Sharing a Measure of Maximal Entropy in Polynomial Semigroups

Fedor Pakovich*

Department of Mathematics, Ben Gurion University of the Negev, 8410501, Israel
*Correspondence to be sent to: e-mail: pakovich@math.bgu.ac.il

Let $P_{1}, P_{2}, \ldots, P_{k}$ be complex polynomials of degree at least two that are not simultaneously conjugate to monomials or to Chebyshev polynomials, and S the semigroup under composition generated by $P_{1}, P_{2}, \ldots, P_{k}$. We show that all elements of S share a measure of maximal entropy if and only if the intersection of principal left ideals $S P_{1} \cap S P_{2} \cap \cdots \cap S P_{k}$ is non-empty.

1 Introduction

In the recent paper by Jiang and Zieve [10], the authors showed that a semigroup of polynomials under composition generated by two complex polynomials P_{1} and P_{2} of degrees $n_{1} \geq 2$ and $n_{2} \geq 2$ is not free if and only if it is isomorphic to the semigroup generated by $z^{n_{1}}$ and $\varepsilon z^{n_{2}}$, where ε is a root of unity. This implies in particular that whenever $S=\left\langle P_{1}, P_{2}\right\rangle$ is not free there exists $r>0$ for which $P_{1}^{\circ r}$ and $P_{1}^{\circ} \circ P_{2}$ commute. Since commuting polynomials can be described explicitly ([18],[19]), the last property is sufficient to classify all pairs of polynomials P_{1} and P_{2} for which $S=\left\langle P_{1}, P_{2}\right\rangle$ is not free.

Combined with the description of pairs of rational functions sharing a measure of maximal entropy obtained in [11], [12], the result of [10] implies the following criterion: a semigroup $S=\left\langle P_{1}, P_{2}\right\rangle$ generated by two polynomials P_{1} and P_{2} of degree at least two that are not simultaneously conjugate to monomials or to Chebyshev polynomials is

[^0]not free if and only if all elements of S share a measure of maximal entropy. The problem of characterization of semigroups of polynomials satisfying the last property has been studied in the recent papers [7], [17], where several equivalent characterizations of such semigroups in semigroup-theoretic terms were given. Among such characterizations we mention the right amenability and the absence of free subsemigroups. The result of [10] provides yet another characterization of such semigroups, in terms of freeness, if considered semigroups are generated by two polynomials.

It is not hard to see that the result of [10] and the corresponding characterization of semigroups whose elements share a measure of maximal entropy do not allow for a direct generalization to a greater number of generators. For example, for arbitrary polynomials R and X setting

$$
P_{1}=R \circ z^{n}, \quad P_{2}=X, \quad P_{3}=\varepsilon X,
$$

where ε satisfies $\varepsilon^{n}=1$, we obtain a semigroup $S=\left\langle P_{1}, P_{2}, P_{3}\right\rangle$, which is not free since

$$
P_{1} \circ P_{2}=P_{1} \circ P_{3}
$$

However, it is clear that in general P_{1}, P_{2}, and P_{3} do not share a measure of maximal entropy.

In this note, we provide a generalization of the result of [10] to arbitrary finitely generated semigroups of polynomials replacing the non-freeness condition by another condition, which is however equivalent to the condition that S is not free if the number of generators equals two. We also provide a characterization of finitely generated semigroups of polynomials whose elements share a measure of maximal entropy.

To formulate our results explicitly, we introduce some notation. We say that two semigroups of polynomials S_{1} and S_{2} are conjugate if there exists $\alpha \in \operatorname{Aut}(\mathbb{C})$ such that

$$
\alpha \circ S_{1} \circ \alpha^{-1}=S_{2}
$$

We denote by z the semigroup of polynomials consisting of monomials $a z^{n}$, where $a \in \mathbb{C}^{*}$ and $n \geq 1$, and by \mathcal{T} the semigroup consisting of polynomials of the form $\pm T_{n}$, $n \geq 1$, where T_{n} stands for the Chebyshev polynomial of degree n. Finally, we denote by z^{U} the subsemigroup of z consisting of polynomials of the form ωz^{n}, where ω is a root of unity.

In this notation, our first result is following.

Theorem 1.1. Let $P_{1}, P_{2}, \ldots, P_{k}$ be complex polynomials of degree at least two. Then the semigroup $S=\left\langle P_{1}, P_{2}, \ldots, P_{k}\right\rangle$ is isomorphic to a subsemigroup of z^{U} if and only if the intersection of principal left ideals $S P_{1} \cap S P_{2} \cap \cdots \cap S P_{k}$ is non-empty.

It is easy to see that for $k=2$ the condition

$$
\begin{equation*}
S P_{1} \cap S P_{2} \cap \cdots \cap S P_{k} \neq \emptyset \tag{1}
\end{equation*}
$$

is equivalent to the condition that S is not free. Indeed, any semigroup of rational functions is right cancellative. Therefore, if there exist two different words in the letters $\left\{P_{1}, P_{2}\right\}$ representing the same element in $S=\left\langle P_{1}, P_{2}\right\rangle$, then cancelling their common suffix we obtain two different words representing the same element with different ending letters. Since one of these letters is P_{1} and the other one is P_{2}, this implies that $S P_{1} \cap S P_{2} \neq \emptyset$. Notice, however, that for $k>2$ condition (1) is clearly stronger than merely the requirement that S is not free.

Our second result is following.

Theorem 1.2. Let $P_{1}, P_{2}, \ldots, P_{k}$ be complex polynomials of degree at least two such that $S=\left\langle P_{1}, P_{2}, \ldots, P_{k}\right\rangle$ is not conjugate to a subsemigroup of z or \mathcal{T}. Then all elements of S share a measure of maximal entropy if and only if the intersection of principal left ideals $S P_{1} \cap S P_{2} \cap \cdots \cap S P_{k}$ is non-empty.

Notice that since in the polynomial case having the same measure of maximal entropy is equivalent to having the same Julia set, Theorem 1.2 can be viewed as a characterization of polynomials $P_{1}, P_{2}, \ldots, P_{n}$ sharing a Julia set via existence of a relation of the form

$$
A_{1} P_{1}=A_{2} P_{2}=\cdots=A_{n} P_{n}
$$

where $A_{i}, 1 \leq i \leq n$, are words in $P_{1}, P_{2}, \ldots P_{n}$.
The assumption that S is not conjugate to a subsemigroup of Z or \mathcal{T} is not essential for the "if" part of Theorem 1.2, but essential for the "only if" part. Indeed, for instance, polynomials z^{n} and $b z^{m}, b \in \mathbb{C}^{*}$, share a measure of maximal entropy whenever $|b|=1$, but generate a free group, unless b is a root of unity.

Finally, notice that since semigroups of polynomials whose elements share a measure of maximal entropy admit many equivalent descriptions (see [17]), Theorem 1.2 also can be formulated in many equivalent forms. In particular, under the assumptions
of Theorem 1.2, condition (1) is equivalent to the condition that there exists a polynomial T of the form $T=z^{r} R\left(z^{l}\right)$, where $R \in \mathbb{C}[z], l \geq 1$, and $0 \leq r<l$, such that

$$
P_{i}=\omega_{i} T^{\circ l_{i}}, \quad 1 \leq i \leq k
$$

for some $l_{i} \geq 1,1 \leq i \leq k$, and l th roots of unity $\omega_{i}, 1 \leq i \leq k$.

2 Proof of Theorem 1.1

Let us recall that for every complex polynomial P_{1} of degree $n_{1} \geq 2$ there exists a series

$$
\beta=\sum_{i=-1}^{\infty} c_{i} z^{-i}, \quad c_{-1} \neq 0
$$

called the Böttcher function, which makes the diagram

commutative. Having its roots in complex dynamics (see [5], [14]), the Böttcher function is widely used for studying functional relations between polynomials and related problems (see [1-4, 8, 10, 18, 20]).

As in the paper [10], our proof of the "if" part of Theorem 1.1 uses the Böttcher function and the following lemma proved in the paper [8]. Following [8], for a non-zero element $T=b_{0}+b_{1} z+b_{2} t^{2}+\ldots$ of $\mathbb{C}[[z]]$, we define $\operatorname{Ord}_{0}(T)$ as the minimum number $i \geq 0$ such that $b_{i} \neq 0$, and $l_{0}(T)$ as the difference $m-\operatorname{Ord}_{0}(T)$, where m is the minimum number greater than $\operatorname{Ord}_{0}(T)$ such that $b_{m} \neq 0$. If T is a monomial, we set $l_{0}(T)=\infty$. The parameter $l_{0}(T)$ possesses certain properties making it useful for studying functional relations between powers series (see [8], Lemma 2.6). Below we need only the properties listed in the following statement, which can be checked by a direct calculation.

Lemma 2.1. Let X be an element of $z \mathbb{C}[[z]]$ such that $l_{0}(X)<\infty$. Then for any element T of $z \mathbb{C}[[z]]$ with $l_{0}(T)<\infty$ the inequality

$$
\begin{equation*}
l_{0}(T \circ X) \geq \min \left(l_{0}(X), \operatorname{Ord}_{0}(X) l_{0}(T)\right) \tag{2}
\end{equation*}
$$

holds, and the equality is attained whenever $l_{0}(X) \neq \operatorname{Ord}_{0}(X) l_{0}(T)$. On the other hand, if $l_{0}(T)=\infty$, then the equalities

$$
\begin{gather*}
l_{0}(X \circ T)=\operatorname{Ord}_{0}(T) l_{0}(X) \tag{3}\\
l_{0}(T \circ X)=l_{0}(X) \tag{4}
\end{gather*}
$$

hold.

Lemma 2.1 implies the following corollary.
Corollary 2.2. Let $T_{i}, 1 \leq i \leq k$, be elements of $z^{2} \mathbb{C}[[z]]$ such that $l_{0}\left(T_{1}\right)=l<\infty$, and

$$
\begin{equation*}
l_{0}\left(T_{1}\right) \leq l_{0}\left(T_{i}\right), \quad 2 \leq i \leq k \tag{5}
\end{equation*}
$$

Assume that A is a word in $T_{1}, T_{2}, \ldots T_{k}$, and X is an element of $z^{2} \mathbb{C}[[z]]$. Then $l_{0}(A X)=l$ if $l_{0}(X)=l$, and $l_{0}(A X)>l$ if $l_{0}(X)>l$.

Proof. In the both cases, the proof is by induction on the length of A. If A is empty, then the corollary is trivially true. Further, in the first case, the induction step reduces to the following statement: if $X \in z^{2} \mathbb{C}[[z]]$ satisfies $l_{0}(X)=l$, then

$$
l_{0}\left(T_{i} X\right)=l, \quad 1 \leq i \leq k
$$

In turn, the last statement follows from formulas (2), (4) taking into account that inequality (5) implies the inequality

$$
\begin{equation*}
\operatorname{Ord}_{0}(X) l_{0}\left(T_{i}\right) \geq \operatorname{Ord}_{0}(X) l_{0}\left(T_{1}\right) \geq 2 l>l, \quad 1 \leq i \leq k \tag{6}
\end{equation*}
$$

Similarly, in the second case, we must prove that if $l_{0}(X)>l$, then

$$
\begin{equation*}
l_{0}\left(T_{i} X\right)>l, \quad 1 \leq i \leq k \tag{7}
\end{equation*}
$$

If $l_{0}(X)<\infty$, then (7) follows from (2) and (4) taking into account the inequalities $l_{0}(X)>l$ and (6). On the other hand, if $l_{0}(X)=\infty$, then either $l_{0}\left(T_{i}\right)=\infty$ and $l_{0}\left(T_{i} X\right)=\infty>l$, or
$l_{0}\left(T_{i}\right)<\infty$ and

$$
l_{0}\left(T_{i} X\right)=\operatorname{Ord}_{0}(X) l_{0}\left(T_{i}\right)>l
$$

by (3) and (6).

We deduce Theorem 1.1 from the following result.

Theorem 2.3. Let $Q_{i}, 1 \leq i \leq k$, be elements of $z^{2} \mathbb{C}[[z]]$, and R the semigroup generated by $Q_{1}, Q_{2}, \ldots, Q_{k}$. Assume that Q_{k} is contained in z^{U}. Then

$$
\begin{equation*}
R Q_{1} \cap R Q_{2} \cap \cdots \cap R Q_{k} \neq \emptyset \tag{8}
\end{equation*}
$$

if and only if every $Q_{i}, 1 \leq i \leq k-1$, is contained in z^{U}.

Proof. Let $Q_{i}=a_{i, 1} z^{n_{i}}+a_{i, 2} z^{n_{i}+1}+\ldots 1 \leq i \leq k$, where $a_{i, 1} \neq 0$. Assume that (8) holds, but not all $Q_{i}, 1 \leq i \leq k$, are monomials. Without loss of generality we may assume that for some $s, 1 \leq s<k$, the series Q_{s+1}, \ldots, Q_{k} are monomials, while the series $Q_{1}, Q_{2}, \ldots, Q_{s}$ are not, and that

$$
l_{0}\left(Q_{1}\right) \leq \cdots \leq l_{0}\left(Q_{s}\right)
$$

By the condition, there exist words $A_{1}, A_{2}, \ldots, A_{k}$ in $Q_{1}, Q_{2}, \ldots, Q_{k}$ such that

$$
\begin{equation*}
A_{1} Q_{1}=A_{2} O_{2}=\cdots=A_{k} O_{k} \tag{9}
\end{equation*}
$$

Applying the first part of Corollary 2.2 to the word $A_{1} Q_{1}$, we obtain that

$$
l_{0}\left(A_{1} Q_{1}\right)=l_{0}\left(Q_{1}\right)
$$

On the other hand, applying the second part of Corollary 2.2 to the word $A_{s+1} Q_{s+1}$, we obtain that

$$
l_{0}\left(A_{s+1} Q_{s+1}\right)>l_{0}\left(Q_{1}\right)
$$

Since $A_{1} Q_{1}=A_{s+1} Q_{s+1}$, we obtain a contradiction, which shows that all $Q_{1}, Q_{2}, \ldots, Q_{s}$ are monomials. In particular, equality (9) reduces to the equality

$$
\begin{equation*}
A_{1} a_{1,1} z^{n_{1}}=A_{2} a_{2,1} z^{n_{2}}=\cdots=A_{k} a_{k, 1} z^{n_{k}} \tag{10}
\end{equation*}
$$

where $A_{i}, 1 \leq i \leq k$, are words in $a_{1,1} z^{n_{1}}, a_{2,1} z^{n_{2}}, \ldots, a_{k, 1} z^{n_{k}}$.
Clearly, (10) implies an equality of the form

$$
U_{1} z^{N}=U_{2} z^{N}=\cdots=U_{k} z^{N}
$$

where $U_{i}, 1 \leq i \leq k$, are monomials in $a_{1,1}, a_{2,1}, \ldots, a_{k, 1}$, and N is a natural number. To finish the proof of the "only if" part of the theorem it is enough to show that whenever $i \neq j, 1 \leq i, j \leq k$, the inequality

$$
\begin{equation*}
\operatorname{deg}_{a_{i, 1}} U_{i}>\operatorname{deg}_{a_{i, 1}} U_{j} \tag{11}
\end{equation*}
$$

holds. Indeed, in this case making in the equality

$$
U_{1}=U_{2}=\cdots=U_{k}
$$

all possible cancellations, we obtain an equality of the form

$$
a_{1,1}^{s_{1}}=a_{2,1}^{s_{2}}=\cdots=a_{k, 1}^{s_{k}},
$$

where $s_{i} \geq 1,1 \leq i \leq k$, implying that all $a_{i, 1}, 1 \leq i \leq k-1$, are roots of unity.
It is clear that the minimum value of $\operatorname{deg}_{a_{i, 1}} U_{i}$ is attained if the word A_{i} contains no letter $a_{i, 1} z^{n_{i}}$ at all, implying that

$$
\operatorname{deg}_{a_{i, 1}} U_{i} \geq \frac{N}{n_{i}}
$$

Thus, to prove (11) it is enough to show that

$$
\operatorname{deg}_{a_{i, 1}} U_{j}<\frac{N}{n_{i}}
$$

Let r be the number of appearances of $a_{i, 1} z^{n_{i}}$ in A_{j}. It is easy to see that the maximum value of $\operatorname{deg}_{a_{i, 1}} U_{j}$ is attained if these appearances occur in the last r letters of A_{j},
implying that

$$
\operatorname{deg}_{a_{i, 1}} U_{j} \leq \frac{N}{n_{j} n_{i}}+\frac{N}{n_{j} n_{i}^{2}}+\frac{N}{n_{j} n_{i}^{3}}+\cdots+\frac{N}{n_{j} n_{i}^{r}}
$$

Taking into account that $n_{i} \geq 2, n_{j} \geq 2$, this implies that

$$
\operatorname{deg}_{a_{i, 1}} U_{j}<\frac{N}{n_{j} n_{i}} \sum_{l=0}^{\infty} \frac{1}{n_{i}^{l}} \leq \frac{N}{2 n_{i}} \frac{1}{1-\frac{1}{n_{i}}} \leq \frac{N}{n_{i}} .
$$

Let us assume now that $Q_{i}, 1 \leq i \leq k$, are contained in z^{U}, and show that then (8) holds. Let $l \geq 1$ be a number such that all $a_{i, 1}, 1 \leq i \leq k$, are l th roots of unity. Setting

$$
F_{1}=Q_{1} \circ Q_{2} \circ \cdots \circ Q_{k}, \quad F_{2}=Q_{2} \circ Q_{3} \circ \cdots \circ Q_{1}, \ldots F_{k}=Q_{k} \circ Q_{1} \circ \cdots \circ Q_{k-1}
$$

and observing that

$$
\operatorname{deg} F_{1}=\operatorname{deg} F_{2}=\cdots=\operatorname{deg} F_{k}
$$

we see that for every $j \geq 1$ there exists an l th root of unity ω_{j} such that

$$
F_{1}^{\circ j}=\omega_{j} F_{2}^{\circ j}
$$

The pigeonhole principle yields that there exists an infinite subset K_{1} of \mathbb{N} and an l th root of unity δ_{1} such that for every $j \in K_{1}$ the equality

$$
F_{1}^{\circ j}=\delta_{1} F_{2}^{\circ j}
$$

holds, implying that for every $j_{1}, j_{2} \in K_{1}$ with $j_{2}>j_{1}$ the equality

$$
F_{1}^{\circ j_{2}}=F_{1}^{\circ j_{1}} \circ F_{2}^{\circ\left(j_{2}-j_{1}\right)}
$$

holds. Similarly, there exists an infinite subset K_{2} of K_{1} and an lth root of unity δ_{2} such that for every $j \in K_{2}$ the equality

$$
F_{1}^{\circ j}=\delta_{2} F_{3}^{\circ j}
$$

holds, and for every $j_{1}, j_{2} \in K_{2}$ with $j_{2}>j_{1}$ the equality

$$
F_{1}^{\circ j_{2}}=F_{1}^{\circ j_{1}} \circ F_{3}^{\circ\left(j_{2}-j_{1}\right)}
$$

holds. Continuing in the same way, we will find natural numbers j_{2} and j_{1} such that $j_{2}>j_{1}$ and

$$
\begin{equation*}
F_{1}^{\circ j_{2}}=F_{1}^{\circ j_{1}} \circ F_{2}^{\circ\left(j_{2}-j_{1}\right)}=F_{1}^{\circ j_{1}} \circ F_{3}^{\circ\left(j_{2}-j_{1}\right)}=\cdots=F_{1}^{\circ j_{1}} \circ F_{k}^{\circ\left(j_{2}-j_{1}\right)} . \tag{12}
\end{equation*}
$$

Thus,

$$
F_{1}^{\circ j_{2}} \in R Q_{1} \cap R Q_{2} \cap \cdots \cap R Q_{k}
$$

implying (8).

Proof of Theorem 1.1. Let $P_{1}, P_{2}, \ldots, P_{k}$ be polynomials of degree at least two. Then the Böttcher function β for P_{k} provides an isomorphism ψ between the semigroup $S=\left\langle P_{1}, P_{2}, \ldots, P_{k}\right\rangle$ and the semigroup of power series R generated by the power series $z^{\operatorname{deg} P_{k}}$ and

$$
O_{i}=\beta \circ P_{i} \circ \beta^{-1}, \quad 1 \leq i \leq k-1 .
$$

Therefore, if (1) holds, then (8) also holds implying by Theorem 2.3 that S is isomorphic to a subsemigroup of z^{U}. In the other direction, if S is isomorphic to a subsemigroup of z^{U}, then for the images $Q_{1}, Q_{2}, \ldots, Q_{k}$ of $P_{1}, P_{2}, \ldots, P_{k}$ under this isomorphism condition (8) holds by Theorem 2.3. Therefore, for $P_{1}, P_{2}, \ldots, P_{k}$ condition (1) holds.

2.1 Proof of Theorem 1.2

Let us recall that if f is a rational function of degree $n \geq 2$, then by the results of Freire, Lopes, Mañé ([9]) and Lyubich ([13]) there exists a unique probability measure μ_{f} on $\mathbb{C P}^{1}$, which is invariant under f, has support equal to the Julia set $J(f)$, and achieves maximal entropy $\log n$ among all f-invariant probability measures. It is clear that the equality $\mu_{f}=\mu_{g}$ implies the equality of the Julia sets $J(f)=J(g)$. Moreover, for polynomials these conditions are equivalent. The problem of describing rational functions sharing a measure of maximal entropy and the problem of describing rational functions sharing a Julia set have been studied in $[1-4,11,12,15,16,20,21]$.

For any rational functions f and g the equality

$$
\begin{equation*}
f^{\circ j_{1}}=f^{\circ j_{2}} \circ g^{\circ s} \tag{13}
\end{equation*}
$$

for some $j_{1}, s \geq 1$ and $j_{2} \geq 0$ implies that f and g share a measure of maximal entropy. Furthermore, the results of the papers [11] and [12] imply that if the functions f and g are neither Lattès maps nor conjugate to $z^{ \pm n}$ or $\pm T_{n}$, then the equality $\mu_{f}=\mu_{g}$ holds if and only if equality (13) holds (see [16], [21] for more detail).

Proof of Theorem 1.2. In view of the isomorphism between semigroups S and R, the proof of the "if" part of Theorem 2.3 shows that if (1) holds, then the polynomials

$$
G_{1}=P_{1} \circ P_{2} \circ \cdots \circ P_{k}, \quad G_{2}=P_{2} \circ P_{3} \circ \cdots \circ P_{1}, \ldots G_{k}=P_{k} \circ P_{1} \circ \cdots \circ P_{k-1}
$$

along with the series $F_{i}, 1 \leq i \leq k$, satisfy relations (12), implying that

$$
\begin{equation*}
J\left(G_{1}\right)=J\left(G_{2}\right)=\cdots=J\left(G_{k}\right) \tag{14}
\end{equation*}
$$

On the other hand, since the semiconjugacy relation

between rational functions of degree at least two implies that

$$
X^{-1}(J(A))=J(B)
$$

(see e.g. [6], Lemma 5), the semiconjugacies

$1 \leq i \leq k-1$, imply that

$$
P_{i}^{-1}\left(J\left(G_{i}\right)\right)=J\left(G_{i+1}\right), \quad 1 \leq i \leq k-1, P_{k}^{-1}\left(J\left(G_{k}\right)\right)=J\left(G_{1}\right)
$$

Thus, equality (14) implies that $J\left(G_{1}\right)$ is a completely invariant set for $P_{i}, 1 \leq i \leq k$. In turn, this implies that

$$
J\left(P_{1}\right)=J\left(P_{2}\right)=\cdots=J\left(P_{k}\right)=J\left(G_{1}\right)
$$

(see [3], Lemma 8, or [15], Theorem 4). This proves the "if" part.
Finally, to prove the "only if" part, we observe that if all elements of S share a measure of maximal entropy, then by (13) for every $i, 2 \leq i \leq k$, there exist $t_{i}, s_{i} \geq 1$ and $r_{i} \geq 0$ such that

$$
P_{1}^{\circ t_{i}}=P_{1}^{\circ r_{i}} \circ P_{i}^{\circ s_{i}}, \quad 2 \leq i \leq k
$$

Therefore, for $K=t_{2} \ldots t_{k}$, we have:

$$
P_{1}^{\circ K}=\left(P_{1}^{\circ r_{2}} \circ P_{2}^{\circ S_{2}}\right)^{\circ K / t_{2}}=\left(P_{1}^{\circ r_{3}} \circ P_{3}^{\circ s_{3}}\right)^{\circ K / t_{3}}=\cdots=\left(P_{1}^{\circ r_{3}} \circ P_{k}^{\circ s_{k}}\right)^{\circ K / t_{k}},
$$

implying (1).

Funding

The Israel Science Foundation (Grant No. 1432/18).

References

[1] Atela, P. and J. Hu. "Commuting polynomials and polynomials with same Julia set." Internat. J. Bifur. Chaos Appl. Sci. Engrg. 6, no. 12A (1996): 2427-32.
[2] Baker, I. and A. Eremenko. "A problem on Julia sets." Ann. Acad. Sci. Fennicae (Series A.I. Math.) 12 (1987): 229-36.
[3] Beardon, A. "Symmetries of Julia sets." Bull. Lond. Math. Soc. 22, no. 6 (1990): 576-82.
[4] Beardon, A. "Polynomials with identical Julia sets." Complex Variables, Theory Appl. 17, no. 3-4 (1992): 195-200.
[5] Böttcher, L. "The principal laws of convergence of iterates and their application to analysis (in Russian)." Izv. Kazan. Fiz.-Mat. Obshch. 14 (1904): 155-234.
[6] Buff, X. and A. L. Epstein. "From local to global analytic conjugacies." Ergodic Theory and Dynamical Systems 27 (2007): 1073-94.
[7] Cabrera, C. and P. Makienko. "Makienko P., Amenability and measure of maximal entropy for semigroups of rational map." arXiv 1912.03377.
[8] Dorfer, G. and H. Woracek., Formal power series and some theorems of J. F. Ritt in arbitrary characteristic, Monatsh. Math., 127 (1999), no. 4, 277-293.
[9] Freire, A., A. Lopes, and R. Mañé. "An invariant measure for rational maps." Bol. Soc. Brasil. Mat. 14, no. 1 (1983): 45-62.
[10] Jiang, Z. and M. Zieve. "Functional equations in polynomials." arXiv 2008.09554.
[11] Levin, G. "Symmetries on Julia sets." Math. Notes 48, no. 5-6 (1990): 1126-31.
[12] Levin, G. and F. Przytycki. "When do two rational functions have the same Julia set?" Proc. Amer. Math. Soc. 125, no. 7 (1997): 2179-90.
[13] Ljubich, M. "Entropy properties of rational endomorphisms of the Riemann sphere." Ergodic Theory and Dynamical Systems 3, no. 3 (1983): 351-85.
[14] Milnor, J. Dynamics in one complex variable, Princeton Annals in Mathematics 160. Princeton, NJ: Princeton University Press, 2006.
[15] Pakovich, F. "On polynomials sharing preimages of compact sets, and related questions." Geom. Funct. Anal. 18, no. 1 (2008): 163-83.
[16] Pakovich, F. "On rational functions sharing the measure of maximal entropy." Arnold Math. J. 6, no. 3-4 (2020): 387-96.
[17] Pakovich, F. "On amenable semigroups of rational functions." arXiv 2008.12194.
[18] Ritt, J. F. "On the iteration of rational functions." Trans. Amer. Math. Soc. 21, no. 3 (1920): 348-56.
[19] Ritt, J. "Permutable rational functions." Trans. Amer. Math. Soc. 25 (1923): 399-448.
[20] Schmidt, W. and N. Steinmetz. "The polynomials associated with a Julia set." Bull. London Math. Soc. 27, no. 3 (1995): 239-41.
[21] Ye, H. "Rational functions with identical measure of maximal entropy." Advances in Mathematics 268 (2015): 373-95.

[^0]: Received November 18, 2020; Revised November 18, 2020; Accepted March 3, 2021
 Communicated by Prof. Misha Sodin

