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Recomposing Rational Functions

Let A be a rational function. For any decomposition of A into a composition of rational

functionsA = U◦V the rational function Ã = V◦U is called an elementary transformation

of A, and rational functions A and B are called equivalent if there exists a chain of ele-

mentary transformations between A and B. This equivalence relation naturally appears

in the complex dynamics as a part of the problem of describing of semiconjugate rational

functions. In this paper we show that for a rational function A its equivalence class [A]
contains infinitely many conjugacy classes if and only if A is a flexible Lattès map. For

flexible Lattès maps L = Lj induced by the multiplication by 2 on elliptic curves with

given j-invariant we provide a very precise description of [L]. Namely, we show that any

rational function equivalent to Lj necessarily has the form Lj′ for some j′ ∈ C, and that

the set of j′ ∈ C such that Lj′ ∼ Lj coincides with the orbit of j under the correspondence

associated with the classical modular equation �2(x,y) = 0.

1 Introduction

Let B be a rational function of degree at least two. The function B is called semiconjugate

to a rational function A if the equality

A ◦ X = X ◦ B (1)
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1922 F. Pakovich

holds for some rational functionX . In case ifX is invertible,A and B are called conjugate.

In terms of dynamical systems, condition (1) means that the dynamical system A◦k,

k ≥ 1, on CP
1 is a factor of the dynamical system B◦k, k ≥ 1. The semiconjugacy is not

a symmetric relation. However, if B is semiconjugate to A, and C is semiconjugate to B,

then C is semiconjugate to A, since equalities (1) and B ◦W =W ◦ C imply the equality

A ◦ (X ◦W) = (X ◦W) ◦ C.

In the recent paper [10] equation (1) was investigated at length. Roughly speak-

ing, the main result of [10] states that (1) holds in two cases. In the first case, the

corresponding functions A and B are either Lattès maps, or functions which can be

considered as analogues of Lattès maps related to automorphism groups of CP
1 instead

of automorphism groups of C. In the second case, the functions A and B do not pos-

sess any special properties, however they are equivalent with respect to an equivalence

relation ∼ on the set of rational functions defined as follows. For any decomposition

A = U ◦ V , where U and V are rational functions, the rational function Ã = V ◦ U is

called an elementary transformation of A, and rational functions A and B are called

equivalent if there exists a chain of elementary transformations between A and B. For

a rational function A we will denote its equivalence class by [A].
The connection between the relation ∼ and semiconjugacy is straightforward.

Namely, for Ã and A as above we have:

Ã ◦ V = V ◦ A, and A ◦ U = U ◦ Ã,

implying inductively that whenever A ∼ B there exists X such that (1) holds, and there

exists Y such that

B ◦ Y = Y ◦ A.

Therefore, ifA ∼ B, each of the dynamical systemsA◦k, k ≥ 1, and B◦k, k ≥ 1, is a factor of

the other one, meaning that these systems have “similar” dynamics. Furthermore, since

for any invertible rational function W the equality

A = (A ◦W) ◦W−1

holds, each equivalence class [A] is a union of conjugacy classes. Thus, the relation ∼
can be considered as a weaker form of the classical conjugacy relation.

The main result of this article is the following statement.
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Recomposing Rational Functions 1923

Theorem 1.1. Let F be a rational function. Then its equivalence class [F ] contains

infinitely many conjugacy classes if and only if F is a flexible Lattès map. �

Simplest examples of flexible Lattès maps are rational functions L induced by

the multiplication by 2 on elliptic curves. Such a function can be defined by the equality

℘(2z) = L ◦ ℘(z), (2)

where ℘(z) is the Weierstrass function associated with some lattice M of rank two in C.

Two such functions corresponding to lattices M and M ′ are conjugate if and only if the

elliptic curves C/M and C/M ′ are isomorphic. So, abusing the notation, we will denote

by Lj any Lattès map induced by the multiplication by 2 on an elliptic curve with given

j-invariant.

In order to describe conjugacy classes in [Lj] it is convenient to use the notion of

correspondence F associated with an affine algebraic curve F(x,y) = 0. By definition, for

x0 ∈ C an image of x0 under F is any point y0 ∈ C such that F(x0,y0) = 0. More generally,

y0 ∈ C is an image of x0 ∈ C under the kth iteration of F if there exists a sequence

x0,x1, . . . ,xk = y0 such that (xi−1,xi), i = 1, . . .k, is a point on F(x,y) = 0. Considering the

totalities of all images and preimages of a point x0 we can define its forward, backwards,

and full orbit under F. If F(x,y) is symmetric, that is F(x,y) = F(y,x), all these orbits

coincide, so we can use simply the term orbit.

In the above notation, our main result about [Lj] is following.

Theorem 1.2. Any rational function equivalent to Lj, j ∈ C, has the form Lj′ , j′ ∈ C.

Furthermore, the set of j′ ∈ C such that Lj′ ∼ L coincides with the orbit of j under the

correspondence associated with the classical modular equation �2(x,y) = 0. �

Notice that although the expression for the curve �2(x,y) = 0 is quite bulky it

has a very simple parametrization by rational functions which goes back to Klein [2],

implying that Lj′ ∼ Lj if and only if j and j′ are in the same orbit of the multivalued

function

F = β ◦ 1

z
◦ β−1, (3)

where β is a rational function of degree three,

β(z) = 64
(z + 4)3

z2
.
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1924 F. Pakovich

The article has the following structure. In the second section we show that the

condition A ∼ B implies that A and B are isospectral, and deduce the “only if” part of

Theorem 1.1 from the fundamental result of McMullen [4] about isospectral rational

functions. In the third section we relate functional decompositions of flexible Lattès

maps with isogenies between elliptic curves, and prove the “if” part of Theorem 1.1.

Finally, in the fourth section we describe explicitly all functional decompositions of Lj

and prove Theorem 1.2.

2 Equivalence and Isospectrality

Let F be a rational function. Recall that two decompositions of F into compositions of

rational functions F = U ◦V and F = U ′ ◦V ′ are called equivalent if there exists a Möbius

transformation μ such that

U ′ = U ◦ μ, V ′ = μ−1 ◦ V .

Clearly, elementary transformations corresponding to equivalent decompositions are

conjugate. Since equivalence classes of decompositions of F are in a one-to-one corre-

spondence with imprimitivity systems of the monodromy group GF of F , this implies in

particular that the number of conjugacy classes of rational functions obtained from F

by elementary transformations is finite, and that the number of conjugacy classes in [F ]
is at most countable.

Recall that a rational function A is called a flexible Lattès map if there exist an

elliptic curve C and morphisms ϕ : C→ C and π : C→ CP
1 such that the diagram

C
ϕ−−−−→ C⏐⏐�π ⏐⏐�π

CP
1 A−−−−→ CP

1 ,

(4)

commutes, π has degree two and satisfies π(z) = π(−z), and ϕ = nz+β, where n ∈ Z and

β ∈ C (see [14, Section 6.5] and [6]). In fact, β necessarily satisfies the condition 2β = 0 on

C. Moreover, changing π(z) to π ′(z) = π(z + β), we see that the condition π ′(z) = π ′(−z)
still holds, while (4) holds for ϕ′ = nz + β ′, where β ′ = nβ. Thus, if n is even, we may

assume that β = 0. The complex structure of C is completely defined by the conjugacy

class of A, that is, if A′, C′,π ′,ϕ′ is another collection as above and A is conjugate to A′,

then C is isomorphic to C′ (see e.g., [14, Theorem 6.46]). Abusing the notation, we will

denote by Aj any Lattès map satisfying (4) for C with given j-invariant.
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Recomposing Rational Functions 1925

Assuming that C is written in the Weierstrass form

C : y2 = x3 + ax + b, a,b ∈ C, (5)

a prototypical example of a Lattès map is obtained for ϕ = 2z and π(x,y) = x. In this

case,

A = z4 − 2az2 − 8bz + a2

4z3 + 4az + 4b
. (6)

Notice that ifM is a lattice of rank two in C such that C = C/M and℘(z) is the correspond-

ing Weierstrass function, then the functionA is defined by the condition℘(2z) = A◦℘(z).
For C given by (5), A = Aj, where

j = 1728
4a3

4a3 + 27b2
.

Let F be a rational function of degree d. By definition, the multiplier spectrum

of F is a function which assigns to each s ≥ 1 the unordered list of multipliers at all

ds + 1 fixed points of F ◦s taken with appropriate multiplicity. Two rational functions

are called isospectral if they have the same multiplier spectrum. For example, all the

functions from family (6) have the same multiplier spectrum (see e.g., [14, Example 6.49]).

Nevertheless, by the following result of McMullen such a situation is exceptional (see

[4, 6, 14]).

Theorem 2.1 (McMullen). The conjugacy class of any rational function F which is not a

flexible Lattès map is defined up to finitely many choices by its multiplier spectrum. �

The equivalence ∼ and the isospectrality are closely related as the following

lemma shows.

Lemma 2.1. Let U and V be rational functions. Then the rational functions U ◦ V and

V ◦ U are isospectral. �

Proof. Since the equality

(U ◦ V)◦l(z0) = z0

implies the equality

(V ◦ U)◦l(z1) = z1,
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1926 F. Pakovich

where z1 = V(z0), the function V maps periodic points of U ◦ V to periodic points of

V ◦U . Furthermore, the period of z1 divides the period of z0. Similarly, U maps periodic

points of V ◦U to periodic points of U ◦V . Since the composition U ◦V maps bijectively

periodic points of U ◦ V of period l to themselves, this implies that V maps bijectively

periodic points of U ◦ V of period l to periodic points of V ◦ U of period l.

Further, since by the chain rule

((U ◦ V)◦l)′(z0) = ((U ◦ V)◦l−1 ◦ U)′(z1) ◦ V ′(z0)

and

((V ◦ U)◦l)′(z1) = V ′((U ◦ V)◦l−1 ◦ U)(z1)) ◦ ((U ◦ V)◦l−1 ◦ U)′(z1),

it follows from

((U ◦ V)◦l−1 ◦ U)(z1) = z0

that

((U ◦ V)◦l)′(z0) = ((V ◦ U)◦l)′(z1).

Finally, observe that the multiplicity of a fixed point z0 of (U ◦ V)◦l equals the

multiplicity of the fixed point z1 = V(z0) of (V ◦ U)◦l. Indeed, since the multiplicity

of a fixed point is an analytic invariant (see [1, Proposition 7]), this is true whenever

V ′(z0) �= 0. On the other hand, if V ′(z0) = 0, then ((U ◦V)◦l)′(z0) = 0 and ((V ◦U)◦l)′(z1) = 0,

implying that both multiplicities under consideration are equal to one. �

Corollary 2.1. Let A and B be rational functions such that A ∼ B. Then A and B are

isospectral. �

Proof. By definition, A ∼ B if B is obtained from A by a chain of elementary transfor-

mations. On the other hand, any such transformation leads to an isospectral function

by Lemma 2.1. �

It is clear that the McMullen theorem combined with Corollary 2.1 proves the

“only if” part of Theorem 1.1. Notice however that the number of conjugacy classes in

an equivalence class [F ] can be arbitrary large (see [10]). The proof of the “if” part of

Theorem 1.1 is given in the next section.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2019/7/1921/4082262 by Ben G
urion U

niversity - Aranne Library user on 13 M
ay 2019



Recomposing Rational Functions 1927

Notice that isospectral A and B are not necessary equivalent. Say, all functions

(6) cannot be equivalent since any equivalence class contains at most countably many

conjugacy classes. Nevertheless, to our best knowledge all known examples of isospec-

tral rational functions are obtained either from flexible Lattès maps, or from rigid Lattès

maps (see [4, 6, 14]), or else from elementary transformations. Thus, it is still possible

that if A and B are not Lattès maps, then the fact that A and B are isospectral implies

that A ∼ B. A comprehensive description of relations between the isospectrality and the

equivalence ∼ seems to be a very interesting problem.

Notice also that if A is a polynomial, then the finiteness of [A] can be established

without using the McMullen theorem; see Corollary 5.8 in [11], and also the article [5]

using the notion of “skew twist equivalence” which essentially coincides with the equiv-

alence ∼ in the setting considered here. The approach of the article [5] is based on the

theory of decomposition of polynomials developed by Ritt [12], while the method of

[11] relies on the results of [9] about polynomials sharing preimages of compact sets.

However, methods of both these articles are restricted to the polynomial case only.

3 Proof of Theorem 1.1

Consider first flexible Lattès maps A = Aj defined by the diagram

C
nz−−−−→ C⏐⏐�π ⏐⏐�π

CP
1 A−−−−→ CP

1

(7)

where n ∈ Z. In order to prove that [Aj] contains infinitely many conjugacy classes we

will use the relation between functional decompositions of Aj and isogenies between

elliptic curves. We start from recalling some basic definitions and results concerning

isogenies and the modular equation. Abusing the notation, below we will use the symbol

j in two possible meanings: for a value of the elliptic modular function j(τ ) of weight

zero for SL(2, Z) on the upper half-plane H, and for a value of the j-invariant of elliptic

curve C = C/Lτ , where Lτ is a lattice in C generated by 1 and τ ∈ H.

Let C and C̃ be elliptic curves over C. An isogeny between C and C̃ is a nonconstant

morphism ψ : C → C̃ which sends the identity element of the group C to the identity

element of the group C̃. Such a morphism is necessarily a homomorphism of groups. A

kernel 	 of a non-zero isogeny ψ : C→ C̃ is a subgroup of finite order in C, and for any

subgroup of finite order 	 there exists a unique isogeny ψ : C→ C̃ such that kerψ = 	.

For any elliptic curve C and integer n the multiplication by n on C projects to an isogeny
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1928 F. Pakovich

[n] : C → C of degree n2 with the kernel consisting of points whose order divides n.

Furthermore, for any isogeny ψ : C→ C̃ of degree n there exists a unique dual isogeny

ψ̂ : C̃→ C such that

ψ̂ ◦ ψ = [n] (8)

on C, and

ψ ◦ ψ̂ = [n] (9)

on C̃ (for the proofs of the above facts see e.g., [13, Chapter III]). An isogeny whose kernel

is a cyclic group of order n is called n-cyclic.

Below, we mostly will consider specific n-cyclic isogenies defined as follows.

Let C1 = C/Lτ be an elliptic curve and n an integer. Then the multiplication by n on C

projects to an n-cyclic isogeny

ψn : C1 → C2, (10)

where C2 = C/Lnτ . The dual isogeny

ψ̂n : C2 → C1 (11)

is the projection of the identical map on C.

There exists a polynomial in two variable

�n(x,y) = 0 (12)

with integer coefficients, called the modular equation, having the following property:

if C1 and C2 are two elliptic curves with j-invariant j1 and j2, then an n-cyclic isogeny

C1 → C2 exists if and only if ( j1, j2) is a point of curve (12) (see [3, Chapter 5]). In particular,

since (10) is an n-cyclic isogeny between elliptic curves with j-invariants j(τ ) and j(nτ),

for any τ ∈ H the equality

�n( j(τ ), j(nτ)) = 0 (13)

holds.

Let C be an elliptic curve andA = Aj a Lattès map satisfying (7). Further, let	 be a

subgroup of C andψ : C→ C̃ an isogeny such that kerψ = 	. Sinceψ is a homomorphism,
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Recomposing Rational Functions 1929

the equalityψ(−x) = −ψ(x) holds, implying that there exists a rational function V	 such

that the diagram

C
ψ−−−−→ C̃⏐⏐�π ⏐⏐�π̃

CP
1 V	−−−−→ CP

1

commutes. Similarly, for the dual isogeny ψ̂ : C̃→ C there exists a rational function U	

such that the diagram

C̃
ψ̂−−−−→ C⏐⏐�π̃ ⏐⏐�π

CP
1 U	−−−−→ CP

1

commutes. Thus, to any subgroup 	 of C corresponds a decomposition

Aj = U	 ◦ V	. (14)

In particular, the equality

ψ̂n ◦ ψn = [n]

gives rise to a decomposition

Aj = Un ◦ Vn. (15)

Notice that explicit expressions for U	 and V	 can be deduced from Vélu’s formulas for

isogenies ψ : C→ C̃ with given C and kerψ (see [15]).

Equality (9) implies that an elementary transformation of Aj corresponding to

decomposition (14) also is a flexible Lattès map Aj′ , where j′ is j-invariant of C̃. Further-

more, if 	 is a cyclic group of order n, then the corresponding values of j′ are described

by the condition that ( j, j′) is a point of (12). Clearly, in order to prove that [Aj] has infin-

itely many conjugacy classes it is enough to prove that we can obtain infinitely many

conjugacy classes using chains of elementary transformations arising from decomposi-

tions (15) only. Moreover, since conjugate Lattès maps correspond to isomorphic elliptic

curves and isogeny (10) corresponds to the point ( j(τ ), j(nτ)) on (12), it is enough to show

that for any τ ∈ H the sequence j(nkτ) takes infinitely many values.
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1930 F. Pakovich

In order to prove the last statement recall that the Fourier expansion for j(τ ) in

q = e2π iτ is

j(τ ) = 1

q
+ 744 + 196884q+ · · · .

Further,

qk = e2π i(nkτ)→ 0, as k→∞,

since 
(τ ) > 0. Therefore,

j(nkτ)→∞, as k→∞,

implying that j(nkτ) takes infinitely many distinct values. This proves the “if” part of

Theorem 1.1 for Lattès maps A given by (7).

Consider now flexible Lattès maps Ã = Ãj defined by the diagram

C
nz+β−−−−→ C⏐⏐�π ⏐⏐�π

CP
1 Ã−−−−→ CP

1 ,

(16)

where n ∈ Z is odd and β is a point of order two on C. For c ∈ C set ϕc = z + c. Since

2β = 0 and n is odd,

nz + β = nz ◦ ϕβ (17)

on C. Further, since ϕβ(−z) = −ϕβ(z) on C, there exists a Möbius transformation μwhich

makes the diagram

C
ϕβ−−−−→ C⏐⏐�π ⏐⏐�π

CP
1 μ−−−−→ CP

1

commutative. Therefore, the Lattès map Ã = Ãj and the Lattès map A = Aj defined by

diagram (7) are related by the equality

Ãj = Aj ◦ μ, (18)

where μ is a Möbius transformation.
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Recomposing Rational Functions 1931

Clearly, an elementary transformation Aj → Aj′ corresponding to decomposition

(15) induces an elementary transformation

Un ◦ Vn ◦ μ→ Vn ◦ μ ◦ Un (19)

of Ãj. Moreover, since the composition

C2
ψ̂n−→ C1

ϕβ−→ C1

equals the composition

C2

ϕnβ−→ C2
ψ̂n−→ C1,

and ϕnβ(−z) = −ϕnβ(z) on C2, considering the commutative diagram

C2
ψ̂n−−−−→ C1

ϕβ−−−−→ C1
ψn−−−−→ C2⏐⏐�π2

⏐⏐�π1

⏐⏐�π1

⏐⏐�π2

CP
1 Un−−−−→ CP

1 μ−−−−→ CP
1 Vn−−−−→ CP

1

we see that

(Vn ◦ μ) ◦ Un = Vn ◦ Un ◦ μ′,

where μ′ is a Möbius transformation satisfying

C2

ϕnβ−−−−→ C2⏐⏐�π2

⏐⏐�π2

CP
1 μ′−−−−→ CP

1 .

Thus, if Aj → Aj′ is the elementary transformation corresponding to decomposition (15),

then the elementary transformation of Ãj in the right part of (19) is a Lattès map Ãj′

defined by the diagram

C2
nz+β′−−−−→ C2⏐⏐�π2

⏐⏐�π2

CP
1

Ãj′−−−−→ CP
1 ,
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1932 F. Pakovich

where β ′ = nβ is a points of order two on C2. Therefore, a chain of elementary

transformations

Aj → Aj1 → Aj2 → . . .

with infinitely many different j arising from decompositions (15) induces a similar chain

Ãj → Ãj1 → Ãj2 → . . . .

This finishes the proof of Theorem 1.1.

4 Decompositions of Lj

In this section, we provide some explicit formulas illustrating constructions from the

previous section in the simplest case where considered Lattès maps are defined by the

diagram

C
2z−−−−→ C⏐⏐�π ⏐⏐�π

CP
1 L−−−−→ CP

1 ,

(20)

and prove Theorem 1.2. In order to reduce the number of parameters, we will write

elliptic curves in the Legendre form

Eλ : y2 = x(x − 1)(x − λ), λ ∈ C \ {0, 1}. (21)

When working with the explicit expression for L = Lj we will use the notation

Lλ = 1

4

(
z2 − λ)2

z (z − 1) (z − λ) .

So, Lλ = Lj, where

j = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

The next result describes explicitly all equivalence classes of decompositions of Lλ.

Theorem 4.1. Any decomposition of Lλ into a composition of rational functions of

degree greater than one is equivalent to one of the following decompositions

Lλ(z) =
(

1

4

z2 − 4 λ

z − λ− 1

)
◦

(
z + λ

z

)
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Recomposing Rational Functions 1933

Lλ(z) =
(

1

4

z2 + 2 z + 1

z + 1− λ
)
◦

(
z + 1− λ

z − 1

)
(22)

Lλ(z) =
(

1

4

λ2 + 2 λz + z2

z + λ− 1

)
◦

(
z + λ

2 − λ
z − λ

)
.

These decompositions are not equivalent and have form (14), where 	 runs over cyclic

subgroups of order two in C. �

Proof. Recall that equivalence classes of decompositions of a rational function F are

in a one-to-one correspondence with imprimitiivity systems of the monodromy group

GF of F . Namely, if z0 is a non-critical value of F , and GF is realized as a permutation

group acting on the set F−1{z0}, then to an equivalence class of a decomposition F =
U ◦V , corresponds an imprimitivity system of GF consisting of d = degA blocks V−1{ti},
1 ≤ i ≤ d, where {t1, t2, . . . , td} = U−1{z0}.

It is clear that for any decomposition Lλ = U ◦ V with degU > 1, degV > 1

the equalities degV = 2, degU = 2 hold. Therefore, if c is a non-critical value of Lλ(z)

and GLλ is realized as a permutation group acting on L−1
λ {c} = {z0, z1, z2, z3}, then to each

equivalence class of decompositions of Lλ corresponds a block of size two containing

the point z0, say. Since there might be at most three such blocks, namely, {z0, z1}, {z0, z2},
and {z0, z3}, there exist at most three non-equivalent decompositions of Lλ.

Prove now that the decompositions

Lλ = Ci ◦ Di, i = 1, 2, 3,

given by formulas (22) are not equivalent. Since the set

L−1
λ {∞} = {∞, 0, 1, λ}

consists of four different points, the point c = ∞ is a non-critical value of Lλ and we can

assume that GLλ acts on the set L−1
λ {∞}. Furthermore,

C−1
1 {∞} = {λ+ 1,∞}, C−1

2 {∞} = {λ− 1,∞}, C−1
3 {∞} = {1− λ,∞},

implying that the blocks containing the point z0 = ∞ of the corresponding imprimitivity

systems are

{0,∞}, {1,∞}, {λ,∞}. (23)

Since these blocks are different, decompositions (22) are not equivalent.
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Similarly, decompositions (14), where 	 runs over cyclic subgroups of order two,

are not equivalent, and in fact reduce to decompositions (14). Indeed, since any element

of the function field of Eλ has the form p(x)+q(x)y, where p and q are rational functions,

it follows fromπ(−z) = π(z) and degπ = 2 thatπ = μ◦x for some Möbius transformation

π . Thus, without loss of generality we may assume that π = x. Since π maps the unit

element of C to infinity, it follows from (20) that π is a bijection between points of order

two on C and the set L−1
λ {∞}, implying that the blocks containing z0 = ∞ corresponding

to decompositions (14) are exactly the sets listed in (23), that is the blocks corresponding

to decompositions (22). �

Notice that the images of the isogenies corresponding to left parts of decom-

positions (22) do not have Legendre form (21). Therefore, elementary transformations

corresponding to decompositions (22) are not equal to functions Lλ(z) but only conjugate

to such functions.

Corollary 4.1. Any elementary transformations of the function Lj, j ∈ C, has the form

Lj′ , j′ ∈ C, where values of j′ are defined by the condition �2( j, j′) = 0. �

Proof. Indeed, if Lλ = U ◦ V is a decomposition such that one of the functions U and

V is invertible, then the corresponding elementary transformation leads to a function

conjugate to Lλ. On the other hand, any decomposition of Lλ into a composition of rational

functions of degree greater than one is equivalent to one of decompositions (22). �

Clearly, Corollary 4.1 implies Theorem 1.2. Furthermore, since the modular

equation �2(x,y) = 0 is given by the equation

− x2y2 + x3 + y3 + 24 · 3 · 31xy(x + y)+ 34 · 53 · 4027xy

− 24 · 34 · 53(x2 + y2)+ 28 · 37 · 56(x + y)− 212 · 39 · 59 = 0 (24)

and can be parametrized by the rational functions

x = 64
(j + 4)3

j2
, y = 64

(j + 4)3

j2
◦ 1

j
,

the correspondence F associated with (24) has form (3).
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