ISRAEL JOURNAL OF MATHEMATICS 142 (2004), 273-283

ON POLYNOMIALS ORTHOGONAL TO ALL POWERS OF A CHEBYSHEV POLYNOMIAL ON A SEGMENT

ΒY

F. PAKOVICH

Department of Mathematics, Ben Gurion University P.O.B. 653, Beer-Sheva 84105, Israel e-mail: pakovich@cs.bgu.ac.il

ABSTRACT

In this paper we describe polynomials orthogonal to all powers of a Chebyshev polynomial on a segment.

1. Introduction

In the recent series of papers [1]–[5] by M. Briskin, J.-P. Francoise and Y. Yomdin the following "polynomial moment problem" arose as an infinitesimal version of the center problem for the Abel differential equation in the complex domain: for a complex polynomial P(z) and distinct $a, b \in \mathbb{C}$ to describe polynomials q(z) such that

(1)
$$\int_{a}^{b} P^{i}(z)q(z)dz = 0 \quad for \ all \ integers \ i \ge 0.$$

The following "composition condition" imposed on P(z) and $Q(z) = \int q(z)dz$ is sufficient for polynomials P(z), q(z) to satisfy (1): there exist polynomials $\tilde{P}(z), \tilde{Q}(z), W(z)$ such that

(2)
$$P(z) = \tilde{P}(W(z)), \quad Q(z) = \tilde{Q}(W(z)) \quad and \quad W(a) = W(b).$$

Indeed, the sufficiency of condition (2) is a direct corollary of the Cauchy theorem, since after the change of variable $z \to W(z)$ the new way of integration

Received December 19, 2002

F. PAKOVICH

is closed. It was suggested in the papers cited above ("the composition conjecture") that, under an additional assumption that P(a) = P(b), condition (1) is actually equivalent to condition (2). This conjecture was verified in several special cases. In particular, when a, b are not critical points of P(z) ([6]), when P(z) is indecomposable ([8]), and in some other special cases ([1]–[5], [11], [9]). Nevertheless, in general the composition conjecture is not true.

A class of counterexamples to the composition conjecture was constructed in [7]. The simplest of them has the following form:

$$P(z) = T_6(z), \quad q(z) = T'_3(z) + T'_2(z), \quad a = -\sqrt{3}/2, \quad b = \sqrt{3}/2$$

where $T_n(z) = \cos(n \arccos z)$ is the *n*-th Chebyshev polynomial. Indeed, since $T_2(\sqrt{3}/2) = T_2(-\sqrt{3}/2)$ it follows from the equality $T_6(z) = T_3(T_2(z))$ that (1) is satisfied for $P(z) = T_6(z)$ and $q_1(z) = T'_2(z)$. Similarly, from $T_6(z) = T_2(T_3(z))$ and $T_3(\sqrt{3}/2) = T_3(-\sqrt{3}/2)$ one concludes that (1) holds for $P(z) = T_6(z)$ and $q_2(z) = T'_3(z)$. Therefore, by linearity, condition (1) is satisfied also for $P(z) = T_6(z)$ and $q(z) = q_1(z) + q_2(z)$. Nevertheless, for $P(z) = T_6(z)$ and $Q(z) = T_3(z) + T_2(z)$ condition (2) does not hold.

More generally, it was shown in [7] that any polynomial "double decomposition" A(B(z)) = C(D(z)) such that B(a) = B(b), D(a) = D(b) supplies counterexamples to the composition conjecture whenever deg B(z), deg D(z)are coprime. Note that double decompositions with deg $A(z) = \deg D(z)$, deg $B(z) = \deg C(z)$ and deg B(z), deg D(z) coprime are described explicitly by Ritt's theory of factorization of polynomials. They are equivalent either to decompositions with $A(z) = z^n R^m(z)$, $B(z) = z^m$, $C(z) = z^m$, $D(z) = z^n R(z^m)$ for a polynomial R(z) and (n,m) = 1 or to decompositions with $A(z) = T_m(z)$, $B(z) = T_n(z)$, $C(z) = T_n(z)$, $D(z) = T_m(z)$ for Chebyshev polynomials $T_n(z)$, $T_m(z)$ and (n,m) = 1 (see [10], [12]).

In this paper we give a solution of the polynomial moment problem (1) in the case when P(z) is a Chebyshev polynomial $T_n(z)$. Denote by $V(T_n, a, b)$ the vector space over \mathbb{C} consisting of complex polynomials q(z) satisfying (1) for $P(z) = T_n(z)$. Note that any polynomial $T'_m(z)$ such that $T_d(a) = T_d(b)$ for $d = \operatorname{GCD}(n,m)$ is contained in $V(T_n, a, b)$ since $T_n(z) = T_{n/d}(T_d(z))$ and $T_m(z) = T_{m/d}(T_d(z))$.

THEOREM 1: For any $n \in \mathbb{N}$ and $a, b \in \mathbb{C}$, polynomials $T'_m(z)$ such that $T_d(a) = T_d(b)$ for d = GCD(n,m) form a basis of $V(T_n, a, b)$.

For instance, it follows from the theorem that if a polynomial q(z) is orthogonal to all powers of $T_6(z)$ on $[-\sqrt{3}/2, \sqrt{3}/2]$, then $\int q(z)dz$ can be uniquely represented as a finite sum

$$\int q(z)dz = \sum_{k} a_{k}T_{6k}(z) + \sum_{k} b_{k}T_{6k+2}(z) + \sum_{k} c_{k}T_{6k+3}(z) + \sum_{k} d_{k}T_{6k+4}(z)$$

for some $a_k, b_k, c_k, d_k \in \mathbb{C}$.

Theorem 1 implies the following corollary.

COROLLARY: Non-zero polynomials orthogonal to all integer non-negative powers of $T_n(z)$ on [a, b] exist if and only if $T_n(a) = T_n(b)$.

Indeed, for d|n condition $T_d(a) = T_d(b)$ implies that $T_n(a) = T_n(b)$ since $T_n(z) = T_{n/d}(T_d(z))$. On the other hand, if $T_n(a) = T_n(b)$ then for any $R(z) \in \mathbb{C}[z]$ the polynomial $R(T_n(z))T'_n(z)$ is contained in $V(T_n, a, b)$ by (2).

Furthermore, Theorem 1 implies that if $q(z) \in V(T_n, a, b)$ then $\int q(z)dz$ can be represented as a *sum* of polynomials Q_j such that condition (2) holds for $P(z) = T_n(z), Q(z) = Q_j(z)$. We show that actually the number of terms in such a representation can be reduced to two.

THEOREM 2: For any $q(z) \in V(T_n, a, b)$ there exist divisors d_1, d_2 of n such that $\int q(z)dz = A(T_{d_1}(z)) + B(T_{d_2}(z))$ for some $A(z), B(z) \in \mathbb{C}[z]$ and the equalities $T_{d_1}(a) = T_{d_1}(b), T_{d_2}(a) = T_{d_2}(b)$ hold.

For instance, if a polynomial q(z) is orthogonal to all powers of $T_6(z)$ on $\left[-\sqrt{3}/2, \sqrt{3}/2\right]$ then $\int q(z)dz = A(T_3(z)) + B(T_2(z))$ for some $A(z), B(z) \in \mathbb{C}[z]$. Note that such a representation in general is not unique, in contrast to the one provided by Theorem 1.

2. Proofs

2.1 REDUCTION. First of all, we establish that Theorem 1 can be reduced to the following statement: if q(z) = Q'(z) is contained in $V(T_n, a, b)$, then

(3)
$$T_d(a) = T_d(b) \quad \text{for } d = \operatorname{GCD}(n, \deg Q).$$

In particular, d > 1.

Indeed, assuming that this statement is true the theorem can be deduced as follows. For $q(z) \in V(T_n, a, b)$, set $m_0 = \deg Q(z)$ and define $c_0 \in \mathbb{C}$ by the condition that the degree of $Q_1(z) = Q(z) - c_0 T_{m_0}(z)$ is strictly less than m_0 . Since for $d_0 = \operatorname{GCD}(n, m_0)$ the equalities

$$T_n(z) = T_{n/d_0}(T_{d_0}(z)), \quad T_{m_0}(z) = T_{m_0/d_0}(T_{d_0}(z))$$

F. PAKOVICH

hold, it follows from $T_{d_0}(a) = T_{d_0}(b)$ that $T'_{m_0}(z) \in V(T_n, a, b)$. Therefore, by linearity, $Q'_1(z) \in V(T_n, a, b)$. If deg $Q_1(z) = m_1$ then, similarly, for some $c_{m_1} \in \mathbb{C}$ we have $Q_1(z) = c_{m_1}T_{m_1}(z) + Q_2(z)$, where $Q'_2(z) \in V(T_n, a, b)$ and deg $Q_2(z) < m_1$.

Continuing in the same way and observing that $m_{i+1} < m_i$ we eventually arrive at the representation

$$\int q(z) \mathrm{d}z = \sum_{i=0}^{k} c_i T_{m_i}(z), \quad c_i \in \mathbb{C},$$

such that $T_{d_i}(a) = T_{d_i}(b)$ for $d_i = \text{GCD}(n, m_i)$. Since polynomials of different degrees are linearly independent over \mathbb{C} , we conclude that the polynomials $T'_m(z)$ such that $T_d(a) = T_d(b)$ for d = GCD(n, m) form a basis of the vector space $V(T_n, a, b)$.

2.2 PROOF OF THEOREM 1 FOR NON-SINGULAR a, b. By 2.1 it is enough to show that condition (1) with $P(z) = T_n(z)$, q(z) = Q'(z) implies condition (3). On the other hand, it is known (see [6] or [9]) that for any polynomial P(z) such that a, b are not critical points of P(z), conditions (1) and (2) are equivalent. Therefore, it is enough to prove that (2) with $P(z) = T_n(z)$ implies (3).

Suppose now that (2) holds and set $w = \deg W(z)$. Since by Engstrom's theorem (see, e.g., [12], Th. 5) for any double decomposition A(B(z)) = C(D(z)) we have

$$[\mathbb{C}(B,D):\mathbb{C}(D)] = \deg D/\operatorname{GCD}(\deg B, \deg D),$$

it follows from the equality

$$T_n(z) = \tilde{P}(W(z)) = T_{n/w}(T_w(z))$$

that $\mathbb{C}(W) = \mathbb{C}(T_w)$. Therefore, since W(z), $T_w(z)$ are polynomials, there exists a linear function $\sigma(z)$ such that $W(z) = \sigma(T_w(z))$ and, hence, W(a) = W(b)yields $T_w(a) = T_w(b)$. Since w is a divisor of $d = \operatorname{GCD}(n, \deg Q)$ the decomposition $T_d(z) = T_{d/w}(T_w(z))$ holds and, therefore, $T_w(a) = T_w(b)$ implies $T_d(a) = T_d(b)$.

2.3 NECESSARY CONDITION FOR P(z), q(z) TO SATISFY (1). To investigate the case when at least one of the points a, b is a critical point of $T_n(z)$, we will use a condition, obtained for the case when P(a) = P(b) in [8] and in a general case in [9], which is necessary for polynomials P(z), q(z) to satisfy (1). To formulate this condition let us introduce the following notation. Say that a domain $U \subset \mathbb{C}$ is admissible with respect to the polynomial P(z) if U is simply

276

connected and contains no critical values of P(z). By the monodromy theorem, in such a domain there exist $n = \deg P(z)$ single-valued branches of $P^{-1}(z)$. Let $U_{P(a)}$ (resp. $U_{P(b)}$) be an admissible domain such that its boundary contains the point P(a) (resp. P(b)). Denote by $p_{u_1}^{-1}(z)$, $p_{u_2}^{-1}(z)$, ..., $p_{u_{d_a}}^{-1}(z)$ (resp. $p_{v_1}^{-1}(z)$, $p_{v_2}^{-1}(z)$, ..., $p_{v_{d_b}}^{-1}(z)$) the branches of $P^{-1}(z)$ defined in $U_{P(a)}$ (resp. $U_{P(b)}$) which map points close to P(a) (resp. P(b)) to points close to a (resp. b). In particular, the number d_a (resp. d_b) equals the multiplicity of the point a (resp. b) with respect to P(z).

In the above notation a necessary condition for P(z), q(z) to satisfy (1) has the following form: if polynomials P(z), q(z) = Q'(z) satisfy (1) and $P(a) = P(b) = z_0$, then in any admissible domain U_{z_0} the equality

(4)
$$\frac{1}{d_a} \sum_{s=1}^{d_a} Q(p_{u_s}^{-1}(z)) = \frac{1}{d_b} \sum_{s=1}^{d_b} Q(p_{v_s}^{-1}(z))$$

holds. Furthermore, if $P(a) \neq P(b)$ then for any admissible domains $U_{P(a)}$, $U_{P(a)}$ we have

$$(4') \qquad \frac{1}{d_a} \sum_{s=1}^{d_a} Q(p_{u_s}^{-1}(z)) = 0 \text{ in } U_{P(a)}, \quad \frac{1}{d_b} \sum_{s=1}^{d_b} Q(p_{v_s}^{-1}(z)) = 0 \text{ in } U_{P(b)}.$$

Here $Q(z) = \int q(z)dz$ is chosen in such a way that Q(a) = Q(b) = 0.

More precisely, conditions (4), (4') hold whenever the function

$$H(t) = \int_{a}^{b} \frac{Q(z)P'(z)dz}{t - P(z)}$$

is algebraic near infinity; this is a corollary of general properties of the Cauchy type integrals of algebraic functions (see [9], section 3). On the other hand, using the integration by parts we have:

$$\frac{dH(t)}{dt} = -\int_{a}^{b} \frac{Q(z)P'(z)dz}{(t-P(z))^{2}} = \frac{Q(a)}{t-P(a)} - \frac{Q(b)}{t-P(b)} + \tilde{H}(t).$$

where

$$\tilde{H}(t) = \int_a^b \frac{q(z)dz}{t - P(z)}.$$

Hence, since condition (1) is equivalent to the requirement that $\tilde{H}(t) \equiv 0$ near infinity, it follows from Q(a) = Q(b) = 0 that H(t) is algebraic. Therefore, conditions (4), (4') hold.

F. PAKOVICH

2.4 MONODROMY OF $T_n(z)$. To make conditions (4), (4') useful we must examine the monodromy group of $T_n(z)$. It follows from $T_n(\cos \phi) = \cos(n\phi)$, $n \geq 1$, that finite critical values of polynomial $T_n(z)$ are ± 1 and that preimages of the points ± 1 are points $\cos(\pi j/n)$, $j = 0, 1, \ldots, n$. To visualize the monodromy group of $T_n(z)$ consider the preimage $P^{-1}[-1,1]$ of the segment [-1,1] under the map $P(z): \mathbb{C} \to \mathbb{C}$. It is convenient to consider $P^{-1}[-1,1]$ as a bicolored graph λ embedded into the Riemann sphere. By definition, white (resp. black) vertices of λ are preimages of the point 1 (resp. -1) and edges of λ are preimages of the interval (-1,1). Since the multiplicity of each critical point of $T_n(z)$ equals 2, the graph λ is a "chain-tree" and, as a point set in \mathbb{C} , coincides with the segment [-1,1] (see Figure 1). In particular, non-critical points -1, 1 are vertices of valence 1; the vertex 1 is white while the vertex -1 is white or black depending on the parity of n.

Figure 1

Let us fix an admissible with respect to $T_n(z)$ domain U such that U is unbounded and contains the interval (-1,1). Any branch $T_{n,j}^{-1}(z)$, $0 \le j \le n-1$, of $T_n^{-1}(z)$ in U maps the interval (-1,1) onto an edge of λ and we will label such an edge by the symbol l_j (an explicit numeration of the branches of $T_n^{-1}(z)$ will be defined later). Denote by $\pi_1 \in S_n$ (resp. $\pi_{-1}, \pi_\infty \in S_n$) the permutation defined by the condition that the analytic continuation of the functional element $\{U, T_{n,j}^{-1}(z)\}, 0 \le j \le n-1$, along a clockwise oriented loop around 1 (resp. $-1, \infty$) is the functional element $\{U, T_{n,\pi_1(j)}^{-1}(z)\}$ (resp. $\{U, T_{n,\pi_{-1}(j)}^{-1}(z)\}$, $\{U, T_{n,\pi_{\infty}(j)}^{-1}(z)\}$). The tree λ represents the monodromy group of $T_n^{-1}(z)$ in the following sense: the edges of λ are identified with branches of $T_n^{-1}(z)$ and the permutation π_1 (resp. π_{-1}) is identified with the permutation arising under clockwise rotation of edges of λ around white (resp. black) vertices.* In order to fix a convenient numeration of branches of $T_n^{-1}(z)$ in U, consider an auxiliary domain $U_{\infty} = U \cap B$, where B is a disc with the center at the infinity such that

^{*} Note that any polynomial with two finite critical values can be represented by an appropriate bicolored plane tree and vice versa; it is a very particular case of the Grothendieck correspondence between Belyi functions and graphs embedded into compact Riemann surfaces (see, e.g., [13]).

branches of $T_n^{-1}(z)$ can be represented in B by their Puiseux expansions at infinity. In more detail, if $z^{1/n}$ denotes a fixed branch of the algebraic function which is inverse to z^n in U_{∞} , then each branch of $T_n^{-1}(z)$ can be represented in U_{∞} by the convergent series

(5)
$$\phi_j(z) = \sum_{k=-\infty}^{1} t_k \varepsilon_n^{jk} z^{k/n}, \quad t_k \in \mathbb{C}, \quad \varepsilon_n = \exp(2\pi i/n),$$

for certain $j, 0 \le j \le n-1$.

Now we fix a numeration of branches of $T_n^{-1}(z)$ in U as follows: the branch $T_{n,j}^{-1}(z)$, $0 \le j \le n-1$, is the analytic continuation of $\phi_j(z)$ from U_∞ to U and the branch $z^{1/n}$ is defined by the condition that $T_{n,0}^{-1}(z)$ maps the interval (-1,1) onto the interval $(\cos(\pi/n), 1)$. Since the result of the analytic continuation of the functional element $\{U_\infty, \varepsilon_n^j z^{1/n}\}$, $0 \le j \le n-1$, along a clockwise oriented loop around ∞ is the functional element $\{U_\infty, \varepsilon_n^{j+1} z^{1/n}\}$, such a choice of the numeration implies that $\pi_\infty = (012 \dots n-1)$. Furthermore, it follows from $\pi_\infty \pi_{-1}\pi_1 = 1$, taking into account the combinatorics of λ , that the numeration of edges of λ coincides with the one indicated on Figure 1 that is $\pi_{-1} = (0n-1)(1n-2)(2n-3)\dots$ and $\pi_1 = (1n-1)(2n-2)(3n-3)\dots$

2.5 PROOF OF THEOREM 1 FOR SINGULAR a, b. Again, it is enough to establish that (3) holds. Assume first that $T_n(a) = T_n(b)$. Let $Q'(z) \in V(T_n, a, b)$ with deg Q(z) = m. Since at least one of points a, b is a critical point of $T_n(z)$, the number $z_0 = T_n(a) = T_n(b)$ equals ± 1 . Suppose first that $z_0 = 1$. Then $a = \cos(2j_1\pi/n), b = \cos(2j_2\pi/n)$ for certain $j_1, j_2, 0 \leq j_1, j_2 \leq \lfloor n/2 \rfloor$, and condition (4) has the following form:

(6)
$$Q(T_{n,j_1}^{-1}(z)) + Q(T_{n,n-j_1}^{-1}(z)) = Q(T_{n,j_2}^{-1}(z)) + Q(T_{n,n-j_2}^{-1}(z)),$$

where $T_{n,i}^{-1}(z)$ is represented in U_{∞} by series (5). Since $t_1 \neq 0$, the comparison of the leading coefficients of the Puiseux expansions of the branches in (6) gives

$$\varepsilon_n^{j_1m} + \varepsilon_n^{(n-j_1)m} = \varepsilon_n^{j_2m} + \varepsilon_n^{(n-j_2)m}$$

Therefore, the number $\varepsilon_n^{m/d}$, where d = GCD(n, m), is a root of the polynomial with integer coefficients

$$f(z) = z^{j_1d} + z^{(n-j_1)d} - z^{j_2d} - z^{(n-j_2)d}.$$

Since $\varepsilon_n^{m/d}$ is a primitive *n*-th root of unity and the *n*-th cyclotomic polynomial $\Phi_n(z)$ is irreducible over \mathbb{Z} , this fact implies that $\Phi_n(z)$ divides f(z) in the ring

 $\mathbb{Z}[z]$ and, therefore, that the primitive *n*-th root of unity ε_n also is a root of f(z). Hence,

$$\varepsilon_n^{j_1d} + \varepsilon_n^{-j_1d} = \varepsilon_n^{j_2d} + \varepsilon_n^{-j_2d}.$$

Since

$$a = \cos(2j_1\pi/n) = \frac{1}{2}(\varepsilon_n^{j_1} + \varepsilon_n^{-j_1}), \quad b = \cos(2j_2\pi/n) = \frac{1}{2}(\varepsilon_n^{j_2} + \varepsilon_n^{-j_2}).$$

it follows now from

(7)
$$T_d\left(\frac{1}{2}(z+\frac{1}{z})\right) = \frac{1}{2}\left(z^d + \frac{1}{z^d}\right)$$

that $T_d(a) = T_d(b)$.

Similarly, if $z_0 = -1$, assuming that

$$a = \cos((2j_1 + 1)\pi/n), \quad b = \cos((2j_2 + 1)\pi/n)$$

for certain $j_1, j_2, 0 \le j_1, j_2 \le [(n-1)/2]$, we obtain the equality

$$T_{n,j_1}(z) + T_{n,n-j_1-1}(z) = T_{n,j_2}(z) + T_{n,n-j_2-1}(z),$$

which implies

$$\varepsilon_n^{j_1m} + \varepsilon_n^{(n-j_1-1)m} = \varepsilon_n^{j_2m} + \varepsilon_n^{(n-j_2-1)m}$$

 and

$$\varepsilon_n^{j_1d} + \varepsilon_n^{-(j_1+1)d} = \varepsilon_n^{j_2d} + \varepsilon_n^{-(j_2+1)d}.$$

It yields that

$$\varepsilon_{2n}^{2j_1d} + \varepsilon_{2n}^{-2(j_1+1)d} = \varepsilon_{2n}^{2j_2d} + \varepsilon_{2n}^{-2(j_2+1)d}$$

where $\varepsilon_{2n} = \exp(2\pi i/2n)$, and, multiplying the last equality by ε_{2n}^d , we get

$$\varepsilon_{2n}^{(2j_1+1)d} + \varepsilon_{2n}^{-(2j_1+1)d} = \varepsilon_{2n}^{(2j_2+1)d} + \varepsilon_{2n}^{-(2j_2+1)d}.$$

Since

$$a = \frac{1}{2} (\varepsilon_{2n}^{2j_1+1} + \varepsilon_{2n}^{-(2j_1+1)}), \quad b = \frac{1}{2} (\varepsilon_{2n}^{2j_2+1} + \varepsilon_{2n}^{-(2j_2+1)}),$$

we conclude as above that $T_d(a) = T_d(b)$.

Let us prove now that $T_n(a)$ must be equal to $T_n(b)$. Indeed, equalities (4') could hold only if $d_a > 1$, $d_b > 1$, that is only if both a, b are critical points of P(z). Since $T_n(z)$ has only two critical values ± 1 , we see that if $T_n(a) \neq T_n(b)$ then either $T_n(a) = 1$, $T_n(b) = -1$ or $T_n(a) = -1$, $T_n(b) = 1$. Let, say, $T_n(a) = 1$, $T_n(b) = -1$. Then $a = \cos(2j_1\pi/n)$, $b = \cos((2j_2 + 1)\pi/n)$ and (4') imply

$$\varepsilon_n^{j_1m} + \varepsilon_n^{(n-j_1)m} = 0, \quad \varepsilon_n^{j_2m} + \varepsilon_n^{(n-j_2-1)m} = 0.$$

280

The analysis of these equalities similar to the above one leads to the equalities $T_d(a) = 0$, $T_d(b) = 0$. Since $T_n(z) = T_{n/d}(T_d(z))$ it contradicts $T_n(a) \neq T_n(b)$.

2.6 LEMMA ABOUT VALUES OF CHEBYSHEV POLYNOMIALS. In this subsection we prove the following lemma. Let $a, b \in \mathbb{C}$ and $p_1, p_2, p_3 \in \mathbb{N}$. Suppose that

(8)
$$T_{p_1}(a) = T_{p_2}(b), \quad T_{p_2}(a) = T_{p_2}(b), \quad T_{p_3}(a) = T_{p_3}(b).$$

Set $l_1 = \text{GCD}(p_1, p_2)$, $l_2 = \text{GCD}(p_1, p_3)$, $l_3 = \text{GCD}(p_2, p_3)$. Then $T_{l_i}(a) = T_{l_i}(b)$ at least for one $i, 1 \le i \le 3$.

Choose $\alpha, \beta \in \mathbb{C}$ such that $\cos \alpha = a$, $\cos \beta = b$. Since $T_n(\cos \phi) = \cos(n\phi)$, equalities (8) imply that

(10)
$$p_1 \alpha = \mu_1 p_1 \beta + 2\pi g_1, \quad p_2 \alpha = \mu_2 p_2 \beta + 2\pi g_2, \quad p_3 \alpha = \mu_3 p_3 \beta + 2\pi g_3,$$

where $\mu_1, \mu_2, \mu_3 = \pm 1$ and $g_1, g_2, g_3 \in \mathbb{Z}$. Clearly, at least two numbers from the set $\{\mu_1, \mu_2, \mu_3\}$ are equal between themselves. To be definite suppose that $\mu_1 = \mu_2$. Choose $u, v \in \mathbb{Z}$ such that $up_1 + vp_2 = l_1$. Adding to the first equation in (10) multiplied by u the second one multiplied by v, we see that $l_1\alpha = \mu_1 l_1\beta + 2\pi g$, where $g \in \mathbb{Z}$. It implies that $\cos l_1\alpha = \cos l_1\beta$ and, therefore, $T_{l_1}(a) = T_{l_1}(b)$.

2.7 PROOF OF THEOREM 2. Suppose $q(z) \in V(T_n, a, b)$. Then, by Theorem 1, $\int q(z)dz$ can be represented as a sum

$$\int q(z) \mathrm{d}z = \sum_{i=0}^{k} c_i T_{m_i}(z), \quad c_i \in \mathbb{C},$$

where $T_{d_i}(a) = T_{d_i}(b)$ for $d_i = \operatorname{GCD}(n, m_i)$, $0 \leq i \leq k$. We will prove the corollary by induction on k. Since $T_{m_i}(z) = T_{m_i/d_i}(T_{d_i}(z))$ and $T_{d_i}(a) = T_{d_i}(b)$, the corollary is true for k = 0, 1. Suppose now that k > 1. By the inductive assumption there exist $r, s \in \mathbb{N}$ and $A(z), B(z) \in \mathbb{C}[z]$ such that

$$\sum_{i=0}^{k-1} c_i T_{m_i}(z) = A(T_r(z)) + B(T_s(z)), \quad T_r(a) = T_r(b), \quad T_s(a) = T_s(b).$$

Since $T_{m_k}(a) = T_{m_k}(b)$ it follows from lemma 2.6 that either $T_d(a) = T_d(b)$ for d = GCD(r, s) and

$$\int q(z)dz = C(T_d(z)) + c_k T_{m_k}(z) \quad \text{with } C(z) = A(T_{r/d}(z)) + B(T_{s/d}(z)),$$

or $T_e(a) = T_e(b)$ for $e = \text{GCD}(r, m_k)$ and

$$\int q(z)dz = E(T_e(z)) + B(T_s(z)) \quad \text{with } E(z) = A(T_{r/e}(z)) + c_k T_{m_k/e}(z),$$

or $T_f(a) = T_f(b)$ for $f = \text{GCD}(s, m_k)$ and

$$\int q(z) dz = A(T_r(z)) + F(T_f(z)) \quad \text{with } F(z) = B(T_{s/f}(z)) + c_k T_{m_k/f}(z).$$

ACKNOWLEDGEMENT: I am grateful to Y. Yomdin for interesting discussions.

References

- M. Briskin, J.-P. Francoise and Y. Yomdin, Une approche au problème du centrefoyer de Poincaré, Comptes Rendus de l'Académie des Sciences, Paris, Série I, Mathématique **326** (1998), 1295–1298.
- [2] M. Briskin, J.-P. Francoise and Y. Yomdin, Center conditions, compositions of polynomials and moments on algebraic curve, Ergodic Theory and Dynamical Systems 19 (1999), 1201–1220.
- [3] M. Briskin, J.-P. Francoise and Y. Yomdin, Center condition II: Parametric and model center problems, Israel Journal of Mathematics 118 (2000), 61-82.
- [4] M. Briskin, J.-P. Francoise and Y. Yomdin, Center condition III: Parametric and model center problems, Israel Journal of Mathematics 118 (2000), 83-108.
- [5] M. Briskin, J.-P. Francoise and Y. Yomdin, Generalized moments, center-focus conditions and compositions of polynomials, in Operator Theory, System Theory and Related Topics, Operator Theory: Advances and Applications 123 (2001), 161-185.
- [6] C. Christopher, Abel equations: composition conjectures and the model problem, The Bulletin of the London Mathematical Society 32 (2000), 332-338.
- [7] F. Pakovich, A counterexample to the composition conjecture, Proceedings of the American Mathematical Society 130 (2002), 3747-3749.
- [8] F. Pakovich, On the polynomial moment problem, Mathematical Research Letters 10 (2003), 401-410.
- [9] F. Pakovich, N. Roytvarf and Y. Yomdin, Cauchy type integrals of algebraic functions and a tangential center-focus problem for Abel equations, preprint, arxiv: math.CA/0312353.
- [10] J. Ritt, Prime and composite polynomials, Transaction of the American Mathematical Society 23 (1922), 51-66.

Vol. 142, 2004 ORTHOGONALITY TO POWERS OF A CHEBYSHEV POLYNOMIAL 283

- [11] N. Roytvarf, Generalized moments, composition of polynomials and Bernstein classes, in Entire Functions in Modern Analysis. B. Ya. Levin Memorial Volume, Israel Mathematical Conference Proceedings 15 (2001), 339–355.
- [12] A. Schinzel, Polynomials with special regard to reducibility, in Encyclopedia of Mathematics and its Applications 77, Cambridge University Press, 2000.
- [13] L. Shneps (ed.), The Grothendieck Theory of Dessins D'enfants, London Mathematical Society Lecture Notes Series, Vol. 200, Cambridge University Press, 1994.