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Abstract. The Abel differential equation y′ = p(x)y2
+ q(x)y3 with p, q ∈ R[x] is said to have

a center on an interval [a, b] if all its solutions with the initial value y(a) small enough satisfy the
condition y(b) = y(a). The problem of description of conditions implying that the Abel equation
has a center may be interpreted as a simplified version of the classical center-focus problem of
Poincaré. The Abel equation is said to have a “parametric center” if for each ε ∈ R the equation
y′ = p(x)y2

+ εq(x)y3 has a center. In this paper we show that the Abel equation has a parametric
center if and only if the antiderivatives P =

∫
p(x) dx, Q =

∫
q(x) dx satisfy the equalities

P = P̃ ◦W, Q = Q̃ ◦W for some polynomials P̃ , Q̃, and W such that W(a) = W(b). We also
show that the last condition is necessary and sufficient for the “generalized moments”

∫ b
a P

i dQ

and
∫ b
a Q

idP to vanish for all i ≥ 0.

Keywords. Periodic orbits, centers, Abel equation, moment problem, composition conjecture

1. Introduction

Let
y′ = p(x)y2

+ q(x)y3 (1)

be the Abel differential equation, where x is real and p(x) and q(x) are continuous.
Equation (1) is said to have a center on an interval [a, b] if all its solutions with the
initial value y(a) small enough satisfy the condition y(b) = y(a).

The problem of description of conditions implying a center for (1) is closely related to
the classical Poincaré center-focus problem about conditions implying that all trajectories
of the system {

ẋ = −y + F(x, y),

ẏ = x +G(x, y),
(2)

where F(x, y), G(x, y) are polynomials without constant or linear terms, are closed in a
neighborhood of the origin. Namely, it was shown in [11] that if F(x, y),G(x, y) are ho-
mogeneous polynomials of the same degree, then one can construct trigonometric polyno-
mials f (cosϕ, sinϕ), g(cosϕ, sinϕ) such that (2) has a center if and only if all solutions

F. Pakovich: Department of Mathematics, Ben Gurion University of the Negev,
P.O. Box 653, Beer Sheva 8410501, Israel; e-mail: pakovich@math.bgu.ac.il

Mathematics Subject Classification (2010): 34C25, 37C27



2344 F. Pakovich

of the equation
dr

dϕ
= f (cosϕ, sinϕ)r2

+ g(cosϕ, sinϕ)r3

with r(0) small enough satisfy the condition r(2π) = r(0).
Set

P(x) =

∫ x

0
p(s) ds, Q(x) =

∫ x

0
q(s) ds. (3)

The following composition condition introduced in [3] is sufficient for equation (1) to
have a center: there exist C1-functions P̃ , Q̃,W such that

P(x) = P̃ (W(x)), Q(x) = Q̃(W(x)), W(a) = W(b). (4)

Indeed, if (4) holds, then any solution of (1) has the form y(x) = ỹ(W(x)), where ỹ is a
solution of the equation

y′ = P̃ ′(x)y3
+ Q̃′(x)y2,

implying that y(a) = y(b), since W(a) = W(b).
It is known that in general the composition condition is not necessary for (1) to have a

center [2]. However, it is believed that in the case where p(x) and q(x) are polynomials,
equation (1) has a center if and only if the composition condition (4) holds for some
polynomials P̃ , Q̃,W ∈ R[x] (see [7], [9] for some partial results in this direction).

In this paper we study the following “parametric center problem” for equation (1)
with polynomial coefficients: under what conditions the equation

y′ = p(x)y2
+ εq(x)y3, p, q ∈ R[x], (5)

has a center for any ε ∈ R? Posed for the first time in [4–6], this problem turned out
to be very stimulating and resulted in a whole area of new ideas and methods related to
the so called “polynomial moment problem” (see the discussion below). Along with the
parametric center problem some other weakened versions of the center problem for the
Abel differential equation have been introduced and studied (see e.g. [10], [13], [14]).
However, the parametric center problem has remained unsolved (see the recent paper [8]
for the state of the art), and the goal of this paper is to fill this gap.

Our main result is the following theorem.

Theorem 1.1. The Abel differential equation (5) has a center on an interval [a, b] for
any ε ∈ R if and only if the antiderivatives P =

∫
p(x) dx and Q =

∫
q(x) dx satisfy

the composition condition (4) for some polynomials P̃ , Q̃, W .

The proof of Theorem 1.1 is based on a link between the parametric center problem and
the vanishing of certain “polynomial moments”. Namely, it was shown in [6] that the
parametric center implies the equalities∫ b

a

P i dQ = 0, i ≥ 0,
∫ b

a

Qi dP = 0, i ≥ 0, (6)

and in fact we prove the following “moment” counterpart of Theorem 1.1.
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Theorem 1.2. Polynomials P,Q ∈ R[x] satisfy (6) if and only if they satisfy the compo-
sition condition (4) for some P̃ , Q̃,W ∈ R[x].

The problem of description of polynomial solutions of the system∫ b

a

P i dQ = 0, i ≥ 0, (7)

called the “polynomial moment problem”, has been studied in many recent papers (see
e.g. [4–6, 12, 15–21, 23]). Again, the composition condition (4) is sufficient for equali-
ties (7) to be satisfied, although in general it is not necessary [15]. A complete solution
of the polynomial moment problem was obtained in [20], [19]. Namely, it was shown
in [20] that if polynomials P , Q satisfy (7), then there exist polynomials Qj such that
Q =

∑
j Qj and

P(x) = Pj (Wj (x)), Qj (x) = Vj (Wj (x)), Wj (a) = Wj (b) (8)

for some polynomials Pj (z), Vj (z),Wj (z). Moreover, in [19] polynomial solutions of (7)
were described in explicit form (see Section 2 below).

In this paper we apply the results of [19] to each of the two systems in (6) separately
and show that the restrictions obtained imply that any solution P,Q of “mixed polyno-
mial moment problem” (6) satisfies the composition condition (4). The main difficulties
of the proof stem from the fact that a separate solution of systems in (6) leads to functional
equations of the type

r∑
j=1

Vj (Wj (x)) = A(B(x)), (9)

where Vj ,Wj , A,B are polynomials, and r equals 2 or 3. Such equations can be consid-
ered as generalizations of the functional equation

A(B(x)) = C(D(x)), (10)

studied by Ritt [22]. However, the well established methods for studying (10) related to
monodromy cannot be applied to (9) for r > 1, and other methods are required.

Although the center problem for the Abel equation with polynomial coefficients can
be considered in the complex setting, in this paper we work in the classical real frame-
work. Thus, an adaptation to the real case of the results of [19] obtained over C is needed.
This is done in Section 2. We show that possible “types” of solutions of the polynomial
moment problem over R remain the same, although one of these types becomes “smaller”
(Theorem 2.10). Moreover, in Section 2 we establish some important restrictions of the
arithmetical nature on points a, b for which there exist solutions of (7) which do not
satisfy the composition condition (Corollary 2.5).

In Section 3 we apply the results of Section 2 to each of the two systems in (6) and
prove Theorem 1.2. Our approach consists in a painstaking analysis of systems of equa-
tions for the coefficients of the polynomials appearing in corresponding equalities (9).
Eventually, Theorem 1.2 is deduced from the restrictions on P and Q obtained from
these systems combined with the restrictions on possible values of a and b.
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2. Polynomial moment problem over C and over R

2.1. Solution of the polynomial moment problem over C

In this subsection we briefly recall the description of P,Q ∈ C[z] satisfying (7) for
a, b ∈ C, obtained in [19]. For more details we refer the reader to [19].

Recall that the Chebyshev polynomials of the first kind Tn can be defined by the
formula Tn(cosϕ) = cos (nϕ). It follows directly from this definition that

Tn(1) = 1, Tn(−1) = (−1)n, n ≥ 0, (11)
Tn ◦ Tm = Tm ◦ Tn = Tmn, n,m ≥ 1,

where (A ◦ B)(z) = A(B(z)).
An explicit expression for Tn is given by the formula

Tn(x) =
n

2

[n/2]∑
k=0

(−1)k
(n− k − 1)!
k!(n− 2k)!

(2x)n−2k, (12)

implying in particular that
Tn(−x) = (−1)nTn(x) (13)

(see e.g. [1, Chapter 22]).
Following [19], we will call a solution P,Q of (7) reducible if the composition con-

dition (4) holds for some P̃ , Q̃,W ∈ C[z].

Theorem 2.1 ([19]). Let P , Q be non-constant complex polynomials and a, b distinct
complex numbers such that equalities (7) hold. Then either P , Q is a reducible solution
of (7), or there exist complex polynomials Pj , Qj , Vj , Wj , 1 ≤ j ≤ r , such that

Q =

r∑
j=1

Qj , P = Pj ◦Wj , Qj = Vj ◦Wj , Wj (a) = Wj (b).

Moreover, one of the following conditions holds:

(i) r = 2 and

P = U ◦ zsnRn(zn) ◦ V, W1 = z
n
◦ V, W2 = z

sR(zn) ◦ V,

where R, U , V are complex polynomials, n > 1, s > 0, and GCD(s, n) = 1;
(ii) r = 2 and

P = U ◦ Tm1m2 ◦ V, W1 = Tm1 ◦ V, W2 = Tm2 ◦ V,

where U , V are complex polynomials, m1 > 1, m2 > 1, and GCD(m1, m2) = 1;
(iii) r = 3 and

P = U ◦ z2R2(z2) ◦ Tm1m2 ◦ V,

W1 = T2m1 ◦ V, W2 = T2m2 ◦ V, W3 = (zR(z
2) ◦ Tm1m2) ◦ V,

where R, U , V are complex polynomials, m1 > 1 and m2 > 1 are odd, and
GCD(m1, m2) = 1.
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It is assumed that in the above formulas V (a) 6= V (b), since otherwise P,Q is reducible.
We will call solutions appearing in (i)–(iii) of Theorem 2.1 solutions of the first, second,
and third type, respectively.

Notice that these sets of solutions are not disjoint. For example, if one of the param-
eters n, m of a solution of the second type equals 2, then this solution is also of the first
type. Indeed, if say n = 2, then W1 = T2 ◦ V = µ ◦ z

2
◦ V , where µ = 2z − 1. On the

other hand, since m is odd in view of GCD(n,m) = 1, the polynomial W2 = Tm ◦ V has
the form W2 = zR(z

2) ◦ V by (12). Therefore,

P = (U ◦ µ) ◦ z2R2(z2) ◦ V, Q = ((V1 ◦ µ) ◦ z
2
+ V2 ◦ zR(z

2)) ◦ V,

and for the polynomials W̃1 = z
2
◦ V and W̃2 = W2 = zR(z

2) ◦ V we have

W̃1(a) = W̃1(b), W̃2(a) = W̃2(b). (14)

Similarly, if the parameters a, b of a solution of the third type satisfy V (a) = −V (b),
then this solution is also of the first type. Indeed,

V1 ◦ T2m1 + V2 ◦ T2m2 = Ṽ1 ◦ z
2

for some Ṽ1 ∈ C[z], while

zR(z2) ◦ Tm1m2 = zR̃(z
2)

for some R̃ ∈ C[z], since m1, m2 are odd. Therefore,

P = U ◦ z2R̃2(z2) ◦ V, Q = (Ṽ1 ◦ z
2
+ V3 ◦ zR̃(z

2)) ◦ V,

and W̃1 = z
2
◦ V satisfies W̃1(a) = W̃1(b), since V (a) = −V (b).

Finally, it is easy to check that a solution of the third type is also of the second type
if (Tmi ◦ V )(a) = (Tmi ◦ V )(b) for i = 1 or 2 (see [19, pp. 725–726] for details and a
further discussion of interrelations between different types of solutions).

2.2. Lemmas related to a, b

It is clear that if Tl(a) = Tl(b) for some distinct a, b ∈ C, then Tm1(a) = Tm1(b) and
Tm2(a) = Tm2(b) for any m1 and m2 divisible by l. The following lemma shows that
for generic points a and b this is the only reason for two Chebyshev polynomials to take
equal values at a and b.

Lemma 2.2. Let Tm1 , Tm2 , Tm3 be the Chebyshev polynomials and a, b be distinct com-
plex numbers.

(a) Assume that
Tm1(a) = Tm1(b), Tm2(a) = Tm2(b). (15)

Then either Tl(a) = Tl(b) for l = GCD(m1, m2), or

T ′m1m2
(a) = T ′m1m2

(b) = 0. (16)
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(b) Assume that

Tm1(a) = Tm1(b), Tm2(a) = Tm2(b), Tm3(a) = Tm3(b). (17)

Then there exist distinct indices i1, i2, 1 ≤ i1, i2 ≤ 3, such that Tl(a) = Tl(b) for
l = GCD(mi1 , mi2).

Proof. Choose α, β ∈ C such that cosα = a, cosβ = b. Then equalities (15) imply

m1α = ε1m1β + 2πk1, m2α = ε2m2β + 2πk2, (18)

where ε1 = ±1, ε2 = ±1, and k1, k2 ∈ Z. Assume first that ε1 = ε2. Let u, v be integers
satisfying

um1 + vm2 = l. (19)

Multiplying the first equality in (18) by u and adding the second equality multiplied by v,
we see that

lα = ε1lβ + 2πk1u+ 2πk2v,

implying that Tl(a) = Tl(b).
Assume now that ε2 = −ε1. Then similarly we conclude that

lα = ε1β(um1 − vm2)+ 2πk1u+ 2πk2v. (20)

Furthermore, eliminating α from (18) we obtain

ε1m1m2β = πk2m1 − πk1m2. (21)

Since
T ′n(cosϕ) = n(sin nϕ/sinϕ), (22)

equality (21) implies that T ′m1m2
(b) = 0 unless

β = πk3, k3 ∈ Z. (23)

If (23) holds, then b = 1 if k3 is even, and b = −1 if k3 is odd, implying that

Tl(b) = (−1)k3l,

in view of (11). On the other hand, (23) implies by (20) that

Tl(a) = (−1)k3(um1−vm2).

Since the sum and difference of any two numbers have the same parity, this implies

Tl(a) = (−1)k3(um1+vm2) = (−1)k3l = Tl(b).

Similarly, one can see that Tl(a) = Tl(b) unless T ′m1m2
(a) = 0.

In order to prove (b) observe that equalities (17) imply

m1α = ε1m1β + 2πk1, m2α = ε2m2β + 2πk2, m3α = ε3m3β + 2πk3, (24)

where ε1 = ±1, ε2 = ±1, ε3 = ±1, and k1, k2, k3 ∈ Z. Clearly, among the num-
bers ε1, ε2, ε3 at least two are equal and we conclude as above that Tl(a) = Tl(b) for
l = GCD(mi1 , mi2), where εi1 = εi2 . ut
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Corollary 2.3. Let Tm1 , Tm2 be the Chebyshev polynomials and a, b be distinct complex
numbers. Assume that

Tm1(a) = Tm1(b), Tm2(a) = Tm2(b),

and GCD(m1, m2) = 1. Then

T ′m1m2
(a) = T ′m1m2

(b) = 0.

Proof. Follows from Lemma 2.2(a) since the equality S(a) = S(b) for some polyno-
mial S and a 6= b obviously implies that deg S > 1. ut

Recall that a number γ ∈ C is called algebraic if it is a root of a polynomial of positive
degree with rational coefficients. The set of all algebraic numbers is a subfield of C.
The monic polynomial p(x) ∈ Q[x] of minimal degree such that p(γ ) = 0 is called
the minimal polynomial of γ . A minimal polynomial is irreducible over Q. An algebraic
number γ is called an algebraic integer if its minimal polynomial has integer coefficients.
In fact, this condition may be replaced by the condition that γ is a root of some monic
polynomial with integer coefficients. The set of all algebraic integers is closed under
addition and multiplication.

Lemma 2.4. Assume that a ∈ C is a root of T ′n. Then a ∈ R, and 2a is an algebraic
integer.

Proof. Since equality (22) shows that T ′n has n − 1 distinct real roots, all roots of T ′n are
real. The other statements follow from the formulas

T ′n = nUn−1 and Un =

[n/2]∑
k=0

(−1)k
(
n− k

k

)
(2x)n−2k,

where Un denotes the Chebyshev polynomial of the second kind (see [1]). ut

Corollary 2.5. In the notation of Theorem 2.1 assume that P , Q is a solution of (7) of
the second type, or a solution of the third type which cannot be represented as a solution
of the first type. Then 2V (a) and 2V (b) are algebraic integers.

Proof. Without loss of generality we may assume that V = x. If Q is of the second type,
then the statement follows from Corollary 2.3 and Lemma 2.4.

If Q is of the third type, then applying Lemmas 2.2(a) and 2.4 to the equalities

T2m1(a) = T2m1(b), T2m2(a) = T2m2(b),

we conclude that 2a and 2b are algebraic integers unless T2(a) = T2(b). However, the
last equality yields a = −b, implying, as observed above, that Q can be represented as a
solution of the first type. ut
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2.3. Decompositions of polynomials with real coefficients

In this subsection we collect necessary results concerning decomposition of polynomials
with real coefficients into compositions of polynomials of lesser degree.

The following lemma is well known (see e.g. [19, Corollary 2.2]).

Lemma 2.6. Assume that

P = A ◦ B = Ã ◦ B̃,

where P,A,B, Ã, B̃ ∈C[z] and degA= deg Ã. Then there exists a polynomial µ∈C[z]
of degree one such that

Ã = A ◦ µ−1, B̃ = µ ◦ B. ut

Corollary 2.7. Let P = U ◦ V , where P ∈ R[z], while U,V ∈ C[z]. Assume that the
leading coefficient of V and its constant term are real numbers. Then U,V ∈ R[z].

Proof. Since P ∈ R[z], we have

P = U ◦ V = U ◦ V , (25)

where U , V are polynomials obtained from U,V by complex conjugation of all coeffi-
cients. By Lemma 2.6, (25) implies that

U = U ◦ µ−1, V = µ ◦ V, (26)

where µ = αz + β for some α, β ∈ C. Since the leading coefficient of V is real, the
second equality in (26) implies α = 1. Now the equality V = V + β yields β = 0, since
the constant term of V is real. Thus, U = U , V = V and hence U,V ∈ R[z]. ut

Corollary 2.8. Assume that P = U ◦V , where P ∈ R[z], while U,V ∈ C[z]. Then there
exists a polynomial µ ∈ C[z] of degree one such that the polynomials

U1 = U ◦ µ
−1, V1 = µ ◦ V

are in R[z]. In particular, if P is decomposable over C, it is decomposable over R.

Proof. Let µ be any polynomial of degree one such that the leading coefficient and the
constant term of the polynomial V1 = µ ◦ V are real. Then U1 and V1 are in R[z] by
Corollary 2.7. ut

Lemma 2.9. Let µ1, µ2 be complex polynomials of degree one.

(a) Assume that the polynomial µ1 ◦z
n
◦µ2, n ≥ 2, has real coefficients. Then there exist

µ̃ ∈ R[z] and c ∈ C such that µ2 = cµ̃.

(b) Assume that the polynomial µ1 ◦ Tn ◦ µ2, n ≥ 2, has real coefficients. Then either
µ2 ∈ R[z], or there exists µ̃ ∈ R[z] such that µ2 = iµ̃.
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Proof. Let µ1 = α1z+β1 and µ2 = α2z+β2, where α1, β1, α2, β2 ∈ C. Then the coeffi-
cients of zn and zn−1 of the polynomialµ1◦z

n
◦µ2 are cn = α1α

n
2 and cn−1 = α1α

n−1
2 β2n

respectively. Since by assumption these numbers are real, we conclude that the number

cn−1/cn = nβ2/α2

is also real. Therefore, β2/α2 ∈ R, and hence µ2 = α2µ̃, where µ̃ = z+ β2/α2 ∈ R[z].
Similarly, since

Tn(x) = 2n−1xn − n2n−3xn−2
+ · · ·

by (12), the coefficients of zn, zn−1, zn−2 of the polynomial µ1 ◦ Tn ◦ µ2 are

cn = α12n−1αn2 , cn−1 = α12n−1nαn−1
2 β2,

cn−2 = α12n−2n(n− 1)αn−2
2 β2

2 − α12n−3nαn−2
2 ,

respectively. As above, cn, cn−1 ∈ R implies that β2/α2 ∈ R. Since

cn−2 =
n(n− 1)cn

2

(
β2

α2

)2

−
ncn

4

(
1
α2

)2

,

it now follows from cn−2 ∈ R that α2
2 ∈ R. Since µ2 = α2µ̃, where µ̃ = z + β2/α2 is

in R[z], this proves the statement. ut

2.4. Solution of the polynomial moment problem over R

In this subsection we deduce from Theorem 2.1 a description of polynomials P , Q with
real coefficients satisfying (7) for a, b ∈ R.

The theorem below is a “real” analogue of Theorem 2.1. Keeping the above notation,
we will call a solution P,Q∈R[x] of (7) reducible if (4) holds for some P̃ , Q̃,W ∈R[x].
We will also call solutions in (i)–(iii) described below solutions of the first, second, and
third type. Notice that the set of “real” solutions of the first type is “smaller” than the set
of “complex” solutions.

Theorem 2.10. Let P , Q be non-constant real polynomials and a, b distinct real num-
bers such that equalities (7) hold. Then either P ,Q is a reducible solution of (7), or there
exist real polynomials Pj , Qj , Vj , Wj , 1 ≤ j ≤ r , such that

Q =

r∑
j=1

Qj , P = Pj ◦Wj , Qj = Vj ◦Wj , Wj (a) = Wj (b).

Moreover, one of the following conditions holds:

(i) r = 2 and

P = U ◦ x2R2(x2) ◦ V, W1 = x
2
◦ V, W2 = xR(x

2) ◦ V,

where R, U , V are real polynomials;
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(ii) r = 2 and

P = U ◦ Tm1m2 ◦ V, W1 = Tm1 ◦ V, W2 = Tm2 ◦ V,

where U , V are real polynomials, m1, m2 > 1, and GCD(m1, m2) = 1;
(iii) r = 3 and

P = U ◦ x2R2(x2) ◦ Tm1m2 ◦ V,

W1 = T2m1 ◦ V, W2 = T2m2 ◦ V, W3 = (xR(x
2) ◦ Tm1m2) ◦ V,

where R, U , V are real polynomials, m1, m2 > 1 are odd, and GCD(m1, m2) = 1.

Proof. Our strategy is to apply Theorem 2.1 and to use the condition that P,Q ∈ R[x]
and a, b ∈ R. Assume first that (4) holds for some P̃ , Q̃,W ∈ C[x]. Applying Corol-
lary 2.8 to the equality P = P̃ ◦W we conclude that without loss of generality we may
assume that P̃ andW are in R[x]. Now the equalityQ = Q̃◦W implies by Corollary 2.7
that Q̃ is also in R[x].

Assume that P , Q is a solution of the first type. By Corollary 2.8 it follows from
P = P1 ◦ W1 that there exists a complex polynomial µ1 of degree one such that the
polynomial µ1 ◦W1 has real coefficients. Further, applying Corollary 2.8 to the equality
µ1 ◦ W1 = µ1 ◦ x

n
◦ V , we conclude that there exists a complex polynomial µ2 of

degree one such that the polynomials µ1 ◦ x
n
◦µ2 and µ−1

2 ◦V have real coefficients. By
Lemma 2.9(a) this implies that there exist µ̃ ∈ R[x] and c ∈ C such that µ2 = cµ̃. Since
µ−1

2 = µ̃−1
◦ x/c, it now follows from µ−1

2 ◦ V ∈ R[x] that V/c ∈ R[x]. Therefore,
changing V to V/c, and modifying P1, V1, U , and R in an obvious way, without loss of
generality we may assume that V ∈ R[x].

Clearly, V ∈ R[x] implies thatW1 = x
n
◦V ∈ R[x]. It now follows from P = P1◦W1

by Corollary 2.7 that P1 ∈ R[x]. Furthermore, it follows from W1(a) = W1(b) and
a, b ∈ R that n = 2k and V (a) = −V (b). Since GCD(s, n) = 1, the evenness of n
implies that xsR(xn) = xR̃(x2) for some R̃ ∈ C[z]. Moreover, for such R̃ obviously
xsnRn(xn) = xn/2 ◦ x2R̃2(x2). Thus, changing P1 to P1 ◦ x

n/2, V1 to V1 ◦ x
n/2, U to

U◦xn/2, and xsR(xn) to xR̃(x2), we may assume thatW1 = x
2
◦V andW2 = xR(x

2)◦V .
Applying Corollary 2.7 to P = (P2 ◦ xR(x

2)) ◦ V we see that P2 ◦ xR(x
2) ∈ R[x].

Therefore, taking into account that the constant term of xR(x2) is zero, Corollary 2.7
implies that for c ∈ C such that the leading coefficient of cxR(x2) is real the polynomials
P2 ◦ x/c and cxR(x2) are in R[x]. Thus, modifying P2 and R we can assume that they
are in R[x]. Now Corollary 2.7 applied to P = U ◦ (x2R2(x2) ◦ V ) implies U ∈ R[x].

Finally, the equality

Q = V1 ◦W1 + V2 ◦W2 = V 1 ◦W1 + V 2 ◦W2

implies that

Q =
V1 + V 1

2
◦W1 +

V2 + V 2

2
◦W2.

Therefore, changing if necessary V1 to (V1 + V 1)/2 and V2 to (V2 + V 2)/2, we may
assume that V1, V2 ∈ R[x].
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Assume now that P ,Q is a solution of the third type. We may assume V (a) 6= −V (b),
for otherwise, as observed after Theorem 2.1, this solution also belongs to the first type
considered earlier. As above, there exist complex polynomials µ1 and µ2 of degree one
such that the polynomials µ1 ◦ T2m1 ◦ µ2 and µ−1

2 ◦ V have real coefficients. By Lemma
2.9(b), this implies that either µ2 ∈ R[x], or there exists µ̃ ∈ R[x] such that µ2 = iµ̃.
Since µ−1

2 ◦ V ∈ R[x], in the first case we have V ∈ R[x], while in the second one,

V = iṼ , Ṽ ∈ R[x]. (27)

Let us show that (27) is impossible. Indeed, applying Lemma 2.2(a) to the equalities
W1(a) = W1(b),W2(a) = W2(b) and arguing as in Corollary 2.5, we conclude that V (a)
and V (b) are roots of the polynomial T ′4m1m2

, for otherwise V (a) = −V (b). Since T ′n
has only real zeroes, we conclude that V (a), V (b) ∈ R, and hence (27) is impossible as
a, b ∈ R. Thus, V ∈ R[x].

Applying now Corollary 2.7 to the equality P = (P3 ◦ xR(x
2)) ◦ (Tm1m2 ◦ V ) we

deduce that P3 ◦ xR(x
2) ∈ R[x]. Furthermore, arguing as above, we conclude that we

may assume that P3, R ∈ R[x] as well as P1, P2, U ∈ R[x] and V1, V2, V3 ∈ R[x].
The proof in the case where P , Q is a solution of the second type is similar with

obvious simplifications. ut

3. Proof of Theorem 1.2

3.1. Plan of the proof

In the rest of the paper we will always assume that all the polynomials considered
have real coefficients. Let us describe the general plan of the proof of Theorem 1.2.
Let R(P,Q) be the subfield of C(x) generated by P and Q. By the Lüroth theorem,
R(P,Q) = R(W) for some W ∈ R(x) with degW ≥ 2, implying that

P = P̃ ◦W, Q = Q̃ ◦W

for some P̃ , Q̃ ∈ R(x) such that R(P̃ , Q̃) = R(x). Moreover, since P,Q ∈ R[x], it
is easy to see that we may assume that P̃ , Q̃,W ∈ R[x]. Therefore, since equalities (6)
imply ∫ W(b)

W(a)

P̃ idQ̃ = 0,
∫ W(b)

W(a)

Q̃idP̃ = 0, i ≥ 0, (28)

in order to prove Theorem 1.2 it is enough to show that if polynomials P and Q satisfy

R(P,Q) = R(x) (29)

and a 6= b, then P and Q cannot satisfy (6).
Applying Theorem 2.10 to the first and to the second system of equations in (6) sep-

arately, we arrive at nine different “cases” depending on types of solutions. For example,
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“the case (2,1)” means that Q is a solution of the second type of the polynomial moment
problem (7), while P is a solution of the first type of the polynomial moment problem∫ b

a

Qi dP = 0, i ≥ 0.

In more detail, this means that, on the one hand,

Q = V1 ◦W1 + V2 ◦W2, P = U ◦ Tnm ◦ V,

where

W1 = Tn ◦ V, W2 = Tm ◦ V, (30)
W1(a) = W1(b), W2(a) = W2(b),

while, on the other hand,

P = Ṽ1 ◦ W̃1 + Ṽ2 ◦ W̃2, Q = Ũ ◦ x2R2(x2) ◦ Ṽ ,

where

W̃1 = x
2
◦ Ṽ , W̃2 = xR(x

2) ◦ Ṽ ,

W̃1(a) = W̃1(b), W̃2(a) = W̃2(b).

In view of assumption (29), the polynomial V (as well as Ṽ ) is of degree one, for other-
wise

R(P,Q) ⊆ R(V ) ( R(x).

Furthermore, it is clear that we may assume that one of the polynomials V and Ṽ equals x.
Our strategy will be to show that such systems of equations always imply that equali-
ties (4) hold, in contradiction with (29) (recall that the condition W(a) = W(b) implies
that degW > 1).

Since we may exchange P andQ, it is only necessary to consider the cases (1,1), (2,1),
(3,1), (2,2), (3,2), and (3,3). Finally, we may impose some additional restrictions related to
the fact that a solution of the polynomial moment problem may belong to different types.
For example, assuming that the theorem is already proved in the case (1,1), considering
the case (2,1) we may assume that n,m > 2 in (30), since otherwise the solution P,Q
also belongs to the case (1,1).

For a polynomial

P = anx
n
+ an−1x

n−1
+ · · · + a1x + a0, ai ∈ R, 0 ≤ i ≤ n,

of degree n, set
Ci(P ) = an−i, 0 ≤ i ≤ n.

The following simple lemma permits us to control initial terms in a composition of
two polynomials and is widely used in the following.
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Lemma 3.1. Let T be a polynomial of degree d . Then for any polynomial S of degree r
with leading coefficient c we have

Ci(S ◦ T ) = Ci(cx
r
◦ T ), 0 ≤ i ≤ d − 1. (31)

In particular, for any two polynomials S1, S2 of equal degree with equal leading coeffi-
cients,

Ci(S1 ◦ T ) = Ci(S2 ◦ T ), 0 ≤ i ≤ d − 1.

Proof. Indeed, deg (S − cxr) ◦ T = dr − d . Therefore, (31) holds. ut

Corollary 3.2. Let T be a polynomial of degree d ≥ 2 with C1(T ) = 0, U an arbitrary
polynomial, and α, β ∈ R, α 6= 0. Then C1(U ◦ T ◦ (αx + β)) = 0 if and only if β = 0.

Proof. Indeed, if degU = r and C0(U) = c, then C1(U ◦ T ) = C1(cz
r
◦ T ) by

Lemma 3.1. On the other hand, C1(cz
r
◦ T ) = 0, since C1(T ) = 0. Therefore,

C1(U ◦ T ) = 0, and it is clear that for any polynomial F such that C1(F ) = 0 the
equality C1(F ◦ (αx + β)) = 0 holds if and only if β = 0. ut

3.2. Proof of Theorem 1.2 in the case (1,1)

Lemma 3.3. Let W1, W2 be polynomials of degree two such that W1(a) = W1(b) and
W2(a) = W2(b) for distinct a, b ∈ R. Then W2 = λ1W1 + λ2 for some λ1, λ2 ∈ R.

Proof. Let

W1 = α1x
2
+ β1x + γ1, W2 = α2x

2
+ β2x + γ2,

where α1, β1, γ1, α2, β2, γ2 ∈ R. Then the assunptions of the lemma yield

α1(a + b)+ β1 = 0, α2(a + b)+ β2 = 0.

Therefore, β1/α1 = β2/α2, implying the statement. ut

In order to prove the theorem in the case (1,1) it is enough to observe that in this case
there exist U,R, Ũ, R̃ ∈ R[x] such that

P = (U ◦ xR(x2)) ◦W1, Q = (Ũ ◦ xR̃(x2)) ◦ W̃1

where

W1 = x
2
◦ V, W̃1 = x

2
◦ Ṽ

are polynomials of degree two such that W1(a) = W1(b) and W̃1(a) = W̃1(b). By
Lemma 3.3, we have W̃1 = λ1W1 + λ2 for some λ1, λ2 ∈ R, and hence (4) holds for
W = W1.
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3.3. Proof of Theorem 1.2 in the case (2,1)

If P,Q is a solution of (6) corresponding to the case (2,1), then without loss of gener-
ality we may assume that there exist polynomials V1, V2, U, Ṽ1, Ṽ2, Ũ , R and α, β ∈ R,
α 6= 0, such that

Q = V1 ◦ Tm1 + V2 ◦ Tm2 = Ũ ◦ x
2R2(x2) ◦ (αx + β), (32)

P = Ṽ1 ◦ x
2
◦ (αx + β)+ Ṽ2 ◦ xR(x

2) ◦ (αx + β) = U ◦ Tm1m2 ,

where GCD(m1, m2) = 1. In addition, for the polynomials

W1 = Tm1 , W2 = Tm2 , W̃1 = x
2
◦ (αx + β), W̃2 = xR(x

2) ◦ (αx + β)

we have

W1(a) = W1(b), W2(a) = W2(b), W̃1(a) = W̃1(b), W̃2(a) = W̃2(b). (33)

If at least one of the numbers m1, m2 equals 2, then P,Q belongs to the type (1,1) con-
sidered above. So, we may assume thatm1, m2 ≥ 3. Notice that the second representation
for Q in (32) implies that n = degQ is even. Moreover, n ≥ 6, for otherwise degR = 0
in contradiction with W̃2(a) = W̃2(b).

Although the above conditions seem to be very strong, it is difficult to use them in
their full generality since they contain many unknown parameters. Thus, actually we will
mostly use only the fact that in (32) the right side is a polynomial in x2

◦ (αx + β), and
the first three equalities in (33).

First of all observe that any polynomial of the form Q = V1 ◦ Tm1 + V2 ◦ Tm2 can be
represented in the form

Q = dnTn + dn−1Tn−1 + · · · + d1T1 + d0, di ∈ R, (34)

where di = 0 unless i is divisible by m1 or m2. Indeed, it is clear that T0, T1, . . . , Tr is
a basis of the subspace of R[x] consisting of all polynomials of degree ≤ r . Therefore,
a polynomial S can be represented in the form

S = V ◦ Tm = (arx
r
+ ar−1x

r−1
+ · · · + a1x + a0) ◦ Tm

if and only if

S = (brTr+br−1Tr−1+· · ·+b1T1+b0)◦Tm = brTrm+br−1T(r−1)m+· · ·+b1Tm+b0.

Consequently,Q = V1◦Tm1+V2◦Tm2 can be represented in the required form. Moreover,
it is clear that such a representation is unique.

Define C(n,m1, m2) as the set of all polynomials (34) such that di = 0 unless i
is divisible by m1 or m2, and dn 6= 0. To be definite, we will always assume that n
is divisible by m1. Similarly to the notation Ci(Q) introduced above, for a polynomial
Q ∈ C(n,m1, m2) given by (34) set

Chi(Q) = dn−i, 0 ≤ i ≤ n.
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Lemma 3.4. Let Q ∈ C(n,m1, m2), where m1, m2 ≥ 3 and n ≥ 5.

(i) If Ch1(Q) 6= 0, then Ch2(Q) = 0.
(ii) If Ch1(Q),Ch3(Q) 6= 0, then m1 = 3 and Ch4(Q) = 0,

(iii) If Ch1(Q),Ch3(Q),Ch5(Q) 6= 0, then m1 = 3 and m2 = 4.

Proof. If Ch1(Q) 6= 0, then m2 | n − 1 since otherwise both n and n − 1 are divisible
by m1. Further,

|mik1 −mik2| ≥ mi ≥ 3, i = 1, 2, k1, k2 ∈ N, (35)

unless k1 = k2, implying that n−2 can be divisible neither bym1, sincem1 | n, nor bym2,
since m2 | n− 1. Thus, Ch2(Q) = 0.

Assume that additionally Ch3(Q) 6= 0. Since m2 | n− 1, the number n− 3 cannot be
divisible bym2 in view of (35). Therefore, n−3 is divisible bym1, implying thatm1 = 3.
Furthermore, Ch4(Q) = 0 for otherwise m2 = 3 by (35), implying that both n and n− 1
are divisible by 3.

Finally, if also Ch5(Q) 6= 0, it follows from m1 = 3 that m2 | n − 5, implying that
m2 = 4. ut

Notice that the restriction n ≥ 5 in Lemma 3.4 is imposed since Chs(Q), s ≥ 1, is defined
only for polynomials Q of degree at least s.

Corollary 3.5. Let Q ∈ C(n,m1, m2), where m1, m2 ≥ 3, and n ≥ 5 is even. If
Ch1(Q) 6= 0, then either Ch2(Q) = Ch3(Q) = 0, or Ch2(Q) = Ch4(Q) = Ch5(Q) = 0.

Proof. Since m2 | n − 1 and n is even, m2 is odd. Therefore, m2 6= 4, and the statement
follows from Lemma 3.4. ut

Lemma 3.6. LetQ and F be polynomials such thatQ = F ◦x2
◦ (x−δ) for some δ ∈ R

and n = degQ ≥ 6.

(i) If Ch2(Q) = Ch3(Q) = 0, then either δ = 0, or

(2δ)2 =
3

(n− 1)(n− 2)
. (36)

(ii) If Ch2(Q) = Ch4(Q) = Ch5(Q) = 0, then either δ = 0, or 2δ satisfies the equation

2
15
(n− 1)(n− 2)(n− 3)(n− 4)t4 − (n− 2)(n− 3)t2 + 1 = 0. (37)

Proof. If Ch2(Q) = Ch3(Q) = 0, thenQ = c0Tn+c1Tn−1+R1, where degR1 ≤ n−4.
Set

T ∗s (x) = 2Ts(x/2), s ≥ 1.

Clearly, the equality

c0Tn + c1Tn−1 + R1 = F ◦ x
2
◦ (x − δ)

implies
c0T
∗
n + c1T

∗

n−1 + R̃1 = F̃ ◦ x
2
◦ (x − γ ), (38)
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where R̃1 = 2R1(x/2), F̃ = 2F(x/4), and γ = 2δ. Furthermore, without loss of gener-
ality we may assume that c0 = 1.

Since the right side of (38) is a polynomial in (x − γ )2, it follows by taking into
account degR1 ≤ n − 4 that the derivatives of T ∗n + c1T

∗

n−1 of orders n − 1 and n − 3
at γ vanish, that is,

T ∗(n−1)
n (γ )+ c1T

∗(n−1)
n−1 (γ ) = 0, T ∗(n−3)

n (γ )+ c1T
∗(n−3)
n−1 (γ ) = 0.

Since
T ∗s = x

s
− sxs−2

+
s(s − 3)

2
xs−4
−
s(s − 4)(s − 5)

6
xs−6
+ · · · (39)

by (12), this implies that

n!γ + c1(n− 1)! = 0,

n!

3!
γ 3
− n(n− 2)!γ + c1

(
(n− 1)!

2!
γ 2
− (n− 1)(n− 3)!

)
= 0.

The first of these equalities implies that c1 = −nγ . Substituting this in the second equality
we obtain

n!

3!
γ 3
− n(n− 2)!γ − nγ

(
(n− 1)!

2!
γ 2
− (n− 1)(n− 3)!

)
= −

n!

3
γ 3
+ n(n− 3)!γ = 0,

implying that 2δ = γ satisfies (36) unless δ = 0.
Similarly, if Ch2(Q) = Ch4(Q) = Ch5(Q) = 0, we arrive at

T ∗n + c1T
∗

n−1 + c3T
∗

n−3 + R̃1 = F̃ ◦ x
2
◦ (x − γ ), (40)

where deg R̃1 ≤ n−6 and γ = 2δ, implying that the derivatives of T ∗n +c1T
∗

n−1+c3T
∗

n−3
of orders n− 1, n− 3, and n− 5 at γ vanish. Thus,

T ∗(n−1)
n (γ )+ c1T

∗(n−1)
n−1 (γ ) = 0,

T ∗(n−3)
n (γ )+ c1T

∗(n−3)
n−1 (γ )+ c3T

∗(n−3)
n−3 (γ ) = 0,

T ∗(n−5)
n (γ )+ c1T

∗(n−5)
n−1 (γ )+ c3T

∗(n−5)
n−3 (γ ) = 0,

By (39), these equalities are equivalent to

n!γ + c1(n− 1)! = 0,

n!

3!
γ 3
− n(n− 2)!γ + c1

(
(n− 1)!

2!
γ 2
− (n− 1)(n− 3)!

)
+ c3(n− 3)! = 0,

n!

5!
γ 5
−
n(n− 2)!

3!
γ 3
+
n(n− 3)(n− 4)!

2
γ

+ c1

(
(n− 1)!

4!
γ 4
−
(n− 1)(n− 3)!

2!
γ 2
+
(n− 1)(n− 4)(n− 5)!

2

)
+ c3

(
(n− 3)!

2!
γ 2
− (n− 3)(n− 5)!

)
= 0.
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As above, it follows from the first of these equalities that c1 = −nγ , and substituting this
in the second equality we obtain

n!

3!
γ 3
− n(n− 2)!γ − nγ

(
(n− 1)!

2!
γ 2
− (n− 1)(n− 3)!

)
+ c3(n− 3)! = 0,

implying that

c3 =
n(n− 1)(n− 2)

3
γ 3
− nγ.

Now the third equality gives

n!

5!
γ 5
−
n(n− 2)!

3!
γ 3
+
n(n− 3)(n− 4)!

2
γ

− nγ

(
(n− 1)!

4!
γ 4
−
(n− 1)(n− 3)!

2!
γ 2
+
(n− 1)(n− 4)(n− 5)!

2

)
+

(
n(n− 1)(n− 2)

3
γ 3
− nγ

)(
(n− 3)!

2!
γ 2
− (n− 3)(n− 5)!

)
= 0.

The coefficient of γ 5 in this expression is

n!

3!

(
1

20
−

1
4
+ 1

)
=

2n!
15
.

The coefficient of γ 3 is

−
n(n− 2)!

3!
+
n(n− 1)(n− 3)!

2!
−
n(n− 1)(n− 2)(n− 3)(n− 5)!

3
−
n(n− 3)!

2!

= −
n(n− 3)!

2!

(
n− 2

3
− (n− 1)

)
− n(n− 3)(n− 5)!

(
(n− 1)(n− 2)

3
+
(n− 4)

2

)
=
(2n− 1)n(n− 3)!

6
− n(n− 3)(n− 5)!

2n2
− 3n− 8

6

=
n(n− 3)(n− 5)!

6

(
(2n− 1)(n− 4)− (2n2

− 3n− 8)
)
= −n(n− 2)(n− 3)(n− 5)!.

Finally, the coefficient of γ is

n(n− 3)(n− 4)!
2

−
n(n− 1)(n− 4)(n− 5)!

2
+ n(n− 3)(n− 5)!

= n(n− 5)!
(
(n− 3)(n− 4)

2
−
(n− 1)(n− 4)

2
+ (n− 3)

)
= n(n− 5)!.

Collecting terms and canceling n(n− 5)! we see that 2δ = γ satisfies (37) unless δ = 0.
ut
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Corollary 3.7. Let Q and F be polynomials such that Q = F ◦ x2
◦ (x − δ) for some

δ ∈ R.

(i) If Ch2(Q) = Ch3(Q) = 0 and n = degQ ≥ 6, then 4δ is not an algebraic integer
unless δ = 0.

(ii) If Ch2(Q) = Ch4(Q) = Ch5(Q) = 0 and n = degQ ≥ 10, then 4δ is not an
algebraic integer unless δ = 0.

Proof. Set γ = 4δ. If Ch2(Q) = Ch3(Q) = 0 and δ 6= 0, then γ is a root of the equation

t2 −
12

(n− 1)(n− 2)
= 0.

Since for n ≥ 6 the number 12
(n−1)(n−2) is not an integer, this implies that γ cannot be

an algebraic integer of degree two. Moreover, γ cannot be an algebraic integer of degree
one, for otherwise γ is an integer, implying that so is

γ 2
=

12
(n− 1)(n− 2)

.

If Ch2(Q) = Ch4(Q) = Ch5(Q) = 0 and δ 6= 0, then γ is a root of the equation

(n− 1)(n− 2)(n− 3)(n− 4)t4 − 30(n− 2)(n− 3)t2 + 120 = 0. (41)

Observe that if γ is a rational root of (41), then −γ is also a root of (41), implying that
t2−γ 2 divides the polynomial in (41). Hence the degree of an irreducible (over Q) factor
of that polynomial cannot be three, so it can only be one, two, or four.

If the polynomial in (41) is irreducible over Q, then γ cannot be an algebraic integer
since (n− 1)(n− 2)(n− 3)(n− 4) does not divide 120 for n ≥ 10.

Assume now that γ is an algebraic integer satisfying an irreducible equation of the
form t2 + c1t + c2 = 0 with c1, c2 ∈ Z. Then by the Gauss lemma,

(n−1)(n−2)(n−3)(n−4)t4−30(n−2)(n−3)t2+120 = (t2+c1t+c2)(d0t
2
+d1t+d2)

for some d0, d1, d2 ∈ Z. Since the coefficients of t3 and t on the left side vanish, we have

d1 + c1d0 = 0, c1d2 + c2d1 = 0,

implying that, unless
c1 = 0, d1 = 0, (42)

we have
d1 = −c1d0, d2 = c2d0. (43)

If (43) holds, then 120 = c2d2 = c
2
2d0 contrary to d0 = (n− 1)(n− 2)(n− 3)(n− 4) and

n ≥ 10. Similarly, if (42) holds, then γ 2
= −c2 is an integer, and it follows from (41) that

(n− 2)(n− 3)γ 2 divides 120, easily implying a contradiction with the condition n ≥ 10.
Finally, if γ is an integer, then so is γ 2, implying as above that (n − 2)(n − 3)γ 2

divides 120 in contradiction with n ≥ 10. ut
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Proof of Theorem 1.2 in the case (2,1). Observe first that if β = 0 in (32), then the
conclusion is true. Indeed, in this case the condition W̃1(a) = W̃1(b) is equivalent to
T2(a) = T2(b). Therefore, applying Lemma 2.2(b) to the equalities

Tm1(a) = Tm1(b), Tm2(a) = Tm2(b), T2(a) = T2(b),

we conclude that at least one of the numbers m1, m2 is even, and hence

Q = Ũ ◦ xR2(x) ◦ (αx)2 and P = U ◦ Tm1m2 = U ◦ Tm1m2/2 ◦ T2

satisfy (4) for W = x2.

Further, observe that (32) implies that

Q = Ũ ◦ xR2(x) ◦ x2
◦ (αx + β) = F ◦ x2

◦ (x + β/α), (44)

where F = Ũ ◦ xR2(x) ◦ α2x, while the condition W̃1(a) = W̃1(b) yields

a + b = −2β/α. (45)

If Ch1(Q) = 0, then (34) implies that also C1(Q) = 0, since C1(Tn) = 0 by (12). In
its turn, C1(Q) = 0 implies that β = 0 by Corollary 3.2 applied to (44). So, assume that
Ch1(Q) 6= 0. By Corollary 3.5, this implies that either Ch2(Q) and Ch3(Q) vanish, or
Ch2(Q), Ch4(Q) and Ch5(Q) vanish (recall that n = degQ is even and n ≥ 6 so that we
can use Corollary 3.5).

If Ch2(Q) = Ch3(Q) = 0, then Corollary 3.7(i) applied to (44) implies that −4β/α
is not an algebraic integer unless β = 0. On the other hand, (45) implies that −4β/α is
an algebraic integer, since 2a and 2b are algebraic integers by Corollary 2.5. Thus, we
conclude again that β = 0.

Similarly, assuming that Ch3(Q) 6= 0, while Ch2(Q) = Ch4(Q) = Ch5(Q) = 0, we
may apply Corollary 3.7(ii) whenever n ≥ 10. Since n is even and Ch3(Q) 6= 0 implies
that 3 | n in view of m1 = 3 (see Lemma 3.4), the only possible value for n which does
not satisfy n ≥ 10 is 6. Substituting n = 6 in (41) we obtain the equation t4−3t2+1 = 0
whose roots are algebraic integers. Thus, for n = 6 the previous reasoning fails.

In order to prove the theorem in the remaining case, observe first that for n = 6 the
condition Ch1(Q) 6= 0 implies that m2 = 5. Thus, Q ∈ C(6, 3, 5) and hence

Q = T6 + c1T5 + c3T3 + c6,

where c1, c3, c6 ∈ R. Recall that instead of (32) we have used in the proof the weaker
condition that the right side of (32) has the form F ◦ x2

◦ (x − δ). Therefore, to finish the
proof it is enough to show that the equality

T6 + c1T5 + c3T3 + c6 = c(x(x
2
− d))2 ◦ (x − β), (46)

where c1, c3, c6, c, d, β ∈ R, implies that β = 0. This may be verified by a direct calcu-
lation. Namely, the comparison of the leading coefficients of both sides of (46) implies
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that c = 32, while the comparison of the other coefficients gives

16c1 + 192β = 0, −480β2
+ 64d − 48 = 0,

640β3
− 256βd − 20c1 + 4c3 = 0, −480β4

+ 384β2d − 32d2
+ 18 = 0,

192β5
− 256β3d + 64βd2

+ 5c1 − 3c3 = 0, c6 = −32β6
+ 64β4d − 32β2d2

− 1.

We leave it to the reader to verify (for example, with the help of Maple) that the only
solution of the above system is

c1 = 0, c3 = 0, c6 = 1, β = 0, d = 3/4

(for these values of the parameters, equality (46) simply reduces to T6 = T2 ◦ T3). ut

3.4. Proof of Theorem 1.2 in the case (2,2)

First, observe that Theorem 1.2 in the case (2,2) follows from the following statement.

Proposition 3.8. Let V1, V2, U, Ṽ1, Ṽ2, Ũ ∈ R[x] and α, β ∈ R, α 6= 0, satisfy

V1 ◦ Tm1 + V2 ◦ Tm2 = Ũ ◦ Tm̃1m̃2 ◦ (αx + β), (47)

Ṽ1 ◦ Tm̃1 ◦ (αx + β)+ Ṽ2 ◦ Tm̃2 ◦ (αx + β) = U ◦ Tm1m2 , (48)

where
GCD(m1, m2) = GCD(m̃1, m̃2) = 1, (49)

and m1, m2, m̃1, m̃2 ≥ 3. Then α = ±1 and β = 0.

Indeed, in the case (2,2) the equalities

Q = V1 ◦ Tm1 + V2 ◦ Tm2 = Ũ ◦ Tm̃1m̃2 ◦ (αx + β), (50)

P = Ṽ1 ◦ Tm̃1 ◦ (αx + β)+ Ṽ2 ◦ Tm̃2 ◦ (αx + β) = U ◦ Tm1m2 , (51)

and (49) hold for some m1, m2, m̃1, m̃2 ≥ 2. Additionally,

Tm1(a) = Tm1(b), Tm2(a) = Tm2(b), (52)
Tm̃1(αa + β) = Tm̃1(αb + β), Tm̃2(αa + β) = Tm̃2(αb + β). (53)

If at least one of m1, m2 equals 2, then P,Q belongs to the type (1,2) considered above.
So, we may assume that m1, m2 ≥ 3. Similarly, we may assume that m̃1, m̃2 ≥ 3, since
otherwise P,Q belongs to the type (2,1). Since under these conditions Proposition 3.8
implies that α = ±1 and β = 0, it follows from the equalities

Tm1(a) = Tm1(b), Tm2(a) = Tm2(b), Tm̃1(±a) = Tm̃1(±b)

by Lemma 2.2(b), taking into account (13), that we have Ts(a) = Ts(b), where either
s = GCD(m1, m̃1), or s = GCD(m2, m̃1). Since

Q = Ũ ◦ Tm̃1m̃2 ◦ (±x) = Ũ ◦ (±Tm̃1m̃2) = Ũ ◦ (±Tm̃1m̃2/s) ◦ Ts,

P = U ◦ Tm1m2 = U ◦ Tm1m2/s ◦ Ts,
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we conclude that (4) holds for W = Ts . This completes the proof of Theorem 1.2 in the
case (2,2) assuming Proposition 3.8.

The next lemmas, used in the proof of Proposition 3.8, are similar to Lemmas 3.4
and 3.6 and are used for imposing restrictions on possible values of α and β in (47), (48),
and eventually to show that α = ±1 and β = 0.

Lemma 3.9. LetQ and F be polynomials such thatQ = F ◦Ts ◦ (αx+β), where s ≥ 5,
α, β ∈ R, and α 6= 0. Set n = degQ.

(i) If Ch2(Q) = Ch3(Q) = 0, then either α = ±1, β = 0, or

4β2
=

6
(n− 1)(2n− 1)

, α2
=

2n− 4
2n− 1

. (54)

(ii) If Ch2(Q) = Ch4(Q) = 0, then either α = ±1 and β = 0, or

4β2
=

12
(n− 1)(2n− 1)

, α2
=

2n− 7
2n− 1

. (55)

In particular, in both cases α2 < 1 and β 6= 0 unless α = ±1 and β = 0.

Proof. If Ch2(Q) = 0, then

Q = c0Tn + c1Tn−1 + c3Tn−3 + c4Tn−4 + R1,

where R1 is a polynomial such that degR1 ≤ n − 5 and c0, c1, c3, c4 ∈ R. Further, by
Lemma 3.1, for some b0 ∈ R we have

Ci(Q) = Ci(F ◦ Ts ◦ (αx + β)) = Ci(b0Tn/s ◦ Ts ◦ (αx + β))

= Ci(b0Tn ◦ (αx + β)), 0 ≤ i ≤ s − 1,

implying that
Q = (b0Tn) ◦ (αx + β)+ R2,

where R2 is a polynomial such that degR2 ≤ n− s. Thus,

Q = c0Tn + c1Tn−1 + c3Tn−3 + c4Tn−4 + R1 = b0Tn ◦ (αx + β)+ R2, (56)

where degR1, degR2 ≤ n − 5 and c0, c1, c3, c4, b0 ∈ R. Changing x to x/2, and Ri(x)
to 2Ri(x/2), we obtain, in the notation of Lemma 3.6, a similar equality

Q = c0T
∗
n + c1T

∗

n−1 + c3T
∗

n−3 + c4T
∗

n−4 + R1 = b0T
∗
n ◦ (̃αx + β̃)+ R2, (57)

where β̃ = 2β, α̃ = α. Furthermore, we may assume that c0 = 1, implying b0 = 1/α̃n

and c1 = β̃n/α̃. Thus, we can rewrite (57) in the form

Q = T ∗n +
β̃n

α̃
T ∗n−1 + c3T

∗

n−3 + c4T
∗

n−4 + R1 =
1
α̃n
T ∗n ◦ (̃αx + β̃)+ R2. (58)



2364 F. Pakovich

Calculating C2(Q), C3(Q), C4(Q) for both representations of Q in (58) using (39)
(and also the Taylor formula, for the second representation), we obtain

−n =
1

(n− 2)!̃α2

[
n!β̃2

2!
− n(n− 2)!

]
,

−β̃n(n− 1)
α̃

+ c3 =
1

(n− 3)!̃α3

[
n!β̃3

3!
− n(n− 2)!β̃

]
,

n(n− 3)
2

+ c4 =
1

(n− 4)!̃α4

[
n!β̃4

4!
−
n(n− 2)!β̃2

2!
+
n(n− 3)(n− 4)!

2

]
.

It follows from the first of these equalities that

α̃2
= 1− (n− 1)β̃2/2. (59)

Further, if Ch3(Q) = c3 = 0, then substituting this value of α̃2 into the second equality
we conclude that either (54) holds, or β = 0 and hence α = ±1 by (59). Similarly, if
Ch4(Q) = c4 = 0, then substituting (59) into the third equality we obtain

n!β̃4

4!
−
n(n− 2)!β̃2

2!
+
n(n− 3)(n− 4)!

2

=
n(n− 3)(n− 4)!

2

[
(n− 1)2β̃4

4
− (n− 1)β̃2

+ 1
]
,

implying that either α̃ = ±1 and β̃ = 0, or (55) holds.
Finally, it is clear that α2 < 1 and β 6= 0 unless α = ±1 and β = 0. ut

Lemma 3.10. Let Q ∈ C(n,m1, m2), where m1, m2 ≥ 3 and n ≥ 6. Then at least one
of the coefficients Ch2(Q), Ch4(Q), Ch6(Q) vanishes.

Proof. Assuming Ch2(Q),Ch4(Q) 6= 0, we will show Ch6(Q) = 0. First, Ch2(Q) 6= 0
implies by (35) that m2 | n − 2. It now follows from Ch4(Q) 6= 0 by (35) that m1 = 4.
Therefore, Ch6(Q) = 0, for otherwise m2 = 4 by (35), implying that both n and n − 2
are divisible by 4. ut

Lemma 3.11. LetQ and F be polynomials such thatQ = F ◦Ts ◦αx, where F ∈ R[x],
α ∈ R \ {0}, and s ≥ 7. Set n = degQ.

(i) If Ch2(Q) = 0, then α2
= 1.

(ii) If Ch4(Q) = 0, then either α2
= 1, or α2

=
n−3
n−1 .

(iii) If Ch6(Q) = 0, then either α2
= 1, or α2 is a root of the equation

(n2
− 3n+ 2)t2 + (−2n2

+ 12n− 16)t + (n2
− 9n+ 20) = 0. (60)

In particular, in all these cases the inequality α2 < 1 holds unless α2
= 1.
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Proof. As in Lemma 3.9 we can write the equality Q = F ◦ Ts ◦ αx in the form

T ∗n +c1T
∗

n−1+c2T
∗

n−2+c3T
∗

n−3+c4T
∗

n−4+c5T
∗

n−5+c6T
∗

n−6+R1 =
1
α̃n
T ∗n ◦ (αx)+R2,

where R1, R2 are polynomials such that degR1, degR2 ≤ n− 7, and ci ∈ R, 1 ≤ i ≤ 6.
Furthermore, it follows from (12) that c1 = 0, implying inductively that also c3 = 0 and
c5 = 0. Calculating now C2(Q), C4(Q), C6(Q) for both representations of Q in

T ∗n + c2T
∗

n−2 + c4T
∗

n−4 + c6T
∗

n−6 + R1 =
1
α̃n
T ∗n ◦ (αx)+ R2, (61)

we obtain

−n+ c2 = −
n

α2 ,

n(n− 3)
2

− (n− 2)c2 + c4 =
n(n− 3)

2α4 ,

−
n(n− 4)(n− 5)

6
+
(n− 2)(n− 5)c2

2
− (n− 4)c4 + c6 = −

n(n− 4)(n− 5)
6α6 .

It follows from the first equality that

c2 = n(α
2
− 1)/α2,

implying that if c2 = 0, then α2
= 1. Substituting this value of c2 into the second equality

we obtain

c4 =
n(n− 3)

2α4 −
n(n− 3)

2
+
n(n− 2)(α2

− 1)
α2 = n

(n− 1)α4
− 2(n− 2)α2

+ (n− 3)
2α4 .

Since

(n− 1)α4
− 2(n− 2)α2

+ (n− 3) = (n− 1)(α2
− 1)

(
α2
−
n− 3
n− 1

)
,

this implies that if c4 = 0, then either α2
= 1, or α2

=
n−3
n−1 .

Finally, since

c6 = −
n(n− 4)(n− 5)

6α6 +
n(n− 4)(n− 5)

6
−
(n− 2)(n− 5)c2

2
+ (n− 4)c4

= −
n(n− 4)(n− 5)

6α6 +
n(n− 4)(n− 5)

6
−
(n− 2)(n− 5)

2
n(α2
− 1)
α2

+ (n− 4)n
(n− 1)α4

− 2(n− 2)α2
+ (n− 3)

2α4

= n
(n2
− 3n+ 2)α6

+ (−3n2
+ 15n− 18)α4

+ (3n2
− 21n+ 36)α2

− n2
+ 9n− 20

6α6 ,
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it follows from the factorization

(n2
− 3n+ 2)α6

+ (−3n2
+ 15n− 18)α4

+ (3n2
− 21n+ 36)α2

− n2
+ 9n− 20

= (α2
− 1)

(
(n2
− 3n+ 2)α4

+ (−2n2
+ 12n− 16)α2

+ (n2
− 9n+ 20)

)
that either α2

= 1, or α2 is a root of (60). Solving (60), we find two roots

t1 =
n2
− 6n+ 8−

√
3n2 − 18n+ 24

n2 − 3n+ 2
=

√
(n− 2)(n− 4)(

√
(n− 2)(n− 4)−

√
3)

(n− 1)(n− 2)
,

t2 =
n2
− 6n+ 8+

√
3n2 − 18n+ 24

n2 − 3n+ 2
=

√
(n− 2)(n− 4)(

√
(n− 2)(n− 4)+

√
3)

(n− 1)(n− 2)
.

Since n ≥ 7, they are real and positive. Moreover, t1 < t2 and

t2 − 1 =
√

3(n− 2)(n− 4)− 3n+ 6
(n− 1)(n− 2)

=

√
3(n− 2)(

√
n− 4−

√
3(n− 2))

(n− 1)(n− 2)
< 0. ut

Proof of Proposition 3.8. Denote the polynomials (47), (48) by Q and P as in (50), (51).
Observe that (50), (51) and the restrictions imposed on m1, m2, m̃1, m̃2 imply that

degP ≥ m1m2 ≥ 12, degQ ≥ m̃1m̃2 ≥ 12.

Assume that Ch1(Q) 6= 0. Then Lemma 3.4 implies that either Ch2(Q)=Ch3(Q)=0,
or Ch2(Q) = Ch4(Q) = 0. Applying Lemma 3.9 to equality (47) we see that, unless
α = ±1 and β = 0, the conditions α < 1 and β 6= 0 hold. So, assume that α < 1 and
β 6= 0. Rewrite (51) in the form

P = Ṽ1 ◦ Tm̃1 + Ṽ2 ◦ Tm̃2 = U ◦ Tm1m2 ◦

(
x − β

α

)
. (62)

Since β 6= 0, Corollary 3.2 applied to (62) implies that C1(P ) 6= 0. Applying now
Lemmas 3.4 and 3.9 to (62) in the same way as before to (50), we conclude that 1/α < 1.
The contradiction obtained proves that α = ±1 and β = 0.

Assume now that Ch1(Q) = 0. Then β = 0, by Corollary 3.2. Furthermore, by
Lemma 3.10 at least one of the coefficients Ch2(Q), Ch4(Q), Ch6(Q) vanishes, implying
by Lemma 3.11 that, unless α = ±1, β = 0, the condition α < 1 holds. Since β = 0
implies by Corollary 3.2 that C1(P ) = 0 in view of (62), we conclude as above that the
assumption α < 1 leads to a contradiction. ut

3.5. Proof of Theorem 1.2 in the cases (3,1), (3,2), (3,3)

The case (3,1) reduces to the case (2,1) as follows. We start from the equality

Q = V1 ◦ T2m1 +V2 ◦ T2m2 +V3 ◦ xR(x
2) ◦ Tm1m2 = Ũ ◦ x

2R̃2(x2) ◦ (αx + β), (63)

where V1, V2, V3, R, R̃, Ũ ∈ R[x], α, β ∈ R, α 6= 0, and m1, m2 ≥ 3 are coprime and
odd. It follows from the first representation forQ in (63) thatQ can be written in the form

Q = dnTn + dn−1Tn−1 + · · · + d1T1 + d0, di ∈ R, (64)
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where di = 0 unless i is divisible by 2m1, 2m2, orm1m2. Clearly, the conditions imposed
on m1, m2 imply that

|2m1k1 − 2m2k2| ≥ 2 unless |2m1k1 − 2m2k2| = 0,
|2mik1 − 2mik2| ≥ 2mi ≥ 6 unless |2mik1 − 2mik2| = 0, i = 1, 2,
|2mik1 −m1m2k2| ≥ mi ≥ 3 unless |2mik1 −m1m2k2| = 0, i = 1, 2,

|m1m2k1 −m1m2k2| ≥ m1m2 ≥ 15 unless |m1m2k1 −m1m2k2| = 0.

Therefore, Ch1(Q) = 0, implying that C1(Q) = 0, since C1(Tn) = 0. It now follows
from the second representation for Q in (63) by Corollary 3.2 that β = 0. Since the
polynomial W̃1 = z2

◦ (αx + β) satisfies W̃1(a) = W̃1(b), this implies that a = −b.
Therefore, the solution P,Q also belongs to the case (2,1) considered earlier (see the
remarks after Theorem 2.1).

In the case (3,2) there exist V1, V2, V3, U,R, Ṽ1, Ṽ2, Ũ ∈ R[x] and α, β ∈ R, α 6= 0,
such that

Q = V1 ◦ T2m1 + V2 ◦ T2m2 + V3 ◦ xR(x
2) ◦ Tm1m2 = Ũ ◦ Tm̃1m̃2 ◦ (αx + β), (65)

P = Ṽ1 ◦ Tm̃1 ◦ (αx + β)+ Ṽ2 ◦ Tm̃2 ◦ (αx + β) = U ◦ x
2R2(x2) ◦ Tm1m2 , (66)

where m1, m2 ≥ 3 are odd and coprime, and m̃1, m̃2 ≥ 2 are coprime. Further, without
loss of generality we may assume that a 6= −b, for otherwise P,Q belongs to the case
(2, 2). Moreover, we may assume that m̃1, m̃2 ≥ 3, for otherwise P,Q belongs to the
case (3, 1).

Since equalities (65), (66) may be written in the form

Q = (V1 ◦ T2 + V3 ◦ xR(x
2) ◦ Tm2) ◦ Tm1 + (V2 ◦ T2) ◦ Tm2 = Ũ ◦ Tm̃1m̃2 ◦ (αx + β),

P = Ṽ1 ◦ Tm̃1 ◦ (αx + β)+ Ṽ2 ◦ Tm̃2 ◦ (αx + β) = (U ◦ x
2R2(x2)) ◦ Tm1m2 ,

it follows from Proposition 3.8 that α = ±1 and β = 0. Since we have assumed that
a 6= −b, it follows now from the equalities

T2m1(a) = T2m1(b), T2m2(a) = T2m2(b), Tm̃1(±a) = Tm̃1(±b)

by Lemma 2.2(b), taking into account (13), that we have Ts(a) = Ts(b) either for
s = GCD(2m1, m̃1), or for s = GCD(2m2, m̃1). Finally, since in any case s | m̃1m̃2
and s | 2m1m2, we obtain

Q = Ũ ◦ Tm̃1m̃2 ◦ (±x) = Ũ ◦ (±Tm̃1m̃2) = Ũ ◦ (±Tm̃1m̃2/s) ◦ Ts,

P = U ◦ x2R2(x2) ◦ Tm1m2 = U ◦ xR
2(x) ◦ x2

◦ Tm1m2 = F ◦ T2m1m2

= F ◦ T2m1m2/s ◦ Ts,

where
F = U ◦ xR2(x) ◦

x + 1
2

.

Thus, (4) holds for W = Ts .
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In the case (3,3) the proof is similar: there exist V1, V2, V3, U,R, Ṽ1, Ṽ2, Ṽ3, Ũ , R̃

in R[x] and α, β ∈ R, α 6= 0, such that

Q = V1 ◦ T2m1 + V2 ◦ T2m2 + V3 ◦ xR(x
2) ◦ Tm1m2

= Ũ ◦ x2R̃2(x2) ◦ Tm̃1m̃2 ◦ (αx + β),

P = Ṽ1 ◦ T2m̃1 ◦ (αx + β)+ Ṽ2 ◦ T2m̃2 ◦ (αx + β)+ Ṽ3 ◦ xR̃(x
2) ◦ Tm̃1m̃2 ◦ (αx + β)

= U ◦ x2R2(x2) ◦ Tm1m2 ,

where m1, m2, m̃1, m̃2 ≥ 3 are odd and GCD(m1, m2) = GCD(m̃1, m̃2) = 1. More-
over, without loss of generality we may assume that a 6= −b. Using Proposition 3.8 we
conclude as above that α = ±1 and β = 0. Finally, it follows from the equalities

T2m1(a) = T2m1(b), T2m2(a) = T2m2(b), T2m̃1(±a) = T2m̃1(±b)

that (4) holds for W = Ts , where either s = GCD(2m1, 2m̃1), or s = GCD(2m2, 2m̃1).
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