pi ◦Wi, Qi = Vi ◦Wi, Wi(a) =Wi(b),

and one of the following conditions holds:

(i) r = 2 and

P = U ◦ zsnRn(zn) ◦ V, W1 = zn ◦ V, W2 = zsR(zn) ◦ V,
where R, U , V are polynomials, n > 1, s > 0,GCD(s, n) = 1;

(ii) r = 2 and

P = U ◦ Tnm ◦ V, W1 = Tn ◦ V, W2 = Tm ◦ V,
where U , V are polynomials, n > 1, m > 1, GCD(m, n) = 1;

(iii) r = 3 and

P = U ◦ z2R2(z2) ◦ Tm1m2 ◦ V,
W1 = T2m1 ◦ V, W2 = T2m2 ◦ V, W3 = (zR(z2) ◦ Tm1m2) ◦ V,

where R, U , V are polynomials, m1 > 1, m2 > 1 are odd, and GCD(m1, m2) = 1.

The paper is organized as follows. In the second section we recall the description of
polynomial solutions of (8). In the third section we prove Theorem 1.1. In the fourth section we
establish an analogue of the second Ritt theorem for (19). Finally, in the fifth section we show
that for any polynomial P and a, b ∈ C the minimal number r of compositional right factors
Wi, 1 6 i6 r, of P such that Wi(a) =Wi(b), 1 6 i6 r, and any compositional right factor W of
P satisfying W (a) =W (b) is a polynomial in one of Wi, 1 6 i6 r, does not exceed three, and
prove Theorem 1.2.

2. Polynomial solutions of P1 ◦ W1 = P2 ◦ W2

2.1 Imprimitivity systems and decompositions of rational functions
In this subsection we recall some definitions, related to decompositions of a rational function F
into a composition of rational functions of lower degrees, and the fundamental correspondence
between equivalence classes of decompositions of F and imprimitivity systems of the monodromy
group of F . For a more detailed account of algebraic structures related to decompositions of
rational functions see e.g. [MP11, § 2.1].

Let G⊆ Sn be a transitive permutation group acting on the set X = {1, 2, . . . , n}. A subset
B of X is called a block of G if for each g ∈G the set Bg is either disjoint or equal to B (see
e.g. [Wie64]). For a block B the sets Bg, g ∈G, form a partition of X into a disjoint union
of blocks of equal cardinality, which is called an imprimitivity system of G. If F is a rational
function, then the monodromy group GF of F is defined as a permutation group acting on the set
F−1{z0}, where z0 is a regular value of F and the action is induced by the analytical continuation
of branches of the algebraic function inverse to F .

The structure of decompositions of a rational function F into a composition of rational
functions of lower degrees is defined by the structure of imprimitivity systems of its monodromy
group GF . Namely, if F =A ◦B is a decomposition of F and x1, x2, . . . , xr are preimages of z0
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under the map A : CP1→ CP1, then the sets Xi =B−1{xi}, 1 6 i6 r, form an imprimitivity
system E of GF corresponding to the decomposition A ◦B. Furthermore, if E and Ẽ are
imprimitivity systems corresponding to the decompositions A ◦B and Ã ◦ B̃ of F respectively,
then Ẽ is a refinement of E if and only if there exists a rational function U such that

Ã=A ◦ U, U ◦ B̃ =B.

In particular, E = Ẽ if and only if there exists a rational function of degree one µ such that

Ã=A ◦ µ, B̃ = µ−1 ◦B. (20)

In the last case the decompositions F =A ◦B and F = Ã ◦ B̃ are called equivalent.
It is easy to see that any decomposition F =A ◦B of a polynomial F into a composition

of rational functions is equivalent to a decomposition F = Ã ◦ B̃, where Ã, B̃ are polynomials.
Taking into account this fact, we will always assume below that all the functions considered are
polynomials and will use the following modification of the general definition of equivalence: two
decompositions of a polynomial F into a composition of polynomials F =A ◦B and F = Ã ◦ B̃
are called equivalent if there exists a polynomial of degree one µ such that (20) holds. Clearly,
under this notation the correspondence between equivalence classes of decompositions of a
polynomial F and imprimitivity systems of the monodromy group of F remains true.

2.2 Reduction and the second Ritt theorem
The description of polynomial solutions of the equation

P1 ◦W1 = P2 ◦W2 (21)

may be reduced to the case where

GCD(deg P1, deg P2) = 1, GCD(deg W1, deg W2) = 1 (22)

owing to the statement given below. Since in the following we will need a generalization of this
statement, we provide its complete proof.

Theorem 2.1 [Eng41, Tor88]. Let P1, P2, W1, W2 be polynomials such that (21) holds. Then

there exist polynomials U, V, P̃1, P̃2, W̃1, W̃2, where

deg U = GCD(deg P1, deg P2), deg V = GCD(deg W1, deg W2),

such that

P1 = U ◦ P̃1, P2 = U ◦ P̃2, W1 = W̃1 ◦ V, W2 = W̃2 ◦ V,
and

P̃1 ◦ W̃1 = P̃2 ◦ W̃2.

Proof. Set P = P1 ◦W1 = P2 ◦W2. Since P is a polynomial, its monodromy group GP contains
a cycle σ of length n= deg P , corresponding to a loop around infinity, and without loss of
generality we may assume that this cycle coincides with the cycle σ = (12 · · · n). Furthermore,
since any σ-invariant partition of the set {1, 2, . . . , n} coincides with the set Id consisting of
residue classes modulo d for some d|n, any imprimitivity system of GP also has such a form. In
view of the correspondence between decompositions of P and imprimitivity systems of GP this
implies easily that in order to prove the theorem it is enough to show that if Id1 and Id2 are
imprimitivity systems of GP for some divisors d1, d2 of n, then the sets ILCM(d1,d2) and IGCD(d1,d2)

also are imprimitivity systems of GP .
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In order to prove the first part of the last statement observe that for any element x ∈X the
intersection of two blocks B1, B2 containing x obviously is a block and, if B1 ∈ Id1 , B2 ∈ Id2 , then
B1 ∩B2 coincides with a residue class modulo LCM(d1, d2). The easiest way to prove the second
part is to observe that Id is an imprimitivity system for GP if and only if the d-dimensional
subspace Vd of Cn, consisting of vectors whose coordinates are d-periodical, is invariant with
respect to the permutation representation ρGP

of GP on Cn, where by definition for g ∈GP and
~v = (a1, a2, . . . , an) the vector ~vg is defined by the formula ~vg = (a1g , a2g , . . . , ang) (see [PM09,
§ 3.1]). Clearly, if Vd1 and Vd2 are ρGP

-invariant, then the subspace Vd1 ∩ Vd2 also is ρGP
-invariant.

On the other hand, it is easy to see that Vd1 ∩ Vd2 = VGCD(d1,d2). 2

Let us mention the following well-known corollaries of Theorem 2.1.

Corollary 2.2. Let P1, P2, W1, W2 be polynomials such that (21) holds. Assume additionally
that deg W1|deg W2 or equivalently that deg P2|deg P1. Then there exists a polynomial S
such that

P1 = P2 ◦ S, W2 = S ◦W1.

In particular, if deg W1 = deg W2, then there exists a polynomial µ of degree one such that

P1 = P2 ◦ µ, W1 = µ−1 ◦W2.

Proof. Indeed, if deg W1|deg W2, then the degree of the polynomial W̃1 from Theorem 2.1 is one
and hence the equality W2 = S ◦W1 holds for S = W̃2 ◦ W̃−1

1 . Now the equality

P1 ◦W1 = P2 ◦W2 = P2 ◦ S ◦W1

implies that P1 = P2 ◦ S. 2

Recall that the Chebyshev polynomials may be defined by the formula

Tn(cos ϕ) = cos nϕ, n> 1. (23)

Notice that this definition implies that all critical points of Tn are simple and real. Furthermore,
it implies the equalities

Tn(−z) = (−1)nTn(z), n> 1, (24)
and

Tmn = Tm ◦ Tn = Tn ◦ Tm, n, m> 1.

Corollary 2.3. Let P1, W1 be polynomials such that P1 ◦W1 = zn. Then there exists a
polynomial µ of degree one such that

P1 = zd ◦ µ, W1 = µ−1 ◦ zn/d

for some d|n. Similarly, if P1 ◦W1 = Tn, then there exists a polynomial µ of degree one such that

P1 = Td ◦ µ, W1 = µ−1 ◦ Tn/d

for some d|n.

Proof. Clearly, any of the equalities P1 ◦W1 = zn and P1 ◦W1 = Tn implies that d= deg P1 is a
divisor of n. On the other hand, for any d|n, the equalities

zn = zd ◦ zn/d, Tn = Td ◦ Tn/d

hold. Therefore, Corollary 2.3 follows from Corollary 2.2 applied to the equalities P1 ◦W1 =
Td ◦ Tn/d and P1 ◦W1 = zd ◦ zn/d. 2
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An explicit description of polynomials satisfying (21) and (22) is given by the following
statement, known as the second Ritt theorem (see [Rit22] as well as [BT00, Fri73, Pak09, Sch82,
Tor88, Zan93, ZM08]).

Theorem 2.4 [Rit22]. Let P1, P2, W1, W2 be polynomials such that (21) and (22) hold. Then
there exist polynomials σ1, σ2, µ, ν of degree one such that, up to a possible replacement of P1

by P2 and W1 by W2, either

P1 = ν ◦ zsRn(z) ◦ σ−1
1 , W1 = σ1 ◦ zn ◦ µ, (25)

P2 = ν ◦ zn ◦ σ−1
2 , W2 = σ2 ◦ zsR(zn) ◦ µ, (26)

where R is a polynomial, n> 1, s> 0, and GCD(s, n) = 1, or

P1 = ν ◦ Tm ◦ σ−1
1 , W1 = σ1 ◦ Tn ◦ µ, (27)

P2 = ν ◦ Tn ◦ σ−1
2 W2 = σ2 ◦ Tm ◦ µ, (28)

where Tn, Tm are the Chebyshev polynomials, n, m> 1, and GCD(n, m) = 1.

We will call solutions of the first type provided by Theorem 2.4 cyclic and solutions of the
second type dihedral. Notice that any solution of the form (27), (28) with m= 2 is dihedral and
cyclic at the same time. Indeed, (24) implies that for odd n the equality

Tn(z) = zEn(z2) (29)

holds for some polynomial En. Furthermore, T2 = θ ◦ z2, where θ = 2z − 1, and hence

zEn(z2) ◦ θ ◦ z2 = Tn ◦ T2 = T2 ◦ Tn = θ ◦ T 2
n = θ ◦ zE2

n(z) ◦ z2.

Since the last equality implies the equality

zEn(z2) ◦ θ = θ ◦ zE2
n(z),

we conclude that
Tn = θ ◦ zE2

n(z) ◦ θ−1, T2n = θ ◦ z2E2
n(z2). (30)

Therefore, the equality
Tn ◦ T2 = T2 ◦ Tn

may be written in the form

(θ ◦ zE2
n(z) ◦ θ−1) ◦ (θ ◦ z2) = (θ ◦ z2) ◦ zEn(z2). (31)

Actually, any solution of (21) and (22) which is cyclic and dihedral at the same time has the
form (27), (28) with m6 2. Indeed, since all critical points of Tm are simple, Tm may not be
linearly equivalent to zm for m> 2.

3. Polynomial solutions of P1 ◦ W1 = P2 ◦ W2 = · · · = Pr ◦ Wr

3.1 Reduction to the case of coprime degrees
Similarly to the description of the solutions of (21), the description of the solutions of the equation

P1 ◦W1 = P2 ◦W2 = · · ·= Pr ◦Wr, (32)

where Pi, Wi, 1 6 i6 r, are polynomials of degrees pi, wi, 1 6 i6 r, respectively, reduces to the
case where

GCD(p1, p2, . . . , pr) = 1, (33)
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and

GCD(w1, w2, . . . , wr) = 1. (34)

Theorem 3.1. Let Pi, Wi, 1 6 i6 r, be polynomials such that (32) holds. Then there exist

polynomials U, V, and P̃i, W̃i, 1 6 i6 r, where

deg U = GCD(p1, p2, . . . , pr), deg V = GCD(w1, w2, . . . , wr),

such that

Pi = U ◦ P̃i, Wi = W̃i ◦ V, 1 6 i6 r,

and

P̃1 ◦ W̃1 = P̃2 ◦ W̃2 = · · ·= P̃r ◦ W̃r.

Proof. The proof is the same as in the case where r = 2 since if Bi ∈ Idi
, 1 6 i6 r, are blocks

containing an element x ∈X, then
⋂r

i=1 Bi is a block which coincides with a residue class modulo
LCM(d1, d2, . . . dr), and

r⋂
i=1

Vdi
= VGCD(d1,d2,...dr). 2

3.2 Proof of Theorem 1.1

The proof is by induction on r. For r = 2 the statement follows from Theorem 2.4. Assume now
that the statement is true for r − 1 and show that then it is true for r, where r > 3. For brevity,
we will use the notation A∼B for linearly equivalent polynomials A and B.

Assume first that (33) holds. For i, 1 6 i6 r, set

xi = GCD(p1, p2, . . . pi−1, pi+1, . . . pr).

If at least one xi, 1 6 i6 r, is equal to one, then the equality

P1 ◦W1 = P2 ◦W2 = · · ·= Pi−1 ◦Wi−1 = Pi+1 ◦Wi+1 = · · ·= Pr ◦Wr (35)

by the induction assumption implies that at least one Pj , 1 6 j 6 r, j 6= i, is linearly equivalent
either to a Chebyshev polynomial or to a power. Therefore, we may assume that

xi > 1, 1 6 i6 r. (36)

Furthermore, since condition (33) implies that at least one of the numbers pi, 1 6 i6 r, is odd,
without loss of generality we may assume that pr is odd. This implies that the numbers xi,
1 6 i6 r − 1, also are odd.

By Theorem 3.1 there exist a polynomial Xr, deg Xr = xr, and polynomials P̃i, 1 6 i6 r − 1,
such that

Pi =Xr ◦ P̃i, 1 6 i6 r − 1,

and

P̃1 ◦W1 = P̃2 ◦W2 = · · ·= P̃r−1 ◦Wr−1. (37)

Moreover, by the induction assumption at least one of polynomials P̃i, 1 6 i6 r − 1, is linearly
equivalent either to a Chebyshev polynomial or to a power, and without loss of generality we
may assume that this is P̃1.
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Since (33) implies that GCD(xr, pr) = 1, it follows from Theorems 2.1 and 2.4 applied to the
equality

Pr ◦Wr =Xr ◦ (P̃1 ◦W1)

that either

Pr ∼ Tpr , Xr ∼ Txr ,

or

Pr ∼ zpr , Xr ∼ zsRpr(z),

or

Pr ∼ zsRxr(z), Xr ∼ zxr ,

where R is a polynomial and s> 0. Clearly, in the first two cases Pr is linearly equivalent either
to a Chebyshev polynomial or to a power. Therefore, we may assume that Xr ∼ zxr .

In the similar way as above we may find polynomialsXr−1, deg Xr−1 = xr−1, and P̂i, 1 6 i6 r,
i 6= r − 1, such that

Pi =Xr−1 ◦ P̂i, 1 6 i6 r, i 6= r − 1,

and

P̂1 ◦W1 = P̂2 ◦W2 = · · ·= P̂r−2 ◦Wr−2 = P̂r ◦Wr. (38)

Furthermore, applying Theorems 2.1 and 2.4 to the equality

Pr−1 ◦Wr−1 =Xr−1 ◦ (P̂1 ◦W1),

we conclude as above that if Pr−1 is not linearly equivalent either to a Chebyshev polynomial or
to a power, then Xr−1 ∼ zxr−1 .

Consider now the equality

P1 =Xr ◦ P̃1 =Xr−1 ◦ P̂1 (39)

and show that if

Xr ∼ zxr , Xr−1 ∼ zxr−1 , (40)

and P̃1 is linearly equivalent either to a Chebyshev polynomial or to a power, then P1 is linearly
equivalent to a power.

Since xr−1 is an odd number greater than one, and zn is not linearly equivalent to Tn for
n > 2, it follows from Theorems 2.1 and 2.4 applied to (39) that there exist polynomials W , R̃
and polynomials α, β, γ of degree one such that either

Xr = α ◦ zxr ◦ β, P̃1 = β−1 ◦ zsR̃(zxr) ◦W, (41)

Xr−1 = α ◦ zsR̃xr(z) ◦ γ, P̂1 = γ−1 ◦ zxr ◦W, (42)

or

Xr = α ◦ zsR̃xr−1(z) ◦ β, P̃1 = β−1 ◦ zxr−1 ◦W, (43)

Xr−1 = α ◦ zxr−1 ◦ γ, P̂1 = γ−1 ◦ zsR̃(zxr−1) ◦W, (44)

where s> 0. Furthermore, since (33) implies the equality GCD(xr−1, xr) = 1, it follows from (36)
that s > 0.

Observe now that if a polynomial P of the form zsRm(z), where m> 1, s > 0, is linearly
equivalent to a power, then R is a monomial. Indeed, since a power has a unique critical point,
the inequality m> 1 implies that R has at most one zero. Furthermore, since the multiplicity
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of the unique critical point of a power zn coincides with n, it follows from s > 0 that whenever
deg R> 0 the unique zero of R coincides with the origin. Therefore, it follows from (40)–(43)
that without loss of generality we may assume that

Xr = α ◦ zxr ◦ β, P̃1 = β−1 ◦ zxr−1 ◦W, (45)

Xr−1 = α ◦ zxr−1 ◦ γ, P̂1 = γ−1 ◦ zxr ◦W, (46)

where W is a polynomial and α, β, γ are polynomials of degree one.
If P̃1 is linearly equivalent to a power, then it follows from the second equality in (45) by the

chain rule that the only critical value of W is zero, implying that W = zt ◦ ω for some polynomial
of degree one ω and t> 0. Therefore, in this case P1 =Xr ◦ P̃1 is linearly equivalent to a power.
On the other hand, the above assumptions yield that P̃1 may not be linearly equivalent to a
Chebyshev polynomial, for otherwise Corollary 2.3 applied to the second equality in (45) would
imply that zxr−1 is linearly equivalent to Txr−1 , in contradiction to the assumption that xr−1

is an odd number greater than one. Therefore, if (33) holds, then at least one Pi, 1 6 i6 r, is
linearly equivalent either to a Chebyshev polynomial or to a power.

In order to prove that (34) implies that at least one Wi, 1 6 i6 r, is linearly equivalent either
to a Chebyshev polynomial or to a power we use similar arguments. Namely, for i, 1 6 i6 r,
define

yi = GCD(w1, w2, . . . wi−1, wi+1, . . . wr).

As above, if at least one yi, 1 6 i6 r, is equal to one, then (35) by the induction assumption
implies that at least one Wj , 1 6 j 6 r, j 6= i, is linearly equivalent either to a Chebyshev
polynomial or to a power. Therefore, we may assume that yi > 1 for all i, 1 6 i6 r. Furthermore,
we may assume that wr and yi, 1 6 i6 r − 1, are odd.

Using Theorem 3.1, we conclude that there exist a polynomial Yr, deg Yr = yr, and
polynomials W̃i, 1 6 i6 r − 1, such that

Wi = W̃i ◦ Yr, 1 6 i6 r − 1,

and

P1 ◦ W̃1 = P2 ◦ W̃2 = · · ·= Pr−1 ◦ W̃r−1, (47)

where by the induction assumption we may assume that W̃1 is linearly equivalent either to a
Chebyshev polynomial or to a power. Furthermore, since (34) implies that GCD(yr, wr) = 1 it
follows from Theorems 2.1 and 2.4 applied to the equality

(P1 ◦ W̃1) ◦ Yr = Pr ◦Wr

that Wr is linearly equivalent either to a Chebyshev polynomial or to a power unless Yr ∼ zyr .
Continuing to argue as above we reduce the proof of the theorem to the analysis of the

equality

W1 = W̃1 ◦ Yr = Ŵ1 ◦ Yr−1, (48)

where

Yr ∼ zyr , Yr−1 ∼ zyr−1 , (49)

and W̃1 is linearly equivalent either to a Chebyshev polynomial or to a power.
Observe now that if a polynomial of the form zsR(zm), where m> 1, s > 0, is linearly

equivalent to a power, then R is a monomial. Indeed, comparing the coefficients of zn−1 of
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both parts of the equality

zsR(zm) = µ ◦ zn ◦ ν, (50)

we conclude that ν(0) = 0 whenever deg R> 0. It follows now from s > 0 that µ(0) = 0, implying
that R is a monomial. Therefore, applying Theorems 2.1 and 2.4 to (48) and arguing as in the
analysis of (39) we conclude that there exist a polynomial W and polynomials α, β, γ of degree
one such that

W̃1 =W ◦ zyr−1 ◦ β, Yr = β−1 ◦ zyr ◦ α, (51)

Ŵ1 =W ◦ zyr ◦ γ, Yr−1 = γ−1 ◦ zyr−1 ◦ α. (52)

If W̃1 is linearly equivalent to a power, then the first equality in (51) implies that W has a
unique critical value and that the corresponding critical point is zero, for otherwise W̃1 would
have more than one critical point. Therefore, W = ω ◦ zt for some polynomial of degree one ω
and t> 0, implying that W1 = W̃1 ◦ Yr is linearly equivalent to a power. On the other hand, W̃1

may not be linearly equivalent to a Chebyshev polynomial since otherwise Corollary 2.3 applied
to the first equality in (51) would imply that zyr−1 ∼ Tyr−1 , in contradiction to the assumption
that yr−1 is an odd number greater than one. 2

4. The second Ritt theorem for triple decompositions

4.1 Decompositions involving Chebyshev polynomials or powers

By Theorem 1.2, if polynomials Pi, Wi, 1 6 i6 r, satisfy (32) and (34), then one of Wi, 1 6 i6 r,
is linearly equivalently either to a Chebyshev polynomial or to a power. In this subsection we
will show that this implies some strong restrictions on a possible form of other Wi appearing in
(32). More precisely, we will describe a possible form of polynomials W satisfying the equations

P1 ◦ zn = P2 ◦W (53)

or

P1 ◦ Tn = P2 ◦W (54)

for some polynomials P1, P2. Notice that if the number n in (53) and (54) is a divisor of deg W ,
then Corollary 2.2 applied to (53) (respectively to (54)) implies that W =R ◦ zn (respectively
that W =R ◦ Tn), where R is a polynomial. Therefore, we must consider only the case where
n - deg W .

Two lemmas below may be deduced easily from [Pak09, Theorem 6.4] and [ZM08,
Lemma 3.16] correspondingly. For the reader’s convenience we provide short independent proofs.
Notice that Lemma 4.1 is proved without the assumption n - deg W ; however, for Lemma 4.2
this assumption is essential.

Lemma 4.1. Let P, P1, P2, W be polynomials satisfying the equation

P = P1 ◦ zn = P2 ◦W. (55)

Then there exist polynomials R, U and a polynomial σ of degree one such that

W = σ ◦ zsR(zn), P = U ◦ zsn/eRn/e(zn), (56)

where s> 0 and e= GCD(n, deg W ).
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Proof. Observe first that without loss of generality we may assume that

GCD(deg P1, deg P2) = 1, GCD(n, deg W ) = 1. (57)

Indeed, by Theorem 2.1 there exist polynomials A, B, C, D, U, V where

deg U = GCD(deg P1, deg P2), deg V = e,

such that

P1 = U ◦A, zn = C ◦ V, P2 = U ◦B, W =D ◦ V, A ◦ C =B ◦D.

Furthermore, it follows from the first part of Corollary 2.3 that without loss of generality we
may assume that

C = zn/e, V = ze.

Set P̃ =A ◦ C =B ◦D. If the lemma is true under assumption (57), then

D = σ ◦ zlR(zn/e), P̃ = zln/eRn/e(zn/e),

where GCD(l, n/e) = 1. Therefore, since

P = U ◦ P̃ ◦ ze, W =D ◦ ze,

the equalities in (56) hold with s= le.
In order to prove Lemma 4.1 under assumption (57) apply Theorem 2.4 to (55). If the

collection P1, P2, W, z
n is a cyclic solution of (21), then there exist a polynomial R1 and

polynomials σ1, σ2, ν, µ of degree one such that either the equalities

P1 = ν ◦ zm ◦ σ−1
1 , zn = σ1 ◦ zsR1(zm) ◦ µ,

P2 = ν ◦ zsRm
1 (z) ◦ σ−1

2 , W = σ2 ◦ zm ◦ µ,

or the equalities

P1 = ν ◦ zsRn
1 (z) ◦ σ−1

1 , zn = σ1 ◦ zn ◦ µ, (58)

P2 = ν ◦ zn ◦ σ−1
2 , W = σ2 ◦ zsR1(zn) ◦ µ, (59)

hold. Furthermore, since the lemma is true if n= 1 or deg W = 1, we may assume that n > 1,
deg W > 1, implying that s > 0 by (57). Therefore, since (50) for m> 1, s > 0 implies that R is
a monomial, without loss of generality we may assume that (58) and (59) hold. Since n> 2, the
second equality in (58) implies that µ(0) = 0, and hence (58) and (59) imply (56).

Finally, if P1, P2, W, z
n is a dihedral solution of (21), then, since the equality zn = σ ◦ Tn ◦ µ

implies that n= 2 and µ(0) = 0, the lemma follows from (29) and the second equality in (30). 2

Lemma 4.2. Let P, P1, P2, W be polynomials satisfying the equation

P = P1 ◦ Tn = P2 ◦W, (60)

where n - deg W . Then there exist a polynomial U and a polynomial σ of degree one such that
either

W = σ ◦ Tm, P = U ◦ Tt, (61)

where t= LCM(n, m), or

W = σ ◦ zS(z2) ◦ Tn/2, P = U ◦ z2S2(z2) ◦ Tn/2, (62)

for some polynomial S.
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Proof. Using the second part of Corollary 2.3 it is easy to show in the same way as in the
proof of Lemma 4.1 that without loss of generality we may assume that condition (57) holds.
Furthermore, n> 2 by n - deg W . If n= 2, then, since T2 = θ ◦ z2, where θ = 2z − 1, the lemma
follows from Lemma 4.1 taking into account that we can set s= 1 in (56) in view of the condition
n - deg W . Therefore, we may assume that n > 2.

Observe first that if
Tm = σ ◦ zsR(zn) ◦ µ, (63)

where σ and µ are polynomials of degree one, n> 2, and deg R> 0, then µ(0) = 0 and n= 2.
Indeed, it is easy to see that the set of critical points of the polynomial zsR(zn) is invariant with
respect to the rotation z→ εz, where ε is an nth primitive root of unity. On the other hand,
since all critical points of Tm are on the real line, it follows from (63) that all critical points of
zsR(zn) are on the line µ{R}. This implies easily that µ(0) = 0 and n= 2.

Furthermore, observe that the equality

Tn = σ ◦ Tn ◦ µ, (64)

where σ and µ are polynomials of degree one and n> 2, implies that

µ=±z. (65)

Indeed, by (24) any Chebyshev polynomial has the form zsR(z2), where s is equal to zero or
one, implying by the above remark that µ(0) = 0 in (64). Now the comparison of coefficients of
both parts of (64) implies that µ=±z, for otherwise Tn would have a form zsR(zn) for some
n > 2 and s> 0.

Now apply Theorem 2.4 to (60). If P1, P2, W, Tn is a dihedral solution of (21), then, since
(64) implies (65), it is easy to see taking into account (24) that the lemma is true. Otherwise,
taking into account that zn and Tn are not linearly equivalent for n > 2, we conclude that there
exist polynomials σ1, σ2, ν, µ of degree one such that

P1 = ν ◦ zn1 ◦ σ−1
1 , Tn = σ1 ◦ zs1R1(zn1) ◦ µ, (66)

P2 = ν ◦ zs1Rn1
1 (z) ◦ σ−1

2 , W = σ2 ◦ zn1 ◦ µ, (67)

where R1 is a non-constant polynomial.
If n1 = 1, then the lemma is true. On the other hand, if n1 > 1, then s1 > 0 by (57), and the

second equality in (66) implies that n1 = 2 and µ(0) = 0. Therefore, W = σ ◦ T2, where σ is a
polynomial of degree one. Finally, since (57) implies that n is odd, it follows from (29) and the
second equality in (66) that σ1(0) = 0 and hence

P = P1 ◦ Tn = ν ◦ z2 ◦ σ−1
1 ◦ Tn = U ◦ T2 ◦ Tn = U ◦ T2n,

where U is a polynomial of degree one. 2

Notice that the proofs of Lemmas 4.1 and 4.2 given above actually describe not only possible
forms of W but also possible forms of P1 and P2. Notice also that in a similar way one can obtain
descriptions of the solutions of (21) in the case where a left compositional factor of P is linearly
equivalent to a Chebyshev polynomial or to a power.

4.2 Ritt’s theorem for triple decompositions
In this subsection we apply the previous results to a description of the solutions of the equation

P1 ◦W1 = P2 ◦W2 = P3 ◦W3 (68)
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in the spirit of the second Ritt theorem. Having in mind applications to the polynomial moment
problem, we restrict ourselves by the description of W1, W2, W3 under the condition

GCD(deg W1, deg W2, deg W3) = 1. (69)

First of all, observe that for any solution P1, P2, W1, W2 of (21) and any decomposition
W1 =A ◦B we obtain an ‘induced’ solution of (68) setting P3 = P1 ◦A, W3 =B. Furthermore,
it follows from Corollary 2.2 that any solution of (68) for which deg W3|deg W1 holds may be
obtained in such a way. In order to exclude such solutions we will assume that

deg Wi - deg Wj , i 6= j, 1 6 j 6 3. (70)

Further, in view of Theorem 1.1 without loss of generality we may assume that either W1 = zn or
W1 = Tn, where in the first case n > 1 by (70), while in the second case without loss of generality
we may assume that n > 2 since T2 ∼ z2.

Proposition 4.3. Let P1, P2, P3, W1, W2, W3 be polynomials such that (68)–(70) hold. If
W1 = zn, where n > 1, then there exist polynomials µ1, µ2 of degree one such that either

W2 = µ1 ◦ zm ◦ zs2R2(zn), W3 = µ2 ◦ zs1R1(zm) ◦ zs2R2(zn), (71)

where R1, R2 are polynomials, m> 1,GCD(s1, m) = 1,GCD(s2, n) = 1, or n= 2 and

W2 = µ1 ◦ Tm1 ◦ zR(z2), W3 = µ2 ◦ Tm2 ◦ zR(z2), (72)

where R is a polynomial, and m1 > 1, m2 > 1 are odd numbers satisfying GCD(m1, m2) = 1.

On the other hand, if W1 = Tn, where n > 2, then there exist polynomials µ1, µ2 of degree
one such that either

W2 = µ1 ◦ Tm1 , W3 = µ2 ◦ Tm2 , (73)
where m1 > 1, m2 > 1, or W1 = T2m1 and

W2 = µ1 ◦ T2m2 , W3 = µ2 ◦ zR(z2) ◦ Tm1m2 , (74)

where R is a polynomial, and m1 > 1, m2 > 1 are odd numbers satisfying GCD(m1, m2) = 1.

Proof in the case W1 = zn. It follows from Theorems 2.1 and 2.4 applied to the equality

P2 ◦W2 = P3 ◦W3

that without loss of generality we may assume that either

W2 = zm ◦W, W3 = zs1R1(zm) ◦W, (75)

where R1, W are polynomials and GCD(s1, m) = 1, or

W2 = Tm1 ◦W, W3 = Tm2 ◦W, (76)

where W is a polynomial and GCD(m1, m2) = 1. Moreover, condition (70) implies that m> 1.
Further, it follows from

P1 ◦ zn = P2 ◦W2 (77)
that

P2 ◦W2 = P2 ◦ (W2 ◦ ε),
where ε is a primitive nth root of unity, and applying to this equality Corollary 2.2 we see that

W2 = σ ◦W2 ◦ εz, (78)

where σ is a polynomial of degree one.
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If (75) has place, then (78) implies that

zm ◦W = (σ ◦ zm) ◦ (W ◦ εz)

and applying Corollary 2.2 once again we conclude that there exists a polynomial µ of degree
one such that the equalities

zm = σ ◦ zm ◦ µ−1, (79)

and

W = µ ◦W ◦ εz (80)

hold. Since m> 1, (79) implies that µ(0) = 0 and the comparison of coefficients of the parts of
(80) yields that

W = zs2R2(zn), (81)

where R2 is a polynomial and s2 > 0, implying (71). Furthermore, GCD(s2, n) = 1 by (69).
Assume now that (76) holds. As above, (78) implies that

Tm1 ◦W = (σ ◦ Tm1) ◦ (W ◦ εz),

and applying to this equality Corollary 2.2 we conclude that there exists a polynomial µ of
degree one such that the equalities Tm1 = σ ◦ Tm1 ◦ µ−1 and (80) hold. Since (64) implies (65),
this yields that µ=±z. If µ= z, then it follows from (80) that W =R2(zn) for some polynomial
R2, in contradiction to (70). On the other hand, if µ=−z, then (80) yields that

W = zn/2R2(zn), (82)

implying that n/2 = 1 by (69). Therefore, n= 2 and (72) holds. Furthermore, m1 and m2 are
odd by (70).

Remark. It follows immediately from Lemma 4.1 that W = µ ◦ zsR(zn), where R is a polynomial
and µ is a polynomial of degree one. However, the proofs of (81) and (82) require additional
considerations given above. Notice also that (78) may be used for an alternative proof of
Lemma 4.1.

Proof in the case W1 = Tn. It follows from Lemma 4.2 applied to the equalities

P1 ◦ Tn = P2 ◦W2, P1 ◦ Tn = P3 ◦W3

that without loss of generality we may assume that either

W2 = Tm1 , W3 = Tm2 , (83)

or

W2 = zR1(z2) ◦ Tn/2, W3 = zR2(z2) ◦ Tn/2 (84)

for some polynomials R1, R2, or

W2 = Tm, W3 = zR1(z2) ◦ Tn/2, (85)

where R1 is a polynomial such that

W3 6= σ ◦ Tl (86)

for a polynomial σ of degree one and a Chebyshev polynomial Tl. Furthermore, in the last case

P = V ◦ Tt, (87)

where V is a polynomial and t= LCM(n, m).
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Clearly, (83) corresponds to (73) while (84) is impossible in view of the conditions n > 2
and (69). Assume now that (85) and (86) hold. Since in this case n/2 divides both deg W1 and
deg W3 it follows from (69) that GCD(n/2, m) = 1. Similarly, GCD(n, m/2) = 1, since, in view
of (86), Lemma 4.2 applied to the equality

P2 ◦ Tm = P3 ◦W3

implies that
W3 = zR2(z2) ◦ Tm/2 (88)

for some polynomial R2. Therefore, n/2 and m/2 are odd, GCD(n/2, m/2) = 1, and (87) takes
the form

P = V ◦ Tnm/2. (89)
Applying now Lemma 4.2 to the equality

P = V ◦ Tnm/2 = P3 ◦W3

and taking into account (86) we conclude that

W3 = zR(z2) ◦ Tnm/4, P = U ◦ z2R2(z2) ◦ Tnm/4 (90)

for some polynomials R and U . Furthermore, since both numbers n and m are even each of them
is greater than 2 by (70). Changing now n to 2m1 and m to 2m2 we obtain (74). 2

5. Explicit solution of the polynomial moment problem

5.1 Lemma about values of Chebyshev polynomials
In this subsection we prove the following technical lemma.

Lemma 5.1. Let Tm1 , Tm2 , Tm3 be the Chebyshev polynomials and a, b complex numbers.

(a) Assume that

Tm1(a) = Tm1(b), Tm2(a) = Tm2(b), Tm3(a) = Tm3(b). (91)

Then there exists a pair of distinct indices i1, i2, 1 6 i1, i2 6 3, such that for l = GCD(mi1 , mi2)
the equality Tl(a) = Tl(b) holds.

(b) Assume that

Tm1(a) = 0, Tm2(a) = 0, (92)
where m1, m2 are odd numbers such that GCD(m1, m2) = 1. Then a= 0.

Proof. Choose α, β ∈ C such that cos α= a, cos β = b. Then the equalities in (91) imply the
equalities

m1α= ε1m1β + 2πk1, m2α= ε2m2β + 2πk2, m3α= ε3m3β + 2πk3, (93)

where ε1 =±1, ε2 =±1, ε3 =±1, and k1, k2, k3 ∈ Z. Clearly, among the numbers ε1, ε2, ε3 at
least two are equal, and without loss of generality we may assume that ε1 = ε2. Multiplying now
the first equality in (93) by u and adding the second equality multiplied by v, where u, v are
integers satisfying um1 + vm2 = l, where l = GCD(m1, m2), we see that lα= ε1lβ + 2πk4, where
k4 ∈ Z, implying that Tl(a) = Tl(b).

Similarly, the equalities in (92) imply the equalities

m1α= π/2 + πk1, m2α= π/2 + πk2, k1, k2 ∈ Z, (94)
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and the equality

α= (u+ v)π/2 + πk3, k3 ∈ Z, (95)

where u, v are integers satisfying

um1 + vm2 = 1. (96)

Moreover, since m1, m2 are odd, (96) implies that the numbers u, v have different parity.
Therefore, (95) implies that a= cos α= 0. 2

Notice that the above argument shows that if a 6= b and GCD(m1, m2) = 1 in (91), then the
equality ε1 = ε2 in (93) is impossible. Therefore, a, b, a 6= b, is a solution of the system

Tm1(a) = Tm1(b), Tm2(a) = Tm2(b), (97)

where GCD(m1, m2) = 1, if and only if a= cos α, b= cos β, where α, β, α 6= β, is a solution of
the system

α− β =
2πk1

m1
, α+ β =

2πk2

m2
,

for some k1 ∈ Z, k2 ∈ Z. In particular, the equalities in (97) for a 6= b imply the equalities

Tm1m2(a) =±1, Tm1m2(b) =±1.

5.2 Proof of Theorem 1.2

Proposition 5.2. Let P be a polynomial and Wi, 1 6 i6 r, compositional right factors of P
such that Wi(a) =Wi(b), 1 6 i6 r, where r > 3. Then there exists a pair of distinct indices i1, i2,
1 6 i1, i2 6 r, such that the equalities

Wi1 = W̃i1 ◦ Z, Wi2 = W̃i2 ◦ Z, Z(a) = Z(b) (98)

hold for some polynomials W̃i1 , W̃i2 , Z.

Proof. Clearly, we may assume that

deg Wi - deg Wj , i 6= j, 1 6 j 6 r, (99)

since otherwise Corollary 2.2 applied to the equality

Pi ◦Wi = Pj ◦Wj (100)

implies that Wj =R ◦Wi for some polynomial R, and hence (98) holds for i1 = i, i2 = j, and
Z =Wi. Furthermore, without loss of generality we may assume that (18) holds. Indeed, if

GCD(deg W1, deg W2, . . . , deg Wr) = w > 1,

then there exists a polynomial W of degree w and polynomials Ŵ1, Ŵ2, . . . , Ŵr such that

W1 = Ŵ1 ◦W, W2 = Ŵ2 ◦W, . . . , Wr = Ŵr ◦W, (101)

P1 ◦ Ŵ1 = P2 ◦ Ŵ2 = · · ·= Pr ◦ Ŵr, (102)

and

Ŵ1(â) = Ŵ1(̂b), Ŵ2(â) = Ŵ2(̂b), . . . , Ŵr(â) = Ŵr (̂b), (103)

where

â=W (a), b̂=W (b).
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If the statement is true under condition (18), then there exists a pair of indices i1, i2, 1 6 i1, i2 6 r,
such that

Ŵi1 = W̃i1 ◦ U, Ŵi2 = W̃i2 ◦ U, U(â) = U (̂b)

for some polynomials W̃i1 , W̃i2 , and U . Therefore, (98) holds for the same pair i1, i2 and
Z = U ◦W .

By Theorem 1.1 we may assume that either W1 = zn or W1 = Tn. Assume that W1 = zn and
show that in this case the statement is true already if r > 2. Namely, we will show that if W1 = zn

and W2, W3 are arbitrary polynomials such that

P = Pi ◦Wi, Wi(a) =Wi(b), 1 6 i6 3,

for some polynomials P1, P2, P3, then (98) holds for some i1, i2, 1 6 i1, i2 6 3. Observe that the
same argument as above shows that it is enough to prove this statement under the assumption

GCD(deg W1, deg W2, deg W3) = 1 (104)

since by Corollary 2.3 without loss of generality we may assume that the polynomial Ŵ1 in (101)
is a power.

By Proposition 4.3, if (104) holds, then without loss of generality we may assume that either
(71) holds, or n= 2 and (72) holds. If (71) holds, then the equalities W1(a) =W1(b), W2(a) =
W2(b) imply that either the number an = bn is a root of R2, or

ams2 = bms2 . (105)

In the first case (98) holds for i1 = 2, i2 = 3, and Z = zs2R2(zn). On the other hand, in the second
case we conclude that at = bt, where t= GCD(ms2, n), implying that (98) holds for i1 = 1, i2 = 2,
and Z = zt.

If n= 2 and (72) holds, then the equality W1(a) =W1(b) implies that b=−a. Therefore, it
follows from W2(a) =W2(b) taking into account (24) and the oddness of m1 that

Tm1(aR(a2)) = Tm1(bR(b2)) = 0. (106)

Similarly, W3(a) =W3(b) implies that

Tm2(aR(a2)) = Tm2(bR(b2)) = 0. (107)

Applying now Lemma 5.1(b) to (106) and (107) we conclude that

aR(a2) = bR(b2) = 0,

implying that (98) holds for i1 = 2, i2 = 3, and Z = zR(z2),
Assume now thatW1 = Tn and r > 3. It follows from Lemma 4.2 that without loss of generality

we may assume that each Wj , 2 6 j 6 r, is either a Chebyshev polynomial or has the form
zR(z2) ◦ Tn/2 for some polynomial R. Furthermore, since r > 3, at least two polynomials from
the setWj , 2 6 j 6 r, either both are Chebyshev polynomials or both have the form zR(z2) ◦ Tn/2.
Therefore, we may assume that either

W2 = Tm1 , W3 = Tm2 , (108)

or

W2 = zR1(z2) ◦ Tn/2, W3 = zR2(z2) ◦ Tn/2 (109)

for some polynomials R1, R2.
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If (108) holds, then (98) is satisfied by Lemma 5.1(a). On the other hand, (109) implies (102)
and (103), where

Ŵ1 = T2, Ŵ2 = zR1(z2), Ŵ3 = zR2(z2),

and

â= Tn/2(a), b̂= Tn/2(b).

Since Ŵ1 = T2 = θ ◦ z2, where θ = 2z − 1, it is already proved that there exists a pair of indices
i1, i2, 1 6 i1, i2 6 r, such that

Ŵi1 = W̃i1 ◦ U, Ŵi2 = W̃i2 ◦ U, U(â) = U (̂b)

for some polynomials W̃i1 , W̃i2 , and U . Therefore, (98) holds for the same pair i1, i2 and
Z = U ◦ Tn/2. This finishes the proof. 2

By the main result of [PM09], if P, Q is a solution of (1), then there exist polynomials
Pi, Qi, Vi, Wi, 1 6 i6 r, such that

Q=
r∑

i=1

Qi

and

P = Pi ◦Wi, Qi = Vi ◦Wi, Wi(a) =Wi(b), 1 6 i6 r. (110)

Therefore, Theorem 1.2 is a corollary of the following result.

Theorem 5.3. For any polynomial P and a, b ∈ C the minimal number r of compositional right
factors Wi, 1 6 i6 r, of P such that Wi(a) =Wi(b), 1 6 i6 r, and any compositional right factor
W of P satisfying W (a) =W (b) is a polynomial in one of Wi, 1 6 i6 r, does not exceed three.

Furthermore, if r = 2, then either

P = U ◦ zsnRn(zn) ◦ V, W1 = zn ◦ V, W2 = zsR(zn) ◦ V, (111)

where R, U , V are polynomials, n > 1, s > 0,GCD(s, n) = 1, or

P = U ◦ Tnm ◦ V, W1 = Tn ◦ V, W2 = Tm ◦ V, (112)

where U , V are polynomials, n > 1, m > 1, GCD(m, n) = 1.

On the other hand, if r = 3, then

P = U ◦ z2R2(z2) ◦ Tm1m2 ◦ V, (113)
W1 = T2m1 ◦ V, W2 = T2m2 ◦ V, W3 = (zR(z2) ◦ Tm1m2) ◦ V,

where R, U , V are polynomials, m1 > 1, m2 > 1 are odd, and GCD(m1, m2) = 1.

Proof. Since any polynomial up to the linear equivalence has only a finite number of compo-
sitional right factors, we may find a finite number of compositional right factors Wi, 1 6 i6 r,
of P such that Wi(a) =Wi(b), 1 6 i6 r, and any compositional right factor W of P satisfying
W (a) =W (b) is a polynomial in one of Wi, 1 6 i6 r. Furthermore, if the number r is minimal,
then Proposition 5.2 implies that r 6 3.

If r = 2, then it follows from Theorems 2.1 and 2.4 that either (111) or (112) holds. On the
other hand, if r = 3, then it follows from Theorem 3.1, Theorem 1.1, and Proposition 4.3 that
without loss of generality we may assume that either W1 = zn and one of conditions (71) or (72)
holds, or W1 = Tn and one of conditions (73) or (74) holds. However, as was shown in the proof

724



Generalized Ritt theorem and moment problem

of Proposition 5.2, the equality W1 = zn contradicts the minimality of r for r > 2. Furthermore,
(73) contradicts the minimality of r by Lemma 5.1(a). Therefore, taking into account the second
formula in (90), we conclude that if r = 3, then (113) holds. 2

In conclusion we make several comments concerning relations of solutions of the third type
listed in the formulation of Theorem 1.2 with other types of solution, assuming for simplicity
that V = z. First, it follows from W1(a) =W1(b) that either

Tm1(a) = Tm1(b) (114)

or

Tm1(a) =−Tm1(b). (115)

However, if (114) holds, then we may replace Q1 +Q3 by

(V1 ◦ T2 + V3 ◦ zR1(z2) ◦ Tm2) ◦ Tm1 ,

obtaining a solution of the second type. A similar argument shows that Q reduces to a solution
of the second type unless the equality

Tm2(a) =−Tm2(b) (116)

holds. Finally, unless

a 6=−b, (117)

we may replace Q1 +Q2 by

(V1 ◦ Tm1 + V2 ◦ Tm2) ◦ T2,

obtaining a solution of the first type.
The remarks above show that a solution of the third type reduces to other types of solution

unless conditions (115)–(117) are satisfied. Keeping the notation of Lemma 5.1 it is easy to see
that (115) and (116) imply the equalities

m1α= π + ε1m1β + 2πk1, m2α= π + ε2m2β + 2πk2, (118)

where ε1 =±1, ε2 =±1, k1, k2 ∈ Z. Further, if ε1 = ε2, then

α= (u+ v)π + ε1β + 2πk3, k3 ∈ Z,

where u, v satisfy (96). Since (96) for odd m1, m2 implies that the numbers u, v have different
parities we conclude that in this case a=−b. Therefore, solutions of the third type which cannot
be reduced to solutions of other types are obtained from the system

α− β =
π

m1
+

2πk1

m1
, α+ β =

π

m2
+

2πk2

m2
,

for some k1 ∈ Z, k2 ∈ Z. In particular, if conditions (115)–(117) are satisfied, then, since m1, m2

are odd, the equalities

Tm1m2(a) =±1, Tm1m2(b) =±1 (119)

hold. Therefore, since W3 = zR(z2) ◦ Tm1m2 and

Tm1m2(a) = Tm2(Tm1(a)) = Tm2(−Tm1(b)) =−Tm1m2(b), (120)

it follows from W3(a) =W3(b) that necessarily

R(1) = 0. (121)
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Finally, observe that in general a solution of the third type may not be obtained as a sum of
only two reducible solutions. Consider for example the following in a sense the simplest possible
solution of the third type:

P = z2R2(z2) ◦ Tm1m2 , Q= T2m1 + T2m2 + zR(z2) ◦ Tm1m2 , (122)

where R(z) = z − 1, and a, b satisfy conditions (115)–(117). Assume additionally that m1, m2

are different prime numbers greater than three, and show that such Q can not be represented as
a sum of two reducible solutions.

Observe first that P is not linearly equivalent to a Chebyshev polynomial since ±1 are critical
values of Tm1m2 and at the same time are critical points of the polynomial z2R2(z2) = z2(z2 − 1)2,
implying that P has critical points of multiplicity four. Further, show that up to the linear
equivalence compositional right factors of P are T2, Tm1 , Tm2 , T2m1m2 , T2m2 , T2m1 , Tm1m2 , or
z(z2 − 1) ◦ Tm1m2 . Indeed, all the polynomials above are clearly right factors of P . On the other
hand, since m and n are odd, it follows from Lemma 4.2 applied to the equality

P = z2(z2 − 1)2 ◦ Tm1m2 = U ◦W

that if W is a compositional right factor of P , then either m1m2|deg W or W is linearly equivalent
to a Chebyshev polynomial. In the first case Corollary 2.2 yields that W = V ◦ Tm1m2 , where
V is a right factor of z2(z2 − 1)2, implying that W is linearly equivalent either to T2m1m2 or
z(z2 − 1) ◦ Tm1m2 . On the other hand, taking into account that m1, m2 are prime numbers
greater than three and deg z2(z2 − 1)2 = 6, in the second case W is linearly equivalent either
to one of the Chebyshev polynomials listed above or to a Chebyshev polynomial whose order is
divisible by three. However, the last case is not possible, for otherwise T3 also would be a right
factor of P and Lemma 4.2 applied to the equality

P =
z + 1

2

(
z − 1

2

)2

◦ T2m1m2 = F ◦ T3

would imply that P is linearly equivalent to a Chebyshev polynomial.

Since a and b satisfy conditions (115)–(117), and (119) and (120) hold, among compositional
right factors W of P only the polynomials T2m1 , T2m2 , T2m1m2 , and z(z2 − 1) ◦ Tm1m2 satisfy the
condition W (a) =W (b). Therefore, taking into account that T2m1m2 is a polynomial in T2m1 as
well as a polynomial in T2m2 , we conclude that if Q may be represented as a sum of at most two
reducible solutions, then Q has the form

Q= V1 ◦W1 + V2 ◦W2, (123)

where W1, W2 are different polynomials from the set

S = {T2m1 , T2m2 , z(z
2 − 1) ◦ Tm1m2}

and V1, V2 ∈ C[z].

Denote by W3 the polynomial from the set S distinct from W1, W2. Since Q=W1 +W2 +W3

by (122), it follows from (123) that the equality

W3 = (V1 − 1) ◦W1 + (V2 − 1) ◦W2

holds. However, this equality is impossible since any two polynomials W1, W2 from S have a
common compositional right factor which is not a compositional right factor of W3.
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