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Let P1, P2, . . . , Pk be complex polynomials of degree at least two that are not simulta-

neously conjugate to monomials or to Chebyshev polynomials, and S the semigroup

under composition generated by P1, P2, . . . , Pk. We show that all elements of S share

a measure of maximal entropy if and only if the intersection of principal left ideals

SP1 ∩ SP2 ∩ · · · ∩ SPk is non-empty.

1 Introduction

In the recent paper by Jiang and Zieve [10], the authors showed that a semigroup of

polynomials under composition generated by two complex polynomials P1 and P2 of

degrees n1 ≥ 2 and n2 ≥ 2 is not free if and only if it is isomorphic to the semigroup

generated by zn1 and εzn2 , where ε is a root of unity. This implies in particular that

whenever S = 〈P1, P2〉 is not free there exists r > 0 for which P◦r
1 and P◦r

1 ◦ P2 commute.

Since commuting polynomials can be described explicitly ([18],[19]), the last property is

sufficient to classify all pairs of polynomials P1 and P2 for which S = 〈P1, P2〉 is not free.

Combined with the description of pairs of rational functions sharing a measure

of maximal entropy obtained in [11], [12], the result of [10] implies the following crite-

rion: a semigroup S = 〈P1, P2〉 generated by two polynomials P1 and P2 of degree at least

two that are not simultaneously conjugate to monomials or to Chebyshev polynomials is
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13830 F. Pakovich

not free if and only if all elements of S share a measure of maximal entropy. The problem

of characterization of semigroups of polynomials satisfying the last property has been

studied in the recent papers [7], [17], where several equivalent characterizations of such

semigroups in semigroup-theoretic terms were given. Among such characterizations we

mention the right amenability and the absence of free subsemigroups. The result of

[10] provides yet another characterization of such semigroups, in terms of freeness, if

considered semigroups are generated by two polynomials.

It is not hard to see that the result of [10] and the corresponding characterization

of semigroups whose elements share a measure of maximal entropy do not allow for

a direct generalization to a greater number of generators. For example, for arbitrary

polynomials R and X setting

P1 = R ◦ zn, P2 = X, P3 = εX,

where ε satisfies εn = 1, we obtain a semigroup S = 〈P1, P2, P3〉, which is not free since

P1 ◦ P2 = P1 ◦ P3.

However, it is clear that in general P1, P2, and P3 do not share a measure of maximal

entropy.

In this note, we provide a generalization of the result of [10] to arbitrary finitely

generated semigroups of polynomials replacing the non-freeness condition by another

condition, which is however equivalent to the condition that S is not free if the number

of generators equals two. We also provide a characterization of finitely generated

semigroups of polynomials whose elements share a measure of maximal entropy.

To formulate our results explicitly, we introduce some notation. We say that two

semigroups of polynomials S1 and S2 are conjugate if there exists α ∈ Aut (C) such that

α ◦ S1 ◦ α−1 = S2.

We denote by Z the semigroup of polynomials consisting of monomials azn, where

a ∈ C
∗ and n ≥ 1, and by T the semigroup consisting of polynomials of the form ±Tn,

n ≥ 1, where Tn stands for the Chebyshev polynomial of degree n. Finally, we denote by

ZU the subsemigroup of Z consisting of polynomials of the form ωzn, where ω is a root

of unity.

In this notation, our first result is following.
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Sharing a Measure of Maximal Entropy 13831

Theorem 1.1. Let P1, P2, . . . , Pk be complex polynomials of degree at least two. Then

the semigroup S = 〈P1, P2, . . . , Pk〉 is isomorphic to a subsemigroup of ZU if and only if

the intersection of principal left ideals SP1 ∩ SP2 ∩ · · · ∩ SPk is non-empty.

It is easy to see that for k = 2 the condition

SP1 ∩ SP2 ∩ · · · ∩ SPk 	= ∅ (1)

is equivalent to the condition that S is not free. Indeed, any semigroup of rational

functions is right cancellative. Therefore, if there exist two different words in the letters

{P1, P2} representing the same element in S = 〈P1, P2〉, then cancelling their common

suffix we obtain two different words representing the same element with different

ending letters. Since one of these letters is P1 and the other one is P2, this implies that

SP1∩SP2 	= ∅. Notice, however, that for k > 2 condition (1) is clearly stronger than merely

the requirement that S is not free.

Our second result is following.

Theorem 1.2. Let P1, P2, . . . , Pk be complex polynomials of degree at least two such

that S = 〈P1, P2, . . . , Pk〉 is not conjugate to a subsemigroup of Z or T. Then all elements

of S share a measure of maximal entropy if and only if the intersection of principal left

ideals SP1 ∩ SP2 ∩ · · · ∩ SPk is non-empty.

Notice that since in the polynomial case having the same measure of maximal

entropy is equivalent to having the same Julia set, Theorem 1.2 can be viewed as a

characterization of polynomials P1, P2, . . . , Pn sharing a Julia set via existence of a

relation of the form

A1P1 = A2P2 = · · · = AnPn,

where Ai, 1 ≤ i ≤ n, are words in P1, P2, . . . Pn.

The assumption that S is not conjugate to a subsemigroup of Z or T is not

essential for the “if” part of Theorem 1.2, but essential for the “only if” part. Indeed,

for instance, polynomials zn and bzm, b ∈ C
∗, share a measure of maximal entropy

whenever |b| = 1, but generate a free group, unless b is a root of unity.

Finally, notice that since semigroups of polynomials whose elements share a

measure of maximal entropy admit many equivalent descriptions (see [17]), Theorem 1.2

also can be formulated in many equivalent forms. In particular, under the assumptions
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13832 F. Pakovich

of Theorem 1.2, condition (1) is equivalent to the condition that there exists a polynomial

T of the form T = zrR(zl), where R ∈ C[z], l ≥ 1, and 0 ≤ r < l, such that

Pi = ωiT
◦li , 1 ≤ i ≤ k,

for some li ≥ 1, 1 ≤ i ≤ k, and lth roots of unity ωi, 1 ≤ i ≤ k.

2 Proof of Theorem 1.1

Let us recall that for every complex polynomial P1 of degree n1 ≥ 2 there exists a series

β =
∞∑

i=−1

ciz
−i, c−1 	= 0,

called the Böttcher function, which makes the diagram

commutative. Having its roots in complex dynamics (see [5], [14]), the Böttcher function

is widely used for studying functional relations between polynomials and related

problems (see [1–4, 8, 10, 18, 20]).

As in the paper [10], our proof of the “if” part of Theorem 1.1 uses the Böttcher

function and the following lemma proved in the paper [8]. Following [8], for a non-zero

element T = b0 + b1z + b2t2 + . . . of C[[z]], we define Ord0(T) as the minimum number

i ≥ 0 such that bi 	= 0, and l0(T) as the difference m − Ord0(T), where m is the minimum

number greater than Ord0(T) such that bm 	= 0. If T is a monomial, we set l0(T) = ∞. The

parameter l0(T) possesses certain properties making it useful for studying functional

relations between powers series (see [8], Lemma 2.6). Below we need only the properties

listed in the following statement, which can be checked by a direct calculation.

Lemma 2.1. Let X be an element of zC[[z]] such that l0(X) < ∞. Then for any element

T of zC[[z]] with l0(T) < ∞ the inequality

l0(T ◦ X) ≥ min
(
l0(X), Ord0(X)l0(T)

)
(2)
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Sharing a Measure of Maximal Entropy 13833

holds, and the equality is attained whenever l0(X) 	= Ord0(X)l0(T). On the other hand, if

l0(T) = ∞, then the equalities

l0(X ◦ T) = Ord0(T)l0(X), (3)

l0(T ◦ X) = l0(X) (4)

hold. �

Lemma 2.1 implies the following corollary.

Corollary 2.2. Let Ti, 1 ≤ i ≤ k, be elements of z2
C[[z]] such that l0(T1) = l < ∞, and

l0(T1) ≤ l0(Ti), 2 ≤ i ≤ k. (5)

Assume that A is a word in T1, T2, . . . Tk, and X is an element of z2
C[[z]]. Then l0(AX) = l

if l0(X) = l, and l0(AX) > l if l0(X) > l.

Proof. In the both cases, the proof is by induction on the length of A. If A is empty,

then the corollary is trivially true. Further, in the first case, the induction step reduces

to the following statement: if X ∈ z2
C[[z]] satisfies l0(X) = l, then

l0(TiX) = l, 1 ≤ i ≤ k.

In turn, the last statement follows from formulas (2), (4) taking into account that

inequality (5) implies the inequality

Ord0(X)l0(Ti) ≥ Ord0(X)l0(T1) ≥ 2l > l, 1 ≤ i ≤ k. (6)

Similarly, in the second case, we must prove that if l0(X) > l, then

l0(TiX) > l, 1 ≤ i ≤ k. (7)

If l0(X) < ∞, then (7) follows from (2) and (4) taking into account the inequalities l0(X) > l

and (6). On the other hand, if l0(X) = ∞, then either l0(Ti) = ∞ and l0(TiX) = ∞ > l, or
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13834 F. Pakovich

l0(Ti) < ∞ and

l0(TiX) = Ord0(X)l0(Ti) > l

by (3) and (6). �

We deduce Theorem 1.1 from the following result.

Theorem 2.3. Let Qi, 1 ≤ i ≤ k, be elements of z2
C[[z]], and R the semigroup generated

by Q1, Q2, . . . , Qk. Assume that Qk is contained in ZU . Then

RQ1 ∩ RQ2 ∩ · · · ∩ RQk 	= ∅ (8)

if and only if every Qi, 1 ≤ i ≤ k − 1, is contained in ZU .

Proof. Let Qi = ai,1zni + ai,2zni+1 + . . . 1 ≤ i ≤ k, where ai,1 	= 0. Assume that (8)

holds, but not all Qi, 1 ≤ i ≤ k, are monomials. Without loss of generality we may

assume that for some s, 1 ≤ s < k, the series Qs+1, . . . , Qk are monomials, while the

series Q1, Q2, . . . , Qs are not, and that

l0(Q1) ≤ · · · ≤ l0(Qs).

By the condition, there exist words A1, A2, . . . , Ak in Q1, Q2, . . . , Qk such that

A1Q1 = A2Q2 = · · · = AkQk. (9)

Applying the first part of Corollary 2.2 to the word A1Q1, we obtain that

l0(A1Q1) = l0(Q1).

On the other hand, applying the second part of Corollary 2.2 to the word As+1Qs+1, we

obtain that

l0(As+1Qs+1) > l0(Q1).
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Sharing a Measure of Maximal Entropy 13835

Since A1Q1 = As+1Qs+1, we obtain a contradiction, which shows that all Q1, Q2, . . . , Qs

are monomials. In particular, equality (9) reduces to the equality

A1a1,1zn1 = A2a2,1zn2 = · · · = Akak,1znk , (10)

where Ai, 1 ≤ i ≤ k, are words in a1,1zn1 , a2,1zn2 , . . . , ak,1znk .

Clearly, (10) implies an equality of the form

U1zN = U2zN = · · · = UkzN ,

where Ui, 1 ≤ i ≤ k, are monomials in a1,1, a2,1, . . . , ak,1, and N is a natural number. To

finish the proof of the “only if” part of the theorem it is enough to show that whenever

i 	= j, 1 ≤ i, j ≤ k, the inequality

deg ai,1
Ui > deg ai,1

Uj (11)

holds. Indeed, in this case making in the equality

U1 = U2 = · · · = Uk

all possible cancellations, we obtain an equality of the form

as1
1,1 = as2

2,1 = · · · = ask
k,1,

where si ≥ 1, 1 ≤ i ≤ k, implying that all ai,1, 1 ≤ i ≤ k − 1, are roots of unity.

It is clear that the minimum value of deg ai,1
Ui is attained if the word Ai contains

no letter ai,1zni at all, implying that

deg ai,1
Ui ≥ N

ni
.

Thus, to prove (11) it is enough to show that

deg ai,1
Uj <

N

ni
.

Let r be the number of appearances of ai,1zni in Aj. It is easy to see that the maximum

value of deg ai,1
Uj is attained if these appearances occur in the last r letters of Aj,
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13836 F. Pakovich

implying that

deg ai,1
Uj ≤ N

njni
+ N

njn
2
i

+ N

njn
3
i

+ · · · + N

njn
r
i
.

Taking into account that ni ≥ 2, nj ≥ 2, this implies that

deg ai,1
Uj <

N

njni

∞∑

l=0

1

nl
i

≤ N

2ni

1

1 − 1
ni

≤ N

ni
.

Let us assume now that Qi, 1 ≤ i ≤ k, are contained in ZU , and show that then

(8) holds. Let l ≥ 1 be a number such that all ai,1, 1 ≤ i ≤ k, are lth roots of unity. Setting

F1 = Q1 ◦ Q2 ◦ · · · ◦ Qk, F2 = Q2 ◦ Q3 ◦ · · · ◦ Q1, . . . Fk = Qk ◦ Q1 ◦ · · · ◦ Qk−1

and observing that

deg F1 = deg F2 = · · · = deg Fk,

we see that for every j ≥ 1 there exists an lth root of unity ωj such that

F◦j
1 = ωjF

◦j
2 .

The pigeonhole principle yields that there exists an infinite subset K1 of N and an lth

root of unity δ1 such that for every j ∈ K1 the equality

F◦j
1 = δ1F◦j

2

holds, implying that for every j1, j2 ∈ K1 with j2 > j1 the equality

F◦j2
1 = F◦j1

1 ◦ F◦(j2−j1)

2

holds. Similarly, there exists an infinite subset K2 of K1 and an lth root of unity δ2 such

that for every j ∈ K2 the equality

F◦j
1 = δ2F◦j

3
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holds, and for every j1, j2 ∈ K2 with j2 > j1 the equality

F◦j2
1 = F◦j1

1 ◦ F◦(j2−j1)

3

holds. Continuing in the same way, we will find natural numbers j2 and j1 such that

j2 > j1 and

F◦j2
1 = F◦j1

1 ◦ F◦(j2−j1)

2 = F◦j1
1 ◦ F◦(j2−j1)

3 = · · · = F◦j1
1 ◦ F◦(j2−j1)

k . (12)

Thus,

F◦j2
1 ∈ RQ1 ∩ RQ2 ∩ · · · ∩ RQk,

implying (8). �

Proof of Theorem 1.1. Let P1, P2, . . . , Pk be polynomials of degree at least two. Then

the Böttcher function β for Pk provides an isomorphism ψ between the semigroup

S = 〈P1, P2, . . . , Pk〉 and the semigroup of power series R generated by the power series

zdeg Pk and

Qi = β ◦ Pi ◦ β−1, 1 ≤ i ≤ k − 1.

Therefore, if (1) holds, then (8) also holds implying by Theorem 2.3 that S is isomorphic

to a subsemigroup of ZU . In the other direction, if S is isomorphic to a subsemigroup of

ZU , then for the images Q1, Q2, . . . , Qk of P1, P2, . . . , Pk under this isomorphism condition

(8) holds by Theorem 2.3. Therefore, for P1, P2, . . . , Pk condition (1) holds. �

2.1 Proof of Theorem 1.2

Let us recall that if f is a rational function of degree n ≥ 2, then by the results of Freire,

Lopes, Mañé ([9]) and Lyubich ([13]) there exists a unique probability measure μf on CP
1,

which is invariant under f , has support equal to the Julia set J(f ), and achieves maximal

entropy log n among all f -invariant probability measures. It is clear that the equality

μf = μg implies the equality of the Julia sets J(f ) = J(g). Moreover, for polynomials

these conditions are equivalent. The problem of describing rational functions sharing a

measure of maximal entropy and the problem of describing rational functions sharing

a Julia set have been studied in [1–4, 11, 12, 15, 16, 20, 21].
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13838 F. Pakovich

For any rational functions f and g the equality

f ◦j1 = f ◦j2 ◦ g◦s (13)

for some j1, s ≥ 1 and j2 ≥ 0 implies that f and g share a measure of maximal entropy.

Furthermore, the results of the papers [11] and [12] imply that if the functions f and g

are neither Lattès maps nor conjugate to z±n or ±Tn, then the equality μf = μg holds if

and only if equality (13) holds (see [16], [21] for more detail).

Proof of Theorem 1.2. In view of the isomorphism between semigroups S and R, the

proof of the “if” part of Theorem 2.3 shows that if (1) holds, then the polynomials

G1 = P1 ◦ P2 ◦ · · · ◦ Pk, G2 = P2 ◦ P3 ◦ · · · ◦ P1, . . . Gk = Pk ◦ P1 ◦ · · · ◦ Pk−1

along with the series Fi, 1 ≤ i ≤ k, satisfy relations (12), implying that

J(G1) = J(G2) = · · · = J(Gk). (14)

On the other hand, since the semiconjugacy relation

between rational functions of degree at least two implies that

X−1(J(A)) = J(B)

(see e.g. [6], Lemma 5), the semiconjugacies
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1 ≤ i ≤ k − 1, imply that

P−1
i (J(Gi)) = J(Gi+1), 1 ≤ i ≤ k − 1, P−1

k (J(Gk)) = J(G1).

Thus, equality (14) implies that J(G1) is a completely invariant set for Pi, 1 ≤ i ≤ k. In

turn, this implies that

J(P1) = J(P2) = · · · = J(Pk) = J(G1)

(see [3], Lemma 8, or [15], Theorem 4). This proves the “if” part.

Finally, to prove the “only if” part, we observe that if all elements of S share a

measure of maximal entropy, then by (13) for every i, 2 ≤ i ≤ k, there exist ti, si ≥ 1 and

ri ≥ 0 such that

P◦ti
1 = P◦ri

1 ◦ P◦si
i , 2 ≤ i ≤ k.

Therefore, for K = t2 . . . tk, we have:

P◦K
1 = (P◦r2

1 ◦ P◦s2
2 )◦K/t2 = (P◦r3

1 ◦ P◦s3
3 )◦K/t3 = · · · = (P◦r3

1 ◦ P◦sk
k )◦K/tk ,

implying (1). �
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