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Abstract

In the paper [J. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922) 51–66] Ritt
constructed the theory of functional decompositions of polynomials with complex coefficients. In particular,
he described explicitly polynomial solutions of the functional equation f (p(z)) = g(q(z)). In this paper we
study the equation above in the case where f,g,p, q are holomorphic functions on compact Riemann
surfaces. We also construct a self-contained theory of functional decompositions of rational functions with
at most two poles generalizing the Ritt theory. In particular, we give new proofs of the theorems of Ritt and
of the theorem of Bilu and Tichy.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let F be a rational function with complex coefficients. The function F is called indecompos-
able if the equality F = F2 ◦ F1, where F2 ◦ F1 denotes a superposition F2(F1(z)) of rational
functions F1, F2, implies that at least one of the functions F1,F2 is of degree one. Any repre-
sentation of a rational function F in the form F = Fr ◦ Fr−1 ◦ · · · ◦ F1, where F1,F2, . . . ,Fr

are rational functions, is called a decomposition of F. A decomposition is called maximal if all
F1,F2, . . . ,Fr are indecomposable and of degree greater than one.

In general, a rational function may have many maximal decompositions and the ultimate goal
of the decomposition theory of rational functions is to describe the general structure of all max-
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imal decompositions up to an equivalence, where by definition two decompositions having an
equal number of terms

F = Fr ◦ Fr−1 ◦ · · · ◦ F1 and F = Gr ◦ Gr−1 ◦ · · · ◦ G1

are called equivalent if either r = 1 and F1 = G1, or r � 2 and there exist rational functions μi,

1 � i � r − 1, of degree 1 such that

Fr = Gr ◦ μr−1, Fi = μ−1
i ◦ Gi ◦ μi−1, 1 < i < r, and F1 = μ−1

1 ◦ G1.

Essentially, the unique class of rational functions for which this problem is completely solved is
the class of polynomials investigated by Ritt in his classical paper [23].

The results of Ritt can be summarized in the form of two theorems usually called the first
and the second Ritt theorems (see [23,26]). The first Ritt theorem states that any two maximal
decompositions D,E of a polynomial P have an equal number of terms and there exists a chain
of maximal decompositions Fi , 1 � i � s, of P such that F1 = D, Fs ∼ E, and Fi+1 is obtained
from Fi by replacing two successive functions A ◦ C in Fi by two other functions B ◦ D such
that

A ◦ C = B ◦ D. (1)

The second Ritt theorem states that if A,B,C,D is a polynomial solution of (1) such that

GCD(degA,degB) = 1, GCD(degC,degD) = 1

(this condition is satisfied in particular if A,B,C,D are indecomposable), then there exist poly-
nomials Ã, B̃, C̃, D̃, μ1, μ2, where degμ1 = 1, degμ2 = 1, such that

A = μ1 ◦ Ã, B = μ1 ◦ B̃, C = C̃ ◦ μ2, D = D̃ ◦ μ2

and either

Ã ◦ C̃ ∼ Tn ◦ Tm, B̃ ◦ D̃ ∼ Tm ◦ Tn,

where Tm,Tn are the corresponding Chebyshev polynomials with n,m � 1 and GCD(n,m) = 1,

or

Ã ◦ C̃ ∼ zn ◦ zrR
(
zn

)
, B̃ ◦ D̃ ∼ zrRn(z) ◦ zn,

where R is a polynomial, r � 0, n � 1, and GCD(n, r) = 1. Actually, the second Ritt theorem
essentially remains true for arbitrary polynomial solutions of (1). The only difference in the
formulation is that for the degrees of polynomials μ1, μ2 in this case the equalities

degμ1 = GCD(degA,degB), degμ2 = GCD(degC,degD)

hold (see [6,27]). Notice that an analogue of the second Ritt theorem holds also when the ground
field is distinct from C (see [28]).

For arbitrary rational functions the first Ritt theorem fails to be true. Furthermore, there exist
rational functions having maximal decompositions of different length. The simplest examples of
such functions can be constructed with the use of rational functions which are Galois coverings.
These functions, for the first time calculated by Klein in his famous book [12], are related to
the finite subgroups Cn, Dn, A4, S4, A5 of Aut CP1 and nowadays can be interpreted as Belyi
functions of Platonic solids (see [5,14]). Since for such a function f its maximal decompositions
correspond to maximal chains of subgroups of its monodromy group G, in order to find maximal
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decompositions of different length of f it is enough to find the corresponding chains of subgroups
of G, and it is not hard to check that for the groups A4, S4, and A5 such chains exist (see e.g. [8]).

The analogues of the second Ritt theorem for arbitrary rational solutions of Eq. (1) are known
only in several cases. Let us mention some of them. First, notice that the description of rational
solution of (1) under condition that C and D are polynomials turns out to be quite simple and
substantially reduces to the description of polynomial solutions of (1) (see [17]). On the other
hand, the problem of description of rational solutions of (1) under condition that A and B are
polynomials is equivalent to the problem of description of algebraic curves of the form

A(x) − B(y) = 0, (2)

having a factor of genus zero, together with corresponding parameterizations. A complete list of
such curves is known only in the case where the corresponding factor has at most two points at
infinity. In this case the problem is closely related to the number theory and was studied first in
the paper of Fried [9] and then in the papers of Bilu [2] and Bilu and Tichy [3]. In particular,
in [3] an explicit list of such curves, defined over any field of characteristic zero, was obtained.
Notice that the results of [9,3] generalize the second Ritt theorem since polynomial solutions
of (1) correspond to curves (2) having a factor of genus zero with one point at infinity. Rational
solutions of the equation

A ◦ C = A ◦ D, (3)

under condition that A is a polynomial were described in [1] (notice also the paper [24] where
some partial results about Eq. (3) under condition that A is a rational function were obtained).
Finally, a description of permutable rational functions was obtained in [25] (see also [7]). Note
that beside of connections with the number theory Eq. (1) has also important connections with
different branches of analysis (see e.g. the recent papers [21,17,18,20,22]).

In this paper we study the equation

h = f ◦ p = g ◦ q, (4)

where f :C1 → CP1, g :C2 → CP1 are fixed holomorphic functions on fixed connected compact
Riemann surfaces C1,C2 and h :C → CP1, p :C → C1, q :C → C2 are unknown holomorphic
functions on unknown connected compact Riemann surface C. We also apply the results obtained
to Eq. (1) with rational A,B,C,D and on this base construct a self-contained decomposition
theory of rational functions with at most two poles generalizing the Ritt theory. In particular,
we prove analogues of Ritt theorems for such functions and reprove in a uniform way previous
related results of [23,9,2,3].

Let S ⊂ CP1 be a finite set and z0 ∈ CP1 \ S. Our approach to Eq. (4) is based on the corre-
spondence between pairs consisting of a covering f of CP1, non-ramified outside of S, together
with a point from f −1{z0} and subgroups of finite index in π1(CP1 \S, z0). The main advantage
of the consideration of such pairs and subgroups, rather than just of functions and their mono-
dromy groups, is due to the fact that for any subgroups of finite index A,B in π1(CP1 \ S, z0)

the subgroups A ∩ B and 〈A,B〉 also are subgroups of finite index in π1(CP1 \ S, z0) and we
may transfer these operations to the corresponding pairs. The detailed description of the content
of the paper is given below.

In Section 2 we describe the general structure of solutions of Eq. (4). We show (Theorem 2.2)
that there exists a finite number o(f,g) of solutions hj ,pj , qj of (4) such that any other solution
may be obtained from them and describe explicitly the monodromy of hj via the monodromy
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of f,g. Furthermore, we show (Proposition 2.4) that if f, g are rational functions, then the
Riemann surfaces on which the functions hj , 1 � j � o(f,g), are defined may be identified
with irreducible components of the algebraic curve f (x)− g(y) = 0. In particular, being applied
to polynomials A,B our construction provides a criterion for the irreducibility of curve (2) via
the monodromy groups of A and B useful for applications (see e.g. [20]).

By the analogy with rational functions we will call a pair of holomorphic functions f,g ir-
reducible if o(f,g) = 1. In Section 3 we study properties of irreducible and reducible pairs. In
particular, we give a criterion (Theorem 3.2) for a pair f,g to be irreducible in terms of the
corresponding subgroups of π1(CP1 \ S, z0) and establish the following result about reducible
pairs generalizing the corresponding result of Fried [10] about rational functions (Theorem 3.5):
if a pair of holomorphic functions f,g is reducible then there exist holomorphic functions f̃ , g̃,

p, q such that

f = f̃ ◦ p, g = g̃ ◦ q, o(f, g) = o(f̃ , g̃),

and the Galois closures of f̃ and g̃ coincide. We also show (Theorem 3.6) that if in (4) the pair
f, g is irreducible then the indecomposability of q implies the indecomposability of f . Notice
that the last result turns out to be quite useful for applications related to possible generalizations
of the first Ritt theorem (see Section 5).

Further, in Section 4 we study properties of Eq. (4) in the case where f,g are “generalized
polynomials” that is holomorphic functions for which the preimage of infinity contains a unique
point. In particular, we establish the following, highly useful for the study of Eq. (1), result
(Corollary 4.4): if A,B are polynomials of the same degree and C,D are rational functions such
that equality (1) holds, then there exist a rational function W , mutually distinct points of the
complex sphere γi, 1 � i � r, and complex numbers αi,βi, 0 � i � r, such that

C =
(

α0 + α1

z − γ1
+ · · · + αr

z − γr

)
◦ W, D =

(
β0 + β1

z − γ1
+ · · · + βr

z − γr

)
◦ W.

In Section 5 we propose an approach to possible generalizations of the first Ritt theorem to
more wide than polynomials classes of functions. We introduce the conception of a closed class
of rational functions as of a subset R of C(z) such that the condition G ◦ H ∈ R implies that
G ∈ R, H ∈ R. The prototypes for this definition are closed classes Rk, k � 1, consisting of
rational functions F for which

min
z∈CP1

∣∣F−1{z}∣∣ � k, (5)

where |F−1{z}| denotes the cardinality of the set F−1{z}. Notice that since for any F ∈ R1
there exist rational functions μ1, μ2 of degree 1 such that μ1 ◦ F ◦ μ2 is a polynomial, the
Ritt theorems can be interpreted as a decomposition theory for the class R1. The main result of
Section 5 (Theorem 5.1) states that in order to check that the first Ritt theorem holds for maximal
decompositions of rational functions from a closed class R it is enough to check that it holds for
a certain subset of maximal decompositions which is considerably smaller than the whole set.
For example, for the class R1 this subset turns out to be empty that provides a new proof of the
first Ritt for this class (Corollary 5.2). Later, in Section 9, using this method we also show that
the first Ritt theorem remains true for the class R2.

In the rest of the paper, using the results obtained, we construct explicitly the decomposition
theory for the class R2. There are several reasons which make the problem interesting. First,
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since R1 ⊂ R2, the decomposition theory for R2 is a natural generalization of the Ritt theory.
Furthermore, the equation

L = A ◦ C = B ◦ D, (6)

where L ∈ R2 and A,B,C,D are rational functions, is closely related to the equation

h = A ◦ f = B ◦ g, (7)

where A,B are rational functions while h,f,g are entire transcendental functions and the de-
scription of solutions of (6) yields a description of solutions of (7) (see [22]). Finally, notice
that polynomials solutions of (1) naturally appear in the study of the polynomial moment prob-
lem which arose recently in connection with the “model” problem for the Poincare center-focus
problem (see e.g. [21,4]). The corresponding moment problem for Laurent polynomials, which
is related to the Poincare problem even to a greater extent than the polynomial moment problem,
is still open and the decomposition theory for R2 can be considered as a preliminary step in the
investigation of this problem.

It was observed by the author several years ago that the description of “double decompo-
sitions” (6) of functions from R2 (“the second Ritt theorem” for R2) mostly reduces to the
classification of curves (2) having a factor of genus 0 with at most two points at infinity. In-
deed, without loss of generality we may assume that the minimum in (5) attains at infinity and
that L−1{∞} ⊆ {0,∞}. In other words, we may assume that L is a Laurent polynomial. Fur-
ther, it follows easily from the condition L−1{∞} ⊆ {0,∞} that any decomposition U ◦ V of L

is equivalent either to a decomposition A ◦ L1, where A is a polynomial and L1 is a Laurent
polynomial, or to a decomposition L2 ◦ B , where L2 is a Laurent polynomial and B = czd for
some c ∈ C and d � 1. Therefore, the description of double decompositions of functions from R2
reduces to the solution of the following three equations:

A ◦ L1 = B ◦ L2 (8)

where A,B are polynomials and L1,L2 are Laurent polynomials,

A ◦ L1 = L2 ◦ zd, (9)

where A is a polynomial and L1,L2 are Laurent polynomials, and

L1 ◦ zd1 = L2 ◦ zd2 , (10)

where L1,L2 are Laurent polynomials. Observe now that if A,B,L1,L2 is a solution of Eq. (8),
then corresponding curve (2) has a factor of genus 0 with at most two points at infinity and vice
versa for any such a curve the corresponding factor may be parametrized by some Laurent poly-
nomials providing a solution of (8). Therefore, the description of solutions of Eq. (8) essentially
reduces to the description of curves (2) having a factor of genus 0 with at most two points at
infinity. On the other hand, Eqs. (9) and (10) turn out to be much easier for the analysis in view
of the presence of symmetries.

Although the result of Bilu and Tichy obtained in the paper [3] (which in its turn uses the
results of the papers [2,9,10]) reduces the solution of Eq. (8) to an elementary problem of finding
of parameterizations of the corresponding curves, in this paper we give an independent analysis
of this equation in view of the following reasons. First, we wanted to provide a self contained
exposition of the decomposition theory for the class R2 since we believe that such an exposition
may be interesting for the wide audience. Second, our approach contains some new ideas and
by-product results which seem to be interesting by themselves.
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Our analysis of Eqs. (8), (9), (10) splits into three parts. In Section 6 using Corollary 4.4
we solve Eqs. (9), (10). In Section 7 using Theorem 3.5 combined with Corollary 4.4 we show
(Theorem 7.2) that Eq. (8) in the case where curve (2) is reducible reduces either to the irreducible
case or to the case where

A ◦ L1 = B ◦ L2 = 1

2

(
zd + 1

zd

)
, d > 1.

Finally, in Section 8 we solve Eq. (8) in the case where curve (2) is irreducible. Our approach to
this case is similar to the one used in the paper [3] and consists of the analysis of the condition
that the genus g of (2) is zero. However, we use a different form of the formula for g and replace
the conception of “extra” points which goes back to Ritt by a more transparent conception.

Eventually, in Section 9 of the paper, as a corollary of the classification of double decomposi-
tions of functions from R2 and Theorem 5.1, we show (Theorem 9.1) that the first Ritt theorem
extends to the class R2. The results of the paper concerning decompositions of functions from R2
can be summarized in the form of the following theorem which includes in particular the Ritt the-
orems and the classifications of curves (2) having a factor of genus 0 with two points at infinity.

Theorem 1.1. Let

L = A ◦ C = B ◦ D

be two decompositions of a rational function L ∈ R2 into compositions of rational functions A,C

and B,D. Then there exist rational functions R,W, Ã, B̃, C̃, D̃ ∈ R2 such that

A = R ◦ Ã, B = R ◦ B̃, C = C̃ ◦ W, D = D̃ ◦ W, Ã ◦ C̃ = B̃ ◦ D̃

and, up to a possible replacement of A by B and C by D, one of the following conditions holds:

1) Ã ◦ C̃ ∼ zn ◦ zrL
(
zn

)
, B̃ ◦ D̃ ∼ zrLn(z) ◦ zn,

where L is a Laurent polynomial, r � 0, n � 1, and GCD(n, r) = 1;

2) Ã ◦ C̃ ∼ z2 ◦ z2 − 1

z2 + 1
S

(
2z

z2 + 1

)
, B̃ ◦ D̃ ∼ (

1 − z2)S2(z) ◦ 2z

z2 + 1
,

where S is a polynomial;

3) Ã ◦ C̃ ∼ Tn ◦ Tm, B̃ ◦ D̃ ∼ Tm ◦ Tn,

where Tn,Tm are the corresponding Chebyshev polynomials with m,n � 1, and GCD(n,m) = 1;

4) Ã ◦ C̃ ∼ Tn ◦ 1

2

(
zm + 1

zm

)
, B̃ ◦ D̃ ∼ 1

2

(
zm + 1

zm

)
◦ zn,

where m,n � 1 and GCD(n,m) = 1;

5) Ã ◦ C̃ ∼ −Tnl ◦ 1
(

εzm + 1
m

)
, B̃ ◦ D̃ ∼ Tml ◦ 1

(
zn + 1

n

)
,

2 εz 2 z
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where Tnl, Tml are the corresponding Chebyshev polynomials with m,n � 1, l > 1, εnl = −1,
and GCD(n,m) = 1;

6) Ã ◦ C̃ ∼ (
z2 − 1

)3 ◦ 3(3z4 + 4z3 − 6z2 + 4z − 1)

(3z2 − 1)2
,

B̃ ◦ D̃ ∼ (
3z4 − 4z3) ◦ 4(9z6 − 9z4 + 18z3 − 15z2 + 6z − 1)

(3z2 − 1)3
.

Furthermore, if D,E are two maximal decompositions of L then there exists a chain of maxi-
mal decompositions Fi , 1 � i � s, of L such that F1 = D, Fs ∼ E, and Fi+1 is obtained from Fi

by replacing two successive functions in Fi by two other functions with the same composition.

2. Functional equation h = f ◦ p = g ◦ q

In this section we describe solutions of the functional equation

h = f ◦ p = g ◦ q, (11)

where f :C1 → CP1, g :C2 → CP1 are fixed holomorphic functions on fixed Riemann surfaces
C1,C2 and h :C → CP1, p :C → C1, q :C → C2 are unknown holomorphic functions on an
unknown Riemann surface C. Notice that substantially we simply describe the components of
the fibred product of the covers f and g. Since, however we did not find any exact references to
this description in the literature, our exposition is very detailed and essentially self-contained.

We always will assume that the considered Riemann surfaces are connected and compact.

2.1. Preliminaries

Let S ⊂ CP1 be a finite set and z0 be a point from CP1 \ S. Recall that for any collection,
consisting of a Riemann surface R, holomorphic function p :R → CP1, non-ramified outside
of S, and a point e ∈ p−1{z0}, the homomorphism of the fundamental groups

p� : π1
(
R \ p−1{S}, e) → π1

(
CP1 \ S, z0

)
is a monomorphism such that its image Γp,e is a subgroup of finite index in the group
π1(CP1 \ S, z0), and vice versa if Γ is a subgroup of finite index in π1(CP1 \ S, z0), then there
exist a Riemann surface R, a function p :R → CP1, and a point e ∈ p−1{z0} such that

p�

(
π1

(
R \ p−1{S}, e)) = Γ.

Furthermore, this correspondence descends to a one-to-one correspondence between conjugacy
classes of subgroups of index d in π1(CP1 \S, z0) and equivalence classes of holomorphic func-
tions of degree d non-ramified outside of S, where functions p :R → CP1 and p̃ : R̃ → CP1 are
considered as equivalent if there exists an isomorphism w :R → R̃ such that p = p̃ ◦ w.

For pairs p1 :R1 → CP1, e1 ∈ p−1
1 {z0} and p2 :R2 → CP1, e2 ∈ p−1

2 {z0} the groups Γp1,e1

and Γp2,e2 coincide if and only if there exists an isomorphism w :R1 → R2 such that p1 = p2 ◦w

and w(e1) = e2. More generally, the inclusion

Γp1,e1 ⊆ Γp2,e2

holds if and only if there exists a holomorphic function w : R1 → R2 such that p1 = p2 ◦ w and
w(e1) = e2 and in the case if such a function exists it is defined in a unique way. Notice that this
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implies that if p :R → CP1, e ∈ p−1{z0} is a pair such that

Γp1,e1 ⊆ Γp,e ⊆ Γp2,e2 (12)

and v :R1 → R, u :R → R2, are holomorphic function such that p = p2 ◦ u, p1 = p ◦ v and
v(e1) = e, u(e) = e2 then w = u ◦ v. In particular, the function w can be decomposed into a
composition of holomorphic functions of degree greater than 1 if and only if there exists Γp,e

distinct from Γp1,e1 and Γp2,e2 such (12) holds.
In view of the fact that holomorphic functions can be identified with coverings of Rie-

mann surfaces all the results above follow from the corresponding results about coverings (see
e.g. [15]). Notice that the more customary language describing compositions of coverings uses
monodromy groups of the functions involved rather than subgroups of π1(CP1 \ S, z0). The
interaction between these languages is explained below. In the paper we will use both these
languages.

Fix a numeration {z1, z2, . . . , zr } of points of S and for each i, 1 � i � r, fix a small loop βi

around zi so that β1β2 · · ·βr = 1 in π1(CP1 \ S, z0). If p : R → CP1 is a holomorphic func-
tion non-ramified outside of S then for each i, 1 � i � r, the loop βi after the lifting by p

induces a permutation αi(p) of points of p−1{z0}. The group Gp generated by αi(p), 1 � i � r,

is called the monodromy group of p. Clearly, the group Gp is transitive and the equality
α1(p)α2(p) · · ·αr(p) = 1 holds in Gp . The representation of αi(p), 1 � i � r, by elements
of the corresponding symmetric group depends on the numeration of points of p−1{z0} but the
conjugacy class of the corresponding collection of permutations is well defined. Moreover, there
is a one-to-one correspondence between equivalence classes of holomorphic functions of de-
gree d non-ramified outside of S and conjugacy classes of ordered collections of permutations αi,

1 � i � r, from the symmetric group Sd acting on the set {1,2, . . . , d} such that α1α2 · · ·αr = 1
and the permutation group generated by αi, 1 � i � r, is transitive (see e.g. [16, Corollary 4.10]).
We will denote the conjugacy class of permutations which corresponds to a holomorphic function
p :R → CP1 by α̂(p). If

ϕp :π1
(
CP1 \ S, z0

) → Gp ⊂ Sd

is a homomorphism which sends βi to αi , 1 � i � r, then the set of preimages of the stabiliz-
ers Gp,i, 1 � i � d, coincides with the set of the groups Γp,e, e ∈ p−1{z0}. On the other hand,
for any group Γp,e , e ∈ p−1{z0} the collection of permutations αi, 1 � i � r, induced on the
cosets of Γp,e by βi, 1 � i � r, is a representative of α̂(p).

If a holomorphic function p :R → CP1 of degree d can be decomposed into a composi-
tion p = f ◦ q of holomorphic functions q :R → C and f :C → CP1 then the group Gp has
an imprimitivity system Ωf consisting of d1 = degf blocks such that the collection of per-
mutations of blocks of Ωf induced by αi(p), 1 � i � r, is a representative of α̂(f ), and vice
versa if Gp has an imprimitivity system Ω such that the collection of permutations of blocks
of Ω induced by αi(p), 1 � i � r, is a representative of α̂(f ) for some holomorphic function
f :C → CP1 then there exists a function q :R → C such that p = f ◦ q . Notice that if the set
{1,2, . . . , d} is identified with the set p−1{z0}, then the set of blocks of the imprimitivity sys-
tem Ωf corresponding to the decomposition p = f ◦ q has the form Bi = q−1{ti}, 1 � i � d1,

where {t1, t2, . . . , td1} = f −1{z0}.
If p = f̃ ◦ q̃ , where f̃ : C̃ → CP1, q̃ :R → C̃, is an other decomposition of p then the im-

primitivity systems Ωf , Ω
f̃

coincide if and only if there exists an automorphism μ : C̃ → C such
that

f = f̃ ◦ μ−1, q = μ ◦ q̃.
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In this case the decompositions f ◦ q and f̃ ◦ q̃ are called equivalent. Therefore, equivalence
classes of decompositions of p are in a one-to-one correspondence with imprimitivity systems
of Gp. More generally, if B is a block of Ωf and C is a block of Ω

f̃
such that B ∩ C is non-

empty, then B and C have an intersection of cardinality l if and only if there exist holomorphic
functions w :R → R1, q1 :R1 → C, q̃1 :R1 → C̃, where degw = l, such that

q = q1 ◦ w, q̃ = q̃1 ◦ w.

In particular, if p = f ◦ q = f ◦ q1 and the imprimitivity systems corresponding to the decom-
positions p = f ◦ q and p = f ◦ q1 coincide then q1 = ω ◦ q where ω is an automorphism of the
surface C such that f ◦ ω = f . Notice however that in general the equality f ◦ q = f ◦ q1 does
not imply that q1 = ω ◦ q for some ω as above. On the other hand, since a holomorphic function
q :R → C takes all the values on C the equality f ◦ q = f1 ◦ q always implies that f = f1.

By the analogy with rational functions we will call a holomorphic function p :R → CP1 of
degree greater than 1 indecomposable if the equality p = f ◦ q for some holomorphic functions
q :R → C and f :C → CP1 implies that at least one of the functions f,q is of degree 1. Clearly,
if p is non-ramified outside of S and z0 ∈ CP1 \ S, then p is indecomposable if and only if the
subgroups Γp,e, e ∈ p−1{z0} are maximal in π1(CP1 \ S, z0).

2.2. Description of solutions of Eq. (11)

Let S = {z1, z2, . . . , zr} be a union of branch points of f,g and z0 be a fixed point from
CP1 \ S.

Proposition 2.1. Let f :C1 → CP1, g :C2 → CP1 be holomorphic functions. Then for any
a ∈ f −1{z0} and b ∈ g−1{z0} there exist holomorphic functions u :C → C1, v :C → C2,
h :C → CP1, and a point c ∈ h−1{z0} such that

h = f ◦ u = g ◦ v, u(c) = a, v(c) = b. (13)

Furthermore, the function h has the following property: if

h̃ = f ◦ ũ = g ◦ ṽ, ũ(c̃) = a, ṽ(c̃) = b (14)

for some holomorphic functions h̃ : C̃ → CP1, ũ : C̃ → C1, ṽ : C̃ → C2, and a point c̃ ∈ h̃−1{z0},
then there exists a holomorphic function w : C̃ → C such that

h̃ = h ◦ w, ũ = u ◦ w, ṽ = v ◦ w, w(c̃) = c. (15)

Proof. Since the subgroups Γf,a and Γg,b are of finite index in π1(CP1 \S, z0) their intersection
is also of finite index. Therefore, there exists a pair h :C → CP1, c ∈ h−1{z0} such that Γh,c =
Γf,a ∩ Γg,b and for such a pair equalities (13) hold. Furthermore, equalities (14) imply that
Γ

h̃,c̃
⊆ Γf,a ∩ Γg,b Therefore, Γ

h̃,c̃
⊆ Γh,c and hence h̃ = h ◦ w for some w : C̃ → C such that

w(c̃) = c. It follows now from

f ◦ ũ = f ◦ u ◦ w, g ◦ ṽ = g ◦ v ◦ w

and

(u ◦ w)(c̃) = ũ(c̃), (v ◦ w)(c̃) = ṽ(c̃)
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that

ũ = u ◦ w, ṽ = v ◦ w. �
For holomorphic functions f :C1 → CP1, degf = n, and g :C2 → CP1, degg = m, fix

some representatives αi(f ), αi(g), 1 � i � r, of the classes α̂(f ), α̂(g) and define the permuta-
tions δ1, δ2, . . . , δr ∈ Snm on the set of mn elements cj1,j2 , 1 � j1 � n, 1 � j2 � m, as follows:

c
δi

j1,j2
= cj ′

1,j
′
2
, where

j ′
1 = j

αi(f )

1 , j ′
2 = j

αi(g)

2 , 1 � i � r.

It is convenient to consider cj1,j2, 1 � j1 � n, 1 � j2 � m, as elements of an n × m matrix M .
Then the action of the permutation δi, 1 � i � r, reduces to the permutation of rows of M in
accordance with the permutation αi(f ) and the permutation of columns of M in accordance with
the permutation αi(g).

In general the permutation group Γ (f,g) generated by δi, 1 � i � r, is not transitive on the
set cj1,j2, 1 � j1 � n, 1 � j2 � m. Denote by o(f,g) the number of transitivity sets of Γ (f,g)

and let δi(j), 1 � j � o(f,g), 1 � i � r, be the permutation induced by the permutation δi,

1 � i � r, on the transitivity set Uj , 1 � j � o(f,g). By construction, for any j, 1 � j � o(f,g),

the permutation group Gj generated by δi(j), 1 � i � r, is transitive and the equality

δ1(j)δ2(j) · · · δr (j) = 1

holds. Therefore, there exist holomorphic functions hj :Rj → CP1, 1 � j � o(f,g), such that
the collection δi(j), 1 � i � r, is a representative of α̂(hj ). Moreover, it follows from the con-
struction that for each j, 1 � j � o(f,g), the intersections of the transitivity set Uj with rows
of M form an imprimitivity system Ωf (j) for Gj such that the permutations of blocks of Ωf (j)

induced by δi(j), 1 � i � r, coincide with αi(f ). Similarly, the intersections of Uj with columns
of M form an imprimitivity system Ωg(j) such that the permutations of blocks of Ωg(j) induced
by δi(j), 1 � i � r, coincide with αi(g). This implies that there exist holomorphic functions
uj :Rj → C1 and vj :Rj → C2 such that

hj = f ◦ uj = g ◦ vj . (16)

Theorem 2.2. Let f :C1 → CP1, g :C2 → CP1 be holomorphic functions. Suppose that
h :R → CP1, p :R → C1, q :R → C2 are holomorphic function such that

h = f ◦ p = g ◦ q. (17)

Then there exist j, 1 � j � o(f,g), and holomorphic functions w :R → Rj , p̃ :Rj → C1,

q̃ :Rj → C2 such that

h = hj ◦ w, p = p̃ ◦ w, q = q̃ ◦ w (18)

and

f ◦ p̃ ∼ f ◦ uj , g ◦ q̃ ∼ g ◦ vj .

Proof. It follows from Proposition 2.1 that in order to prove the theorem it is enough to show that
for any choice of points a ∈ f −1{z0} and b ∈ g−1{z0} the class of permutations α̂(h) correspond-
ing to the function h from Proposition 2.1 coincides with α̂(hj ) for some j, 1 � j � o(f,g). On



F. Pakovich / Bull. Sci. math. 133 (2009) 693–732 703
the other hand, the last statement is equivalent to the statement that for any choice a ∈ f −1{z0}
and b ∈ g−1{z0} there exist j, 1 � j � o(f,g), and an element c of the transitivity set Uj such
that the group Γf,a ∩ Γg,b is the preimage of the stabilizer Gj,c of c in the group Gj under the
homomorphism

ϕhj
:π1

(
CP1 \ S, z0

) → Gj

(see Section 2.1).
For fixed a ∈ f −1{z0}, b ∈ g−1{z0} let l be the index which corresponds to the point a under

the identification of the set f −1{z0} with the set {1,2, . . . , n}, k be the index which corresponds
to the point b under the identification of the set g−1{z0} with the set {1,2, . . . ,m}, and Uj be the
transitivity set of Γ (f,g) containing the element cl,k. We have

Γf,a = ϕ−1
f {Gf,l}, Γg,b = ϕ−1

g {Gg,k}. (19)

Furthermore, if ψ1 :Gf → Gj (resp. ψ2 :Gg → Gj ) is a homomorphism which sends αi(f )

(resp. αi(g)) to αi(hj ), 1 � i � r, then

Gf,l = ψ−1
1 {Al}, Gg,k = ψ−1

2 {Bk}, (20)

where Al (resp. Bk) is the subgroup of Gj which transforms the set of elements cj1,j2 ∈ Uj for
which j1 = a (resp. j2 = b) to itself.

Since

ψ1 ◦ ϕf = ψ2 ◦ ϕg = ϕhj
,

it follows from (19), (20) that

Γf,a ∩ Γg,b = (ψ1 ◦ ϕf )−1{Al} ∩ (ψ2 ◦ ϕg)
−1{Bk}

= ϕ−1
hj

{Al} ∩ ϕ−1
hj

{Bk} = ϕ−1
hj

{Al ∩ Bk} = ϕ−1
hj

{Gj,ck,l
}. �

For i, 1 � i � r, denote by

λi = (fi,1, fi,2, . . . , fi,ui
)

the collection of lengths of disjoint cycles in the permutation αi(f ), by

μi = (gi,1, gi,2, . . . , gi,vi
)

the collection of lengths of disjoint cycles in the permutation αi(g), and by g(Rj ),
1 � j � o(f,g), the genus of the surface Rj . The proposition below generalizes the corre-
sponding result of Fried (see [11, Proposition 2]) concerning the case where f,g are rational
functions.

Proposition 2.3. In the above notation the formula

o(f,g)∑
j=1

(
2 − 2g(Rj )

) =
r∑

i=1

ui∑
j1=1

vi∑
j2=1

GCD(fi,j1gi,j2) − (r − 2)nm (21)

holds.
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Proof. Denote by ei(j), 1 � i � r, 1 � j � o(f,g), the number of disjoint cycles in the permu-
tation δi(j). Since for any j, 1 � j � o(f,g), the Riemann–Hurwitz formula implies that

2 − 2g(Rj ) =
r∑

i=1

ei(j) − (r − 2)|Uj |

we have
o(f,g)∑
j=1

(
2 − 2g(Rj )

) =
o(f,g)∑
j=1

r∑
i=1

ei(j) − (r − 2)mn.

On the other hand, it follows from the construction that for given i, 1 � i � r,

o(f,g)∑
j=1

ei(j) =
ui∑

j1=1

vi∑
j2=1

GCD(fi,j1gi,j2)

and hence
o(f,g)∑
j=1

r∑
i=1

ei(j) =
r∑

i=1

ui∑
j1=1

vi∑
j2=1

GCD(fi,j1gi,j2). �

The proposition below shows that if f,g are rational functions then the Riemann surfaces Rj ,

1 � j � o(f,g), may be identified with irreducible components of the affine algebraic curve

hf,g(x, y): P1(x)Q2(y) − P2(x)Q1(y) = 0,

where P1, P2 and Q1,Q2 are pairs polynomials without common roots such that

f = P1/P2, g = Q1/Q2.

Proposition 2.4. For rational functions f,g the corresponding Riemann surfaces Rj ,

1 � j � o(f,g), are in a one-to-one correspondence with irreducible components of the curve
hf,g(x, y). Furthermore, each Rj is a desingularization of the corresponding component. In
particular, the curve hf,g(x, y) is irreducible if and only if the group Γ (f,g) is transitive.

Proof. For j, 1 � j � o(f,g), denote by Sj the union of poles of uj and vj and define the
mapping tj :Rj \ Sj → C2 by the formula

z → (uj , vj ).

It follows from formula (16) that for each j, 1 � j � o(f,g), the mapping tj maps Rj to an
irreducible component of the curve hf,g(x, y). Furthermore, for any point (a, b) on hf,g(x, y),
such that z0 = f (a) = g(b) is not contained in S, there exist uniquely defined j, 1 � j � o(f,g),

and c ∈ h−1
j {z0} satisfying

uj (c) = a, vj (c) = b.

This implies that the Riemann surfaces Rj , 1 � j � o(f,g), are in a one-to-one correspon-
dence with irreducible components of hf,g(x, y) and that each mapping tj , 1 � j � o(f,g), is
generically injective. Since an injective mapping of Riemann surfaces is an isomorphism onto
an open subset we conclude that each Rj is a desingularization of the corresponding component
of hf,g(x, y). �
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3. Irreducible and reducible pairs

Let f :C1 → CP1, g :C2 → CP1 be a pair of holomorphic functions non-ramified outside
of S and z0 ∈ CP1 \S. By the analogy with the rational case we will call the pair f,g irreducible
if o(f,g) = 1. Otherwise we will call the pair f,g reducible. In this section we study properties
of irreducible and reducible pairs.

Proposition 3.1. A pair of holomorphic functions f :C1 → CP1, g :C2 → CP1 is irreducible
whenever their degrees are coprime.

Proof. Let n = degf, m = degg. Since the index of Γf,a ∩ Γg,b in π1(CP1 \ S, z0) coincides
with the cardinality of the corresponding imprimitivity set Uj , the pair f,g is irreducible if and
only if for any a ∈ f −1{z0}, b ∈ g−1{z0} the equality[

π1
(
CP1 \ S, z0

) : Γf,a ∩ Γg,b

] = nm (22)

holds. Since the index of Γf,a ∩ Γg,b in π1(CP1 \ S, z0) is a multiple of the indices of Γf,a and
Γg,b in π1(CP1 \ S, z0), this index is necessary equal to mn whenever n and m are coprime. �
Theorem 3.2. A pair of holomorphic functions f :C1 → CP1, g :C2 → CP1 is irreducible if
and only if for any a ∈ f −1{z0}, b ∈ g−1{z0} the equality

Γf,aΓg,b = Γg,bΓf,a = π1
(
CP1 \ S, z0

)
(23)

holds.

Proof. Since[
π1

(
CP1 \ S, z0

) : Γf,a ∩ Γg,b

] = [
π1

(
CP1 \ S, z0

) : Γg,b

][Γg,b : Γf,a ∩ Γg,b],
the equality (22) is equivalent to the equality

[Γg,b : Γf,a ∩ Γg,b] = n. (24)

Recall that for any subgroups A,B of finite index in a group G the inequality[〈A,B〉 : A]
� [B : A ∩ B] (25)

holds and the equality attains if and only if the groups A and B are permutable (see e.g. [13,
p. 79]). Therefore,

n = [
π1

(
CP1 \ S, z0

) : Γf,a

]
�

[〈Γf,a,Γg,b〉 : Γf,a

]
� [Γg,b : Γf,a ∩ Γg,b]

and hence equality (24) holds if and only if Γf,a and Γg,b are permutable and generate
π1(CP1 \ S, z0). �
Corollary 3.3. Let f :C1 → CP1, g :C2 → CP1 be an irreducible pair of holomorphic functions.
Then any pair of holomorphic functions f̃ : C̃1 → CP1, g̃ : C̃2 → CP1 such that

f = f̃ ◦ p, g = g̃ ◦ q

for some holomorphic functions p :C1 → C̃1, q :C2 → C̃2 is also irreducible.
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Proof. Since for any ã ∈ f̃ −1{z0}, b̃ ∈ g̃−1{z0} and a ∈ p−1{ã}, b ∈ q−1{b̃} the inclusions

Γf,a ⊆ Γ
f̃ ,ã

, Γg,b ⊆ Γ
g̃,b̃

hold it follows from (23) that

Γ
f̃ ,ã

Γ
g̃,b̃

= Γ
g̃,b̃

Γ
f̃ ,ã

= π1
(
CP1 \ S, z0

)
. �

Set

ΓNg =
⋂

b∈g−1{z0}
Γg,b

and denote by N̂g the corresponding equivalence class of holomorphic functions. Since the sub-
group ΓNg is normal in π1(CP1 \ S, z0), for any a1, a2 ∈ f −1{z0} the subgroups Γf,a1ΓNg and
Γf,a2ΓNg are conjugated. We will denote the equivalence class of holomorphic functions corre-

sponding to this conjugacy class by f N̂g .

Proposition 3.4. For any pair of holomorphic functions f :C1 → CP1, g :C2 → CP1 and a
representative f Ng :C → CP1 of f N̂g the equality

o(f,g) = o(f Ng,g)

holds.

Proof. For any a ∈ f −1{z0}, b ∈ g−1{z0} the action of the permutation group Γ (f,g) can be
identified with the action of π1(CP1 \ S, z0) on pairs of cosets αj1Γf,a, βj2Γg,b, 1 � j1 � n,

1 � j2 � m. Furthermore, two pairs αj1Γf,a, βj2Γg,b and αi1Γf,a, βi2Γg,b are in the same orbit
if and only if the set

αi1Γf,aα
−1
j1

∩ βi2Γg,bβ
−1
j2

(26)

is non-empty.
Associate now to an orbit Γ (f,g) containing the pair αj1Γf,a, βj2Γg,b, 1 � j1 � n,

1 � j2 � m, an orbit of Γ (f Ng,g) containing the pair αj1Γf,aΓNg , βj2Γg,b. If set (26) is non-
empty, then the set

αi1Γf,aΓNgα
−1
j1

∩ βi2Γg,bβ
−1
j2

(27)

is also non-empty and therefore we obtain a well-defined map ϕ from the set of orbits of Γ (f,g)

to the set of orbits of Γ (f Ng,g). Besides, the map ϕ is clearly surjective.
In order to prove the injectivity of ϕ we must show that if set (27) is non-empty, then set (26)

is also non-empty. So suppose that (27) is non-empty and let x be its element. In view of the
normality of ΓNg the equality

αi1Γf,aΓNgα
−1
j1

= αi1Γf,aα
−1
j1

ΓNg

holds and therefore there exist α ∈ Γf,a , β ∈ ΓNg , and γ ∈ Γg,b such that

x = αi1αα−1
j1

β = βi2γβ−1
j2

.

Furthermore, it follows from the definition of ΓNg that there exists γ1 ∈ Γg,b such that

β−1ββj = γ1 implying β = βj γ1β
−1. Set y = xβ−1. Then we have
j2 2 2 j2



F. Pakovich / Bull. Sci. math. 133 (2009) 693–732 707
y = αi1αα−1
j1

= βi2γβ−1
j2

β−1 = βi2γ γ −1
1 β−1

j2
.

This implies that y is contained in set (26) and hence (26) is non-empty. �
The following result is a straightforward generalization of the corresponding result of Fried

about rational functions (see [10, Proposition 2]).

Theorem 3.5. For any reducible pair of holomorphic functions f :C1 → CP1, g :C2 → CP1

there exist holomorphic functions f1 : C̃1 → CP1, g1 : C̃2 → CP1, and p :C1 → C̃1, q :C2 → C̃2
such that

f = f1 ◦ p, g = g1 ◦ q, o(f, g) = o(f1, g1), and N̂f1 = N̂g1 . (28)

Proof. For a holomorphic function p :R → CP1 denote by d(p) a maximal number such that
there exist holomorphic functions of degree greater than 1

p1 :R → R1, pi :Ri−1 → Ri, 2 � i � d(p) − 1, pd(p) :Rd(p)−1 → CP1

satisfying

p = pd(p) ◦ pd(p)−1 ◦ · · · ◦ p1.

We use the induction on the number d = d(f ) + d(g).
If d = 2 that is if both functions f,g are indecomposable, then the equality d(f ) = 1, taking

into account the normality of Ng , implies that either

Γf,aNg = Γf,a (29)

for all a ∈ f −1{z0} or

Γf,aNg = π1
(
CP1 \ S, z0

)
(30)

for all a ∈ f −1{z0}. The last possibility however would imply that for any b ∈ g−1{z0}
Γf,aΓg,b = Γg,bΓf,a = π1

(
CP1 \ S, z0

)
in contradiction with Theorem 3.2. Therefore, equalities (29) hold and hence

Ng ⊆
⋂

a∈f −1{z0}
Γf,a = Nf .

The same arguments show that Nf ⊆ Ng. Therefore, Ng = Nf and we can set f1 = f, g1 = g.

Suppose now that d > 2. If Nf = Ng , then as above we can set f1 = f, g1 = g so assume that
Nf = Ng . Then, again taking into account the normality of Ng , either

Γf,a � Γf,aNg (31)

for all a ∈ f −1{z0} or

Γg,b � Γg,bNf

for all b ∈ g−1{z0}. Suppose say that (31) holds. Since equality (30) is impossible, this implies
that for any a ∈ f −1{z0} there exist h :C → CP1 and c ∈ h−1{z0} such that Γf,aNg = Γh,c.

It follows from (31) that f = h ◦ p for some p :C1 → C with 1 < degh < degf and hence
d(h) < d(f ). Since by Proposition 3.4 the equality o(f,g) = o(h,g) holds the theorem follows
now from the induction assumption. �
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Theorem 3.6. Let f :C1 → CP1, g :C2 → CP1 be an irreducible pair of holomorphic functions
and p :C → C1, q :C → C2 be holomorphic functions such that f ◦p = g ◦q. Suppose that q is
indecomposable. Then f is also indecomposable.

Proof. Set h = f ◦ p = g ◦ q and fix a point c ∈ h−1{z0}. Since

Γh,c ⊆ Γf,a, Γh,c ⊆ Γg,b, (32)

where a = p(c), b = q(c), we have

Γh,c ⊆ Γf,a ∩ Γg,b ⊆ Γg,b. (33)

Furthermore, by Theorem 3.2

Γf,aΓg,b = π1
(
CP1 \ S, z0

)
. (34)

Since (34) implies that Γf,a ∩ Γg,b = Γg,b it follows from (33) taking into account the indecom-
posability of q that

Γh,c = Γf,a ∩ Γg,b. (35)

In order to prove the theorem we must show that if Γ ⊆ π1(CP1 \ S, z0) is a subgroup such
that

Γf,a � Γ (36)

then Γ = π1(CP1 \ S, z0). Clearly, (34) implies that

Γ Γg,b = π1
(
CP1 \ S, z0

)
. (37)

Consider the intersection

Γ1 = Γ ∩ Γg,b.

It follows from (25) and (34), (37) that[
π1

(
CP1 \ S, z0

) : Γf,a

] = [Γg,b : Γh,c],
[
π1

(
CP1 \ S, z0

) : Γ ] = [Γg,b : Γ1].
Therefore, (36) implies that

[Γg,b : Γ1] < [Γg,b : Γh,c]
and hence Γh,c � Γ1. Since Γ1 ⊆ Γg,b it follows now from the indecomposability of q that
Γ1 = Γg,b. Therefore, Γg,b ⊆ Γ. Since also Γf,a ⊆ Γ it follows now from (34) that Γ =
π1(CP1 \ S, z0). �
4. Double decompositions involving generalized polynomials

Say that a holomorphic function h :C → CP1 is a generalized polynomial if h−1{∞} consists
of a unique point. In this section we mention some specific properties of double decompositions
f ◦ p = g ◦ q in the case when f,g are generalized polynomials.

We start from mentioning two corollaries of Theorem 3.5 for such double decompositions.

Corollary 4.1. If in Theorem 3.5 the functions f,g are generalized polynomials then degf1 =
degg1.
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Proof. The equality f = f1 ◦ p for a generalized polynomial f implies that f1 is also a gener-
alized polynomial. Furthermore, since ΓNf1

= ⋂
a∈f −1

1 {z0} Γf1,a the monodromy group of ΓNf1

may be obtained by the repeated use of the construction given in Section 2.2. On the other hand,
it is easy to see that if f1 is a generalized polynomial then on each stage of this process the
permutation corresponding to the loop around infinity consists of cycles of length equal to the
degree of f1 only. Therefore, the same is true for ΓNf1

and hence the equality N̂f1 = N̂g1 implies
that degf1 = degg1. �

The following important specification of Theorem 3.5 goes back to Fried (see [10, Proposi-
tion 2]).

Corollary 4.2. Let A,B be polynomials such that curve (2) is reducible. Then there exist poly-
nomials A1,B1,C,D such that

A = A1 ◦ C, B = B1 ◦ D, N̂A1 = N̂B1, (38)

and each irreducible component F(x, y) of curve (2) has the form F1(C(x),D(y)), where
F1(x, y) is an irreducible component of the curve

A1(x) − B1(y) = 0. (39)

Proof. Indeed, it follows from Theorem 3.5 and Proposition 2.4 that there exist polynomials
A1,B1,C,D such that equalities (38) hold and curves (2) and (39) have the same number of
irreducible components. Since for each irreducible component F1(x, y) of curve (39) the poly-
nomial F1(C(x),D(y)) is a component of curve (2), this implies that any irreducible component
F(x, y) of curve (2) has the form F1(C(x),D(y)) for some irreducible component F1(x, y) of
curve (39). �

For a holomorphic function h :C → CP1 and z ∈ C denote by multz h the multiplicity of h

at z.

Theorem 4.3. Let f :C1 → CP1, g :C2 → CP1 be generalized polynomials, degf = n,

degg = m, l = LCM(n,m), and h :R → CP1, p :R → C1, q :R → C2 be holomorphic func-
tions such that

h = f ◦ p = g ◦ q. (40)

Then there exist holomorphic functions w :R → C, p̃ :C → C1, q̃ :C → C2 such that

p = p̃ ◦ w, q = q̃ ◦ w, (41)

and for any z ∈ h−1{∞}
multz p̃ = l/n, multz q̃ = l/m.

Proof. In view of Theorem 2.2 it is enough to prove that if uj , vj , 1 � j � o(f,g), are functions
defined in Section 2.2 then for any z ∈ h−1{∞} and j, 1 � j � o(f,g), the equalities

multz uj = l/n, multz vj = l/m (42)

hold.
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Since f,g are generalized polynomials it follows from the construction given in Section 2.2
that for any function hj = f ◦ uj = g ◦ vj , 1 � j � o(f,g), the permutation of its monodromy
group corresponding to the loop around infinity consists of cycles of length equal to l only. On the
other hand, the length of such a cycle coincides with the multiplicity of the corresponding point
from h−1

j {∞}. Now equalities (42) follow from the fact that for any z ∈ Rj , 1 � j � o(f,g),

multz hj = multuj (z) f multz uj = multvj (z) g multz vj . �
Corollary 4.4. Let A, B be polynomials of the same degree n and C, D be rational functions
such that

A ◦ C = B ◦ D.

Then there exist a rational function W , mutually distinct points of the complex sphere γi,

1 � i � r, and complex numbers αi,βi, 0 � i � r, such that

C =
(

α0 + α1

z − γ1
+ · · · + αr

z − γr

)
◦ W, D =

(
β0 + β1

z − γ1
+ · · · + βr

z − γr

)
◦ W.

Furthermore, if α is the leading coefficient of A and β is the leading coefficient of B then ααn
i =

ββn
i , 1 � i � r.

Proof. Since degA = degB it follows from Theorem 4.3 that there exist rational functions
A,B,W such that C = C̃ ◦ W, D = D̃ ◦ W , and all the poles of C̃ and D̃ are simple (the
functions C̃ and D̃ obviously have the same set of poles coinciding with the set of poles of the
function A ◦ C̃ = B ◦ D̃). Denoting these poles by γi, 1 � i � r, we conclude that

C̃ = α0 + α1

z − γ1
+ · · · + αr

z − γr

, D̃ = β0 + β1

z − γ1
+ · · · + βr

z − γr

for some αi,βi ∈ C, 0 � i � r (in case if γi = ∞ for some i, 1 � i � r, the corresponding terms
should be changed to αiz, βiz).

Furthermore, if α (resp. β) is the leading coefficient of A (resp. B) then the leading coefficient
of the Laurent expansion of the function A ◦ C̃ (resp. B ◦ D̃) near γi, 1 � i � r, equals ααn

i

(resp. ββn
i ). Since A ◦ C̃ = B ◦ D̃ this implies that for any i, 1 � i � r, the equality ααn

i = ββn
i

holds. �
Notice that replacing the rational function W in Corollary 4.4 by the function μ ◦ W, where

μ is an appropriate automorphism of the sphere, we may assume that γ1, γ2, γ3 are any desired
points of the sphere.

Finally, let us mention the following corollary of Theorem 4.3 which generalizes the corre-
sponding property of polynomial decompositions.

Corollary 4.5. Suppose that under assumptions of Theorem 4.3 the function h is a generalized
polynomial and degf = degg. Then f ◦ p ∼ g ◦ q.

Proof. Set x = f −1{∞}. The conditions of the corollary and Theorem 4.3 imply that p̃−1{x}
contains a unique point and the multiplicity of this point with respect to p̃ is one. Therefore p̃ is
an automorphism. The same is true for q̃. �
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5. Ritt classes of rational functions

As it was mentioned above the first Ritt theorem fails to be true for arbitrary rational functions
and it is quite interesting to describe the classes of rational functions for which this theorem
remains true. In this section we propose an approach to this problem. This approach is especially
useful when a sufficiently complete information about double decompositions of the functions
from the corresponding class is available. In particular, our method permits to generalize the first
Ritt theorem to Laurent polynomials using the classification of their double decompositions.

It is natural to assume that considered classes of rational functions possess some property of
closeness which is formalized in the following definition. Say that a set of rational functions R is
a closed class if for any F ∈ R the equality F = G◦H implies that G ∈ R, H ∈ R. For example,
rational functions for which

min
z∈CP1

∣∣F−1{z}∣∣ � k,

where k � 1 is a fixed number and |F−1{z}| denotes the cardinality of the set F−1{z}, form a
closed class. We will denote this class by Rk.

Say that two maximal decompositions D,E of a rational function F are weakly equivalent if
there exists a chain of maximal decompositions Fi , 1 � i � s, of F such that F1 = D, Fs ∼ E,

and Fi+1 is obtained from Fi , 1 � i � s − 1, by replacing two successive functions A ◦ B in Fi

by new functions C ◦D such that A◦C = B ◦D. It is easy to see that this is indeed an equivalence
relation. We will denote this equivalence relation by the symbol ∼w . Say that a closed class of
rational functions R is a Ritt class if for any F ∈ R any two maximal decompositions of F are
weakly equivalent. Finally, say that a double decomposition

H = A ◦ C = B ◦ D (43)

of a rational function H is special if C, D are indecomposable, the pair A,B is reducible, and
there exist no rational functions Ã, B̃, U , degU > 1, such that

A = U ◦ Ã, B = U ◦ B̃, Ã ◦ C = B̃ ◦ D. (44)

For decompositions

A: A = Ar ◦ Ar−1 ◦ · · · ◦ A1, B: B = Bs ◦ Bs−1 ◦ · · · ◦ B1

of rational functions A and B denote by A ◦ B the decomposition

Ar ◦ Ar−1 ◦ · · · ◦ A1 ◦ Bs ◦ Bs−1 ◦ · · · ◦ B1

of the rational function A ◦ B. In case if a rational function R is indecomposable we will denote
the corresponding maximal decomposition by the same letter.

Theorem 5.1. Let R be a closed class of rational functions. Suppose that for any P ∈ R and any
special double decomposition

P = V ◦ V1 = W ◦ W1

of P the following condition holds: for any maximal decomposition V of V and any maximal de-
composition W of W the maximal decompositions V◦V1 and W◦W1 of P are weakly equivalent.
Then R is a Ritt class.
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Proof. For a function H ∈ R denote by d(H) the maximal possible length of a maximal decom-
position of H. We use the induction on d(H).

If d(H) = 1, then any two maximal decompositions of H are weakly equivalent. So, assume
that d(H) > 1 and let

H1: H = Fr ◦ Fr−1 ◦ · · · ◦ F1, H2: H = Gs ◦ Gs−1 ◦ · · · ◦ G1

be two maximal decompositions of a function H ∈ R. Set

F = Fr ◦ Fr−1 ◦ · · · ◦ F2, G = Gs ◦ Gs−1 ◦ · · · ◦ G2 (45)

and consider the double decomposition

H = F ◦ F1 = G ◦ G1. (46)

If the pair F,G is irreducible, then Theorem 3.6 implies that H1 ∼w H2 and therefore we must
consider only the case when the pair F,G is reducible.

If (46) is special then H1 ∼w H2 in view of the assumption of the theorem. Thus, assume
that (46) is not special and let F̃ , G̃, U, degU > 1, be rational functions such that

F = U ◦ F̃ , G = U ◦ G̃, F̃ ◦ F1 = G̃ ◦ G1.

Denote by Ĥ1, Ĥ2 the maximal decompositions (45) of the functions F and G and pick some
maximal decompositions

F̃: F̃ = F̃n ◦ F̃n−1 ◦ · · · ◦ F̃1, G̃: G̃ = G̃m ◦ G̃m̃−1 ◦ · · · ◦ G̃1,

U: U = Ul ◦ Ul−1 ◦ · · · ◦ U1

of the functions F̃ , G̃, U .
Since R is closed, F,G ∈ R. Furthermore, d(F ), d(G) < d(H). Therefore, the induction

assumption implies that

Ĥ1 ∼w U ◦ F̃, Ĥ2 ∼w U ◦ G̃

and hence

H1 ∼w U ◦ F̃ ◦ F1, H2 ∼w U ◦ G̃ ◦ G1. (47)

Similarly, the function H̃ = F̃ ◦ F1 = G̃ ◦ G1 is contained in R and d(H̃ ) < d(H). Hence,

F̃ ◦ F1 ∼w G̃ ◦ G1. (48)

Now (47) and (48) imply that H1 ∼w H2. �
As an illustration of our approach let us prove the first Ritt theorem.

Corollary 5.2. The class R1 is a Ritt class.

Proof. In view of Theorem 5.1 it is enough to prove that a polynomial H has no special double
decompositions (43). Thus, assume that the pair A, B in (43) is reducible. By Corollary 4.1 there
exist polynomials A1, B1, U, V such that

A = A1 ◦ W, B = B1 ◦ V, degA1 = degB1 > 1.



F. Pakovich / Bull. Sci. math. 133 (2009) 693–732 713
Furthermore, Corollary 4.5 implies that

A1 ◦ (W ◦ C) ∼ B1 ◦ (V ◦ D).

Therefore, equalities (44) hold for

U = A1, Ã = W, B̃ = μ ◦ V,

and an appropriate μ ∈ Aut(CP1), and hence (43) is not special. �
6. Solutions of Eqs. (9) and (10)

In this section we solve Eqs. (9) and (10).

Lemma 6.1. Let L1, L2 be Laurent polynomials such that the equality

L1 ◦ zd1 = L2 ◦ zd2 (49)

holds for some d1, d2 � 1. Then there exists a Laurent polynomial R such that

L1 = R ◦ zD/d1, L2 = R ◦ zD/d2, (50)

where D = LCM(d1, d2).

Proof. For any subgroup G of Aut(CP1) the set kG, consisting of rational functions f such that
f ◦ σ = f for all σ ∈ G, is a subfield kG of C(z). Therefore, by the Lüroth theorem kG has the
form kG = C(ϕG(z)) for some rational function ϕG.

Denote by F the Laurent polynomial defined by equality (49). It follows from (49) that F is
invariant with respect to the automorphisms α1 : z → exp(2πi/d1)z, α2 : z → exp(2πi/d2)z.

Therefore, F is invariant with respect to the automorphism group G generated by α1, α2. Clearly,
ϕG = zD and hence F = R◦zD for some Laurent polynomial R. Now equalities (50) follow from
equalities

R ◦ zD = (
R ◦ zD/d1

) ◦ zd1 = L1 ◦ zd1 , R ◦ zD = (
R ◦ zD/d2

) ◦ zd2 = L2 ◦ zd2 . �
Notice that Lemma 6.1 implies that if A,B,L1,L2 is a solution of Eq. (10), then condition 1)

of Theorem 1.1 holds.
Set

Dn = 1

2

(
zn + 1

zn

)
.

Notice that for any m|n
Dn = Tn/m ◦ Dm = Dn/m ◦ zm.

Lemma 6.2. Let F be a rational function such that

F(z) = F(1/z) = F(εz),

where ε is a root of unity of order n � 1. Then there exists a rational function R such that
F = R ◦ Dn.
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Proof. Let G1 be a subgroup of Aut(CP1) generated by the automorphism α1 : z → νz, where
ν = exp(2πi/n), G2 be a subgroup of Aut(CP1) generated by the automorphism α2 : z → 1

z
,

and G3 be a subgroup of Aut(CP1) generated by α1 and α2. It is easy to see that generators of
the corresponding invariant fields are ϕG1 = zn, ϕG2 = D1, and ϕG3 = Dn. Since F is invariant
with respect to G1 and G2 it is invariant with respect to G3 and therefore F = R ◦ Dn for some
rational function R. �
Lemma 6.3. Let A,B be polynomials of the same degree and L1, L2 be Laurent polynomials
such that

A ◦ L1 = B ◦ L2 (51)

and A ◦ L1 � B ◦ L2. Then there exist polynomials w1,w2 of degree one, a root of unity ν, and
a ∈ C such that

w1 ◦ L1 ◦ (az) = Dr, w2 ◦ L2 ◦ (az) = Dr ◦ (νz). (52)

Furthermore, if a polynomial A and a Laurent polynomial L satisfy the equation

Dr = A ◦ L (53)

for some r � 1, then there exist a polynomial w of degree one, a root of unity ν, and n � 1 such
that

w ◦ L = Dn ◦ (νz). (54)

Proof. Indeed, it follows from Corollary 4.4 that there exist a rational function W and α0, α1, α2,

β0, γ ∈ C such that

L1 =
(

α0 + α1z + α2

z

)
◦ W, L2 =

(
β0 + α1ν1γ z + α2ν2γ

z

)
◦ W,

for some mth roots of unity ν1, ν2, where m = degA = degB . Furthermore, it follows from
A ◦ L1 � B ◦ L2 that α1α2 = 0. Since the function defined by equality (51) has two poles, this
implies that W = czr , c ∈ C, and without loss of generality we may assume that c = 1. The first
part of the lemma follows now from the equalities

α0 + α1z
r + α2

zr
=

(
α0 + 2α1z

ar

)
◦ 1

2

(
zr + 1

zr

)
◦ (az),

β0 + α1ν1γ zr + α2ν2γ

zr
=

(
β0 + 2α1ν1γ z

arνr

)
◦ 1

2

(
zr + 1

zr

)
◦ (νaz),

where a and ν are numbers satisfying a2r = α1/α2 and ν2r = ν1/ν2.

Suppose now that equality (53) holds. Set n = degL1 and consider the equality

Dr = Tr/n ◦ Dn = A ◦ L. (55)

If the decompositions appeared in (55) are not equivalent, then arguing as above and taking into
account that in this case a = 1, we conclude that (54) holds for some root of unity ν. On the other
hand, if the decompositions in (55) are equivalent then (54) holds for ν = 1. �

The theorem below provides a description of solutions of Eq. (9) and implies that if
A,L1,L2, z

d is a solution of (9) then either condition 1) or condition 4) of Theorem 1.1 holds.
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Theorem 6.4. Suppose that polynomials A,D and Laurent polynomials L1, L2 (which are not
polynomials) satisfy the equation

A ◦ L1 = L2 ◦ D. (56)

Then there exist polynomials R, Ã, D̃, W and Laurent polynomials L̃1, L̃2 such that

A = R ◦ Ã, L2 = R ◦ L̃2, L1 = L̃1 ◦ W, D = D̃ ◦ W,

Ã ◦ L̃1 = L̃2 ◦ D̃ (57)

and either

Ã ◦ L̃1 ∼ zn ◦ zrL
(
zn

)
, L̃2 ◦ D̃ ∼ zrLn(z) ◦ zn, (58)

where L is a Laurent polynomial, r � 0, n � 1, and GCD(r, n) = 1, or

Ã ◦ L̃1 ∼ Tn ◦ Dm, L̃2 ◦ D̃ ∼ Dm ◦ zn, (59)

where Tn is the nth Chebyshev polynomial, n � 1, m � 1, and GCD(m,n) = 1.

Proof. Without loss of generality we may assume that C(L1,D) = C(z). Since the function
defined by equality (56) has two poles, D = czn, where c ∈ C, and we may assume that c = 1.

Therefore,

A ◦ L1 = L2 ◦ D = L2 ◦ D ◦ εz = A ◦ L1 ◦ εz,

where ε = exp(2πi/n).

If the decompositions A ◦ L1 and A ◦ (L1 ◦ εz) are equivalent then we have

L1 ◦ εz = ν ◦ L1, (60)

where ν ∈ Aut(CP1). Furthermore, since ν transforms infinity to infinity, ν is a linear function
and equality (60) implies that ν◦n = z. Therefore, ν = α + ωz for some nth root of unity ω and
α ∈ C. Now the comparison of the coefficients of both parts of equality (60) implies that L1 has
the form

L1 = β + zrL
(
zn

)
, 0 � r < n,

where L is a Laurent polynomial and β ∈ C. Clearly, without loss of generality we may assume
that β = 0 and this implies that also α = 0.

It follows from

A ◦ L1 = A ◦ L1 ◦ εz = A ◦ ωz ◦ L1

that A ◦ ωz = A. Since ω = εr and GCD(r, n) = 1 in view of the assumption C(L1,D) = C(z),
this implies that A = R ◦ zn for some polynomial R. It follows now from the equality

L2 ◦ zn = A ◦ L1 = R ◦ zn ◦ zrL
(
zn

) = R ◦ zrLn(z) ◦ zn

that L2 = R ◦ zrLn(z). Therefore, if the decompositions A ◦L1 and A ◦ (L1 ◦ εz) are equivalent,
then equalities (57), (58) hold.

Suppose now that the decompositions A ◦ L1 and A ◦ (L1 ◦ εz) are not equivalent. Since
for any a ∈ C we have zn ◦ (az) = (anz) ◦ zn, it follows from Lemma 6.3 that without loss of
generality we may assume that D is still equal zn while

L1 = Dm = D1 ◦ zm. (61)
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Moreover, GCD(m,n) = 1 in view of the assumption C(L1,D) = C(z). It follows now from (56)
and (61) and Lemmas 6.1 and 6.2 that the Laurent polynomial L defined by equality (56) has the
form L = R ◦ Dnm, where R is a polynomial. Therefore,

A ◦ Dm = R ◦ Dnm = R ◦ Tn ◦ Dm

and hence A = R ◦ Tn. Similarly,

L2 ◦ zn = R ◦ Dnm = R ◦ Dm ◦ zn

and hence L2 = R ◦ Dm. �
7. Reduction of Eq. (8) for reducible pairs A, B

In this section we show that the description of solutions of Eq. (8) for reducible pairs A,B

reduces either to the irreducible case or to the description of double decompositions of the func-
tion Dn.

Lemma 7.1. Suppose that polynomials A,B satisfy the equation

A ◦ Dn ◦ (μz) = B ◦ Dm, (62)

where gcd(n,m) = 1 and μ is a root of unity. Then there exist a polynomial R and l � 1 such
that μ2nml = 1 and

A = R ◦ μnmlTlm, B = R ◦ Tln.

Proof. Let F be a Laurent polynomial defined by equality (62). It follows from F = B ◦ Dm

that F ◦ (1/z) = F. On the other hand,

F ◦ (1/z) = A ◦ Dn ◦ (μ/z) = A ◦ 1

2

((
μ

z

)n

+
(

z

μ

)n)

= A ◦ Dn ◦ (z/μ) = A ◦ Dn ◦ (μz) ◦ (
z/μ2) = F ◦ (

z/μ2).
Therefore, F = F̃ ◦ zd for some rational function F̃ and d equal to the order of 1/μ2. Since also

Dn ◦ (μz) = 1

2

(
μnz + 1

μnz

)
◦ zn, Dm = D1 ◦ zm,

Lemmas 6.1 and 6.2 imply that F = R ◦ Dnml, where R is a rational function and l =
lcm(d,nm)/nm.

It follows now from

B ◦ Dm = R ◦ Dnml = R ◦ Tln ◦ Dm

that B = R ◦ Tln. On the other hand, taking into account that μnml = ±1, we have

A ◦ Dn = F ◦ (z/μ) = R ◦ Dnml ◦ (z/μ) = R ◦ μnmlDnml = R ◦ μnmlTlm ◦ Dn

and therefore A = R ◦ (μnmlTlm). �
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Theorem 7.2. Suppose that polynomials A,B and Laurent polynomials L1, L2 satisfy the equa-
tion

A ◦ L1 = B ◦ L2 (63)

and the pair A,B is reducible. Then there exist polynomials R, Ã, B̃, W and Laurent polyno-
mials L̃1, L̃2 such that

A = R ◦ Ã, B = R ◦ B̃, L1 = L̃1 ◦ W, L2 = L̃2 ◦ W,

Ã ◦ L̃1 = B̃ ◦ L̃2 (64)

and either the pair Ã, B̃ is irreducible or

Ã ◦ L̃1 ∼ −Tnl ◦ 1

2

(
εzm + 1

εzm

)
, B̃ ◦ L̃2 ∼ Tml ◦ 1

2

(
zn + 1

zn

)
, (65)

where Tnl, Tml are the corresponding Chebyshev polynomials with n,m � 1, l > 2, εnl = −1,

and GCD(n,m) = 1.

Proof. Without loss of generality we may assume that C(L1,L2) = C(z) and that there exist no
rational functions R, Ã, B̃ with degR > 1 such that the equalities

A = R ◦ Ã, B = R ◦ B̃, Ã ◦ L1 = B̃ ◦ L2 (66)

hold. If the pair A,B is irreducible, then the statement of the theorem is true, so assume that it is
reducible.

By Theorem 3.5 and Corollary 4.1 there exist polynomials A1, B1, U, V such that

A = A1 ◦ U, B = B1 ◦ V, degA1 = degB1 > 1. (67)

Furthermore,

A1 ◦ (U ◦ L1) � B1 ◦ (V ◦ L2) (68)

since otherwise (66) holds for

R = A1, Ã = U, B̃ = μ ◦ V,

where μ is an appropriate automorphism of the sphere. Therefore, by the first part of Lemma 6.3,
we may assume without loss of generality that

U ◦ L1 = Dr ◦ (νz), V ◦ L2 = Dr, (69)

where ν is a root of unity. Applying now the second part of Lemma 6.3 to equalities (69) we see
that without loss of generality we may assume that

L1 = Dm ◦ (μz), L2 = Dn, (70)

where μ is a root of unity. Moreover, GCD(n,m) = 1 in view of the condition C(L1,L2) = C(z).
In particular, we may assume that n is odd.

It follows from (70) by Lemma 7.1 taking into account the assumption about solutions of (66)
that there exists a polynomial R of degree one such that

A = R ◦ (
εnlTnl

)
, L1 = 1

(
εzm + 1

m

)
, B = R ◦ Tml, L2 = Dn,
2 εz
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where ε = μm and l � 1. Furthermore, since the pair A,B is reducible it follows from Proposi-
tion 3.1 that l > 1. Clearly, ε2nl = 1. Notice finally that we may assume that εnl = −1. Indeed, if
εnl = 1 and nl is odd, then, taking into account that Tnl ◦ (−z) = −Tnl, we may just change ε to
−ε. On the other hand, if nl is even, then εnl = 1 contradicts to the assumption about solutions
of (66). Indeed, since by the assumption n is odd, if nl is even then l is also even and εnl = 1
implies that μmn(l/2) = ±1. Hence,

Tnl = T2 ◦ (
μmn(l/2)Tn(l/2)

)
and

A = (R ◦ T2) ◦ (
μmn(l/2)Tn(l/2)

)
, B = (R ◦ T2) ◦ Tm(l/2),

where(
μmn(l/2)Tn(l/2)

) ◦ Dm ◦ (μz) = (
μmn(l/2)Dmn(l/2)

) ◦ (μz) = Dmn(l/2) = Tm(l/2) ◦ Dn.

In order to finish the proof we only must show that the algebraic curve

Tln(x) + Tlm(y) = 0, (71)

where GCD(n,m) = 1, is reducible if and only if l > 2. First observe that if l is divisible by an
odd number f then (71) is reducible since

Tln(x) + Tlm(y) = Tf ◦ Tn(l/f ) − Tf ◦ (−Tm(l/f )).

Similarly, if l is divisible by 4 then (71) is also reducible since the curve T4(x) + T4(y) = 0 is
reducible.

On the other hand, if l = 2 then (71) is irreducible. Indeed, otherwise Corollaries 4.2, 4.1
imply that

T2n = A1 ◦ C, −T2m = B1 ◦ D, (72)

for some polynomials A1,B1, C, D such that degA1 = degB1 = 2 and the curve

A1(x) − B1(y) = 0 (73)

is reducible. Since T2k = T2 ◦ Tk it follows from Corollary 4.5 that if equalities (72) hold then
A1 = T2 ◦ μ1, B1 = −T2 ◦ μ2 for some automorphisms of the sphere. However, it is easy to see
that in this case curve (73) is not reducible. Therefore, the condition that equality (72) holds and
the condition that curve (73) is reducible may not be satisfied simultaneously and hence (71) is
irreducible. �
8. Solutions of Eq. (8) for irreducible pairs A, B

In this section we describe solutions of Eq. (8) in the case when the pair A,B is irreducible.
We start from a general description of the approach to the problem.

First of all, if A,B is an irreducible pair of polynomials, then rational functions C,D satisfy-
ing Eq. (1) exist if and only if the genus of curve (2) equals zero. Furthermore, it follows from
Theorem 2.2 that if C̃, D̃ is a rational solution of (1) such that deg C̃ = degB, deg D̃ = degA,
then for any other rational solution C,D of (1) there exist rational functions C1, D1, W such
that

C = C1 ◦ W, D = D1 ◦ W, A ◦ C1 ∼ A ◦ C̃, B ◦ D1 ∼ B ◦ D̃.
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Finally, if C,D are Laurent polynomials, then the function h1 from Theorem 2.2 should have two
poles. On the other hand, it follows from the description of the monodromy of h1, taking into
account that A,B are polynomials, that the number of poles of h1 equals GCD(degA,degB).

The remarks above imply that in order to describe solutions of Eq. (8) for irreducible pairs
of polynomials A,B we must describe all irreducible pairs of polynomials A,B such that
GCD(degA,degB) � 2 and the expression for the genus of (2) provided by formula (21) gives
zero. Besides, for each of such pairs we must find a pair of Laurent polynomials L̃1, L̃2 satisfy-
ing (8) and such that deg L̃1 = degB, deg L̃2 = degA.

The final result is the following statement which supplements (over the field C) Theorem 6.1
of the paper of Bilu and Tichy [3].

Theorem 8.1. Suppose that polynomials A,B and Laurent polynomials L1, L2 satisfy the equa-
tion

A ◦ L1 = B ◦ L2

and the pair A,B is irreducible. Then there exist polynomials Ã, B̃ , μ, degμ = 1, and rational
functions L̃1, L̃2, W such that

A = μ ◦ Ã, B = μ ◦ B̃, L1 = L̃1 ◦ W, L2 = L̃2 ◦ W, Ã ◦ L̃1 = B̃ ◦ L̃2

and, up to a possible replacement of A to B and L1 to L2, one of the following conditions holds:

1) Ã ◦ L̃1 ∼ zn ◦ zrR
(
zn

)
, B̃ ◦ L̃2 ∼ zrRn(z) ◦ zn,

where R is a polynomial, r � 0, n � 1, and GCD(n, r) = 1;

2) Ã ◦ L̃1 ∼ Tn ◦ Tm, B̃ ◦ L̃2 ∼ Tm ◦ Tn,

where Tn,Tm are the corresponding Chebyshev polynomials with m,n � 1, and GCD(n,m) = 1;

3) Ã ◦ L̃1 ∼ −T2n1 ◦ 1

2

(
εzm1 + 1

εzm1

)
, B̃ ◦ L̃2 ∼ T2m1 ◦ 1

2

(
zn1 + 1

zn1

)
,

where T2n1 , T2m1 are the corresponding Chebyshev polynomials with m1, n1 � 1, ε2n1 = −1,

and GCD(n1,m1) = 1;

4) Ã ◦ L̃1 ∼ z2 ◦ z2 − 1

z2 + 1
S

(
2z

z2 + 1

)
, B̃ ◦ L̃2 ∼ (

1 − z2)S2(z) ◦ 2z

z2 + 1
,

where S is a polynomial;

5) Ã ◦ L̃1 ∼ (
z2 − 1

)3 ◦ 3(3z4 + 4z3 − 6z2 + 4z − 1)

(3z2 − 1)2
,

B̃ ◦ L̃2 ∼ (
3z4 − 4z3) ◦ 4(9z6 − 9z4 + 18z3 − 15z2 + 6z − 1)

(3z2 − 1)3
.

The proof of this theorem is given below and consists of the following stages. First we rewrite
formula for the genus of (2) in a more convenient way and prove several related lemmas. Then



720 F. Pakovich / Bull. Sci. math. 133 (2009) 693–732
we introduce the conception of a special value and classify the polynomials having such values.
The rest of the proof reduces to the analysis of two cases: the case when one of polynomials A,B

does not have special values and the case when both A,B have special values.
Notice that if at least one of polynomials A,B (say A) is of degree 1 then condition 1) holds

with μ = A, R = A−1 ◦ B, n = 1, r = 0, W = L2. So, below we always will assume that
degA,degB > 1. Besides, since one can check by a direct calculation that all the pairs of Laurent
polynomials L̃1, L̃2 in Theorem 8.1 satisfy the requirements above, we will concentrate on the
finding of A and B only.

8.1. Genus formula and related lemmas

Let S = {z1, z2, . . . , zs} be any set of complex numbers which contains all finite branch points
of a polynomial A of degree n. Then the collection of partitions of the number n:

(a1,1, a1,2, . . . , a1,p1), . . . , (as,1, as,2, . . . , as,ps ),

where (ai,1, ai,2, . . . , ai,pi
), 1 � i � s, is the set of lengths of disjoint cycles in the permuta-

tion αi(A), is called the passport of A and is denoted by P(A). Notice that, since we do not
require that any of the points of S is a branch point of A, some of partitions above may contain
units only. We will call such partitions trivial and will denote by s(A) the number of non-trivial
partitions in P(A).

Below we will assume that S is a union of all finite branch points of a pair of polynomials
A,B , degA = n, degB = m, and use the notation

(b1,1, b1,2, . . . , b1,q1), . . . , (bs,1, bs,2, . . . , bs,qs ),

for the passport P(B) of B . Clearly, by the Riemann–Hurwitz formula we have

s∑
i=1

pi = (s − 1)n + 1,

s∑
i=1

qi = (s − 1)m + 1. (74)

For an irreducible pair of polynomials A, B denote by g(A,B) the genus of curve (2). We
start from giving a convenient version of formula (21) for g(A,B).

Lemma 8.2.

−2g(A,B) = GCD(m,n) − 1

+
s∑

i=1

pi∑
j1=1

[
ai,j1(1 − qi) − 1 +

qi∑
j2=1

GCD(ai,j1bi,j2)

]
. (75)

Proof. It follows from (74) that

s∑
i=1

pi∑
j1=1

[
ai,j1(1 − qi) − 1

] =
s∑

i=1

[
n(1 − qi) − pi

] = ns − n

s∑
i=1

qi −
s∑

i=1

pi

= ns − n
(
(s − 1)m + 1

) − (
(s − 1)n + 1

) = −n(s − 1)m − 1.

Therefore, the right side of formula (75) equals
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−n(s − 1)m − 2 +
s∑

i=1

pi∑
j1=1

qi∑
j2=1

GCD(ai,j1bi,j2) + GCD(m,n).

Now (75) follows from (21) taking into account that r = s + 1. �
Set

si,j1 = ai,j1(1 − qi) − 1 +
qi∑

j2=1

GCD(ai,j1bi,j2),

1 � i � s, 1 � j1 � pi. Using this notation we may rewrite formula (75) in the form

−2g(A,B) = GCD(m,n) − 1 +
s∑

i=1

pi∑
j1=1

si,j1 . (76)

Two lemmas below provide upper estimates for si,j1, 1 � i � s, 1 � j1 � pi.

Lemma 8.3. In the above notation for any fixed pair of indices i, j1, 1 � i � s, 1 � j1 � pi, the
following statements hold:

(a) If there exist at least three numbers bi,l1, bi,l2, bi,l3, 1 � l1, l2, l3 � qi, which are not divisible
by ai,j1 then si,j1 � −2;

(b) If there exist exactly two numbers bi,l1, bi,l2, 1 � l1, l2 � qi, which are not divisible by ai,j1

then si,j1 � −1 and the equality attains if and only if

GCD(ai,j1bi,l1) = GCD(ai,j1bi,l2) = ai,j1/2; (77)

(c) If there exists exactly one number bi,l1, 1 � l1 � qi, which is not divisible by ai,j1 then

si,j1 = −1 + GCD(ai,j1bi,l1). (78)

Proof. If there exist at least three numbers bi,l1, bi,l2, bi,l3, 1 � l1, l2, l3 � qi, which are not
divisible by ai,j1 then we have

si,j1 = ai,j1(1 − qi) − 1 +
qi∑

j2=1
j2 =l1,l2,l3

GCD(ai,j1bi,j2) +
∑

l1,l2,l3

GCD(ai,j1bi,l1)

� ai,j1(1 − qi) − 1 + (qi − 3)ai,j1 + 3ai,j1/2 = −ai,j1/2 − 1 � −2.

If there exist exactly two numbers bi,l1, bi,l2, 1 � l1, l2 � qi, which are not divisible by ai,j1

then we have

si,j1 = ai,j1(1 − qi) − 1 +
qi∑

j2=1
j2 =l1,l2

GCD(ai,j1bi,j2) +
∑
l1,l2

GCD(ai,j1bi,l1)

� ai,j1(1 − qi) − 1 + (qi − 2)ai,j1 + ai,j1/2 + ai,j1/2 = −1,

and the equality attains if and only if

GCD(ai,j bi,l ) = GCD(ai,j bi,l ) = ai,j /2.
1 1 1 2 1
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Finally, if there exists exactly one number bi,l1 which is not divisible by ai,j1 then we have

si,j1 = ai,j1(1 − qi) − 1 +
qi∑

j2=1
j2 =l1

GCD(ai,j1bi,j2) + GCD(ai,j1bi,l1)

= ai,j1(1 − qi) − 1 + (qi − 1)ai,j1 + GCD(ai,j1bi,l1) = −1 + GCD(ai,j1bi,l1). �
Corollary 8.4. Let B be a polynomial of degree m such that the curve xn − B(y) = 0 is irre-
ducible and of genus zero. Then

(a) The equality GCD(n,m) = 1 implies that there exists a polynomial ν of degree 1 such that
B ◦ ν = zrRn for some polynomial R and r � 1 such that GCD(r, n) = 1;

(b) The equality GCD(n,m) = 2 implies that n = 2 and there exists a polynomial ν of degree 1
such that B ◦ ν = (1 − z2)S2 for some polynomial S.

Proof. First of all observe that it follows from the irreducibility of xn − B(y) = 0 that among
the numbers b1,1, b1,2, . . . , b1,q1 there exists at least one number which is not divisible by n.

If GCD(m,n) = 1, then it follows from formula (76) that s1,1 = 0, and Lemma 8.3 implies that
all the numbers b1,1, b1,2, . . . , b1,q1 but one, say b1,1, are divisible by n while GCD(n, b1,1) = 1.

Clearly, this implies that B ◦ ν = zrRn for some ν, R, and r as above.
Similarly, if GCD(m,n) = 2, then it follows from formula (76) that s1,1 = −1 and Lemma 8.3

implies that all the numbers b1,1, b1,2, . . . , b1,q1 but two, say b1,1, b1,2, are divisible by n while
GCD(n, b1,1) = GCD(n, b1,2) = n/2. Since this implies that B = zn/2 ◦ W for some poly-
nomial W it follows now from the irreducibility of xn − B(y) = 0 that n = 2 and therefore
B ◦ ν = (1 − z2)S2 for some ν and S as above. �
Corollary 8.5. In the notation of Lemma 8.3 suppose additionally that

GCD(bi1, bi2, . . . , biqi
) = 1. (79)

Then the following statements hold:

(a) si,j1 � 0;
(b) si,j1 = 0 if and only if either ai,j1 = 1 or all the numbers bi,j2, 1 � j2 � qi, except one are

divisible by ai,j1;
(c) si,j1 = −1 if and only if ai,j1 = 2 and all the numbers bi,j2, 1 � j2 � qi, but two are even.

Proof. If ai,j1 = 1 then si,j1 = 0 so assume that ai,j1 > 1. The assumption (79) implies that
among the numbers b1,1, b1,2, . . . , b1,q1 there exists at least one number which is not divisi-
ble by n. If there exists exactly one number bi,l1 which is not divisible by ai,j1 then in view
of (79) necessarily GCD(ai,j1bi,l1) = 1 and hence si,j1 = 0 by formula (78). If there exist ex-
actly two numbers bi,l1, bi,l2, 1 � l1, l2 � qi, which are not divisible by ai,j1 then it follows from
Lemma 8.3 that si,j1 � −1 where the equality attains if and only if (77) holds. On the other
hand, if (77) holds then necessarily ai,j1 = 2 since otherwise we obtain a contradiction with (79).
Finally, if there exist at least three numbers bi,l1, bi,l2, bi,l3, 1 � l1, l2, l3 � qi, which are not
divisible by ai,j1 then si,j1 � −2 by Lemma 8.3. �
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8.2. Polynomials with special values

In the notation above say that zi, 1 � i � s, is a special value of B if

GCD(bi,1, bi,2, . . . , bi,qi
) > 1.

It is easy to see that a polynomial P has a special value if and only if there exists c ∈ C such that
P − c = zd ◦ R for some polynomial R.

Say that zi, 1 � i � s, is a 1-special value (resp. a 2-special value) of B if all the numbers

bi,1, bi,2, . . . , bi,qi

but one (resp. two) are divisible by some number d > 1.

Proposition 8.6. Let B be a polynomial. Then the following statements hold:

(a) B may not have two special values, or one special value and one 1-special value, or three
1-special values;

(b) If B has two 1-special values then s(B) = 2, P(B) = {(1,2, . . . ,2), (1,2, . . . ,2)};
(c) If B has one 1-special value and one 2-special value then s(B) = 2 and either P(B) =

{(1,1,2), (1,3)} or P(B) = {(1,2,2), (1,1,3)}.

Proof. Set m = degB. Suppose first that B has at least two 1-special values. To be definite
assume that these values are z1, z2 and that all (b1,1, . . . , b1,q1) but b1,1 are divisible by the
number d1 and all (b2,1, . . . , b2,q2) but b2,1 are divisible by the number d2. Then

q1 � 1 + m − b1,1

d1
, q2 � 1 + m − b2,1

d2
, (80)

where the equalities attain if and only if b1,j = d1 for 1 < j � q1 and b2,j = d2 for 1 < j � q2.

Furthermore, clearly

s∑
i=1

qi � q1 + q2 + (s − 2)m, (81)

where the equality attains if and only if (bi,1, . . . , bi,qi
) = (1,1, . . . ,1) for any i > 2. Finally, for

i = 1,2 we have

qi � 1 + m − bi,1

di

� 1 + m − 1

2
(82)

and hence

q1 + q2 � 1 + m, (83)

where the equality attains only if d1 = 2, d2 = 2, b1,1 = 1, b2,1 = 1. Now (81) and (83) imply
that

s∑
i=1

qi � (s − 1)m + 1. (84)

Since however in view of (74) in this inequality should attain equality we conclude that in all
intermediate inequalities should attain equalities. This implies that s(B) = 2 and
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(b1,1, . . . , b1,q1) = (1,2, . . . ,2), (b2,1, . . . , b2,q1) = (1,2, . . . ,2).

In particular, we see that B may not have three 1-special values.
In order to prove the first part of the proposition it is enough to observe that if for at least one

index 1 or 2, say 1, the corresponding point is special then

q1 � m

d1
� m

2
.

Since this inequality is stronger than (82) repeating the argument above we obtain an inequality
in (84) in contradiction with (74).

Finally, assume that z1 is a 1-special value while z2 is a 2-special value. We will suppose that
all (b1,1, . . . , b1,q1) but b1,1 are divisible by the number d1 and all (b2,1, . . . , b2,q2) but b2,1, b2,2
are divisible by the number d2.

If m is odd then d2 = 2. Hence, in this case d2 � 3,

q1 � 1 + m − b1,1

d1
� 1 + m − 1

2
, q2 � 2 + m − b2,1 − b2,2

d2
� 2 + m − 2

3
,

and, therefore,

q1 + q2 � 11

6
+ 5m

6
.

If m > 5 then

q1 + q2 � 11

6
+ 5m

6
< m + 1.

Since combined with (81) the last inequality leads to a contradiction with (74) we conclude
that m � 5. It follows now from d2 � 3 that necessarily m = 5 and (b2,1, . . . , b2,q2) = (1,1,3).

Finally, since z1 is a 1-special value of B we necessarily have (b1,1, . . . , b1,q1) = (1,2,2).

Similarly, if m is even then d1 � 3 and we have

q1 � 1 + m − b1,1

d1
� 1 + m − 1

3
, q2 � 2 + m − b2,1 − b2,2

d2
� 2 + m − 2

2
,

and

q1 + q2 � 5

3
+ 5m

6
.

If m > 4 then

5

3
+ 5m

6
< m + 1

and as above we obtain a contradiction with (74). On the other hand, if m � 4 then d1 � 3
implies that necessarily m = 4 and (b1,1, . . . , b1,q1) = (1,3). Finally, clearly (b2,1, . . . , b2,q2) =
(1,1,2). �
8.3. Proof of Theorem 8.1. Part 1

First of all notice that if at least one of polynomials A,B has a unique finite branch point or
equivalently is of the form μ ◦ zd ◦ ν for some d � 1 and polynomials μ,ν of degree one, then
it follows from Corollary 8.4 that either condition 1) or condition 4) of Theorem 8.1 holds. So,
below we always will assume that both polynomials A, B have at least two finite branch points.
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In this subsection we prove Theorem 8.1 under the assumption that at least one of polynomials
A,B does not have special values. Without loss of generality we may assume that this polynomial
is B. In other words, we may assume that for any i, 1 � i � s, equality (79) holds.

Case 1. Suppose first that GCD(n,m) = 1. In this case by formula (76) the condition g(A,B) = 0
is equivalent to the condition

s∑
i=1

pi∑
j1=1

si,j1 = 0. (85)

In view of Corollary 8.5(a) this is possible if and only if si,j1 = 0, 1 � i � s, 1 � j1 � pi.

Since A has at least two finite branch points, Corollary 8.5(a) and Corollary 8.5(b), taking
into account that B may not have more than two 1-special values by Proposition 8.6(a), imply
that A has exactly two branch points. Furthermore, it follows from Proposition 8.6(b) that P(B)

equals{
(1,2,2, . . . ,2), (1,2,2, . . . ,2)

}
. (86)

Now Corollary 8.5(b) implies that

a1,j1 � 2, a2,j2 � 2, 1 � j1 � p1, 1 � j2 � p2. (87)

Since

p1 + p2 = (s − 1)n + 1 = n + 1

and
p1∑

j1=1

a1,j1 +
p2∑

j1=1

a2,j1 = 2n

it follows from (87) that among a1,j1, a2,j2 , 1 � j1 � p1, 1 � j2 � p2, there are exactly two
units and therefore P(A) equals either (86) or{

(1,1,2, . . . ,2), (2,2,2, . . . ,2)
}
. (88)

Recall that for any polynomial P such that P(P ) equals (86) or (88) there exist polynomials
μ, ν of degree 1 such that μ ◦ P ◦ ν = Tn for some n � 1. A possible way to establish it is to
observe that it follows from Tn(cos z) = cosnz that Tn satisfies the differential equation

n2(y2 − 1
) = (y′)2(z2 − 1

)
, y(1) = 1. (89)

On the other hand, it is easy to see that if P(P ) equals (86) or (88) and degP = n then P satisfies
the equation

n2(y − A)(y − B) = (y′)2(z − a)(z − b),

for some A,B,a, b ∈ C with y(b) = A or B . Therefore for appropriate polynomials μ, ν of
degree 1 the polynomial μ ◦ P ◦ ν satisfies Eq. (89) and hence μ ◦ P ◦ ν = Tn by the uniqueness
theorem for solutions of differential equations.

Since P(B) equals (86) and P(A) equals either (86) or (88) the above characterization of
Chebyshev polynomials implies now that if GCD(n,m) = 1 then condition 2) holds.
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Case 2. If GCD(n,m) = 2 then the condition g(A,B) = 0 is equivalent to the condition that one
number from si,j1 , 1 � i � s, 1 � j1 � pi, equals −1 while others equal 0.

Since A has at least two branch points, Corollary 8.5(b) and Corollary 8.5(c), taking into
account that if B has two 1-special values, then B does not have 2-special values by Proposi-
tion 8.6(b), imply that A has two branch points and B has one 1-special value and one 2-special
value. Therefore, by Proposition 8.6(c), P(B) equals either

{
(1,2,2), (1,1,3)

}
(90)

or

{
(1,3), (1,1,2)

}
. (91)

Furthermore, since the assumption GCD(n,m) = 2 implies that degB is even we conclude that
P(B) necessarily equals (91). It follows now from Corollary 8.5(b) and Corollary 8.5(c) that
for any j1, 1 � j1 � p1, the number a1,j1 equals 1 or 3 and the partition (a2,1, a2,2, . . . , a2,p2)

contains one element equal 2 and others equal 1.
Denote by α (resp. by β) the number of appearances of 1 (resp. of 3) in the first partition

of P(A) and by γ the number of appearances of 1 in the second partition of P(A). We have

α + 3β = n, 2 + γ = n,

and, by (74)

α + β + γ = n. (92)

The second and the third of the equations above imply that α + β = 2. Hence the partition
(a1,1, a2,2, . . . , a1,p1) is either (1,3) or (3,3) and γ = n − 2 implies that either

P(A) = P(B) = {
(1,3), (1,1,2)

}
(93)

or

P(A) = {
(3,3), (2,1,1,1,1)

}
. (94)

Observe now that for any polynomial R for which P(R) equals (91) the derivative of R has
the form R′ = c(z − a)2(z − b), a, b, c ∈ C. Therefore, there exist polynomials μ,ν of degree 1
such that

μ ◦ R ◦ ν =
∫

12z2(z − 1)dz = 3z4 − 4z3.

Since A and B have the same set of critical values this implies in particular that if (93) holds,
then A = B ◦ λ for some polynomial λ of degree 1 in contradiction with the irreducibility of the
curve A(x) − B(y) = 0. On the other hand, it is easy to see that if equality (94) holds, then there
exist polynomials μ,ν1, ν2 of degree 1 such that

μ ◦ A ◦ ν1 = (
z2 − 1

)3
, μ ◦ B ◦ ν2 = 3z4 − 4z3.

Therefore, if GCD(n,m) = 2, then condition 5) holds.
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8.4. Proof of Theorem 8.1. Part 2

Suppose now that both polynomials A and B have special values. Then by Proposition 8.6(b)
each of them has a unique special value. The special values of A and B either coincide or are
different. If they are different then

A = (
zd1 + β1

) ◦ Â, B = (
zd2 + β2

) ◦ B̂, (95)

for some β1, β2 ∈ C, β1 = β2, and d1, d2 > 1. Since the pair A, B is irreducible and g(A,B) = 0
the pair A0 = zd1 + β1, B0 = zd2 + β2 is also irreducible and

g(A0,B0) = 0. (96)

Formula (75) implies that

−2g(A0,B0) = d1 + d2 − d1d2 + GCD(d1, d2) − 2. (97)

If GCD(d1, d2) = 1, then (96) is equivalent to the equality (d1 − 1)(1 − d2) = 0 which is
impossible. On the other hand, if GCD(d1, d2) = 2, then (96) is equivalent to the equality
(d1 − 1)(1 − d2) = −1 which holds if and only if d1 = d2 = 2.

Repeatedly using Theorem 3.5 and Corollary 4.1 we can find polynomials P, Q, U, V such
that

Â = P ◦ U, B̂ = Q ◦ V, degP = degQ,

and the pair U, V is irreducible. Setting

A1 = A0 ◦ P, B1 = B0 ◦ Q (98)

we see that equality (67) holds. Furthermore, equivalence (68) is impossible since otherwise
A1 = B1 ◦ μ for some polynomial μ of degree 1 and it follows from Corollary 4.5 and equali-
ties (98) that A0 = B0 ◦ν for some polynomial ν of degree 1 in contradiction with the irreducibil-
ity of the pair A0,B0. Now using the same reasoning as in the proof of Theorem 7.2 and taking
into account that the pair A0,B0 is irreducible we conclude that condition 3) holds.

In the case when the special values of A and B coincide we can assume without loss of
generality that

A = zd1 ◦ U, B = zd2 ◦ V, (99)

where

d1 = GCD(a1,1, a1,2, . . . , a1,p1) > 1, d2 = GCD(b1,1, b1,2, . . . , b1,q1) > 1,

and

GCD(d1, d2) = 1 (100)

in view of the irreducibility of the pair A and B . Notice that, since A and B have at least two
critical values, the inequalities p1 � 2, q1 � 2 hold. Finally, without loss of generality we may
assume that m = degB is greater than n = degA. We will consider the cases GCD(d1,m) = 2
and GCD(d1,m) = 1 separately and will show that in both cases there exist no irreducible pairs
A,B with g(A,B) = 0.
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Case 1. Suppose first that GCD(d1,m) = 2. Then necessarily GCD(n,m) = 2 and, since

xd1 − B(y) = 0 (101)

is an irreducible curve of genus zero, Corollary 8.4 implies that d1 = 2 and all the numbers
b1,1, b1,2, . . . , b1,q1 but two, say b1,q1−1, b1,q1 , are even while b1,q1−1, b1,q1 are odd. Since by
the assumption each a1,j1 , 1 � j1 � p1, is divisible by d1 = 2, this implies in particular that for
each j1, 1 � j1 � p1,

GCD(a1,j1b1,q1−1) � a1,j1/2, GCD(a1,j1b1,q1) � a1,j1/2.

Returning now to polynomials A, B we conclude that for each j1, 1 � j1 � p1,

s1,j1 = a1,j1(1 − q1) − 1 +
q1−2∑
j2=1

GCD(a1,j1b1,j2) + GCD(a1,j1b1,q1−1) + GCD(a1,j1b1,q1)

� a1,j1(1 − q1) − 1 + a1,j1(q1 − 2) + GCD(a1,j1b1,q1−1) + GCD(a1,j1b1,q1)

� −a1,j1 − 1 + a1,j1/2 + a1,j1/2 � −1.

Since p1 � 2 and by Corollary 8.5(a) for any i, 1 < i � s, and j, 1 � j1 � pi, the inequality
si,j1 � 0 holds it follows now from formula (76) that g(A,B) < 0.

Case 2. Similarly, if GCD(d1,m) = 1 then Lemma 8.4 applied to curve (101) implies that
each b1,j1, 1 � j1 � q1, except one, say b1,q1 , is divisible by d1 while GCD(b1,q1 , d1) = 1 and
returning to A,B and taking into account that each a1,j1 , 1 � j1 � p1, is divisible by d1 we
obtain that

s1,j1 = a1,j1(1 − q1) − 1 +
q1−1∑
j2=1

GCD(a1,j1b1,j2) + GCD(a1,j1b1,q1)

� −1 + GCD(a1,j1b1,q1) � −1 + a1,j1/d1. (102)

Hence,

p1∑
j1=1

s1,j1 � −p1 + n/d1. (103)

Furthermore, since each b1,j2 , 1 � j2 � q1, except one is divisible by d1, each b1,j2,

1 � j2 � q1, is divisible by d2, and equality (100) holds we have

(q1 − 1)d1d2 + d2 � m

and therefore

q1 � 1 + m/d1d2 − 1/d1.

Since by (74) the inequality

q1 + qi � m + 1 (104)

holds for any i, 2 � i � s, this implies that

qi � m − m/d1d2 + 1/d1. (105)
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Denote by γi, 2 � i � s, the number of units among the numbers bi,j2, 1 � j2 � qi. Since the
number of non-units is � m/2 the inequality γi � qi − m/2 holds and therefore (105) implies
that

γi � m/2 − m/d1d2 + 1/d1. (106)

For any i, j1, 2 � i � s, 1 � j1 � pi, we have

si,j1 � ai,j1(1 − qi) − 1 + ai,j1(qi − γi) + γi = (1 − γi)(ai,j1 − 1). (107)

Since this implies that

pi∑
j1=1

si,j1 = (1 − γi)

pi∑
j1=1

(ai,j1 − 1) � (1 − γi)(n − pi) (108)

it follows now from (106) that

pi∑
j1=1

si,j1 �
(
1 − 1/d1 + m(1/d1d2 − 1/2)

)
(n − pi).

Therefore, using (74) we obtain that

s∑
i=2

pi∑
j1=1

si,j1 �
(
1 − 1/d1 + m(1/d1d2 − 1/2)

)
(p1 − 1). (109)

Set

S =
s∑

i=1

p1∑
j1=1

si,j1 .

Since GCD(n,m) = 1 or 2 it follows from formula (76) that in order to finish the proof it is
enough to show that S < −1.

Since p1 � 2 it follows from (103), (109) that

S � −p1 + n/d1 + (
1 − 1/d1 + m(1/d1d2 − 1/2)

)
(p1 − 1)

= −1 + n/d1 − p1 − 1

d1
+ m(1/d1d2 − 1/2)(p1 − 1)

< −1 + n/d1 + m(1/d1d2 − 1/2)(p1 − 1). (110)

If p1 � 3 then it follows from (110), taking into account the assumption m � n and the in-
equality 1/d1d2 − 1/2 < 0, that

S < −1 + n(1/d1 + 2/d1d2 − 1).

Since 1/d1 + 2/d1d2 − 1 � 0 for any d1, d2 � 2, this implies that S < −1.

If p1 = 2 then (110) implies that

S < −1 + n(1/d1 + 1/d1d2 − 1/2).

Since 1/d1 + 1/d1d2 − 1/2 � 0 whenever d1 > 2 we obtain that S < −1 also if p1 = 2 but
d1 > 2.
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Finally, if p1 = 2, d1 = 2 but m � (3/2)n, then it follows from equality (110) that

S < −1 + n(3/4d2 − 1/4).

Since d1 = 2 implies d2 � 3 in view of (100), we conclude again that S < −1.

Therefore, the only case when the proof of the inequality S < −1 is still not finished is the one
when p1 = 2, d1 = 2, and n � m < (3/2)n. In this case apply the reasoning above to A and B

switched keeping the same notation. In other words, assume that q1 = 2, d2 = 2, and

2n/3 < m � n. (111)

Then by (104) we have qi � m− 1 for any i, 2 � i � s. Therefore, corresponding partitions of m

are either trivial or have the form (1,1, . . . ,1,2) and hence

γi � m − 2, 2 � i � s. (112)

It follows now from (108), (112), (74), and (111) that

s∑
i=2

pi∑
j1=1

si,j1 � (3 − m)(p1 − 1) < (3 − 2n/3)(p1 − 1) � 3 − 2n/3. (113)

Since d2 = 2 implies d1 � 3 in view of (100), it follows now from (113) and p1 � 2 that

S < −p1 + n/d1 + 3 − 2n/3 � 1 + n/d1 − 2n/3 � 1 − n/3.

If n � 6 then this inequality implies that S < −1. On the other hand, the inequality n � 5 is
impossible since otherwise equalities (99), (111), and p1 � 2 imply that d1 = d2 = 2 in contra-
diction with (100).

In order to finish the proof of Theorem 8.1 it is enough to notice that for any choice of Ã, B̃

in conditions 1)–5) the curve

Ã(x) − B̃(y) = 0 (114)

is indeed irreducible. For cases 1) and 2) this is a corollary of Proposition 3.1. For case 3) this was
proved in the end of the proof of Theorem 7.2. In case 4) corresponding curve (114) is irreducible
since otherwise Corollary 4.2 would imply that there exists a polynomial T such that B̃ = z2 ◦ T

in contradiction with B̃ = (1 − z2)S2. Finally, since B̃ in 5) is indecomposable it follows from
Corollary 4.2 taking into account Corollary 4.1 that corresponding curve (114) is irreducible.

9. Proof of Theorem 1.1

Since the description of double decompositions of functions from R2 reduces to the corre-
sponding problem for Laurent polynomial and any double decomposition of a Laurent polyno-
mial is equivalent to (8), (9), or (10), the first part of Theorem 1.1 follows from Theorem 6.4,
Theorem 7.2, Theorem 8.1 and Lemma 6.1. The proof of the second part is given below.

Theorem 9.1. The class R2 is a Ritt class.

Proof. We will use Theorem 5.1 and the first part of Theorem 1.1. First observe that the first part
of Theorem 1.1 implies that if A ◦ C = B ◦ D is a double decomposition of a function from R2
such that C,D are indecomposable and there exist no rational functions Ã, B̃, U , degU > 1,
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such that (44) holds then there exist automorphisms of the sphere μ, W and rational functions
Ã, B̃, C̃, D̃ such that one of conclusions of Theorem 1.1 holds. Moreover, it was shown above
that in cases 1)–3) and 6) the pair Ã, B̃ is irreducible.

Observe now that in case 4) the pair Ã, B̃ is also irreducible. Indeed, since GCD(n,m) = 1,
it follows from the construction given in Section 2.2 that for the pair f = Ã, g = B̃ the permuta-
tion δi, 1 � i � r, corresponding to the loop around the infinity contains two cycles. Therefore,
if the pair Ã, B̃ is reducible, then o(f,g) = 2 and both functions h1, h2 from Theorem 2.2 have
a unique pole. On the other hand, the last statement contradicts to the fact that h1 = B̃ ◦ v1,

h2 = B̃ ◦ v2 for some rational functions v1, v2 since B̃ has two poles.
Finally, as it was observed in the end of the proof of Theorem 7.2, in case 5) the pair Ã, B̃ is

reducible whenever l > 2. Since in this case C̃ and D̃ are decomposable unless n = 1, m = 1, it
follows now from Theorem 5.1 that in order to prove the proposition it is enough to check that
for any choice of maximal decompositions

−Tl = ud ◦ ud−1 ◦ · · · ◦ u1, Tl = vl ◦ vl−1 ◦ · · · ◦ v1,

the decompositions

ud ◦ ud−1 ◦ · · · ◦ u1 ◦ 1

2

(
εz + 1

εz

)
, vl ◦ vl−1 ◦ · · · ◦ v1 ◦ 1

2

(
z + 1

z

)
, (115)

where εl = −1, are weakly equivalent.
Since Tl = Td ◦Tl/d for any d|l, it follows from Corollary 4.5 that any maximal decomposition

of Tl is equivalent to Tl = Td1 ◦ Td2 ◦ · · · ◦ Tds , where d1, d2, . . . , ds are prime divisors of l such
that d1 d2 · · ·ds = l. Taking into account that for d � 1

Td ◦ 1

2

(
z + 1

z

)
= 1

2

(
z + 1

z

)
◦ zd,

this implies easily that both decompositions (115) are weakly equivalent to some decomposition
of the form

1

2

(
z + 1

z

)
◦ zd1 ◦ zd2 ◦ · · · ◦ zds . �
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