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Solution of the polynomial moment problem

F. Pakovich and M. Muzychuk

Abstract

In this paper we give a solution of the following ‘polynomial moment problem’ which arose about
10 years ago in connection with Poincaré’s center-focus problem: for a given polynomial P (z) to
describe polynomials q(z) orthogonal to all powers of P (z) on a segment [a, b].

1. Introduction

In this paper we solve the following ‘polynomial moment problem’: for given P (z) ∈ C[z] and
distinct a, b ∈ C to describe q(z) ∈ C[z] such that∫ b

a

P i(z)q(z) dz = 0 (1)

for all i � 0.
The polynomial moment problem was posed in the series of papers [3–6] in connection with

the center problem for the Abel differential equation
dy

dz
= p(z)y2 + q(z)y3 (2)

with polynomial coefficients p(z), q(z) in the complex domain. For given a, b ∈ C the center
problem for the Abel equation is to find necessary and sufficient conditions on p(z), q(z) that
imply the equality y(b) = y(a) for any solution y(z) of (2) with y(a) small enough. This problem
is closely related to the classical center-focus problem of Poincaré and has been studied in many
recent papers (see, for example, [1–9, 28]).

The center problem for the Abel equation is connected with the polynomial moment problem
in several ways. For example, it was shown in [5] that for the parametric version

dy

dz
= p(z)y2 + εq(z)y3

of (2) the ‘infinitesimal’ center conditions with respect to ε reduce to moment equations (1) with
P (z) =

∫
p(z) dz. On the other hand, it was shown in [8] that ‘at infinity’ (under an appropriate

projectivization of the parameter space) the system of equations on the coefficients of q(z),
describing the center set of (2) for fixed p(z), also reduces to (1). Many other results concerning
relations between the center problem and the polynomial moment problem can be found in [8].
These results convince that a thorough description of solutions of system (1) is an important
step in the understanding of the center problem for the Abel equation.

There exists a natural condition on P (z) and Q(z) =
∫
q(z) dz, that reduces equations (1),

(2) to similar equations with respect to polynomials of smaller degrees. Namely, suppose that
there exist polynomials P̃ (z), Q̃(z), W (z) with degW (z) > 1 such that

P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)). (3)
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Then after the change of variable w = W (z), equations (1) transform to the equations
∫W (b)

W (a)

P̃ i(w)Q̃′(w) dw = 0, (4)

while equation (2) transforms to the equation

dỹ

dw
= P̃ ′(w)ỹ2 + Q̃′(w)ỹ3. (5)

Furthermore, if the polynomial W (z) in (3) satisfies the equality

W (a) = W (b), (6)

then the Cauchy theorem implies that the polynomial Q̃′(w) is a solution of system (4) and
hence the polynomial q(z) = Q′(z) is a solution of system (1). Similarly, since any solution y(z)
of equation (2) is the pull-back

y(z) = ỹ(W (z)) (7)

of a solution ỹ(w) of equation (5), if W (z) satisfies (6), then equation (2) has a center. This
justifies the following definition: a center for equation (2) or a solution of system (1) is called
reducible if there exist polynomials P̃ (z), Q̃(z), W (z) such that conditions (3), (6) hold.
The main conjecture concerning the center problem for the Abel equation (‘the composition
conjecture for the Abel equation’), supported by the results obtained in the papers cited above,
states that any center for the Abel equation is reducible (see [8] and the bibliography therein).

By analogy with the composition conjecture it was suggested (‘the composition conjecture
for the polynomial moment problem’) that, under the additional assumption P (a) = P (b), any
solution of (1) is reducible. This conjecture was shown to be true in many cases; for instance,
if a, b are not critical points of P (z) (see [9]), if P (z) is indecomposable (see [19]), and in some
other special cases (see, for example, [5, 22, 23, 25]). Nevertheless, in general the composition
conjecture for the polynomial moment problem fails to be true. Namely, it was shown in [18]
that if P (z) has several ‘compositional right factors’ W (z) such that W (a) = W (b), then it may
happen that the sum of reducible solutions corresponding to these factors is a non-reducible
solution.

It was conjectured in [20] that actually any non-reducible solution of (1) is a sum of reducible
ones. Since compositional factors W (z) of a polynomial P (z) can be defined explicitly, such a
description of non-reducible solutions of (1) would be very helpful, especially for applications
to the Abel equation (cf. [8]). However, until now this conjecture was verified only in a single
special case (see [21]).

Meanwhile, another necessary and sufficient condition for a polynomial q(z) to be a solution
of (1) was constructed in [22]. Namely, it was shown in [22] that there exists a finite system
of equations

n∑
i=1

fs,iQ(P−1
i (z)) = 0, fs,i ∈ Z, 1 � s � k, (8)

where Q(z) =
∫
q(z) dz and P−1

i (z), 1 � i � n, are branches of the algebraic function P−1(z),
such that (1) holds if and only if (8) holds. Moreover, this system was constructed explicitly
using a special planar tree λP that represents the monodromy group GP of the algebraic
function P−1(z) in a combinatorial way. By construction, points a, b are vertices of λP and
system (8) reflects the combinatorics of the path connecting a and b on λP .

A finite system of equations (8) is more convenient for a study than initial infinite system
of equations (1). In particular, in many cases the analysis of (8) permits to conclude that for
given P (z), a, b any solution of (1) is reducible (see [22]). In this paper we develop necessary
algebraic and analytic techniques that allow us to describe solutions of (8) in the general case
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and to prove that any solution of (1) is a sum of reducible ones. More precisely, our main result
is as follows.

Theorem 1.1. A non-zero polynomial q(z) is a solution of system (1) if and only if
Q(z) =

∫
q(z) dz can be represented as a sum of polynomials Qj(z) such that

P (z) = P̃j(Wj(z)), Qj(z) = Q̃j(Wj(z)), and Wj(a) = Wj(b) (9)

for some polynomials P̃j(z), Q̃j(z),Wj(z).

Note that since conditions of the theorem impose no restrictions on the values of P (z) at
the points a, b, the theorem implies in particular that non-zero solutions of (1) exist if and
only if the equality P (a) = P (b) holds. Indeed, if P (a) = P (b), then for any Q̃(z) ∈ C[z] the
polynomial Q(z) = Q̃(P (z)) is a solution of (1) since we can set W (z) = P (z) in (3), (6). On
the other hand, if Q(z) is a solution of (1) then equalities (9) imply that P (a) = P (b).

The paper is organized as follows. In Section 2 we give a detailed account of definitions and
previous results related to the polynomial moment problem. In particular, starting from system
(8), we introduce a linear subspace MP,a,b of Qn generated by the vectors

(fs,σ(1), fs,σ(2), . . . , fs,σ(n)), σ ∈ GP , 1 � s � k,

and study its basic properties.
It follows from the definition that MP,a,b is invariant with respect to the permutation matrix

representation of the group GP . In Section 3, written entirely in the framework of the group
theory, we describe a general structure of such subspaces. More generally, we describe subspaces
of Qn invariant with respect to the permutation matrix representation of a permutation group
G of degree n, containing a cycle of length n. Roughly speaking, we show that the structure of
invariant subspaces of Qn for such G depends on imprimitivity systems of G only. We believe
that this result is new and interesting by itself.

Finally, in Section 4, using the description of GP -invariant subspaces of Qn and results and
techniques of [22], we prove Theorem 1.1.

2. Preliminaries

In this section we collect basic definitions and results concerning the polynomial moment
problem. In order to make the paper self-contained, we outline the proofs of the main
statements.

2.1. Criterion for Ĥ(t) ≡ 0

For P (z), Q(z) ∈ C[z] and a path Γa,b ⊂ C, connecting different points a, b of C, let
H(t) = H(P,Q,Γa,b, t) be a function defined on CP1 \ P (Γa,b) by the integral

H(t) =
∫
Γa,b

Q(z)P ′(z) dz
P (z) − t

. (10)

Note that although integral (10) depends on Γa,b the Cauchy theorem implies that if Γ̃a,b ⊂ C

is another path connecting a and b, then for all t close enough to infinity the equality

H(P,Q, Γ̃a,b, t) = H(P,Q,Γa,b, t)

holds. Therefore the Taylor expansion of H(t) at infinity and the corresponding germ Ĥ(t) do
not depend on the choice of Γa,b.
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After the change of variable z → P (z), integral (10) transforms to the Cauchy-type integral

H(t) =
∫
γ

g(z)dz
z − t

, (11)

where γ = P (Γa,b) and g(z) is obtained by the analytic continuation along γ of a germ of the
algebraic function Q(P−1(z)). Clearly, integral representation (11) defines an analytic function
in each domain of the complement of γ in CP1. Note that for any choice of Γa,b the function
defined in the domain containing infinity is the analytic continuation of the germ Ĥ(t).

Lemma 2.1 [22]. Assume that P (z), q(z) ∈ C[z] and a, b ∈ C, a �= b, satisfy∫
Γa,b

P i(z)q(z) dz = 0, i � 0, (12)

and let Q(z) be a polynomial defined by the equalities

Q(z) =
∫
q(z) dz, Q(a) = 0. (13)

Then for the germ Ĥ(t) defined near infinity by integral (10), the equality Ĥ(t) ≡ 0 holds.

Proof. Indeed, for all i � 1, by integration by parts we have∫
Γa,b

P i(z)q(z) dz = P i(b)Q(b) − P i(a)Q(a) − i

∫
Γa,b

P i−1(z)Q(z)P ′(z) dz. (14)

Furthermore, Q(a) = 0 implies Q(b) = 0 in view of (12) taken for i = 0. Therefore, if (12)
holds then all the integrals appearing in the right part of (14) vanish. On the other hand, these
integrals are coefficients of the Taylor expansion of −Ĥ(t) at infinity.

Lemma 2.1 shows that the polynomial moment problem reduces to the problem of finding
conditions on Q(z) under which the equality Ĥ(t) ≡ 0 holds. On the other hand, we will show
below (Corollary 2.5) that if Ĥ(t) ≡ 0 holds for some polynomial Q(z), then (12) holds for
q(z) = Q′(z). A condition of a general character for Ĥ(t) to vanish was given in the paper [23]
in the context of the theory of Cauchy-type integrals of algebraic functions. Subsequently, in
the paper [22] a construction, which permits to obtain conditions for vanishing of Ĥ(t) in a
very explicit form, was proposed. Briefly, the idea of [22] is to choose the integration path
Γa,b in such a way that its image under the mapping P (z) : CP1 → CP1 does not divide the
Riemann sphere.

The construction of the paper [22] uses a special graph λP , embedded into the Riemann
sphere, defined as follows (see [22]). Let S be a ‘star’ joining a non-critical value c of a
polynomial P (z) of degree n with all its finite critical values c1, c2, . . . , ck by non-intersecting
oriented arcs γ1, γ2, . . . , γk. Define λP as a preimage of S under the map P (z) : CP1 → CP1 (see
Figure 1). More precisely, define vertices of λP as preimages of the points c and cs, 1 � s � k,
and edges of λP as preimages of the arcs γs, 1 � s � k. Furthermore, for each s, 1 � s � k,
mark vertices of λP that are preimages of the point cs by the number s. Finally, define a star
of λP as a subset of edges of λP consisting of edges adjacent to some non-marked vertex.

By construction, the restriction of P (z) on CP1 \ λP is a covering of the topological punctured
disk CP1 \ {S ∪∞}, and therefore CP1 \ λP is a disjointed union of punctured disks (see, for
example, [11]). Moreover, since the preimage of infinity under P (z) consists of a unique point,
CP1 \ λP consists of a unique disk and hence the graph λP is a tree.

Set C = {c1, c2, . . . , ck}, and let U ⊂ C be a simply connected domain such that S \ C ⊂ U
and U ∩ C = ∅. Then in U there exist n single-valued analytic branches of the algebraic function
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Figure 1.

P−1(z) inverse to P (z). We will denote these branches by P−1
i (z), 1 � i � n. The stars of λP

may be naturally identified with branches of P−1(z) in U as follows: to the branch P−1
i (z),

1 � i � n, corresponds the star Si, 1 � i � n, such that P−1
i (z) maps bijectively the interior

of S to the interior of Si.
Under the analytic continuation along a closed curve, the set P−1

i (z), 1 � i � n, transforms
to itself. This induces a homomorphism

π1(CP1 \ {C ∪∞}, c) −→ Sn (15)

whose image GP is called the monodromy group of P (z). Note that if ω∞ and ωi,
1 � i � k, are loops around ∞ and ci, 1 � i � k, respectively, such that ω1ω2 . . . ωkω∞ = 1 in
π1(CP1 \ {C ∪∞}, c), then the elements gi, 1 � i � k, of GP , which are the images of ωi,
1 � i � k, under homomorphism (15), generate GP and satisfy the equality g1g2 . . . gkg∞ = 1,
where g∞ is the element of GP which is the image of ω∞.

Keeping in mind the identification of the set of stars of λP with the set of branches of P−1(z),
the permutation gs, 1 � s � k, can be identified with a permutation ĝs, 1 � s � k, acting on
the set of stars of λP in the following way: ĝs sends the star Si, 1 � i � n, to the ‘next’ star
under a counterclockwise rotation around the vertex of Si colored by the sth color. For example,
for the tree shown in Figure 1 we have: g1 = (1)(2)(37)(4)(5)(6)(8), g2 = (1)(2)(3)(47)(56)(8),
g3 = (1238)(4)(57)(6). Note that since P (z) is a polynomial, the permutation g∞ is a cycle of
length n. We will always assume that the numeration of branches of P−1(z) in U is chosen in
such a way that g∞ coincides with the cycle (1 2 . . . n). Clearly, such a numeration is defined
uniquely up to a choice of P−1

1 (z).
The tree constructed above is known under the name of ‘constellation’ or ‘cactus’ and is

closely related to what is called a ‘dessin d’enfant’ (see [15] for further details and other
versions of this construction). The Riemann existence theorem implies that a polynomial P (z)
is defined by c1, c2, . . . , ck and λP up to a composition P (z) → P (μ(z)), where μ(z) is a linear
function.

It follows from the definition that the points a and b are vertices of λP if and only if P (a)
and P (b) are critical values of P (z). For our purposes, however, it is more convenient to define
the tree λP so that the points a, b would always be its vertices. Thus, in the case where P (a)
or P (b) (or both of them) is not a critical value of P (z), we modify the construction as follows.
Define c1, c2, . . . , ck as the set of all finite critical values of P (z) supplemented by P (a) or P (b)
(or by both of them), and set as above λP = P−1{S}, where S is a star connecting c with
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c1, c2, . . . , ck (we suppose that c is chosen distinct from P (a), P (b)). Clearly, λP is still a tree
and the points a, b are vertices of λP .

Since λP is connected and has no cycles, there exists a unique oriented path μa,b ⊂ λP joining
the point a with the point b. Furthermore, it follows from the definition of λP that if we set
Γa,b = μa,b, then after the change of variable z → P (z) integral (10) reduces to the sum of
integrals

H(t) =
k∑

s=1

∫
γs

ϕs(z)
z − t

dz, (16)

where each ϕs(z), 1 � s � k, is a linear combination of the functions Q(P−1
i (z)), 1 � i � n, in

U . Namely,

ϕs(z) =
n∑

i=1

fs,iQ(P−1
i (z)), (17)

where fs,i �= 0 if and only if the path μa,b goes through the star Si across its s-vertex.
Furthermore, if when going along μa,b the s-vertex of Si is followed by the center of Si, then
fs,i = −1; otherwise fs,i = 1. For example, for the graph λP shown in Figure 1 and the path
μa,b ⊂ λP represented by the thick line, we have

ϕ1(z) = −Q(P−1
2 (z)) +Q(P−1

3 (z)) −Q(P−1
7 (z)),

ϕ2(z) = Q(P−1
7 (z)) −Q(P−1

4 (z)),

ϕ3(z) = Q(P−1
2 (z)) −Q(P−1

3 (z)) +Q(P−1
4 (z)).

Note that the number k in (16) coincides with the number of critical values s of P (z) such
that the path Γa,b passes through at least one vertex colored by the sth color. Also note that
equations (17) are linearly dependent. Indeed, for each i, 1 � i � n, such that there exists an
index s, 1 � s � k, with fs,i �= 0 there exist exactly two such indices s1, s2, and cs1,i = −cs2,i.
Therefore the equality

k∑
s=1

ϕs(t) = 0

holds in U .

Theorem 2.2 [22]. Let P (z), Q(z) ∈ C[z] and let a, b ∈ C, a �= b. Then Ĥ(t) ≡ 0 if and
only if ϕs(z) ≡ 0 for any s, 1 � s � k.

Proof. Formula (16) defines the analytic continuation of Ĥ(t) to the domain CP1 \ S. In
particular, Ĥ(t) ≡ 0 if and only if H(t) ≡ 0 in CP1 \ S. On the other hand, by the well-known
boundary property of Cauchy-type integrals (see, for example, [16]), for any s, 1 � s � k, and
any interior point z0 of γs we have

2π
√−1ϕs(z0) = lim

t→z0

+ H(t) − lim
t→z0

− H(t), (18)

where the limits are taken when t approaches z0 from the ‘right’ (respectively ‘left’) side of γs.
Therefore, if H(t) ≡ 0 in CP1 \ S, then the limits in (18) equal zero and hence ϕs(z) ≡ 0 for
any s, 1 � s � k.

Finally, if

ϕs(z) ≡ 0, 1 � s � k, (19)

then it follows directly from formula (16) that H(t) ≡ 0.
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2.2. Subspace MP,a,b

For any element σ ∈ GP , the equality ϕs(z) = 0, 1 � s � k, implies by the analytic continuation
the equality

n∑
i=1

fs,iQ(P−1
σ(i)(z)) = 0.

Therefore, replacing σ by σ−1 we see that Theorem 2.2 implies that Ĥ(t) ≡ 0 if and only if for
any σ ∈ GP and s, 1 � s � k, the equality

n∑
i=1

fs,σ(i)Q(P−1
i (z)) = 0

holds.
Denote by MP,a,b the subspace of Qn generated by the vectors

(fs,σ(1), fs,σ(2), . . . , fs,σ(n)), 1 � s � k, σ ∈ GP .

Abusing the notation, we will usually not distinguish an element of MP,a,b and the cor-
responding equation connecting branches of Q(P−1(z)). For example, instead of using the
notation

(0, 0, . . . , 1, . . . , 0, 0, . . . ,−1, . . . , 0, 0) (20)

for an element of MP,a,b we will simply use the equality

Q(P−1
i1

(z)) = Q(P−1
i2

(z)), (21)

for corresponding i1 �= i2, 1 � i1, i2 � n.
Equality (21) is the simplest example of the equality ϕs(z) = 0, 1 � s � k, and is equivalent

to the statement that P (z) and Q(z) have a non-trivial ‘compositional right factor’ (cf. [9, 19,
22, 23, 25]).

Lemma 2.3. Let P (z), Q(z) ∈ C[z]. Then the equalities

P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)) (22)

hold for some P̃ (z), Q̃(z),W (z) ∈ C[z] with degW (z) > 1 if and only if equality (21) holds for
some i1 �= i2, 1 � i1, i2 � n. Furthermore, Q(z) = Q̃(P (z)) for some Q̃(z) ∈ C[z] if and only if
all the functions Q(P−1

i (z)), 1 � i � n, are equal between themselves.

Proof. Let d(Q(P−1)) be the number of different functions in the collection of functions
Q(P−1

i (z)), 1 � i � n. Since any algebraic relation over C between Q(p−1(z)) and z, where
p−1(z) is a branch of the algebraic function P−1(z) in U , supplies an algebraic relation between
Q(z) and P (z), and vice versa, we have

d(Q(P−1)) = [C(Q,P ) : C(P )] = [C(z) : C(P )]/[C(z) : C(Q,P )] = n/[C(z) : C(Q,P )].

Therefore

[C(z) : C(Q,P )] = n/d(Q(P−1)). (23)

It follows now from the Lüroth theorem that d(Q(P−1)) < n if and only if (22) holds for some
rational functions P̃ (z), Q̃(z), W (z) with degW (z) > 1. Furthermore, if d(Q(P−1)) = 1 then
(23) implies that Q(z) = Q̃(P (z)) for some Q̃(z) ∈ C(z).

Observe now that, since P (z), Q(z) are polynomials, without loss of generality we may
assume that C(Q,P ) = C(W ) for some polynomial W (z). Indeed, since P (z) is a polynomial,



Page 8 of 25 F. PAKOVICH AND M. MUZYCHUK

the equality P (z) = U(V (z)), where U(z), V (z) are rational functions, implies that U(z) has
a unique pole and that the preimage of this pole under V (z) consists of infinity alone. This
implies that V (z) = μ(W (z)) for some polynomial W (z) and Möbius transformation μ(z), and
it is clear that the fields C(V (z)) and C(W (z)) coincide. Finally, if W (z) is a polynomial, then
obviously P̃ (z), Q̃(z) are also polynomials.

Since (22) implies that
∫ b

a

P i(z)q(z) dz =
∫W (b)

W (a)

P̃ i(W )Q̃′(W ) dW,

Lemma 2.3 shows that if the subspace MP,a,b contains an element of the form (21), then any
solution q(z) of the polynomial moment problem for P (z) is either reducible or the ‘pull-back’
q(z) = q̃(W (z))W ′(z) of a solution q̃(z) of the polynomial moment problem for a compositional
left factor P̃ (z) of P (z) and the points ã = W (a) and b̃ = W (b).

If a, b are not critical points of P (z), then MP,a,b always contains elements of the form
(21). In general case, however, a more delicate conclusion is true. Denote by P−1

a1
(z),

P−1
a2

(z), . . . , P−1
ada

(z) (respectively P−1
b1

(z), P−1
b2

(z), . . . , P−1
bdb

(z)) branches of P−1(z) in U which
map points close to P (a) (respectively to P (b)) to points close to a (respectively b). In
particular, the number da (respectively db) equals the multiplicity of the point a (respectively
b) with respect to P (z). The proposition below was proved in [23] and by a different method
in [22]. Below we give a proof following [22].

Proposition 2.4 [22, 23]. If P (a) = P (b) then MP,a,b contains the element

1
da

da∑
s=1

Q(P−1
as

(z)) =
1
db

db∑
s=1

Q(P−1
bs

(z)). (24)

On the other hand, if P (a) �= P (b) then MP,a,b contains the elements

1
da

da∑
s=1

Q(P−1
as

(z)) = 0,
1
db

db∑
s=1

Q(P−1
bs

(z)) = 0. (25)

Proof. Suppose first that P (a) = P (b). Without loss of generality assume that P (a) =
P (b) = c1 and consider the relation

ϕ1(z) =
n∑

i=1

f1,iQ(P−1
i (z)) = 0

corresponding to c1. Let i, 1 � i � n, be an index such that f1,i �= 0 and let x be a vertex
of the star Si such that P (x) = c1. It follows from the definition of ϕi(z), 1 � i � k, that if
x �= a, b, then there exists an index j such that x is also a vertex of the star Sj and f1,j = −f1,i.
Furthermore, we have j = gl

1(i) for some natural number l (see Figure 2). Therefore, ϕ1(z) has
the form

ϕ1(z) = −Q(P−1
ia

(z)) +Q(P−1
i1

(z)) −Q(P−1

g
l1
1 (i1)

(z)) + . . .+Q(P−1
ir

(z)) −Q(P−1

glr
1 (ir)

(z))

+Q(P−1
ib

(z)) = 0,

where ia (respectively ib) is an index such that a ⊂ Sia
(respectively b ⊂ Sib

), i1, i2, . . . , ir are
some other indices, and l1, l2, . . . , lr are some natural numbers.
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Figure 2.

For each s � 0 the equality

−Q(P−1
gs
1(ia)(z)) +Q(P−1

gs
1(i1)

(z)) −Q(P−1

g
l1+s
1 (i1)

(z)) + . . .+Q(P−1
gs
1(ir)(z)) −Q(P−1

glr+s
1 (ir)

(z))

+Q(P−1
gs
1(ib)

(z)) = 0

holds by the analytic continuation of the equality ϕ1(z) = 0. Now summing these equalities
from s = 0 to s = r − 1, where r is the order of the element g1 in the group GP , and taking
into account that for any i, 1 � i � n, and any natural number l we have

r−1∑
s=0

Q(P−1
gs
1(i)(z)) =

r−1∑
s=0

Q(P−1

gl+s
1 (i)

(z)),

we obtain equality (24).
In order to prove the proposition in the case where P (a) �= P (b), it is enough to examine in

a similar way the relations ϕ1(z) = 0 and ϕ2(z) = 0, where P (a) = c1, P (b) = c2.

Corollary 2.5. Let P (z), Q(z) ∈ C[z] and let a, b ∈ C, a �= b. Then Ĥ(t) ≡ 0 implies that
(12) holds for q(z) = Q′(z).

Proof. Indeed, if P (a) = P (b), then equating the limits of both parts of equality (24) as z
approaches P (a) = P (b), we see that Q(a) = Q(b). On the other hand, if P (a) �= P (b), then it
follows from equalities (25), in a similar way, that Q(a) = Q(b) = 0. In both cases it follows
from (14) that (12) holds.

Recall that we assume that the numeration of branches P−1
i (z), 1 � i � n, in U is chosen in

such a way that the permutation g∞ ⊂ GP coincides with the cycle (1 2 . . . n). The proposition
below describes the position of branches appearing in Proposition 2.4 with respect to this
numeration. More precisely, we describe the mutual position on the unit circle of the sets

V (a) = {εa1
n , εa2

n , . . . , ε
ada
n } and V (b) = {εb1

n , ε
b2
n , . . . , ε

bdb
n },

where εn = exp (2π
√−1/n).

Let us introduce the following definitions. Say that two sets of points X,Y on the unit
circle S1 are disjointed if there exist s1, s2 ∈ S1 such that one of two connected components of
S1 \ {s1, s2} contains all points from X while the other connected component of S1 \ {s1, s2}
contains all points from Y. Say that X,Y are almost disjointed if X ∩ Y consists of a single
point s1 and there exists a point s2 ∈ S1 such that one of the two connected components
of S1 \ {s1, s2} contains all points from X \ s1 while the other connected component of
S1 \ {s1, s2} contains all points from Y \ s1.
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Figure 3.

Proposition 2.6 [22]. The sets V (a) and V (b) are disjointed or almost disjointed.
Furthermore, if P (a) = P (b), then V (a) and V (b) are disjointed.

Proof. Consider first the case when P (a) = P (b) = c1. Let Û be a simply connected domain,
containing no critical values of P (z), such that U ⊂ Û and ∞ ∈ ∂Û . Any branch of P−1(z) in
U can be extended analytically to Û , and we will assume that the numeration of branches of
P−1(z) in Û is induced by the numeration of branches of P−1(z) in U. Furthermore, let M ⊂ Û
be a simple curve connecting points c1 and ∞ and let Ω = P−1{M} be the preimage of M
under the map P (z) : CP1 → CP1. It is convenient to consider Ω as a bicolored graph embedded
into the Riemann sphere. Namely, we define black vertices of Ω as preimages of c1, a unique
white vertex of Ω as the preimage of ∞, and edges of Ω as preimages of M (see Figure 3). The
edges of Ω may be identified with branches of P−1(z) in Û as follows: to the branch P−1

i (z),
1 � i � n, corresponds the edge ei such that P−1

i (z) maps bijectively the interior of M to the
interior of ei. In particular, the ordering of branches of P−1(z) in Û induces the ordering of
edges of Ω. Since the multiplicity of the vertex ∞ equals n and Ω has n edges, it follows that
Ω is connected.

Let Ea (respectively Eb) be a union of edges of Ω that are adjacent to the vertex a
(respectively b). It follows from the bijectivity of branches of P−1(z) on the interior of M that
if D is a domain from the collection of domains CP1 \ Ea such that b ∈ D, then D contains the
whole set Eb \∞. Now the proposition follows from the observation that the cyclic ordering
of edges of Ω, induced by the cyclic ordering of branches of P−1(z) in Û , coincides with the
cyclic ordering of edges of Ω, induced by the orientation of CP1 in a neighborhood of infinity.

In the case where P (a) �= P (b) the proof is modified as follows. Take two simple curves M1,
M2 ⊂ Û connecting the point ∞ with the points P (a) and P (b) correspondingly, and consider
the preimage P−1{M1 ∪M2} as a graph Ω embedded into the Riemann sphere. The vertices
of Ω fall into three sets: the first set consists of a unique vertex which is the preimage of ∞,
the second set consists of vertices which are preimages of P (a), and the third set consists of
vertices which are preimages of P (b). Similarly, the edges of Ω fall into two sets: the first set
consists of edges which are preimages of M1 and the second set consists of edges which are
preimages of M2 (see Figure 4).

Each of two sets of edges of Ω may be identified with branches of P−1(z) in Û as follows:
to the branch P−1

i (z), 1 � i � n, corresponds the edge e1i from the first set (respectively the
edge e2i from the second set) such that P−1

i (z) maps bijectively the interior of M1 (respectively
of M2) to the interior of e1i (respectively of e2i ). The ordering of branches of P−1(z) in Û
induces the ordering of edges of Ω in each of two sets. Clearly, this ordering coincides with the
natural ordering induced by the orientation of CP1. Furthermore, it is easy to see that when
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Figure 4.

going around infinity in the counterclockwise direction the edge e1i , 1 � i � n, is followed by
the edge e2i .

Let E1
a (respectively E2

b ) be a union of edges from the first (respectively the second) set
Ω which are adjacent to the vertex a (respectively b). The bijectivity of branches of P−1(z)
in the interior of M1 and M2 implies that if D is a domain from the collection of domains
CP1 \ E1

a such that b ∈ D, then D contains the whole set E2
b \∞. Taking into account that for

any k, 1 � i � n, the edge e1i is followed by e2i , this implies that V (a) and V (b) are disjointed
or almost disjointed.

Remark. Since Q(P−1
i (z)), 1 � i � n, are branches of an algebraic function, relations (19)

are examples of linear relations between roots of an algebraic equation over the field C(z). A
general algebraic approach to such relations, over an arbitrary field, was developed in the
papers [12, 13]. In particular, it follows from [13, Theorem 1] that a necessary and sufficient
condition for the existence of at least one solution Q(z) of (19), such that the functions
Q(P−1

i (z)), 1 � i � n, are distinct between themselves, is that the subspace MP,a,b does not
contain elements of the form (20). An equivalent form of this condition is that the subspace
MP,a,b does not contain any of subspaces V ⊥

d , d ∈ D(GP ), which are defined below. Note,
however, that the method of [13] does not provide any information about the description or
the actual finding of these solutions.

3. Permutation matrix representations of groups containing a full cycle

3.1. Invariant subspaces and the centralizer ring

The construction of MP,a,b implies that MP,a,b is an invariant subspace of Qn with respect
to the so-called permutation matrix representation of the group GP on Qn. By definition,
the permutation matrix representation of a transitive permutation group H ⊆ Sn on Qn

is a homomorphism RH : H → GLn(Q) which associates to h ∈ H a permutation matrix
RH(h) ∈ GLn(Q) the elements ri,j , 1 � i, j � n, of which satisfy ri,j = 1 if i = jh, and ri,j = 0
otherwise. In other words, ⎛

⎜⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎟⎠ = RH(h)

⎛
⎜⎜⎜⎝
x1h

x2h

...
xnh

⎞
⎟⎟⎟⎠ .

Note that Qn admits an RH -invariant scalar product (x, y) :=
∑n

i=1 xiyi.
The aim of this section is to provide a full description of the subspaces of Qn invariant

with respect to the permutation matrix representation of GP . More generally, we classify all
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subspaces of Qn invariant with respect to the permutation matrix representation of an arbitrary
group G ⊆ Sn containing the cycle (1 2 . . . n). In the following G will always denote such a
group.

Recall that a subset B of X = {1, 2, . . . , n} is called a block of a transitive permutation group
H ⊆ Sn if for each h ∈ H the set Bh is either disjoint or is equal to B (see, for example, [27]).
For a block B the set B := {Bh |h ∈ H} forms a partition of X into a disjoint union of blocks
of equal cardinality which is called an imprimitivity system of H. Each permutation group
H ⊆ Sn has two trivial imprimitivity systems: one formed by singletons and another formed
by the whole X. A permutation group is called primitive if it has only trivial imprimitivity
systems. Otherwise it is called imprimitive.

For each d |n we denote by Vd the subspace of Qn consisting of d-periodic vectors. The fact
that the group G contains the cycle (1, . . . , n) implies easily the following statement.

Lemma 3.1. Any imprimitivity system for G coincides with the residue classes modulo d
for some d |n. Furthermore, for given d such classes form an imprimitivity system for G if and
only if the subspace Vd is G-invariant.

Denote by D(G) the set of all divisors of n for which Vd is G-invariant. Clearly 1, n ∈ D(G).
Note that D(G) is a lattice with respect to the operations ∧,∨, where d ∧ f := gcd(d, f) and
d ∨ f := lcm(d, f). Indeed, for an element x ∈ X the intersection of two blocks containing x
and corresponding to d, f ∈ D(G) is a block that corresponds to d ∨ f . On the other hand, the
intersection of two invariant subspaces Vd, Vf is an invariant subspace which is equal to Vd∧f .

We say that d ∈ D(G) covers f ∈ D(G) if f | d, f < d, and there is no x ∈ D(G) such that
f < x < d and f |x, x|d. Now we are ready to formulate the main result of this section.

Theorem 3.1. Each RG-irreducible subspace of Qn has the form

Ud := Vd ∩ (V ⊥
f1

∩ . . . ∩ V ⊥
f�

)
,

where d ∈ D(G) and f1, . . . , f� is a complete set of elements of D(G) covered by d. The
subspaces Ud are mutually orthogonal and every RG-invariant subspace of Qn is a direct sum
of some Ud as above.

The proof of this theorem splits into several steps and is given below. We start with recalling
some basic facts of the representations theory that we will use later (see, for example, [14]).

First, any representation TH : H → GLn(k) of a finite group H over a field k of characteristic
not dividing |H| is completely reducible; that is, kn is a direct sum of TH -invariant irreducible
subspaces (Maschke’s theorem). Furthermore, irreducible subspaces of a completely reducible
representation TH : H → GLn(k) are in one-to-one correspondence with minimal idempotents
of the centralizer ring Vk(TH). Recall that Vk(TH) consists of all matrices A ∈Mn(k) that
commute with every TH(h), h ∈ H. Furthermore, a matrix E is called an idempotent if
E �= 0 and E2 = E. Two idempotents E,F are called orthogonal if EF = FE = 0. Finally, an
idempotent E ∈ Vk(TH) is called minimal if it cannot be presented as a sum of two orthogonal
idempotents from Vk(TH). Under this notation the correspondence above is obtained as follows:
to a minimal idempotent E ∈ Vk(TH) corresponds an irreducible subspace V = Im{E}.

In general, the decomposition of kn into a sum of TH -invariant irreducible subspaces is not
uniquely defined. Nevertheless, if

kn = V ⊕a1
1 ⊕ . . .⊕ V ⊕ar

r (26)
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is a decomposition such that Vi, 1 � i � r, are pairwise non-isomorphic TH -invariant irreducible
subspaces of kn, then the subspaces V ⊕ai

i , 1 � i � r, are defined uniquely. They correspond to
the minimal idempotents of the center C(Vk(TH)) of the centralizer ring Vk(TH). Furthermore,
Vk(TH) is commutative if and only if ai = 1 for all i, 1 � i � r. Note that if Vk(TH) is commu-
tative and the space kn admits a TH -invariant scalar product, then all TH -invariant irreducible
subspaces of kn are mutually orthogonal. Indeed, for any representation TH : H → GLn(k),
which admits an invariant scalar product, kn can be decomposed into a sum of TH -invariant
irreducible subspaces

kn = V1 ⊕ . . .⊕ Vr (27)

with mutually orthogonal Vi. On the other hand, if Vk(TH) is commutative then a decomposi-
tion of TH into a sum of TH -invariant irreducible subspaces is uniquely defined and therefore
coincides with (27).

For the permutation matrix representation RH : H → GLn(k) of a transitive permutation
group H ⊆ Sn instead of the notation Vk(RH) we will use simply the symbol Vk(H). Below we
will show (Proposition 3.5) that for any group G as above, the ring VQ(G) is isomorphic to a
subring of the group algebra of a cyclic group and hence is commutative. Therefore, the above
remarks imply the following statement.

Proposition 3.2. An RG-invariant subspace W ⊂ Qn is irreducible if and only if there
exists a minimal idempotent E ∈ VQ(G) such that Im{E} = W . The RG-invariant irreducible
subspaces of Qn are mutually orthogonal and every RG-invariant subspace is a direct sum of
some W as above.

For each transitive permutation group H ⊆ Sn, we can construct some special basis of VC(H)
via orbits of the stabilizer H1 of the point 1 as follows. To each orbit Δ of H1, associate a
matrix AΔ, where AΔ

i,j = 1 if there exist h ∈ H, δ ∈ Δ such that 1h = j, δh = i, and AΔ
i,j = 0

otherwise. In particular, for the first column of AΔ the equality AΔ
i,1 = 1 holds if and only

if i ∈ Δ. It turns out that the matrices AΔ form a basis of VC(H) (see, [27, Theorem 28.4]).
Furthermore, since by construction the matrices AΔ are contained in Mn(Q), they form a basis
of VQ(H). We summarize the properties of AΔ in the proposition below (see [27, § 28]).

Proposition 3.3. The matrices AΔ satisfy the following conditions:

(1) AΔ form a basis of the algebra VQ(H) as of a Q-module;
(2) if Δ1 �= Δ2 then the ones of AΔ1 and AΔ2 do not occur in the same place; on the other

hand,
∑

ΔA
Δ is a matrix all the entries of which are 1s;

(3) For each orbit Δ there exists an orbit Γ such that (AΔ)T = AΓ.

Property (3) implies that for the first row of AΔ the equality AΔ
1,j = 1 holds if and only if

j ∈ Γ. Furthermore, it is easy to see that the mapping Δ → Γ defines an involution on the set
of orbits of H1.

3.2. Schur rings

3.2.1. Isomorphism between SQ(G) and VQ(G) In order to construct the minimal idempo-
tents of VQ(G) we will use the so-called Schur rings introduced by Schur in his classical paper
[26] for the investigation of permutation groups containing a regular subgroup C. Since in this
paper C will always be a cyclic group, in the following we will restrict our attention to this
case alone (see [27] for the account of the Schur method in the general case).
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The idea of the Schur approach can be described as follows. If G ⊆ Sn contains the cycle
c := (1 2 . . . n), then elements of the set {1, 2, . . . , n} can be identified with elements of the
cyclic group C generated by c as follows: to the element i corresponds the element of C
that transforms 1 to i. Therefore, we can consider G as a permutation group acting on its
subgroup C. After such an identification we can ‘multiply’ elements of the set {1, 2, . . . , n}, and
this multiplication agrees with the action of G in the following sense: if h, g ∈ C then hg = hg.
Furthermore, identifying any two subsets of {1, 2, . . . , n} with the corresponding elements of
the group algebra Q[C] we can define their ‘product’ as the product of these elements in Q[C].
The remarkable result of Schur is that under such a multiplication the orbits of the stabilizer
G1 form a basis of some subalgebra of Q[C]. To make this statement precise let us introduce
the following definition.

For T ⊆ C denote by T (−1) the set of elements of C inverse to the elements of T and by T
the formal sum

∑
h∈T h. The elements of Q[C] of the form T for some T ⊆ C are called simple

quantities (see [27]).

Definition 3.4. A subalgebra A of the group algebra Q[C] is called a Schur ring or an
S-ring over C if it satisfies the following axioms:

(S1) A as a Q-module has a basis consisting of simple quantities T0, . . . , Td, where T0 = {e},
(S2) Ti ∩ Tj = ∅ for i �= j and

⋃d
j=0 Tj = C,

(S3) For each i ∈ {0, 1, . . . , d} there exists an i′ ∈ {0, 1, . . . , d} such that Ti′ = Ti
(−1).

It is easy to see that the basis T0, . . . , Td satisfying (S1) and (S2) is unique. Such a basis is
called the standard basis of A. The number d+ 1 is called the rank of A. The sets Ti, 0 � i � d,
are called the basic sets of A. Finally, the notation A = 〈T0, . . . , Td〉 is used if A is an S-ring
over C whose basic sets are T0, . . . , Td. We also write Basic(A) for the set {T0, . . . , Td}. Note
that if Ã is an S-ring which is a subring of A then its basic sets are some unions of basic sets
of A. There are two trivial S-rings; namely, 〈e, C \ {e}〉 and Q[C].

Proposition 3.5. To any group G corresponds a Schur ring SQ(G) the basic sets of which
are the orbits of the stabilizer G1. Moreover, SQ(G) and VQ(G) are isomorphic as Q-algebras.

Proposition 3.5 is a particular case of [27, Theorem 28.8]. It implies in particular that in order
to describe the minimal idempotents of VQ(G) it is enough to describe those of SQ(G). Since,
however, for this purpose an explicit construction of the isomorphism between SQ(G) and VQ(G)
is needed, we give below a short proof of Proposition 3.5 which is based on Proposition 3.3.

Proof of Proposition 3.5. First of all observe that since G contains c, each matrix
M ∈ VQ(G) is necessarily a circulant; that is, each row vector of M is cyclically shifted for
one element to the right relative to the preceding row vector. In other words

Mi,j = M1,j−i+1 mod n. (28)

Define now a mapping ψ : VQ(G) → Q[C] by the formula

ψ(M) :=
n∑

j=1

M1,jc
j−1,
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and show that ψ is an algebra monomorphism. Indeed, for any M,N ∈ VQ(G) we have

ψ(MN) =
n∑

�=1

(MN)1,�c
�−1 =

n∑
�=1

n∑
i=1

M1,iNi,�c
�−1

=
n∑

�=1

n∑
i=1

M1,iN1,�−i+1c
�−1 =

n∑
i=1

n∑
j=1

M1,iN1,jc
i+j−2

=

(
n∑

i=1

M1,ic
i−1

)⎛⎝ n∑
j=1

N1,jc
j−1

⎞
⎠ = ψ(M)ψ(N).

Thus ψ is an algebra homomorphism. Furthermore, ψ is injective since any matrix M ∈ VQ(G)
is defined by its first row in view of (28).

Clearly, the image of VQ(G) is a subalgebra SQ(G) of Q[C]. Furthermore, by construction,
the basis of this subalgebra consists of the orbits of the stabilizer G1. The properties (S1) and
(S2) of SQ(G) are obvious. Finally, since any matrix from VQ(G) is a circulant, it follows from
the third part of Proposition 3.3 that Δ(−1) = Γ.

For d dividing n, denote by Cd a unique subgroup of C of order d. For a Schur ring A, denote
by D(A) a set consisting of all divisors of n for which Cd ∈ A.

Lemma 3.6. The inclusion d ∈ D(G) holds if and only if the inclusion n/d ∈ D(SQ(G))
holds.

Proof. Let d ∈ D(G). Then Cn/d, under the identification of the set {1, 2, . . . , n} with
C, corresponds to the set X = {1, d+ 1, 2d+ 1, . . . , n− d+ 1} and therefore is a block of
G containing 1. This implies that Cn/d is a union of some G1-orbits, say T0, . . . , T�. Hence
Cn/d = T0 + T1 + . . .+ T� and therefore Cn/d ∈ SQ(G).

Let now n/d ∈ D(SQ(G)). Then ψ−1(Cn/d) ∈ VQ(G). It follows from the definition of ψ
that ψ−1(Cn/d) is a circulant matrix M such that M1,i = 1 if i ∈ X and 0 otherwise. Since
M ∈ VQ(G), the subspace Im(M) is G-invariant. On the other hand, it is easy to see that
Im(M) = Vd. Therefore d ∈ D(G) by Lemma 3.1.

3.2.2. Rational S-rings The automorphism group of C is isomorphic to the multiplicative
group Z∗

n. Namely, to the element m ∈ Z∗
n corresponds the automorphism g �→ gm, g ∈ C.

Extending this action onto Q[C] by linearity we obtain an action of Z∗
n on the group

algebra Q[C]:

α =
∑
g∈C

αgg −→ α(m) :=
∑
g∈C

αgg
m.

An element α ∈ Q[C] is called rational if α = α(m) for any m ∈ Z∗
n. Note that the mappings

α �→ α(m), m ∈ Z∗
n, are automorphisms of Q[C]. Moreover, these mappings are automorphisms

of any S-ring A over C (see [27, Theorem 23.9]). In particular, for each m ∈ Z∗
n and T ⊆ C

we have

T ∈ Basic(A) ⇐⇒ T (m) ∈ Basic(A),

where for a subset T ⊂ C, the set of mth powers of elements of T is denoted by T (m).
Recall that the set of all irreducible complex representations of C consists of n one-

dimensional representations (characters) χ0, . . . , χn−1, where

χ�(cj) := e2π
√−1�j/n, 0 � j, � � n− 1.



Page 16 of 25 F. PAKOVICH AND M. MUZYCHUK

We will keep the same notation for the extensions of χ0, . . . , χn−1 by linearity on Q[C]. The
rational elements of an S-ring A admit the following characterization.

Lemma 3.7. An element α ∈ Q[C] is rational if and only if χl(α) ∈ Q for all l, 0 � l � n− 1.

Proof. For an element α =
∑n

j=1 hjc
j of Q[C] the condition that χl(α) ∈ Q for all l,

0 � l � n− 1, is equivalent to the condition that χl(α), 0 � l � n− 1, is invariant with respect
to the action of the Galois group Γ of the extension (Q(e2π

√−1/n) : Q). The group Γ is
isomorphic to Z∗

n. Namely, to the element m ∈ Z∗
n corresponds the element σm ∈ Γ that

transforms e2π
√−1/n to e2π

√−1m/n. We have

σm(χ�(α)) = σm

⎛
⎝χ�

⎛
⎝ n∑

j=1

hjc
j

⎞
⎠
⎞
⎠ = σm

⎛
⎝ n∑

j=1

hje
2π

√−1�j/n

⎞
⎠

=
n∑

j=1

hje
2π

√−1m�j/n = χ�

⎛
⎝ n∑

j=1

hjc
mj

⎞
⎠ = χ�(α(m)).

Therefore, for �, 0 � � � n− 1, and m ∈ Z∗
n the equality σm(χ�(α)) = χ�(α) is equivalent to

the equality χ�(α(m)) = χ�(α). Since for α, β ∈ Q[C] the equality χ�(α) = χ�(β) holds for all
�, 0 � � � n− 1, if and only if α = β, we conclude that χ�(α) ∈ Q for all �, 0 � � � n− 1, if
and only if α is rational.

An S-ring A is called rational if all its elements are rational. Clearly, A is rational if and
only if T (m) = T for all T ∈ Basic(A) and m ∈ Z∗

n. Any rational S-ring is a subring of some
universal rational S-ring W. To construct W , observe that the orbits of the action of Z∗

n on C
are parametrized by the divisors of n as follows: an orbit Om, m|n, consists of all generators
of the group Cm. It turns out that the vector space spanned by Om, m|n, is a rational S-ring
W (see [26]). Furthermore, any rational S-ring A is a subring of W. Indeed, since any element
of the standard basis of a rational S-ring A is invariant with respect to the action of Z∗

n, such
an element is a union of some Om, m|n. Therefore A is a subring of W.

Denote byDn the lattice of all divisors of n with respect to the operations ∧,∨. The statement
below describes the rational S-rings.

Proposition 3.8 ([17]). An S-ring A over C is rational if and only if there exists a
sublattice D of Dn with 1, n ∈ D such that Cd, d ∈ D, is a basis of A.

Note that the basis Cd, d ∈ D, is not a standard basis of A in the sense of Definition 3.4.
To any S-ring A one can associate a rational S-ring Å, called the rational closure of A, which

is constructed as follows. Introduce an equivalence relation on Basic(A) setting S ∼ T if there
exists an m ∈ Z∗

n such that S = T (m). For T ∈ Basic(A) set

T̊ :=
⋃

{T (m) |m ∈ Z∗
n},

and denote by Å a Q-module spanned by T̊ , T ∈ Basic(A).

Proposition 3.9 ([26]). A Q-module Å is an S-ring consisting of all rational elements
of A.

Proposition 3.8 allows us to describe a rational closure of an arbitrary S-ring.
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Proposition 3.10. Let A be an S-ring over C. Then Cd , d ∈ D(A), is a basis of Å.

Proof. By Proposition 3.8, we see that Å is spanned by vectors Cd, d ∈ D, for a certain
sublattice D of Dn. It remains to prove that D = D(A). The inclusion D ⊆ D(A) follows from

d ∈ D =⇒ Cd ∈ Å ⊆ A =⇒ Cd ∈ A =⇒ d ∈ D(A).

Conversely, choose an arbitrary f ∈ D(A). Then Cf ∈ A. Furthermore, since

Cf =
∑

t∈Df

Ot ,

the element Cf is rational and therefore Cf ∈ Å. This means that Cf is a linear combination
of Cd, d ∈ D. Therefore, in order to prove that Cf = Cd for suitable d ∈ D, it is enough to
show that the simple quantities Cd, d ∈ Dn, are linearly independent.

In order to prove the last statement assume that∑
d

ld Cd = 0, (29)

and let M be a maximal number d for which ld �= 0. Clearly, any element u of C that generates
CM cannot be an element of Cd for d < M. But then u appears in the left part of equality
(29) only once with the coefficient ld �= 0. This is a contradiction and therefore Cd, d ∈ Dn, are
linearly independent.

3.3. Proof of Theorem 3.1

Similarly to the definition given above for the elements of D(G), say that for an S-ring A an
element d ∈ D(A) covers an element f ∈ D(A) if f | d, f < d, and there is no x ∈ D(A) such
that f < x < d and f |x, x|d.

Set

σd :=
1
d
Cd, d ∈ D(A).

It follows from
σfσd = σdσf = σf∨d (30)

that σd, d ∈ D(A), are idempotents of the algebra A. Nevertheless, they are not pairwise
orthogonal.

Proposition 3.11. An element of an S-ring A over C is a minimal idempotent of A if and
only if it has the form

εd = σd

�∏
i=1

(1 − σfi
), (31)

where d ∈ D(A) and f1, . . . , f� is a complete set of elements of D(A) covering d.

Proof. Let us show first that εd, d ∈ D(A), are pairwise orthogonal idempotents. Since each
σd, d ∈ Dn, is an idempotent, we have

ε2d = σ2
d

�∏
i=1

(1 − σfi
)2 = σd

�∏
i=1

(1 − 2σfi
+ σ2

fi
) = σd

�∏
i=1

(1 − σfi
) = εd.

Therefore, in order to show that εd is an idempotent, we must only check that εd �= 0. In view
of (30), after opening the brackets in (31) we obtain a linear combination of σf in which σd
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appears with the coefficient one. Since σd, d ∈ Dn, are linearly independent, this implies that
εd �= 0.

Let us check now the orthogonality. Take two distinct m, d ∈ D(A), where it is assumed
that d < m, and consider the product εdεm. Let f1, . . . , f� and n1, . . . , nk be complete sets of
elements of D(A) that cover d and m, respectively. By (30) we have

εdεm = σd

�∏
i=1

(1 − σfi
) · σm

k∏
j=1

(1 − σnj
) = σdσm

i=�,j=k∏
i=1,j=1

(1 − σfi
)(1 − σnj

)

= σd∨m

i=�,j=k∏
i=1,j=1

(1 − σfi
)(1 − σnj

). (32)

Since d | d ∨m and d < d ∨m, there exists an element fi ∈ D(A) that covers d and divides
d ∨m. For such an element (1 − σfi

)σd∨m = 0, and this implies the vanishing of the right-hand
side of (32).

Since the idempotents εd, d ∈ D(A), are pairwise orthogonal, they are linearly independent
elements of A. Furthermore, since Proposition 3.10 implies that εd ∈ Å for any d ∈ D(A) and

dim (Å) = |D(A)|, (33)

the idempotents εd, d ∈ D(A), form a basis of Å which consists of pairwise orthogonal idem-
potents. This implies that any minimal idempotent ε of Å coincides with some εd, d ∈ D(A).
Indeed, since εd, d ∈ D(A), form a basis of Å, there exist numbers ad, d ∈ D(A), such that
ε =

∑
d∈D(A) adεd. Furthermore, since ε is an idempotent, for any d ∈ D(A) the coefficient ad

equals either 1 or 0. Therefore, if ε is minimal, then ε = εd for some d ∈ D(A).
Finally, observe that the sets of minimal idempotents of Å and A coincide. Indeed, if ε is

any idempotent of A, then ε2 = ε implies that χi(ε) ∈ {0, 1} for all i, 0 � i � n− 1. Therefore,
by Proposition 3.9, we have ε ∈ Å. Furthermore, if ε is minimal in A, then obviously it is also
minimal in Å. On the other hand, any minimal idempotent of Å remains a minimal idempotent
in A since all idempotents of A are contained in Å.

Proof of Theorem 3.1. By Proposition 3.2 any RG-irreducible invariant subspace W of Qn

corresponds to a minimal idempotent E ∈ VQ(G) such that Im{E} = W . Furthermore, since
ψ is an isomorphism between VQ(G) and SQ(G), the element ψ(E) is a minimal idempotent
of SQ(G) and therefore, by Proposition 3.11, ψ(E) = εd for some d ∈ D(SQ(G)). Thus W is
RG-irreducible invariant subspace of Qn if and only if there exist d ∈ D(SQ(G)) such that

W = Im{ψ−1(εd)} = Im

{
ψ−1(σd)

�∏
i=1

(I − ψ−1(σfi
))

}
. (34)

Observe now that if two idempotent matrices A, B commute, then for the matrix C = AB =
BA the equality

Im{C} = Im{A} ∩ Im{B}
holds. Indeed, it is clear that

Im{C} ⊆ Im{A} ∩ Im{B}.
On the other hand, if z ∈ Im{A} ∩ Im{B} then z = Ax = By for some vectors x, y and

Az = A(Ax) = Ax = z, Bz = B(By) = By = z. (35)
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It follows that Cz = A(Bz) = Az = z and hence z ∈ Im{C}. Since Lemma 3.5 implies that
VQ(G) is commutative, it follows now from (34) that

W = Im
{
ψ−1(σd)

} ∩
(

�⋂
i=1

Im
{
(I − ψ−1(σfi

))
})

.

It was observed in the proof of Lemma 3.6 that Im(ψ−1(σd)) = Vn/d. Furthermore, since the
image of any idempotent matrix consists of its invariant vectors, we have Im{I − ψ−1(σd)} =
Ker{ψ−1(σd)}. On the other hand, since the matrix ψ−1(σd) is symmetric, Ker{ψ−1(σd)} =
Im{ψ−1(σd)}⊥. Therefore

W = Vn/d ∩ V ⊥
n/f1

∩ . . . ∩ V ⊥
n/f�

.

Finally, Lemma 3.6 implies that n/d ∈ D(G) and n/f1, . . . , n/f� is a complete set of elements
of D(G) covered by n/d. Hence W = Un/d.

Remark. If G does not contain a full cycle, then Theorem 3.1 fails to be true. A simple
example is provided by the group S5 acting on two element subsets of {1, 2, 3, 4, 5}. One can
verify that in this way we obtain a primitive permutation group G on 10 points that yields a
permutation matrix representation ρG of dimension 10. However, the collection of ρG-invariant
irreducible subspaces of Q10 is distinct from the collection U1, U10 since U10 is a direct sum of
two irreducible ρG-invariant subspaces of dimensions 4 and 5.

Notice also that Theorem 3.1 is not true for representations over C. In order to see this, it
is enough to take as G any cyclic group.

4. Description of Q(z) satisfying ϕs(t) = 0

4.1. Geometry of MP,a,b

In notation of Section 3 set

W = V ⊥
f1

∩ . . . ∩ V ⊥
f�
,

where f1, . . . , f� is the set of all elements ofD(GP ) distinct from n. Notice that since n ∈ D(GP )
covers any other element of D(GP ), the subspace W coincides with the subspace Un from
Theorem 3.1, and therefore is GP -invariant irreducible subspace of Qn.

Theorem 3.1 together with Proposition 2.6 imply the following important geometric property
of MP,a,b.

Proposition 4.1. The subspace MP,a,b contains the subspace W.

Proof. Indeed, since by construction MP,a,b is a GP -invariant subspace of Qn, it follows
from Theorem 3.1 that either MP,a,b contains W or is orthogonal to W. In the last case MP,a,b

also would be orthogonal to the complexification WC of W. Therefore, in order to prove the
proposition it is enough to find vectors �w ∈WC and �v ∈MP,a,b such that (�v, �w) �= 0.

In order to find such �w observe that the vectors

�wi = (1, εj
n, ε

2j
n , . . . , ε

(n−1)j
n ),

1 � j � n, where εn = exp(2π
√−1/n), form an orthogonal basis of Cn. Furthermore, for d | n

vectors �wj for which (n/d) | j form a basis of V C
d . Therefore, the vector �w1 is orthogonal to V C

f

for any f ∈ D(GP ), f �= n, and hence �w1 ∈WC. Set �w = �w1.
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Consider two cases now. Suppose first that P (a) = P (b) and show that in this case, for the
vector �v ∈MP,a,b corresponding to equation (24), the inequality (�v, �w) �= 0 holds. Indeed, the
equality (�v, �w) = 0 is equivalent to the equality

da∑
s=1

εas
n /da =

db∑
s=1

εbs
n /db,

which in its turn is equivalent to the statement that the ‘centers of mass’ of the sets V (a) and
V (b) coincide. However, this contradicts Proposition 2.6 since the center of mass of a system
of points in C is inside of the convex envelope of this system and therefore the centers of mass
of disjointed sets must be distinct.

Similarly, if P (a) �= P (b), then (�v, �w) �= 0 for at least one of two vectors corresponding to
equations (25). Indeed, otherwise

da∑
s=1

εas
n /da = 0,

db∑
s=1

εbs
n /db = 0

that contradicts again Proposition 2.6 since the fact that the sets V (a) and V (b) are almost
disjointed implies that at least one of these sets is contained in an open half plane bounded by
a line passing through the origin and therefore has the center of mass distinct from zero.

4.2. Puiseux expansions of Q(P−1(z))

Let Û ⊂ C be a domain as in the proof of Proposition 2.6. Then, taking into account our
convention about the numeration of branches of P−1(z), at points of Û close enough to infinity,
the function Q(P−1

i (z)), 1 � i � n, is represented by the converging series

Q(P−1
i (z)) =

∞∑
k=−m

skε
(i−1)k
n z−k/n, (36)

where z1/n denotes some fixed branch of the algebraic function inverse to zn in Û . Therefore,
any relation of the form

n∑
i=1

fiQ(P−1
i (z)) = 0, fi ∈ C, (37)

is equivalent to the system
n∑

i=1

fiskε
k(i−1)
n = 0, k � −m. (38)

In particular, in view of Theorem 2.2, the equality Ĥ(t) ≡ 0 implies that for any k � −m such
that the coefficient sk of series (36) is distinct from zero, the vector �wk is orthogonal to MP,a,b.
This fact together with Proposition 4.1 imply the following statement (cf. [22, Theorem 4.1]).

Proposition 4.2. Let Q(z) be a polynomial such that Ĥ(t) ≡ 0. Then for any k � −m
such that the coefficient sk of series (36) is distinct from zero, there exists an f ∈ D(GP ),
f �= n, such that (n/f) | k.

Proof. Indeed, if sk �= 0, then it follows from (38) that the vector �wk is orthogonal toMC
P,a,b,

and therefore by Proposition 4.1 is orthogonal to WC. Since the subspace (WC)⊥ is generated
by the vectors �wj , (n/f) | j, f ∈ D(GP ), f �= n, this implies that �wk is a linear combination of
these vectors and hence coincides with one of them since the vectors �wi, 1 � i � n, are linearly
independent. Therefore, (n/f) | k for some f ∈ D(GP ), f �= n.
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For f ∈ D(GP ), f �= n, set

ψf (z) =
∑

k�−m
k≡0 mod n/f

skz
−k/n,

where sk, k � −m, are coefficients of series (36). Clearly, ψf (z) is an analytic function in Û .

Lemma 4.3. For any f ∈ D(GP ), f �= n, there exists an Sf (z) ∈ C[z] such that

ψf (z) = Sf (P−1
1 (z)). (39)

Furthermore, we have

P (z) = A1(B1(z)), Sf (z) = R1(B1(z)) (40)

for some A1(z), B1(z), R1(z) ∈ C[z] with degB1(z) > 1.

Proof. First, observe that since

1 + (εk
n)f + (εk

n)2f + . . .+ (εk
n)n−f

equals n/f if n | (fk), and zero otherwise, it follows from (36) that the equality(
n

f

)
ψf (z) = Q(P−1

1 (z)) +Q(P−1
f+1(z)) +Q(P−1

2f+1(z)) + . . .+Q(P−1
n−f+1(z)) (41)

holds.
Let now ΩP be a field generated by all branches of P−1(z) considered as elements of some

fixed algebraic closure of C(z). Recall that the Galois group of the extension [ΩP : C(z)] is
permutation equivalent to the groupGP , and, under the Galois correspondence, to the stabilizer
of P−1

1 (z) in GP corresponds the invariant subfield C(P−1
1 (z)) of ΩP . Since f ∈ D(GP ), the

collection of branches appearing in the right part of equality (41) is a block of an imprimitivity
system of GP containing P−1

1 (z). Therefore, equality (41) implies that the function ψf (z) ∈ ΩP

is invariant with respect to the action of the stabilizer of P−1
1 (z) in GP and hence is contained

in the field C(P−1
1 (z)). Hence, there exists a rational function Sf (z) such that equality (39)

holds. Furthermore, since the analytic continuation of the right side of (41) has no poles in
C the function Sf (z) is a polynomial. Finally, since branches appearing in the right part of
equality (41) form a block, it is easy to see that

Sf (P−1
1 (z)) = Sf (P−1

lf+1(z)), 1 � l � n/f − 1,

and hence the last part of the lemma follows from Lemma 2.3.

4.3. Proof of Theorem 1.1

In view of Theorem 2.2 we must essentially show that the conclusion of the theorem holds
for any non zero polynomial Q(z) such that Ĥ(t) ≡ 0. Therefore, abusing the notation, below
we will mean by a solution of the polynomial moment problem, such a polynomial Q(z). The
proof is by induction on the number i(P ) of imprimitivity systems of the group GP . If i(P ) = 2,
that is, if GP has only trivial imprimitivity systems, then Proposition 4.2 implies that for any
non-zero coefficient sj , j � m, of (36) the number k is a multiple of n. Therefore, all the
functions Q(P−1

i (z)), 1 � i � n, are equal between themselves and hence Q(z) = R(P (z)) for
some polynomial R(z) by Lemma 2.3. Furthermore, necessarily P (a) = P (b). Indeed otherwise,
after the change of variable z = P (z) we would obtain that the polynomial R(z) is orthogonal
to all powers of z on the segment [P (a), P (b)]. However, for

P (z) = z, Q(z) = R(z), a = P (a), b = P (b),
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any of relations (25) reduces to the equality R(z) ≡ 0 in contradiction with the condition
Q(z) �≡ 0 (of coarse instead of Proposition 2.1 we could also use the Weierstrass theorem).
Therefore, if i(P ) = 2 then all solutions of the polynomial moment problem for P (z) are
reducible (cf. [19, Theorem 1; 22, Theorem 5.3]).

Suppose now that the theorem is proved for all P (z) with i(P ) < l, and let Q(z) be a non-zero
solution of the polynomial moment problem for a polynomial P (z) of degree n with i(P ) = l.
If Q(z) = R(P (z)) for some polynomial R(z) then one can show as above that P (a) = P (b)
and Q(z) is reducible. Otherwise there exists a non-zero coefficient sj1 , j1 � m, of expansion
(36) such that j1 is not a multiple of n. By Proposition 4.2 this implies that there exists an
f1 ∈ D(GP ), f1 �= n, such that (n/f1) | j1. Furthermore, by Lemma 4.3 there exists a polynomial
S1(z) such that ψf1(z) = S1(P−1

1 (z)) and equalities

P (z) = A1(B1(z)), S1(z) = R1(B1(z))

hold for some A1(z), B1(z), R1(z) ∈ C[z] with degB1(z) > 1.
Define a polynomial T1(z) by the equality T1(z) = Q(z) − S1(z). Then for any i, 1 � i � n,

we have

Q(P−1
i (z)) = S1(P−1

i (z)) + T1(P−1
i (z)).

Since by construction the intersection of the supports of the series S1(P−1(z)) and T1(P−1(z))
is empty, if the series Q(P−1

i (z)), 1 � i � n, satisfies some linear relation over C then the series
S1(P−1

i (z)), 1 � i � n, and T1(P−1
i (z)), 1 � i � n, also satisfy this relation. It follows now

from Theorem 2.2 that each of germs defined in a neighborhood of infinity by the integrals

Ĥ1(t) =
∫
Γa,b

S1(z)P ′(z) dz
P (z) − t

, F̂1(t) =
∫
Γa,b

T1(z)P ′(z) dz
P (z) − t

,

vanishes or, in other words, the polynomials S1(z) and R1(z) are solutions of the polynomial
moment problem for P (z). Moreover, by construction the Puiseux series of T1(P−1(z)) contains
no non-zero coefficients with indices that are multiple of n/f1. In particular, this implies that
all coefficients of T1(P−1(z)) whose indices are multiples of n vanish and hence T1(z) may not
have the form T1(z) = R(P (z)) for some R(z) ∈ C[z] unless T1(z) ≡ 0.

If T1(t) �= 0, then arguing as above, we conclude that there exist f2 ∈ D(GP ), f2 �= f1,
f2 �= n, and polynomials S2(z), T2(z), R2(z), A2(z), B2(z) ∈ C[z] with degB2(z) > 1 such that
the following conditions hold:

T1(P−1(z)) = S2(P−1(z)) + T2(P−1(z)),
P (z) = A2(B2(z)), S2(z) = R2(B2(z)),

the germs

Ĥ2(t) =
∫
Γa,b

S2(z)P ′(z) dz
P (z) − t

, F̂2(t) =
∫
Γa,b

T2(z)P ′(z) dz
P (z) − t

vanish, and the Puiseux expansion of T2(P−1(z)) contains no non-zero coefficients whose indices
are multiple of n/f1 or n/f2.

Since the number of divisors of n is finite, continuing in this way, after a finite number of
steps we will arrive at a decomposition of the function Q(z) into a sum of polynomials Ss(z),
1 � s � r,

Q(z) = S1(z) + S2(z) + . . .+ Sr(z)

such that the germs

Ĥs(t) =
∫
Γa,b

Ss(z)P ′(z) dz
P (z) − t

, 1 � s � r,
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vanish and

P (z) = As(Bs(z)), Ss(z) = Rs(Bs(z)), 1 � s � r,

for some Rs(z), As(z), Bs(z) ∈ C[z] with degBs(z) > 1.
In order to conclude the proof it is enough to show any polynomial S(z) from the collection

Ss(z), 1 � s � r, is a sum of reducible solutions of the polynomial moment problem for P (z).
Thus, take some S(z) and let R(z), A(z), B(z), where degB(z) > 1, be polynomials such that

P (z) = A(B(z)), S(z) = R(B(z)).

If B(a) = B(b), then S(z) itself is a reducible solution. Otherwise, since∫
Γa,b

S(z)P ′(z) dz
P (z) − t

=
∫
B(Γa,b)

R(z)A′(z) dz
A(z) − t

,

we conclude that the polynomial R(z) is a solution of the polynomial moment problem for
the polynomial A(z) (and the points B(a), B(b)). Since the condition degB(z) > 1 implies
that i(A) < i(P ), it follows from the induction assumption that there exist polynomials V1(z),
V2(z), . . . , Vj(z) such that

R(z) = V1(z) + V2(z) + . . .+ Vj(z)

and

Ve(z) = Ṽe(Ue(z)), A(z) = Ãe(Ue(z)), Ue(B(a)) = Ue(B(b)),

for some Ṽe(z), Ãe(z), Ue(z) ∈ C[z], 1 � e � j.
Set now

Ee(x) = Ve(B(x)), We(z) = Ue(B(z)), 1 � e � j.

Then

S(z) = E1(z) + E2(z) + . . .+ Ej(z),

where for each e, 1 � e � j, we have:

Ee(z) = Ṽe(We(z)), P (z) = Ãe(We(z)), We(a) = We(b).

Therefore, S(z) is a sum of reducible solutions.

Remark. Theorem 1.1 implies that if for a given polynomial P (z) the corresponding
polynomial moment problem has non-reducible solutions, then P (z) has at least one ‘double
decomposition’

P = A ◦B = C ◦D
such that

B(z) /∈ C(D(z)), D(z) /∈ C(B(z)).

Notice that this condition is quite restrictive. Namely, the results of Engstrom [10] and Ritt
[24] imply that if polynomials A,B,C,D satisfy the equation

A ◦B = C ◦D,
then there exist polynomials Â, B̂, Ĉ, D̂, U, V such that

A = U ◦ Â, C = U ◦ Ĉ, B = B̂ ◦ V, D = D̂ ◦ V, Â ◦ B̂ = Ĉ ◦ D̂,
and up to a possible replacement of Â by Ĉ and B̂ by D̂ either

Â ◦ B̂ ∼ zn ◦ zrR(zn), Ĉ ◦ D̂ ∼ zrRn(z) ◦ zn,
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where R(z) is a polynomial, r � 0, n � 1, and GCD(n, r) = 1, or

Â ◦ B̂ ∼ Tn ◦ Tm, Ĉ ◦ D̂ ∼ Tm ◦ Tn,

where Tn(z), Tm(z) are the corresponding Chebyshev polynomials, n,m � 1, and
GCD(n,m) = 1.

Notice however that a polynomial P (z) may have more than one double decomposition
satisfying the condition above. Indeed, for example, for any distinct prime divisors p1, p2 of a
number n we have

Tn(z) = Tn/p1(Tp1(z)) = Tn/p2(Tp2(z))

and

Tp1(z) /∈ C(Tp2(z)), Tp2(z) /∈ C(Tp1(z)).

It would be interesting to investigate what conditions should be imposed on the collection
P (z), a, b in order to conclude that any solution of the polynomial moment problem for P (z)
can be represented as a sum of at most r reducible solutions, where r � 1 is a fixed number.
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