ON POLYNOMIALS ORTHOGONAL TO ALL POWERS OF A CHEBYSHEV POLYNOMIAL ON A SEGMENT

BY
F. Pakovich
Department of Mathematics, Ben Gurion University
P.O.B. 653, Beer-Sheva 84105, Israel
e-mail: pakovich@cs.bgu.ac.il

ABSTRACT
In this paper we describe polynomials orthogonal to all powers of a Chebyshev polynomial on a segment.

1. Introduction

In the recent series of papers [1]-[5] by M. Briskin, J.-P. Francoise and Y. Yomdin the following "polynomial moment problem" arose as an infinitesimal version of the center problem for the Abel differential equation in the complex domain: for a complex polynomial $P(z)$ and distinct $a, b \in \mathbb{C}$ to describe polynomials $q(z)$ such that

$$
\begin{equation*}
\int_{a}^{b} P^{i}(z) q(z) \mathrm{d} z=0 \quad \text { for all integers } i \geq 0 . \tag{1}
\end{equation*}
$$

The following "composition condition" imposed on $P(z)$ and $Q(z)=\int q(z) \mathrm{d} z$ is sufficient for polynomials $P(z), q(z)$ to satisfy (1): there exist polynomials $\tilde{P}(z), \tilde{Q}(z), W(z)$ such that

$$
\begin{equation*}
P(z)=\tilde{P}(W(z)), \quad Q(z)=\tilde{Q}(W(z)) \quad \text { and } \quad W(a)=W(b) . \tag{2}
\end{equation*}
$$

Indeed, the sufficiency of condition (2) is a direct corollary of the Cauchy theorem, since after the change of variable $z \rightarrow W(z)$ the new way of integration
is closed. It was suggested in the papers cited above ("the composition conjecture") that, under an additional assumption that $P(a)=P(b)$, condition (1) is actually equivalent to condition (2). This conjecture was verified in several special cases. In particular, when a, b are not critical points of $P(z)([6])$, when $P(z)$ is indecomposable ([8]), and in some other special cases ([1]-[5], [11], [9]). Nevertheless, in general the composition conjecture is not true.

A class of counterexamples to the composition conjecture was constructed in [7]. The simplest of them has the following form:

$$
P(z)=T_{6}(z), \quad q(z)=T_{3}^{\prime}(z)+T_{2}^{\prime}(z), \quad a=-\sqrt{3} / 2, \quad b=\sqrt{3} / 2
$$

where $T_{n}(z)=\cos (n \arccos z)$ is the n-th Chebyshev polynomial. Indeed, since $T_{2}(\sqrt{3} / 2)=T_{2}(-\sqrt{3} / 2)$ it follows from the equality $T_{6}(z)=T_{3}\left(T_{2}(z)\right)$ that (1) is satisfied for $P(z)=T_{6}(z)$ and $q_{1}(z)=T_{2}^{\prime}(z)$. Similarly, from $T_{6}(z)=$ $T_{2}\left(T_{3}(z)\right)$ and $T_{3}(\sqrt{3} / 2)=T_{3}(-\sqrt{3} / 2)$ one concludes that (1) holds for $P(z)=$ $T_{6}(z)$ and $q_{2}(z)=T_{3}^{\prime}(z)$. Therefore, by linearity, condition (1) is satisfied also for $P(z)=T_{6}(z)$ and $q(z)=q_{1}(z)+q_{2}(z)$. Nevertheless, for $P(z)=T_{6}(z)$ and $Q(z)=T_{3}(z)+T_{2}(z)$ condition (2) does not hold.

More generally, it was shown in [7] that any polynomial "double decomposition" $A(B(z))=C(D(z))$ such that $B(a)=B(b), D(a)=D(b)$ supplies counterexamples to the composition conjecture whenever $\operatorname{deg} B(z), \operatorname{deg} D(z)$ are coprime. Note that double decompositions with $\operatorname{deg} A(z)=\operatorname{deg} D(z)$, $\operatorname{deg} B(z)=\operatorname{deg} C(z)$ and $\operatorname{deg} B(z), \operatorname{deg} D(z)$ coprime are described explicitly by Ritt's theory of factorization of polynomials. They are equivalent either to decompositions with $A(z)=z^{n} R^{m}(z), B(z)=z^{m}, C(z)=z^{m}, D(z)=z^{n} R\left(z^{m}\right)$ for a polynomial $R(z)$ and $(n, m)=1$ or to decompositions with $A(z)=T_{m}(z)$, $B(z)=T_{n}(z), C(z)=T_{n}(z), D(z)=T_{m}(z)$ for Chebyshev polynomials $T_{n}(z)$, $T_{m}(z)$ and $(n, m)=1$ (see [10], [12]).

In this paper we give a solution of the polynomial moment problem (1) in the case when $P(z)$ is a Chebyshev polynomial $T_{n}(z)$. Denote by $V\left(T_{n}, a, b\right)$ the vector space over \mathbb{C} consisting of complex polynomials $q(z)$ satisfying (1) for $P(z)=T_{n}(z)$. Note that any polynomial $T_{m}^{\prime}(z)$ such that $T_{d}(a)=T_{d}(b)$ for $d=\operatorname{GCD}(n, m)$ is contained in $V\left(T_{n}, a, b\right)$ since $T_{n}(z)=T_{n / d}\left(T_{d}(z)\right)$ and $T_{m}(z)=T_{m / d}\left(T_{d}(z)\right)$.
Theorem 1: For any $n \in \mathbb{N}$ and $a, b \in \mathbb{C}$, polynomials $T_{m}^{\prime}(z)$ such that $T_{d}(a)=$ $T_{d}(b)$ for $d=\operatorname{GCD}(n, m)$ form a basis of $V\left(T_{n}, a, b\right)$.

For instance, it follows from the theorem that if a polynomial $q(z)$ is orthogonal to all powers of $T_{6}(z)$ on $[-\sqrt{3} / 2, \sqrt{3} / 2]$, then $\int q(z) \mathrm{d} z$ can be uniquely
represented as a finite sum

$$
\int q(z) \mathrm{d} z=\sum_{k} a_{k} T_{6 k}(z)+\sum_{k} b_{k} T_{6 k+2}(z)+\sum_{k} c_{k} T_{6 k+3}(z)+\sum_{k} d_{k} T_{6 k+4}(z)
$$

for some $a_{k}, b_{k}, c_{k}, d_{k} \in \mathbb{C}$.
Theorem 1 implies the following corollary.
Corollary: Non-zero polynomials orthogonal to all integer non-negative powers of $T_{n}(z)$ on $[a, b]$ exist if and only if $T_{n}(a)=T_{n}(b)$.

Indeed, for $d \mid n$ condition $T_{d}(a)=T_{d}(b)$ implies that $T_{n}(a)=T_{n}(b)$ since $T_{n}(z)=T_{n / d}\left(T_{d}(z)\right)$. On the other hand, if $T_{n}(a)=T_{n}(b)$ then for any $R(z) \in$ $\mathbb{C}[z]$ the polynomial $R\left(T_{n}(z)\right) T_{n}^{\prime}(z)$ is contained in $V\left(T_{n}, a, b\right)$ by (2).
Furthermore, Theorem 1 implies that if $q(z) \in V\left(T_{n}, a, b\right)$ then $\int q(z) \mathrm{d} z$ can be represented as a sum of polynomials Q_{j} such that condition (2) holds for $P(z)=T_{n}(z), Q(z)=Q_{j}(z)$. We show that actually the number of terms in such a representation can be reduced to two.

Theorem 2: For any $q(z) \in V\left(T_{n}, a, b\right)$ there exist divisors d_{1}, d_{2} of n such that $\int q(z) \mathrm{d} z=A\left(T_{d_{1}}(z)\right)+B\left(T_{d_{2}}(z)\right)$ for some $A(z), B(z) \in \mathbb{C}[z]$ and the equalities $T_{d_{1}}(a)=T_{d_{1}}(b), T_{d_{2}}(a)=T_{d_{2}}(b)$ hold.

For instance, if a polynomial $q(z)$ is orthogonal to all powers of $T_{6}(z)$ on $[-\sqrt{3} / 2, \sqrt{3} / 2]$ then $\int q(z) \mathrm{d} z=A\left(T_{3}(z)\right)+B\left(T_{2}(z)\right)$ for some $A(z), B(z) \in \mathbb{C}[z]$. Note that such a representation in general is not unique, in contrast to the one provided by Theorem 1.

2. Proofs

2.1 Reduction. First of all, we establish that Theorem 1 can be reduced to the following statement: if $q(z)=Q^{\prime}(z)$ is contained in $V\left(T_{n}, a, b\right)$, then

$$
\begin{equation*}
T_{d}(a)=T_{d}(b) \quad \text { for } d=\operatorname{GCD}(n, \operatorname{deg} Q) . \tag{3}
\end{equation*}
$$

In particular, $d>1$.
Indeed, assuming that this statement is true the theorem can be deduced as follows. For $q(z) \in V\left(T_{n}, a, b\right)$, set $m_{0}=\operatorname{deg} Q(z)$ and define $c_{0} \in \mathbb{C}$ by the condition that the degree of $Q_{1}(z)=Q(z)-c_{0} T_{m_{0}}(z)$ is strictly less than m_{0}. Since for $d_{0}=\operatorname{GCD}\left(n, m_{0}\right)$ the equalities

$$
T_{n}(z)=T_{n / d_{0}}\left(T_{d_{0}}(z)\right), \quad T_{m_{0}}(z)=T_{m_{0} / d_{0}}\left(T_{d_{0}}(z)\right)
$$

hold, it follows from $T_{d_{0}}(a)=T_{d_{0}}(b)$ that $T_{m_{0}}^{\prime}(z) \in V\left(T_{n}, a, b\right)$. Therefore, by linearity, $Q_{1}^{\prime}(z) \in V\left(T_{n}, a, b\right)$. If $\operatorname{deg} Q_{1}(z)=m_{1}$ then, similarly, for some $c_{m_{1}} \in \mathbb{C}$ we have $Q_{1}(z)=c_{m_{1}} T_{m_{1}}(z)+Q_{2}(z)$, where $Q_{2}^{\prime}(z) \in V\left(T_{n}, a, b\right)$ and $\operatorname{deg} Q_{2}(z)<m_{1}$.

Continuing in the same way and observing that $m_{i+1}<m_{i}$ we eventually arrive at the representation

$$
\int q(z) \mathrm{d} z=\sum_{i=0}^{k} c_{i} T_{m_{i}}(z), \quad c_{i} \in \mathbb{C}
$$

such that $T_{d_{i}}(a)=T_{d_{i}}(b)$ for $d_{i}=\operatorname{GCD}\left(n, m_{i}\right)$. Since polynomials of different degrees are linearly independent over \mathbb{C}, we conclude that the polynomials $T_{m}^{\prime}(z)$ such that $T_{d}(a)=T_{d}(b)$ for $d=\operatorname{GCD}(n, m)$ form a basis of the vector space $V\left(T_{n}, a, b\right)$.
2.2 Proof of Theorem 1 for non-singular a, b. By 2.1 it is enough to show that condition (1) with $P(z)=T_{n}(z), q(z)=Q^{\prime}(z)$ implies condition (3). On the other hand, it is known (see [6] or [9]) that for any polynomial $P(z)$ such that a, b are not critical points of $P(z)$, conditions (1) and (2) are equivalent. Therefore, it is enough to prove that (2) with $P(z)=T_{n}(z)$ implies (3).

Suppose now that (2) holds and set $w=\operatorname{deg} W(z)$. Since by Engstrom's theorem (see, e.g., [12], Th. 5) for any double decomposition $A(B(z))=C(D(z))$ we have

$$
[\mathbb{C}(B, D): \mathbb{C}(D)]=\operatorname{deg} D / \mathrm{GCD}(\operatorname{deg} B, \operatorname{deg} D)
$$

it follows from the equality

$$
T_{n}(z)=\tilde{P}(W(z))=T_{n / w}\left(T_{w}(z)\right)
$$

that $\mathbb{C}(W)=\mathbb{C}\left(T_{w}\right)$. Therefore, since $W(z), T_{w}(z)$ are polynomials, there exists a linear function $\sigma(z)$ such that $W(z)=\sigma\left(T_{w}(z)\right)$ and, hence, $W(a)=W(b)$ yields $T_{w}(a)=T_{w}(b)$. Since w is a divisor of $d=\operatorname{GCD}(n, \operatorname{deg} Q)$ the decomposition $T_{d}(z)=T_{d / w}\left(T_{w}(z)\right)$ holds and, therefore, $T_{w}(a)=T_{w}(b)$ implies $T_{d}(a)=T_{d}(b)$.
2.3 NECESSARY CONDITION FOR $P(z), q(z)$ To SATISFY (1). To investigate the case when at least one of the points a, b is a critical point of $T_{n}(z)$, we will use a condition, obtained for the case when $P(a)=P(b)$ in [8] and in a general case in [9], which is necessary for polynomials $P(z), q(z)$ to satisfy (1). To formulate this condition let us introduce the following notation. Say that a domain $U \subset \mathbb{C}$ is admissible with respect to the polynomial $P(z)$ if U is simply
connected and contains no critical values of $P(z)$. By the monodromy theorem, in such a domain there exist $n=\operatorname{deg} P(z)$ single-valued branches of $P^{-1}(z)$. Let $U_{P(a)}$ (resp. $U_{P(b)}$) be an admissible domain such that its boundary contains the point $P(a)$ (resp. $P(b)$). Denote by $p_{u_{1}}^{-1}(z), p_{u_{2}}^{-1}(z), \ldots, p_{u_{d_{a}}}^{-1}(z)$ (resp. $p_{v_{1}}^{-1}(z)$, $\left.p_{v_{2}}^{-1}(z), \ldots, p_{v_{d_{b}}}^{-1}(z)\right)$ the branches of $P^{-1}(z)$ defined in $U_{P(a)}$ (resp. $U_{P(b)}$) which map points close to $P(a)$ (resp. $P(b)$) to points close to a (resp. b). In particular, the number d_{a} (resp. d_{b}) equals the multiplicity of the point a (resp. b) with respect to $P(z)$.

In the above notation a necessary condition for $P(z), q(z)$ to satisfy (1) has the following form: if polynomials $P(z), q(z)=Q^{\prime}(z)$ satisfy (1) and $P(a)=$ $P(b)=z_{0}$, then in any admissible domain $U_{z_{0}}$ the equality

$$
\begin{equation*}
\frac{1}{d_{a}} \sum_{s=1}^{d_{a}} Q\left(p_{u_{s}}^{-1}(z)\right)=\frac{1}{d_{b}} \sum_{s=1}^{d_{b}} Q\left(p_{v_{s}}^{-1}(z)\right) \tag{4}
\end{equation*}
$$

holds. Furthermore, if $P(a) \neq P(b)$ then for any admissible domains $U_{P(a)}$, $U_{P(a)}$ we have

$$
\frac{1}{d_{a}} \sum_{s=1}^{d_{a}} Q\left(p_{u_{s}}^{-1}(z)\right)=0 \text { in } U_{P(a)}, \quad \frac{1}{d_{b}} \sum_{s=1}^{d_{b}} Q\left(p_{v_{s}}^{-1}(z)\right)=0 \text { in } U_{P(b)}
$$

Here $Q(z)=\int q(z) \mathrm{d} z$ is chosen in such a way that $Q(a)=Q(b)=0$.
More precisely, conditions (4), (4) hold whenever the function

$$
H(t)=\int_{a}^{b} \frac{Q(z) P^{\prime}(z) d z}{t-P(z)}
$$

is algebraic near infinity; this is a corollary of general properties of the Cauchy type integrals of algebraic functions (see [9], section 3). On the other hand, using the integration by parts we have:

$$
\frac{d H(t)}{d t}=-\int_{a}^{b} \frac{Q(z) P^{\prime}(z) d z}{(t-P(z))^{2}}=\frac{Q(a)}{t-P(a)}-\frac{Q(b)}{t-P(b)}+\tilde{H}(t)
$$

where

$$
\tilde{H}(t)=\int_{a}^{b} \frac{q(z) d z}{t-P(z)}
$$

Hence, since condition (1) is equivalent to the requirement that $\tilde{H}(t) \equiv 0$ near infinity, it follows from $Q(a)=Q(b)=0$ that $H(t)$ is algebraic. Therefore, conditions (4), (4') hold.
2.4 Monodromy of $T_{n}(z)$. To make conditions (4), (4') useful we must examine the monodromy group of $T_{n}(z)$. It follows from $T_{n}(\cos \phi)=\cos (n \phi)$, $n \geq 1$, that finite critical values of polynomial $T_{n}(z)$ are ± 1 and that preimages of the points ± 1 are points $\cos (\pi j / n), j=0,1, \ldots, n$. To visualize the monodromy group of $T_{n}(z)$ consider the preimage $P^{-1}[-1,1]$ of the segment $[-1,1]$ under the map $P(z): \mathbb{C} \rightarrow \mathbb{C}$. It is convenient to consider $P^{-1}[-1,1]$ as a bicolored graph λ embedded into the Riemann sphere. By definition, white (resp. black) vertices of λ are preimages of the point 1 (resp. -1) and edges of λ are preimages of the interval $(-1,1)$. Since the multiplicity of each critical point of $T_{n}(z)$ equals 2 , the graph λ is a "chain-tree" and, as a point set in \mathbb{C}, coincides with the segment $[-1,1]$ (see Figure 1). In particular, non-critical points $-1,1$ are vertices of valence 1 ; the vertex 1 is white while the vertex -1 is white or black depending on the parity of n.

Figure 1

Let us fix an admissible with respect to $T_{n}(z)$ domain U such that U is unbounded and contains the interval $(-1,1)$. Any branch $T_{n, j}^{-1}(z), 0 \leq j \leq n-1$, of $T_{n}^{-1}(z)$ in U maps the interval $(-1,1)$ onto an edge of λ and we will label such an edge by the symbol l_{j} (an explicit numeration of the branches of $T_{n}^{-1}(z)$ will be defined later). Denote by $\pi_{1} \in S_{n}$ (resp. $\pi_{-1}, \pi_{\infty} \in S_{n}$) the permutation defined by the condition that the analytic continuation of the functional element $\left\{U, T_{n, j}^{-1}(z)\right\}, 0 \leq j \leq n-1$, along a clockwise oriented loop around 1 (resp. $-1, \infty$) is the functional element $\left\{U, T_{n, \pi_{1}(j)}^{-1}(z)\right\}$ (resp. $\left\{U, T_{n, \pi_{-1}(j)}^{-1}(z)\right\}$, $\left.\left\{U, T_{n, \pi_{\infty}(j)}^{-1}(z)\right\}\right)$. The tree λ represents the monodromy group of $T_{n}^{-1}(z)$ in the following sense: the edges of λ are identified with branches of $T_{n}^{-1}(z)$ and the permutation π_{1} (resp. π_{-1}) is identified with the permutation arising under clockwise rotation of edges of λ around white (resp. black) vertices.* In order to fix a convenient numeration of branches of $T_{n}^{-1}(z)$ in U, consider an auxiliary domain $U_{\infty}=U \cap B$, where B is a disc with the center at the infinity such that

[^0]branches of $T_{n}^{-1}(z)$ can be represented in B by their Puiseux expansions at infinity. In more detail, if $z^{1 / n}$ denotes a fixed branch of the algebraic function which is inverse to z^{n} in U_{∞}, then each branch of $T_{n}^{-1}(z)$ can be represented in U_{∞} by the convergent series
\[

$$
\begin{equation*}
\phi_{j}(z)=\sum_{k=-\infty}^{1} t_{k} \varepsilon_{n}^{j k} z^{k / n}, \quad t_{k} \in \mathbb{C}, \quad \varepsilon_{n}=\exp (2 \pi i / n) \tag{5}
\end{equation*}
$$

\]

for certain $j, 0 \leq j \leq n-1$.
Now we fix a numeration of branches of $T_{n}^{-1}(z)$ in U as follows: the branch $T_{n, j}^{-1}(z), 0 \leq j \leq n-1$, is the analytic continuation of $\phi_{j}(z)$ from U_{∞} to U and the branch $z^{1 / n}$ is defined by the condition that $T_{n, 0}^{-1}(z)$ maps the interval $(-1,1)$ onto the interval $(\cos (\pi / n), 1)$. Since the result of the analytic continuation of the functional element $\left\{U_{\infty}, \varepsilon_{n}^{j} z^{1 / n}\right\}, 0 \leq j \leq n-1$, along a clockwise oriented loop around ∞ is the functional element $\left\{U_{\infty}, \varepsilon_{n}^{j+1} z^{1 / n}\right\}$, such a choice of the numeration implies that $\pi_{\infty}=(012 \ldots n-1)$. Furthermore, it follows from $\pi_{\infty} \pi_{-1} \pi_{1}=1$, taking into account the combinatorics of λ, that the numeration of edges of λ coincides with the one indicated on Figure 1 that is $\pi_{-1}=$ $(0 n-1)(1 n-2)(2 n-3) \ldots$ and $\pi_{1}=(1 n-1)(2 n-2)(3 n-3) \ldots$.
2.5 Proof of Theorem 1 for singular a, b. Again, it is enough to establish that (3) holds. Assume first that $T_{n}(a)=T_{n}(b)$. Let $Q^{\prime}(z) \in V\left(T_{n}, a, b\right)$ with $\operatorname{deg} Q(z)=m$. Since at least one of points a, b is a critical point of $T_{n}(z)$, the number $z_{0}=T_{n}(a)=T_{n}(b)$ equals ± 1. Suppose first that $z_{0}=1$. Then $a=\cos \left(2 j_{1} \pi / n\right), b=\cos \left(2 j_{2} \pi / n\right)$ for certain $j_{1}, j_{2}, 0 \leq j_{1}, j_{2} \leq[n / 2]$, and condition (4) has the following form:

$$
\begin{equation*}
Q\left(T_{n, j_{1}}^{-1}(z)\right)+Q\left(T_{n, n-j_{1}}^{-1}(z)\right)=Q\left(T_{n, j_{2}}^{-1}(z)\right)+Q\left(T_{n, n-j_{2}}^{-1}(z)\right) \tag{6}
\end{equation*}
$$

where $T_{n, i}^{-1}(z)$ is represented in U_{∞} by series (5). Since $t_{1} \neq 0$, the comparison of the leading coefficients of the Puiseux expansions of the branches in (6) gives

$$
\varepsilon_{n}^{j_{1} m}+\varepsilon_{n}^{\left(n-j_{1}\right) m}=\varepsilon_{n}^{j_{2} m}+\varepsilon_{n}^{\left(n-j_{2}\right) m} .
$$

Therefore, the number $\varepsilon_{n}^{m / d}$, where $d=\operatorname{GCD}(n, m)$, is a root of the polynomial with integer coefficients

$$
f(z)=z^{j_{1} d}+z^{\left(n-j_{1}\right) d}-z^{j_{2} d}-z^{\left(n-j_{2}\right) d} .
$$

Since $\varepsilon_{n}^{m / d}$ is a primitive n-th root of unity and the n-th cyclotomic polynomial $\Phi_{n}(z)$ is irreducible over \mathbb{Z}, this fact implies that $\Phi_{n}(z)$ divides $f(z)$ in the ring
$\mathbb{Z}[z]$ and, therefore, that the primitive n-th root of unity ε_{n} also is a root of $f(z)$. Hence,

$$
\varepsilon_{n}^{j_{1} d}+\varepsilon_{n}^{-j_{1} d}=\varepsilon_{n}^{j_{2} d}+\varepsilon_{n}^{-j_{2} d} .
$$

Since

$$
a=\cos \left(2 j_{1} \pi / n\right)=\frac{1}{2}\left(\varepsilon_{n}^{j_{1}}+\varepsilon_{n}^{-j_{1}}\right), \quad b=\cos \left(2 j_{2} \pi / n\right)=\frac{1}{2}\left(\varepsilon_{n}^{j_{2}}+\varepsilon_{n}^{-j_{2}}\right),
$$

it follows now from

$$
\begin{equation*}
T_{d}\left(\frac{1}{2}\left(z+\frac{1}{z}\right)\right)=\frac{1}{2}\left(z^{d}+\frac{1}{z^{d}}\right) \tag{7}
\end{equation*}
$$

that $T_{d}(a)=T_{d}(b)$.
Similarly, if $z_{0}=-1$, assuming that

$$
a=\cos \left(\left(2 j_{1}+1\right) \pi / n\right), \quad b=\cos \left(\left(2 j_{2}+1\right) \pi / n\right)
$$

for certain $j_{1}, j_{2}, 0 \leq j_{1}, j_{2} \leq[(n-1) / 2]$, we obtain the equality

$$
T_{n, j_{1}}(z)+T_{n, n-j_{1}-1}(z)=T_{n, j_{2}}(z)+T_{n, n-j_{2}-1}(z),
$$

which implies

$$
\varepsilon_{n}^{j_{1} m}+\varepsilon_{n}^{\left(n-j_{1}-1\right) m}=\varepsilon_{n}^{j_{2} m}+\varepsilon_{n}^{\left(n-j_{2}-1\right) m}
$$

and

$$
\varepsilon_{n}^{j_{1} d}+\varepsilon_{n}^{-\left(j_{1}+1\right) d}=\varepsilon_{n}^{j_{2} d}+\varepsilon_{n}^{-\left(j_{2}+1\right) d} .
$$

It yields that

$$
\varepsilon_{2 n}^{2 j_{1} d}+\varepsilon_{2 n}^{-2\left(j_{1}+1\right) d}=\varepsilon_{2 n}^{2 j_{2} d}+\varepsilon_{2 n}^{-2\left(j_{2}+1\right) d},
$$

where $\varepsilon_{2 n}=\exp (2 \pi i / 2 n)$, and, multiplying the last equality by $\varepsilon_{2 n}^{d}$, we get

$$
\varepsilon_{2 n}^{\left(2 j_{1}+1\right) d}+\varepsilon_{2 n}^{-\left(2 j_{1}+1\right) d}=\varepsilon_{2 n}^{\left(2 j_{2}+1\right) d}+\varepsilon_{2 n}^{-\left(2 j_{2}+1\right) d} .
$$

Since

$$
a=\frac{1}{2}\left(\varepsilon_{2 n}^{2 j_{1}+1}+\varepsilon_{2 n}^{-\left(2 j_{1}+1\right)}\right), \quad b=\frac{1}{2}\left(\varepsilon_{2 n}^{2 j_{2}+1}+\varepsilon_{2 n}^{-\left(2 j_{2}+1\right)}\right),
$$

we conclude as above that $T_{d}(a)=T_{d}(b)$.
Let us prove now that $T_{n}(a)$ must be equal to $T_{n}(b)$. Indeed, equalities (4^{\prime}) could hold only if $d_{a}>1, d_{b}>1$, that is only if both a, b are critical points of $P(z)$. Since $T_{n}(z)$ has only two critical values ± 1, we see that if $T_{n}(a) \neq T_{n}(b)$ then either $T_{n}(a)=1, T_{n}(b)=-1$ or $T_{n}(a)=-1, T_{n}(b)=1$. Let, say, $T_{n}(a)=1, T_{n}(b)=-1$. Then $a=\cos \left(2 j_{1} \pi / n\right), b=\cos \left(\left(2 j_{2}+1\right) \pi / n\right)$ and $\left(4^{\prime}\right)$ imply

$$
\varepsilon_{n}^{j_{1} m}+\varepsilon_{n}^{\left(n-j_{1}\right) m}=0, \quad \varepsilon_{n}^{j_{2} m}+\varepsilon_{n}^{\left(n-j_{2}-1\right) m}=0
$$

The analysis of these equalities similar to the above one leads to the equalities $T_{d}(a)=0, T_{d}(b)=0$. Since $T_{n}(z)=T_{n / d}\left(T_{d}(z)\right)$ it contradicts $T_{n}(a) \neq T_{n}(b)$.
2.6 Lemma about values of Chebyshev polynomials. In this subsection we prove the following lemma. Let $a, b \in \mathbb{C}$ and $p_{1}, p_{2}, p_{3} \in \mathbb{N}$. Suppose that

$$
\begin{equation*}
T_{p_{1}}(a)=T_{p_{2}}(b), \quad T_{p_{2}}(a)=T_{p_{2}}(b), \quad T_{p_{3}}(a)=T_{p_{3}}(b) . \tag{8}
\end{equation*}
$$

Set $l_{1}=\operatorname{GCD}\left(p_{1}, p_{2}\right), l_{2}=\operatorname{GCD}\left(p_{1}, p_{3}\right), l_{3}=\operatorname{GCD}\left(p_{2}, p_{3}\right)$. Then $T_{l_{i}}(a)=$ $T_{l_{i}}(b)$ at least for one $i, 1 \leq i \leq 3$.

Choose $\alpha, \beta \in \mathbb{C}$ such that $\cos \alpha=a, \cos \beta=b$. Since $T_{n}(\cos \phi)=\cos (n \phi)$, equalities (8) imply that

$$
\begin{equation*}
p_{1} \alpha=\mu_{1} p_{1} \beta+2 \pi g_{1}, \quad p_{2} \alpha=\mu_{2} p_{2} \beta+2 \pi g_{2}, \quad p_{3} \alpha=\mu_{3} p_{3} \beta+2 \pi g_{3} \tag{10}
\end{equation*}
$$

where $\mu_{1}, \mu_{2}, \mu_{3}= \pm 1$ and $g_{1}, g_{2}, g_{3} \in \mathbb{Z}$. Clearly, at least two numbers from the set $\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}$ are equal between themselves. To be definite suppose that $\mu_{1}=\mu_{2}$. Choose $u, v \in \mathbb{Z}$ such that $u p_{1}+v p_{2}=l_{1}$. Adding to the first equation in (10) multiplied by u the second one multiplied by v, we see that $l_{1} \alpha=\mu_{1} l_{1} \beta+2 \pi g$, where $g \in \mathbb{Z}$. It implies that $\cos l_{1} \alpha=\cos l_{1} \beta$ and, therefore, $T_{l_{1}}(a)=T_{l_{1}}(b)$.
2.7 Proof of Theorem 2. Suppose $q(z) \in V\left(T_{n}, a, b\right)$. Then, by Theorem $1, \int q(z) \mathrm{d} z$ can be represented as a sum

$$
\int q(z) \mathrm{d} z=\sum_{i=0}^{k} c_{i} T_{m_{i}}(z), \quad c_{i} \in \mathbb{C}
$$

where $T_{d_{i}}(a)=T_{d_{i}}(b)$ for $d_{i}=\operatorname{GCD}\left(n, m_{i}\right), 0 \leq i \leq k$. We will prove the corollary by induction on k. Since $T_{m_{i}}(z)=T_{m_{i} / d_{i}}\left(T_{d_{i}}(z)\right)$ and $T_{d_{i}}(a)=T_{d_{i}}(b)$, the corollary is true for $k=0,1$. Suppose now that $k>1$. By the inductive assumption there exist $r, s \in \mathbb{N}$ and $A(z), B(z) \in \mathbb{C}[z]$ such that

$$
\sum_{i=0}^{k-1} c_{i} T_{m_{i}}(z)=A\left(T_{r}(z)\right)+B\left(T_{s}(z)\right), \quad T_{r}(a)=T_{r}(b), \quad T_{s}(a)=T_{s}(b)
$$

Since $T_{m_{k}}(a)=T_{m_{k}}(b)$ it follows from lemma 2.6 that either $T_{d}(a)=T_{d}(b)$ for $d=\operatorname{GCD}(r, s)$ and

$$
\int q(z) \mathrm{d} z=C\left(T_{d}(z)\right)+c_{k} T_{m_{k}}(z) \quad \text { with } C(z)=A\left(T_{r / d}(z)\right)+B\left(T_{s / d}(z)\right)
$$

or $T_{e}(a)=T_{e}(b)$ for $e=\operatorname{GCD}\left(r, m_{k}\right)$ and

$$
\int q(z) \mathrm{d} z=E\left(T_{e}(z)\right)+B\left(T_{s}(z)\right) \quad \text { with } E(z)=A\left(T_{r / e}(z)\right)+c_{k} T_{m_{k} / e}(z)
$$

or $T_{f}(a)=T_{f}(b)$ for $f=\operatorname{GCD}\left(s, m_{k}\right)$ and

$$
\int q(z) \mathrm{d} z=A\left(T_{r}(z)\right)+F\left(T_{f}(z)\right) \quad \text { with } F(z)=B\left(T_{s / f}(z)\right)+c_{k} T_{m_{k} / f}(z)
$$

Acknowledgement: I am grateful to Y. Yomdin for interesting discussions.

References

[1] M. Briskin, J.-P. Francoise and Y. Yomdin, Une approche au problème du centrefoyer de Poincaré, Comptes Rendus de l'Académie des Sciences, Paris, Série I, Mathématique 326 (1998), 1295-1298.
[2] M. Briskin, J.-P. Francoise and Y. Yomdin, Center conditions, compositions of polynomials and moments on algebraic curve, Ergodic Theory and Dynamical Systems 19 (1999), 1201-1220.
[3] M. Briskin, J.-P. Francoise and Y. Yomdin, Center condition II: Parametric and model center problems, Israel Journal of Mathematics 118 (2000), 61-82.
[4] M. Briskin, J.-P. Francoise and Y. Yomdin, Center condition III: Parametric and model center problems, Israel Journal of Mathematics 118 (2000), 83-108.
[5] M. Briskin, J.-P. Francoise and Y. Yomdin, Generalized moments, center-focus conditions and compositions of polynomials, in Operator Theory, System Theory and Related Topics, Operator Theory: Advances and Applications 123 (2001), 161-185.
[6] C. Christopher, Abel equations: composition conjectures and the model problem, The Bulletin of the London Mathematical Society 32 (2000), 332-338.
[7] F. Pakovich, A counterexample to the composition conjecture, Proceedings of the American Mathematical Society 130 (2002), 3747-3749.
[8] F. Pakovich, On the polynomial moment problem, Mathematical Research Letters 10 (2003), 401-410.
[9] F. Pakovich, N. Roytvarf and Y. Yomdin, Cauchy type integrals of algebraic functions and a tangential center-focus problem for Abel equations, preprint, arxiv: math.CA/0312353.
[10] J. Ritt, Prime and composite polynomials, Transaction of the American Mathematical Society 23 (1922), 51-66.

Vol. 142, 2004ORTHOGONALITY TO POWERS OF A CHEBYSHEV POLYNOMIAL 283
[11] N. Roytvarf, Generalized moments, composition of polynomials and Bernstein classes, in Entire Functions in Modern Analysis. B. Ya. Levin Memorial Volume, Israel Mathematical Conference Proceedings 15 (2001), 339-355.
[12] A. Schinzel, Polynomials with special regard to reducibility, in Encyclopedia of Mathematics and its Applications 77, Cambridge University Press, 2000.
[13] L. Shneps (ed.), The Grothendieck Theory of Dessins D'enfants, London Mathematical Society Lecture Notes Series, Vol. 200, Cambridge University Press, 1994.

[^0]: * Note that any polynomial with two finite critical values can be represented by an appropriate bicolored plane tree and vice versa; it is a very particular case of the Grothendieck correspondence between Belyi functions and graphs embedded into compact Riemann surfaces (see, e.g., [13]).

