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ABSTRACT
We consider Cauchy-type integrals

I(t) = 1 /g(z)dz
Y

_% z—1

with ¢g(z) an algebraic function. The main goal is to give constructive
(at least, in principle) conditions for I(t) to be an algebraic function, a
rational function, and ultimately an identical zero near infinity. This is
done by relating the monodromy group of the algebraic function g, the
geometry of the integration curve 7, and the analytic properties of the
Cauchy-type integrals. The motivation for the study of these conditions is
provided by the fact that certain Cauchy-type integrals of algebraic func-
tions appear in the infinitesimal versions of two classical open questions
in Analytic Theory of Differential Equations: the Poincaré Center-Focus
problem and the second part of Hilbert’s 16-th problem.
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1. Introduction
In this paper we study integrals

1

(L1) ) = 16,9.0) = 5 [ 22

z—t'

" 2mi

where v is a curve in the complex plane C and g(z) is an algebraic function.
More accurately, we assume that after removing from ~ a finite set of points &
(which includes all the double points of v and its end points) on each segment
of v\ ¥, the function g(z) is given by an analytic continuation of a germ of an
algebraic function. Accordingly, it is always assumed below that the branches
of g(z) on each segment of v\ ¥ are chosen in advance and in this sense g(z)
is univalued on 7. Of course, analytic continuation of g(z) outside v \ ¥ may
ramify. Furthermore, we assume that at the points of ¥ the function g(z) can
ramify but does not have poles.

The main problem considered in this paper is to give conditions for the iden-
tical vanishing of I(¢) near infinity. Since for [¢| > 1,

1 o
I(t) = —— R
0 =-55 kz_om"

with my, = fv 2%g(2)dz, this is equivalent to finding conditions for all the mo-
ments my, to vanish. By the reasons explained below, we call this problem a
“Moment problem” for integral (1.1). Notice that our Moment problem overlaps
with the classical Moment problems (described, for example, in [1]) only to a
rather limited extent.

The motivation for the vanishing problem for the Cauchy-type integrals of al-
gebraic functions is provided by two classical open questions in Analytic Theory
of Differential Equations: the Poincaré Center-Focus problem and the second
part of Hilbert’s 16-th problem (see Sections 1.1.1 and 1.1.3 below, where the
appearance of the Moment problem in Differential Equations is explained).

As we show below, it is natural to consider the vanishing problem for I(t)
together with the conditions for I(t) to be an algebraic or a rational function.

Recall that for a closed curve vy without self-intersection the vanishing of all
the moments my is a necessary and sufficient condition for a function g to be
the boundary value of a certain holomorphic function G in the compact do-
main bounded by v. On the other hand, if v is a non-closed curve without
self-intersection, then the identical vanishing of I(¢) near infinity can happen
only for g(z) = 0 on 7 (see, for example, [38]). Nevertheless, the condition of
algebraicity of I(t) even in these simplest situations turns out to be a rather
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delicate requirement on the global monodromy group of g and its local ramifi-
cations at the points of X. We give this condition and some examples in Section
4 below.

For v a curve with self-intersections, the situation becomes much more com-
plicated already for the vanishing problem. Of course, a classical “homological”
condition for the identical vanishing of I(¢) near infinity (i.e., that g on v bounds
a holomorphic chain) remains valid. However, this condition does not provide in
general a “constructive” answer as we would like to have in the Moment prob-
lem. Indeed, the classical homological condition is not easy to translate into an
explicit condition on our finite-dimensional input data (the algebraic function
g, the set ¥, and the homotopy class of 7). Even in the simplest case of the
“Polynomial Moment problem” (see Section 1.1.1 and Section 6 below) the ex-
plicit answer is not known in spite of a very classical setting of the question.
Moreover, the results of [39-41] as well as some of the results of the present
paper imply that this answer cannot be too simple. As we shall see below, the
problem of algebraicity of I(t) brings certain additional difficulties related to
the “global” behavior of the monodromy of g with respect to 7.

The main goal of the present paper is to give a constructive (at least, in
principle) answer to the Moment and the Algebraicity problems. This is done
by relating the Monodromy group of the algebraic function g, the geometry of
the curve v, and the analytic properties of the Cauchy-type integrals. Let us
describe briefly the main results.

Let C\ v be the union of the domains D; (with Dg being the infinite domain).
The expression (1.1) defines I(t) as a collection of regular analytic functions
I; on the domains D;. A simple classical description exists for the behavior of
I(t) in the process of crossing the curve v: for the adjacent domains D, and
Dj, the function I; is obtained from I; by the analytic continuation into D;
combined with the addition of the local branch of g at the crossing point (also
analytically continued into D;). This last operation (as extended to several
crossings of v) is “combinatorial” in its nature. It is captured by the notion of
the “combinatorial monodromy of I” introduced in Section 4. The combinatorial
monodromy depends only on the monodromy of g and on the geometry of v and
in principle it can be explicitly computed.

We analyze the analytic continuation of I;(¢) from each of the domains D;
and show that it is essentially described by the combinatorial monodromy. On
this base we get a necessary and sufficient condition for I(t) to be algebraic: its
combinatorial monodromy must be finite. A necessary and sufficient condition
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for rationality is that the combinatorial monodromy is trivial. Finally, the
vanishing of I(t) is provided by the additional condition of the absence of the
poles in certain sums of the branches of g.

We translate the above conditions into certain local (and local-global) branch-
ing conditions of g with respect to «v. Most of these conditions have a form of
the vanishing of a certain sum of the branches of g. Besides, we give an accurate
analytic description of I(t) at its singular points.

We give a number of examples illustrating the above results. Some of them
we consider as rather unexpected. This includes a non-closed v with non-zero
g and I(t) = 0 near oo, a non-algebraic I(t) with a finite ramification of all its
branches at each singular point, and ¢ with non-trivial “jumps” on a closed v
and with I(t) = 0 near oc.

As the first specific application we give an essentially complete solution of the
“Rational Double Moment problem” on the non-closed curve. Remember that
in the case of the closed integration curve the answer is given by the classical
result of Wermer and Harvey—Lawson: double moments vanish if and only if the
path bounds a complex 1-chain (see [2, 22, 30, 57, 58] and Section 1.1.3 below).
We show that on a non-closed curve the vanishing of the double moments (and in
fact just an algebraicity of the appropriate generating functions) is equivalent to
a certain composition factorization of the integrand functions which “closes up”
the integration path, combined together with the Wermer and Harvey—Lawson
condition for their “left factors”.

Another application provided is a significant extension of the class of “defi-
nite” polynomials (those for which the answer to the Polynomial Moment prob-
lem is given by the Composition condition — see Section 1.1.2 and Section 5
below). As shown in [10, 13, 17, 61], definite polynomials play an important role
in the explicit analysis of the Center-Focus problem for the Abel equation. We
characterize some classes of definite polynomials P through the geometry of the
images P(T") of the curves I' joining a and b. This leads also to an interesting
geometric invariant of complex polynomials.

In some aspects the present paper provides just the approach to (or the first
examples of ) the phenomena which we expect to be of major importance within
the circle of the problems considered. This concerns first of all the fact that the
Cauchy-type integrals of algebraic functions satisfy Fuchsian linear differential
equations. We do not prove this fact in the present paper (providing just the idea
of the proof in Remark 2 after Theorem 4.4 of Section 4), but all the necessary
tools are prepared here. Another case is the following: in the present paper
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apparently new examples appear of a specific type of functions arising as Cauchy
Integrals of algebraic functions: those with an infinite global ramification but
with a finite branching of each of its leaves at each of the finite number of singular
points (see Example 5 of Section 4). It turns out that such functions are closely
related to certain Kleinian groups and automorphic functions. Once more, in
the present paper we restrict ourselves to a short discussion of this phenomenon
in a remark after Example 5 of Section 4, not providing the proofs. We plan to
present, separately the rigorous results in these directions.

We hope also that the tools introduced in this paper around the notion of the
combinatorial monodromy can be further developed to provide a really strong
approach for the investigation of the analytic and algebraic properties of the
Cauchy-type integrals of algebraic functions. In the remarks at the end of
Section 4 we outline some of the natural directions of such development. We
believe that ultimately it may provide a much deeper understanding of the
structure of these integrals and of their role in the open questions of the Analytic
Theory of Differential Equations. The present paper is the first step in this
direction.

ACKNOWLEDGEMENT: The authors thank M. Briskin, A. Eremenko, J.-P.
Francoise, L. Gavrilov, G. Henkin, S. Natanzon and M. Sodin for inspiring
discussions, and the Max-Planck Institut fiir Mathematik, Bonn, where the fi-
nal version of this paper was prepared, for its kind hospitality. We also thank
the referee for constructive criticism which led to a serious improvement of the
paper.

1.1. MoOTIVATIONS. In this section we discuss some questions in Analytic
Theory of Differential Equation where the Moment problem naturally appears.

1.1.1.  Classical Center-Focus problem and Moments. Our study of the
Moment problem for the Cauchy-type integrals is motivated by the classical
Poincaré Center-Focus problem for plane polynomial vector fields.

Let F(z,y), G(z,y) be analytic functions of z, y in a neighborhood of the
origin in R? vanishing at 0 together with their first derivatives. Consider the
system of differential equations

z —y+F($/y),
(4) {y:x+G’(x,y).

The system (A) has a center at the origin if all its solutions around zero are
closed. The (part of the) classical Center-Focus problem is to find conditions on
F and G which are necessary and sufficient for the system (A) to have a center
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at the origin. See [6, 7, 32, 42, 46, 51, 53-55, 62] for a detailed discussion of this
problem and of a closely related second part of Hilbert’s 16-th problem (which
asks for the maximal possible number of isolated closed trajectories (limit cycles)
of (A)).

It was shown in [19] that one can reduce the system (A) with homogeneous
polynomials F', G of degree d to the trigonometric Abel equation

(B) ¥ = pt)® +q(tn®, te0,2q]

3

where p(t), ¢(t) are polynomials in sin ¢, cost of degrees d+ 1, 2d+ 2 respectively.
Then (A) has a center if and only if (B) has all the solutions r» = r(t) periodic
on [0, 2], i.e., satisfying r(0) = r(27). So the classical Center-Focus problem
is to find for the trigonometric Abel equation (B) (obtained via the Cherkas
transformation [19]) the necessary and sufficient condition on p and ¢ for all
its solutions r = r(t) to be periodic on [0,2x]. A natural generalization of the
classical Center-Focus problem is to find for any trigonometric Abel equation
(not only for those obtained via the Cherkas transformation [19] from the plane
vector fields) the necessary and sufficient conditions on p and ¢ for all the
solutions of (B) to be periodic.

In turn, the trigonometric Abel equation (B) can be transformed by an ex-
ponential substitution into the equation

!

y' = pa)y® + q(2)y’

with p and ¢ Laurent polynomials on the unit circle S'. The Center problem
becomes in this setting a problem of non-ramifying of all the solutions on S*.

Finally, deviating slightly from the original setting we can consider the Abel
equation

(€) y' =p@)y® + q(z)y’

with meromorphic p, ¢ on any curve, not necessarily closed.

Let I be a curve in C avoiding poles of p and ¢ and joining two points a,b € C.
The points a and b are called conjugated with respect to (C) along a curve
T if y(a) = y(b) for any solution y(z) of (C) analytically continued from a to
b along T', with the initial value y(a) sufficiently small. Equivalently, we shall
say that (C) has a center at (a,b) along I". The condition on p and ¢ under
which (C) has a center is called the Center condition. For a = b, this means
that the solutions of (C) do not ramify on the closed curve I'. In this case we
say that (C) has a center along T
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Hilbert’s 16-th problem can be reformulated in this setting as follows: we
say that a solution y(z) of the equation (C) (analytically continued from a to
b along I') is periodic if y(a) = y(b). The problem is to bound the possible
number of isolated periodic solutions of (C).

In both the Center and the Hilbert problems the key tool is the Poincaré
first return mapping G(y,) = y», which associates to each y, the value y;, of the
solution y(x) of the equation (C) satisfying y(a) = y, and analytically continued
from a to b along T'. The periodic solutions of (C) along I' correspond exactly
to the fixed points y, of G (so that G(y,) = y.) and the Center condition is
that G(y.) = ya-

Although the Center and the Hilbert problems for equation (C) on an interval
(or, in general, on a non-closed curve) do not correspond directly to the classical
setting, they are of interest in their own right and have been intensively inves-
tigated in [3-5, 18-21, 24, 36, 37, 52, 60] and in many other publications. It
is a general belief that the Center and Hilbert problems for a polynomial Abel
equation (C) on the interval present all the main difficulties of the classical ones
while possibly simplifying essential technical details.

In [3, 5] the Center problem for the trigonometric Abel equation has been
related to the composition factorization of the coefficients. Recently in [8-17, 20,
47, 61] the Center problem for both the trigonometric and the polynomial Abel
equations has been related to the problem of the vanishing of certain generalized
moments on the one hand, and to the Composition algebra of univariate analytic
functions on the other. This approach has been further developed in [18, 31,
60].

For p and ¢ as above let P = [ p,Q = [ ¢. Consider the “one-sided” moments
my (P, Q) defined by

(1.2 mi(P.Q) = [ PH@Q@ip()ds
and the Moments generating function

QAP & —k-1
1.3 Hy) =| —= = my (P, .
(1.3) =[5 lg W(P.Q)y

It is shown in [14-16] (see also [10, 13, 17, 61]) that if we consider a parametric
version of the equation (C),

(D) y' = p(x)y® + eq(x)y?,

then the infinitesimal center conditions with respect to e for (D) at € = 0 are
given by the vanishing of the one-sided moments. FEssentially, the Moment
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generating function H(y) of (1.3) is the derivative with respect to € (at € =
0) of the Poincaré first return mapping G(y,¢€) of the equation (D) (see [13-
17]). Hence, H(y) = 0 is the infinitesimal or the tangential Center condition
(corresponding to the fact that the center of the equation (D) for € = 0 survives
in first approximation also for non-zero ¢).

The Moment generating function H(y) of (1.3) defines also the behavior of
the periodic solutions of the equation (D) for small e. One can show (see [13])
that these periodic solutions correspond to the zeros of H(y). This agrees with
the standard fact in the analysis of perturbed plane Hamiltonian systems, where
the derivative with respect to € (at € = 0) of the Poincaré first return mapping
is given by the Abelian integrals along the level curves of the Hamiltonian. The
periodic trajectories of the perturbed system for small € correspond to the zeros
of these Abelian integrals (see [6, 7, 26, 32, 46]).

Consequently, the Moment generating function H(y) plays in the analysis of
the Abel equation the same role as the Abelian integrals play in the investi-
gation of the perturbed plane Hamiltonian systems, i.e., the most central role.
The study of the conditions for the identical vanishing of H(y) (which is one of
the main problems of the present paper) corresponds to the study of the iden-
tical vanishing of the Abelian integrals in [25]. Essentially, this is the study of
the infinitesimal (or “tangential”) Center problem for (D). In turn, the study
of the distribution of zeros of H(y) (which has been recently started in [13])
corresponds to the study of zeros of the Abelian integrals. This last problem
is one of the most active research areas in the Analytic Theory of Differential
Equations in the last two decades (see [6, 7, 25-28, 32-35, 43, 46, 56, 59]).

Assume now that p and ¢ are polynomials. Performing a change of variables
P(x) = z,p(x)dx = dz we obtain

my (P, Q) :/

v

Font 1) = [ LT < aniry),
vy Y—=

with v = P(T') and g(z) = Q(P~'(z)). Thus the Moment generating function
H(y) is a special case of the Cauchy integral (1.1). As will be clear below,
this special case is not much simpler than the general one. In our opinion
this justifies a detailed investigation of the general Cauchy-type integrals of
algebraic functions. The relation of H(y) with the Poincaré first return mapping
motivates also the study of general analytic properties of I(y) (singularities,

analytic continuation, etc.) that we start in the present paper.

1.1.2. Center-Focus problem and Compositions. Let us explain now the role
of the Composition Algebra of univalent functions in the study of the Center-



Vol. 144, 2004 CAUCHY-TYPE INTEGRALS OF ALGEBRAIC FUNCTIONS 229

Focus problem for the Abel equation (C) (and, in particular, in the study of the
Moment generating function H(y)). It turns out that a basic sufficient condition
for the equation (C) to have a center (as well as for the vanishing of the one-
sided moments (1.2) and thus for the identical vanishing of H(y)) is provided
by what we call a “Composition condition”. Let, as above, p = P" and ¢ = Q'.

COMPOSITION CONDITION: P(z) = P(W(x)) and Q(z) = Q(W (z)), where W
maps C into a Riemann Surface X in such a way that W(I') is a closed curve
0 in X (in particular, if a # b then W(a)=W (b)), § is contained in a simply-
connected domain D in X, and P and Q are regular in D.

A special form of this condition with X = C is the Polynomial Composition
condition (PCC) below. In [9, 11] (and in Section 1.1.3 below) the Composition
condition appears with X a rational curve in C2. The case of X an elliptic curve
is considered in [8].

The sufficiency of the Composition condition for the Center problem follows
from the fact that after performing a change of variables in (C) and taking
W an independent variable, we get a regular equation in a simply-connected
domain D in X whose solutions cannot ramify along a closed path §. The
same consideration provides sufficiency of the Composition condition also for
the Moment problem, i.e., for the vanishing of the moments (1.2).

In the case where p = P’ and ¢ = Q' are polynomials, the Composition condi-
tion takes the following simple form, which we call the Polynomial Composition
condition (PCC):

(PCC) P(x) = P(W(2)), Q(z)=Q(W(x)),

with P,Q, W polynomials and with an additional requirement that W(a) =
W (b).

A specific case of the Composition condition has been introduced in the study
of the Center-Focus problem for the Abel equation in [3, 5]. The condition
(PCC) has been introduced and intensively studied in [8-17, 20, 47, 61] (see
also [18, 21, 31, 60]). There is growing evidence to support the major role
played by the Polynomial Composition condition (and, in general, by the poly-
nomial Composition Algebra) in the structure of the Center conditions for the
polynomial Abel equation (C). In particular, we have no counterexamples to
the following “Composition conjecture”:

COMPOSITION CONJECTURE: The Abel equation (C) on the interval with p,q
polynomials has a center if and only if (PCC) holds.
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This conjecture has been verified for small degrees of p and ¢ and in many
special cases in [8-18, 20, 60, 61].

For some time it was conjectured that (PCC) is a necessary and sufficient
condition also for the Polynomial Moment problem, i.e., for the vanishing of the
polynomial moments (1.2) (the “Moment Composition conjecture”). However,
it was recently shown in [39] that the Polynomial Composition condition (PCC)
is only sufficient but not necessary for the vanishing of one-sided moments (1.2).
The counterexample given in [39] exploits rather subtle composition properties
of univariate polynomials, in particular, some classical results of Ritt ([44, 45,
50]). This fact stresses the role of the Composition Algebra in the structure
of the moments and of the Center equations and illuminates some important
features of the Cauchy-type integrals of algebraic functions (see Sections 4, 5, 6
below).

The appearance of counterexamples to the “Moment Composition conjecture”
(together with the recent results of [10, 13, 17]) underlines also the role of those
polynomials P for which the vanishing of the one-sided moments (1.2) with any
given q does imply the Composition condition. Following [10, 61] we call such P
definite. We consider characterization of definite polynomials as an important
problem. Indeed, the role of definite polynomials in the local Center-Focus
problem has been demonstrated in [10, 13, 61]. Briefly, it can be explained as
follows: Consider the Abel equation

(C) y' =p@)y® + q(z)y’,

where p is fixed, and ¢ is a variable polynomial in the space Vj; of the univariate
polynomials of a given degree d. Then for P = [ p definite the local geometry
of the Center set C'S C Vj of the equation (C) near the origin is completely
described by the Moment vanishing equations. In particular, this implies that
CS near 0 € V coincides with the Composition set ([10]). Moreover, it turns
out that in this case the so-called Bautin ideal I (generated by all the Taylor
coefficients of the Poincaré mapping in the local ring of the polynomials on V;
near the origin) is in fact generated by the moments. This in turn provides
important information on the fixed points of the Poincaré mapping (i.e., on the
periodic solutions of the Abel equation). See [10, 13].

Definite polynomials play an even more important role in the global study
of the Center equations near infinity (as presented in [17]). One important
conclusion of [17] is the following: Consider a projectivization PV of V4. Then
the structure of the Center set CS C PV, at and near the infinite hyperplane in
PV, is very accurately described by the zero set of the “dual” moments 1y =
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fQ""p. In many cases this description can be extended from the neighborhood
of the infinite hyperplane in PV, to the affine part V; and thus it includes the
original Center set C'S.

One application of the methods developed in the present paper is a description
in Section 5 below of some apparently new (with respect to the results of [8-12,
14-16, 20, 40, 41, 47, 61]) and natural classes of definite polynomials.

1.1.3. Double moments and centers on a closed curve. Here we describe in
brief an additional question arising naturally on the way to the Center-Focus
problem. This question concerns the center conditions for the Abel equation on
a closed curve I' and their relation to the vanishing of the one-sided and double
moments. As explained above, the Center problem for the Abel equation on a
closed curve provides a rather accurate approximation of the classical Center-
Focus problem. Also, in the case of a closed I the Composition algebra plays a
central role connecting the vanishing of the moments with the center conditions.

As we pass from an open interval to a closed curve I', the vanishing of the
one-sided moments (1.2) becomes a much less restrictive condition. Although
the Composition condition is still sufficient for this vanishing, it is now far
from being necessary. A natural stronger analytic condition on P and @ to be
considered (and compared with the Center one for a closed T') is the vanishing
of the double moments.

Generalizing the situation a little bit, let us consider the double moments
(1.4) miy = [ P@@@p@ids, ij=01,...
r

where T" is a path — closed or non-closed — and P and ) are only assumed to
be holomorphic in a neighborhood of T'.

The double moments (1.4) appear in several fields of Analysis, Several
Complex Variables and Banach Algebras. The classical result of Wermer and
Harvey—Lawson (see [2, 22, 30, 57, 58]) implies that if the image of T' under
the map z = (P(2),Q(z)) € C? is a closed curve o, then the vanishing of all
the moments m; ; is equivalent to the fact that the curve o bounds a compact
analytic one-chain in C2.

As mentioned above, the Composition algebra still plays an important role
in relating the moments vanishing, the Wermer and Harvey—Lawson condition
and the topology of the rational curve Y € C? parametrized by P(z) and Q(z).
In [11] we give a simple and constructive necessary and sufficient condition for
vanishing of double moments (1.4) for P and () rational functions. It is obtained
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as a combination of the composition approach with the general Wermer—Harvey—
Lawson theorem. Assume that the curve T' is closed. Let W be the right
composition greatest common factor (CGCF) of P and Q, ie., P = P(W),
Q = Q(W) with P, Q having no composition right factor of positive degree.
(We shall call such rational functions P, Q relatively prime in composition
sense.)

TuroreEM 1.1.3.: For P, @) rational functions, m;; = 0 for all ¢,j > 0 if and
only if all the poles of P and Q lie on one side of W(T). In particular, if P,Q
are relatively prime in composition sense rational functions, then m;; = 0 for
all i,7 > 0 if and only if all the poles of P and @ lie on one side of T'.

For T' with self-intersections the “sides” of I' are accurately defined in the
next section.

The examples of the centers in homogeneous planar systems (A) of degrees
2 and 3 (which lead via the Cherkas transformation to the Abel equation (C)
with P and @ Laurent polynomials) show that in general on a closed curve T
the Center condition for the Abel equation (C) with rational coefficients p and
q does not imply the vanishing of the double moments (see [8]).

On the other hand, the vanishing of the double moments implies Center in
many special cases. In particular, in [9, 11] it is shown that this is true for P and
@ Laurent polynomials and I' = S'. For P and @ general rational functions,
the validity of the above implication depends on the geometry of the curve T’
and its image W (T") under the Composition Greatest Common Factor W of P
and Q. In particular, if I' and W (T'") are simple closed curves then the vanishing
of the double moments implies Center.

The proof of these facts in [9, 11] relays on the general Composition condition
given in Section 1.1.2 above. The Riemann surface X in our situation is the
rational algebraic curve Y = (P,Q)(C) ¢ C2. P and @ provide a rational
parametrization of Y and map T into the curve § in Y. The vanishing of the
double moments implies (via the general Wermer-Harvey—-Lawson theorem) that
4 is homological to zero in Y. But in many cases a loop § on an affine rational
complex curve Y which is homological to zero in Y must be contained in a
certain simply-connected domain in Y. By the general Composition condition
this implies Center.

In contrast, consider the example of the Abel equation (C) with P and @ the
Weierstrass function and its derivative, respectively, and I" a small circle around
zero in C. It is shown in [8] that in this case all the double moments vanish while
the Abel equation (C) does not have Center. The difference with the rational
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case is that for P and @) the Weierstrass function and its derivative, the curve
Y = (P,Q)(C) c C? is an affine elliptic curve. The loop § = (P, Q)(T) is still
homological to zero in Y. But it bounds in Y a not simply-connected domain.

All these results stress the role of the vanishing of double moments and of
the Composition factorizations in the case of the closed curve I'. Having this in
mind we can now step back and ask for the vanishing condition for the double
moments on the non-closed curve I'. This question is considered in Section 6
below.

1.2. ORGANIZATION OF THE PAPER. In Section 2 a convenient classical
description of the partition of C\ v is given. Then as the initial example we
give (by a direct computation) a description of I(¢) for ¢g a rational function.

In Section 3 we first recall some classical results on the behavior of the Cauchy-
type integrals near the integration curve. Then we obtain an analytic description
of I(t) at the ramification points of g (up to addition of a regular analytic germ)
in terms of the Puiseux expansion of g. As a result we obtain our first necessary
condition for algebraicity of I(¢) (which naturally overlaps with the results of
Section 4).

Section 4 is devoted to the global analytic properties of I(¢). In particular,
here we obtain our main conditions for algebraicity, rationality, and vanishing
of I(t).

We start with the introduction of the notion of the “sum of branches” of
g across v and along an auxiliary curve S. Then we define the notion of

)

the “combinatorial monodromy” and prove that it essentially defines the usual
monodromy of the analytic continuation of I(#).

Next, the necessary and sufficient conditions are given for algebraicity, ratio-
nality, and vanishing of I(#) in terms of the combinatorial monodromy. Later in
this section we obtain more explicit local necessary (sometimes also sufficient)
conditions for each of the properties in question.

Finally, a number of examples is considered in reasonable detail.

In Section 5 the results of Sections 3 and 4 are applied to the study of the
Polynomial Moment problem. In particular, we produce some new classes of
definite polynomials. We also introduce and study a certain geometric invariant
of complex polynomials.

In Section 6 we study the double moments of rational functions on a non-
closed . We show that in this case the vanishing of the double moments (in fact,
only algebraicity of the appropriate Moment generating functions) is equivalent
to a certain composition factorization of the integrand functions which “closes
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up” the integration path, together with the Wermer and Harvey—Lawson con-
dition for the left factors. The last condition can be interpreted via Theorem
1.1.3 above.

2. Partition of C by v. An example: I(g,v,t) for g-polynomials and
rational functions

Below we always assume the curve 7 to be oriented, piecewise-smooth, and to
have only transversal self-intersections. In this section we also assume that ~ is
closed. A classical description of the geometry of v given below closely follows
[2, 57, 58].

The curve v subdivides C into a finite number of open domains, D;. One of
these domains, which we denote by Dy, is unbounded and the rest are bounded
and simply connected. For a point z € C\v define (v, z) as the rotation number
of v around z. Clearly, u(v, z) is constant on each D; and we will denote this
constant by u;,po = 0. Alternatively, u(7y, 2z) can be defined as the (signed)
number of the intersection points of 4 with any path joining oo to z or as the
linking number of the curve 4 and the point z. According to this last definition,
for any complex one-dimensional chain Z in C with v = 9Z the number u(vy, 2)
is the (signed) “intersection number of Z with 2” or, in other words, simply
the number of times the chain Z covers the point z. Figure 1 illustrates this

construction.
‘ o w=0
=0
u D,
D,

Figure 1

It is natural to call the union of D; with y; = 0 “an outside part” of the
curve v and the union of D; with u; # 0 “an inside part”.
Let A = (z1,...,2n) be a finite collection of points in C.
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LEMMA 2.1: The curve v is homologous to zero in C\A if and only if (7, z;) = 0
for each z; € A, i.e., all z; belong to the outside part of 7.

Proof: If v = 0Z with Z C C\A, then by the last definition of u(vy,z) this
function is zero for any z; € A. Conversely, we always have v = 9(},_, 11; D;)
and if p; = 0 on any domain D; containing the points of A, then the 1-chain

> i—o i D; is contained in C\A. ]

Now we are ready to describe Cauchy integrals of polynomials and rational
functions on closed curves.

PROPOSITION 2.2: For ¢g(z) a polynomial in z and for v closed, I(v,g,t) =
n(v,t) - g(t).

Proof: A function ¢(z)/(z —t) in z has the only pole at z = ¢ with a residue
g(t) while the curve v makes exactly u(y,t) turns around ¢. |

Now let g(z) be a general rational function with the poles of orders &y, ..., ki,
k; > 1 at the points zq, ...,z respectively. For ¢« = 1,...,1, let the “essential
part” R;(z) of the function g(z) at z; (i.e., the negative part of the Laurent

k J

polynomial of g(z) at the pole z;) be given by Ri(z) = > 0L, as /(2 — z:)”.

PROPOSITION 2.3: The Cauchy integral I(v, g,t) is given by

l
(2.1) I(v.9.t) = p(v.t)g(t) — Z 1y, i) Ri(t).

Proof: Represent g(z) as g(z) = go(2) + Zle ijl a;;/(z = z)’ with go(2)
a polynomial. We have

{ Ky
(22) I(7vgvt) = I(%gmt) + Z Zai,j1(7a 1/(2 - Zi)jvt)~

By Proposition 2.2, I(v, go,t) = u(vy,t)go(t). Now, representing the integrand
1/(z —t)(z — z;)” in the Cauchy integral I(vy,1/(z — z;)?,t) as the sum of the
elementary fractions one obtains

2% (Z—t)(IZ—Zi)j:(t—lzi) (Zit_z—lzi)-'_s_zzﬂi’sﬁ‘

Integrating along + with respect to z and noticing that the last sum in (2.3)

does not contribute to the integral, we get

(2.4 IO — 2P0 = (=

) (1) — . 2).
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Finally,
N a;
I(7,9,t) = u(y, t)go(t) +u7tzz — Zu%zz Z —
1j=1 T (t—2)
i=1 j= j=
¢
= u(v.t)g(t) = > pu(y, z) Ri(t).
i=1
This completes the proof of Proposition 2.3. |

COROLLARY 2.4: Let g(z) be a rational function with only the first order poles

at z1,...,z¢, each with residue a;, i =1, ..., L, respectively. Then
p(y, zi)ov
(2.5) I(v,9,t) = p(y.1) -
(2

COROLLARY 2.5: If all the poles of g belong to the outside part of v then
I(~y,g,t) = u(y,t)g(t). In particular, this is a necessary and sufficient condition
for I(y, g,t) to vanish identically for t near infinity.

Remark: Computations of Propositions 2.2 and 2.3 did not use in any essential
form the rationality of the function g. Exactly in the same way we obtain the
corresponding results for regular and meromorphic functions, respectively. Let
U C C be a simply-connected domain containing the closed integration curve .

PROPOSITION 2.6: For the integrand g(z) being extendible to a holomorphic
function in U, I(v,g,t) = u(y,t) - g(t).

Of course, for such g(z) the Cauchy integral I(v, g,t) always vanishes identi-
cally on the exterior domain Dy.

Now let U be as above and let g(z) be a meromorphic function in U with
the finite number of poles at the points z1, ...,z with orders ky,... Kk, k; > 1,
respectively.

PROPOSITION 2.7: The Cauchy integral I(v, g,t) is given by

4
I(7,9,1) = p(v,1)g(t) = > uly, z) Rit),
i=1
where fori =1,...,l, R;(z) denotes the essential part of g(z) at the pole z;. In
particular, for such g(z) the Cauchy integral I(v,g,t) is a rational function on
the exterior domain Dy.
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3. Local structure of I(t)

Let v be a curve (closed or non-closed) and let z € y. We say that the integrand
function g has a “jump” at z if the branches gg and g1 of g on the two sides of z
on v cannot be obtained from one another by a local analytic continuation (i.e.,
a continuation along a curve inside any given neighborhood of z). Equivalently,
the full local germs of go and g1 at a jump point z do not coincide.

Let us remember that we have denoted by ¥ the set containing the end-
points of +, all its multiple points, and all the points z on 7 where the integrand
function ¢ has either a jump or a ramification point. (In this paper we exclude
the possibility for g to have poles on 7.)

Lemmas 3.1-3.3 below provide an elementary description of the behavior of
the Cauchy-type integral near the integration curve 4. For the convenience of
the reader we give some proofs and explanations.

Consider first zg € v and zp ¢ . In particular, g is regular at zg.

LeEmMA 3.1: I(v,g,t) near zq is represented by two regular analytic functions:
I_(t) on the left side of v and I, (t) on the right side. Both I_ and I, are
analytically extendible into an entire neighborhood U of zqg and I, = I_ + g in
U.

Proof: This is the usual property of Cauchy-type integrals (see [38]) taking
into account that g|y is a restriction on 7 of a regular analytic function ¢ in
U. Indeed, using analytic continuation of g into the neighborhood U of z; and
deforming the integration path, we obtain the required extension of I_ and I
just by the original expression (1.1). ]

Let now zg be a double point of 4 and let v9 and 7, denote the two local
segments of v crossing at zg. We assume that the restrictions of g to v9 and v,
are both regular at zj.

LEMMA 3.2: I(v,g,t) in aneighborhood U of zq is represented as I (t) = I3 +11,
where the combination of the signs is chosen according to the part of U\y
considered, and I and I} have, with respect to vo and v1, all the properties
stated in Lemma 3.1.

Proof: Up to a regular addition we have I(v,¢g,t) = I(70,9,t) + I[(11,9,t) =
I° + I'. Application of Lemma 3.1 to each of these integrals proves the lemma.
Figure 2 illustrates this construction. |



238 F. PAKOVICH, N. ROYTVARF AND Y. YOMDIN Isr. J. Math.

Figure 2

Assume now that z is the end-point of 4 with the positive (integration)
direction from zg along . Let g be regular near zg.

LEMMA 3.3: In a neighborhood of zy,

1(t) = (1) ~ 5—(t) log(t — =)

with I(t) regular near z.

Proof:  Once more, this is the standard property of the Cauchy-type integrals
(see [38]). We give a proof in order to illustrate the approach used below in a
singular situation.

Up to a regular addition, for ¢ near zg we can write
1 /21 g(z)dz _ 1 /21 (9(z) —gW))dz =~ 1 [ g(t)dz

I(t) = — =
*) 271 z—t 271

0 ‘o z—1 2ri f,, 22—t

But % = R(z,t) is a regular function of z and ¢ for z,t near zo. Hence,

I(t) ! /Z1 R(z,t)dz + % log bzam I(t)— L,g(t) log(t — zq). [ |

= 2 0 t—zp 2mi

The next result describes the local structure of I(¢) near the end-point zg
of v which is also a ramification point of g. We believe this result is new. It
gives a very accurate description of I(t) near zo starting with a very accurate
description of ¢: its Puiseux series at zy. Let

(3.1) g(z) = Zak(z — zo)k/m
k=0



Vol. 144, 2004 CAUCHY-TYPE INTEGRALS OF ALGEBRAIC FUNCTIONS 239

be a Puiseux series of g(z) at zo. We denote by g¢,(z) a “regular part” of g(z)
at zp:

(3.2) gr(2) =D ane(z — 20)"
£=0

Denote by g(u) a regular function

(3.3) glu) = Zakuk.
k=0

The expression (3.1) does not specify any individual branch of the algebraic
function g at zg, but rather represents the full local germ of g at zo (and in this
way all its local branches). However, in the definition (1.1) of the Cauchy-type
integral a certain specific branch gg of g on v near zy has been fixed. So let U
be a sufficiently small simply-connected neighborhood of a part of v \ zo near
2p. Denote by h(z) that branch in U of the inverse function to (z — zg)" for
which go on v near zj is given by

(3.4) 90(2) = g(h(2)).

Let Uy be a (simply-connected) part of U lying on one side of v\ 0 (say, the
part in the counter-clockwise direction from ). Now we fix the branch tq of
(t — 20)'/™ in Uy given by to = h(t) and denote by t;,j = 0,...,n — 1, all the
other n-th roots of t — zg,t; = €/tg,e = €2™/". The functions t; = t,(t) are
univalued functions of ¢ € Uy. Remember that in the expression (1.1) of the
Cauchy-type integral I(t) the argument ¢ is not allowed to be in 7.

To formulate our result it remains to fix the branches of the logarithm ap-
pearing in the expression (3.5) below. We fix in an arbitrary way a certain
branch of the log(t — zp) for ¢ in the simply-connected domain Uy and denote
it by Log. Let ¢ = h(z1) with z; € v\ z0. Fix the branch of the log near ¢
satisfying logc = L Log(z1 — zo) for the branch Log of log(t — zo) chosen above,
and extend it into a small simply-connected neighborhood V' of ¢. We denote
this extended branch of the logarithm in V' by Log;. Finally, for ¢ small also
t; = t;(t) are small. Therefore, ¢ —¢; € V and we use the chosen branch Log;
of log(c —t;) in V for each j =0,...,n — 1.

THEOREM 3.4: For any t in the domain Uy,
(3.5)

[

n—

1

10 =R(0-Y (2-1)at) %i 1) Logs (e~ t;) ~ 50, () Log(1 —=0).

[
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Here R(t) is a regular function, and ¢ = h(z1) with zy € v\ 0 is a nonzero
complex constant. The branches t; = t;(t) and the branches of the logarithms
are chosen as described above.

Proof: To simplify notation, we assume that zg = 0. As in the proof of Lemma
3.3, up to addition of a regular function we have

10 = 5 /O i)z

T omi z—1t

Here z; € v\ 0. Make a change of variables in this integral: z = «™. Since

/7 gplits + into

v is a smooth curve near zg, the inverse transformation u = z
n smooth curves v; at 0. Order these n curves in such a way that 7q is the
one given by the branch h(z) of u = 2'/" defined above and v; = €/ for
j =0,....,n—1 (where, as above, € = €2™/"). For any t in U, the values of
t; =t;j(t), j =0,...,n — 1, belong to the simply-connected domains ; lying

on the “left” side of the curves v; \ 0. See Figure 3.

Figure 3

So the integration after the change of variables goes along 7o from 0 to u; =
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¢ =h(z) = 2" By (3.4) we get

(3.6) It = = /Ou glwu” du.

u™ —t

We have

n—1
1 A
un —t _Zu—tj(t)

=0
with 4; = l/ntgkl(t). Hence (writing briefly ¢;(t) as t;) we obtain

1

omil(t) = S /“1 guu"tdu
= o = (= t;)
(37) n—1 u ~ n—1 ~ n—1 ~
_ / ! {g(U)u = g(t)t] N i) 7,
Sh Ty T

Integration and summation of the terms in (3.7) with only u —¢; in the denom-
inator gives (up to the factor 1/2mi)

S gty Mlog(us — t;) —log(—t,)] = 3 4(t5) log(ur — 1)

(3.8) 7=0 .
3 () log(~t;)

=0

Now we transform the expression (3.8) taking into account the choice of the
branches of the logarithm fixed in the formula (3.5) of Theorem 3.4. The dif-
ferences log(ui — t;) —log(—t;) on the left hand side of (3.8) do not depend on
the choice of the branches of the logarithm but do depend on the integration
path (which becomes the continuation path of the logarithm). So let us take in
each of these differences log(u1 — t;) to be given by the branch of the logarithm
Logi(ur — t;) (where Log; is the branch in the neighborhood V of u; fixed in
Theorem 3.4). With this choice the first sum on the right hand side of (3.8)
enters as the third term into the expression (3.5) of Theorem 3.4.

To compute the second sum on the right hand side of (3.8) (and thus to get
the second and fourth terms in (3.5)) let us specify for each summand in (3.8)
the continuation path of the chosen branch of the logarithm. As u goes from
zero to uy along Yo, u —t; goes along the curve 'yg obtained from 7q by the shift
to —t;. See Figure 4, which depicts also an auxiliary path ¢ obtained from 7o
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by the shift to tg.

Figure 4

Notice that the curves ’yé,j =0,...,n — 1, do not pass through 0. (Indeed,
since ¢ is not allowed to be in v,¢; cannot be in any of the branches v;, in
particular, in 9p). Some of these curves pass (near zero) on the same side of
70 as o and some pass on the other side. An easy computation (see Figure 4)
shows that on the same side pass the curves with j = [”T’l] +1,...,n—1, and
on the other side those with j =0...,[21].

Now, according to the integration path in (3.7) the branch of the logarithm in
each of the summands log(—¢;) in (3.8) is obtained as follows: the branch Log of
the logarithm in a neighborhood V' of u; is taken. Then this branch is continued
from u; —t; (which belongs to V') to —t; along the path 'yg. Notice that by the
choice of the branch Log; above, its continuation to the domain o (which we
denote also Logy) satisfies for each to(t) € Qo the equality Logi (to) = L Log(t).

Therefore, we can obtain the branches of each of the summands log(—¢;(t)) in
(3.8) by continuing Log; from ¢, to —¢; along the path S; obtained as follows:
we go from tg back to uy + tg € V along the path o, then join uy + ¢y to
u; —t; inside V, and then continue from u; —t; to —t; along the path 'yg. (See
Figure 4.) Now for j =0..., [”T_l] the path S; can be deformed into the part
S of the small circle going from # to —t; in a clockwise direction, while for
j= [”T’l] +1,...,n — 1 the path S} goes from #y to —t; in a counter-clockwise
direction. In each case the path S} presents the rotation from ¢y to the angle
—m+ (27/n)j (see Figure 4). Starting with the equality Logi (to) = < Log(t) we
finally obtain log(—t;) = L Log(t) + (27i/n)j — mi.
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Remark: The same result gives a “naive” computation
. . 1 . . .
log(—t;) = log(—€’tg) = log(—€’t'/™) = = logt + (2mi/n)j — mi.
n

Hence, the second sum on the right hand side of expression (3.8) gives

(3.9)

To bring the last term to the form it takes in (3.5), it remains to notice that the
sum Z;:Ol G(t;), which is the sum of all the local branches of ¢ at 0, is equal to
n times the regular part g,.(t) of g. Indeed,

|
-
—_

n n—

(3.10) g(t; iak eJto Zaktk Z P =n Z akto = ng,(t).

j=0 k=0 k=nt

<.
Il
o

.

This gives the second and fourth terms in the expression (3.5) of Theorem 3.4
and completes the computation of the sum of the terms in (3.7) with only u —t;
in the denominator.

To complete the proof of Theorem 3.4 it remains to show that the sum of
the terms in (3.7) with the denominator t?fl(u — t;) is a regular function in ¢
near 0. Since g(u) is given by a convergent power series in non-negative integer
powers of wu, it is enough to prove the statement for each term of this series
separately. We have

- u™ — t;” 1 «— m—1 m-—2 m— 1 1 =< m—s4s
> Ty BT T e T = 0 0
j=0"J J j=0 j=0 s=1
1 m n—1 1
— ; Zumfs Z t; — Z Z ums . ntﬁ -n Z umféntéfl.
s=1 j=0 s=fn,0<s<m 0<¢<[m/n]
This completes the proof of Theorem 3.4. |

Remark 1: The expression (3.5) of Theorem 3.4, with the branches ¢; and the
branches of the logarithms specified as explained above, represent the actual
value of the Cauchy integral I(¢) given by (1.1) in a one-sided neighborhood Uy
of v\ zo. However, the same formula gives also the local analytic continuation
of I(t) as t is allowed to vary on the full punctured neighborhood of zy. In this
case the branches of ¢; and of the logarithms in (3.5) should be interpreted as
the appropriate analytic continuations of the original ones.
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Remark 2: If we fix each of the branches of the logarithms appearing in the
expression (3.5) of Theorem 3.4 in an arbitrary way, this expression takes the
following form:

1) =R~ Y (2~ 2 m))ae) + oo 3t Log (e~ 1)

1
- %gr(t)Log(t — 20),

with m; integers, j = 0,...,n — 1. Indeed, the addition of (27i)m to
Log(t — zg) brings a regular correction (2mni)g,(t) which enters the term R(t).
The additions of (27i)m; to the branches of Logi(c — t;) are reflected in the
formula above. The computations in the proof of Theorem 3.4 show how to
fix the branches of the logarithms in a coherent way in order to eliminate the
unspecified constants m;.

Remark 3: Theorem 3.4 can be considered as a generalization and sharpening
of computations of C. Christopher [20] and M. Briskin [12].

COROLLARY 3.5: In a neighborhood of zy, I(t) = I(t) — 7=gr(t) log(t — 20),
where the analytic continuation of the function I(t) has a finite ramification of
order at most n at zp.

Proof: The term R(t) in the expression of Theorem 3.4 is regular in ¢ near zg.
The second and third terms return to the original branch as ¢ makes n turns
around zo. Indeed, as ¢ is close to zg, t; are near 0 but log(c—t;) is regular near
0 since ¢ # 0. g is a regular function by definition. Hence as ¢; return to their
original values after ¢ turns n times around zg, the second and third terms in
the expression of Theorem 3.4 do the same.

COROLLARY 3.6: If g, at z is not identically zero, then the analytic continua-
tion of I1(t) has an infinite ramification around zy. In particular, I(t) cannot be
an algebraic function.

Proof:  For g, not identically zero, the last term in Corollary 3.5 implies an
infinite ramification of I(¢). |
In particular, this happens if g(2¢) # 0 since in this case g,(z0) = ¢g(z0) # 0.

Example 1: The following simple example illustrates the statement and the
proof of Theorem 3.4 (as well as some of the results of the next section):

I(t) — ' @

g z—t’
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The positive branch of 1/ for z on [0, 1] is chosen. Then performing the change
of variables z = u?, dz = 2udu we get

uldu U tdu
I(t) =2 =2 du + 2 )
®) / u? —t / + / u? —t
Denote by v/t the branch which is positive for positive ¢ (so to and t; in the
proof of Theorem 3.4 are v/t and —\/Z) We have

2t (1/f 1/\/5)_ ViVt
2t u—vVt u+it _u—\/f u+E

Thus
I(t) = 2 — [=Vtlog(u — V1) + Vtlog(u + V1)]|§

=2+ tlog (1 — \/Z) — Vt(log(—V't) — log(V1))

14+t
— 24 Vilog (:ﬁ) ~ Vi(log(~1))
:2—m'\/2+\/ilog(1;£).

The term with a logarithmic ramification around zero is absent since g(z) = v/z
has a regular part g,(z) equal to zero at 2 = 0. Notice that I(¢) still has a
logarithmic branching around ¢ = 1.

We need also a description of I(t) near a simple interior point zq of v at which
g may have a jump. Denote by go and g; the branches of g on v before and
after zg, respectively.

THEOREM 3.7: In a neighborhood of zy functions Iy (t) can be represented as

La(t) = Le(t) + 5= (1) = 90, (1) ot = 20).

with I+ (t) having a finite ramification at zo. Here, g,, and g,, denote the regular
parts of go and g, at zg, respectively.

Proof:  Up to a regular addition the functions I (¢) in a neighborhood of zg

“semi-curves” vg and v,

are given by the sum of the Cauchy integrals on the
having zg as the end-points. Now the required representation follows directly

from Corollary 3.5. |
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Remark 3: One can write in the situation of Theorem 3.7 a full expression
completely analogous to the formula (3.5) of Theorem 3.4. However, this ex-
pression becomes rather complicated, since the ramification orders of g on the
two sides of zp may be different and most of the sums in (3.5) must appear
twice. A simplified version of this formula given by Theorem 3.7 is sufficient for
our applications.

In the same way as Corollary 3.6 we now obtain the following result:

COROLLARY 3.8: If g, # gr,, then the analytic continuations of I (t) both
have an infinite ramification around zo. In particular, this happens if gq(z0) #
g1(20).

The regular part of ¢ at its ramification point has been defined above in terms
of the Puiseax series of g as the sum of all the terms in this series with integer
exponent. In the proof of Theorem 3.4 it was shown that in fact

3 alts) = ngn(o).

In other words, the regular part g.(t) of g(t) is an average (or a “normalized
sum”) of all the local branches of g.
Let us summarize the results of Corollaries 3.6 and 3.8 as follows:

COROLLARY 3.9: Let I(t) be algebraic. Then at each interior point zy € ¥
the regular parts of the branches of g on the two sides of zq coincide. In other
words, the normalized sums of the local branches of g on the two sides of zg
are equal to one another. If zy is the end-point of v, then the sum of the local
branches of g at zo must be zero.

Notice that in the statement of the results of Section 3 it is not essential that
the number of local branches of g is exactly the denominator n in the exponents
of the Puiseux series. Some of these branches may coincide among themselves
— the normalized sum of the branches remains the same.

4. Global structure of I(t): continuation, algebraicity, rationality, and
vanishing

Integral representation (1.1) defines I(t) as a collection of univalent regular
functions I;(t) in each domain D; of the complement of v in C. In this section
we study the relation between I;(t) in the neighboring domains D; and on this
base analyze their global analytic continuation.
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Denote by 7, the segments of v\ X. So g is regular in a neighborhood of each
interior point of vs. According to Lemma 3.1, for two adjoint domains D; and
D; separated by their common segment v, of the curve v, I; is obtained from
I; as follows:

a. I; is analytically continued through ~s into a certain neighborhood € of

vs in Dj.

b. An algebraic function g, in Q (obtained by the analytic continuation to
of the branch g5 of g on v5) is added to I; (multiplied by —1 if the crossing
orientation of v is negative).

c. I;+ g, is analytically extended from €2 to the entire domain Dj; I; is equal
to this continued function I; + g;.

The operation of an addition of an algebraic function and its continuation (as
extended to several crossings of ) is “combinatorial” in its nature. It depends
only on the monodromy of g and on the geometry of 7 and in principle it can be
explicitly computed. To define this operation accurately let us consider curves
S (or Sc,q) starting at ¢ € C\ vy and ending at d € C\v. Say that S is admissible
if it avoids singularities of g and crosses vy transversally and only at the interior
points of the segments 75. For any admissible curve S¢ 4 denote by S;; the
operator of the analytic continuation along S¢ 4 of the analytic germs at c to the
analytic germs at d.

Now let Sc ¢ be an admissible curve with ¢ € D; and d € D;. Suppose that
SNy ={a,az,...,a,} and let {g1,92,...,9-} be the germsof g at a;, 1 <i <r.
Define a sum of branches g(Sc,a,7y) of g along S¢.q across v as follows: it is a

regular algebraic germ at d defined by

(41) cd '7 ngn al, gl)

where S, 4 denotes the part of S connecting a; and d, and sgn(a;) is equal to
plus or minus one according to the orientation of the crossing of S and v at a;.
The following property of the sum of branches along S is immediate:

PROPOSITION 4.1: Let the admissible curve S, 4 be the union of the admissible
curves Sc. and S, 4. Then

(4.2) 9(Se,as7) =S¢ 4(9(Se,e>¥)) + 9(Se,a,7)-

Denote by ¥; the set of those singular points of (all the branches of) ¢ that
do not lie on 7 (and hence do not belong to ¥). Denote by U the complex plane
C with ¥ and ¥; deleted. By definition, admissible curves S lie entirely in U.
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PROPOSITION 4.2: The sum of branches along S. q depends only on the homo-
topy class (with fixed end-points) of this curve in U.

Proof: As we deform S in U, preserving the transversality of the intersection
of S and v, each term in (4.1) remains the same, being the analytic continuation
of the same function along a continuously deformed path. Now for a generic
deformation of S, at each moment of a non-transversal intersection of S and v a
couple of transversal intersections appears (or disappears). The corresponding
terms in (4.1) cancel one another. |

Remark: The result follows also from Lemma 4.3 below since the analytic
continuation of I; depends only on the homotopy class of S in U.

The following lemma shows that the sum of branches along S measures the
difference between the analytic continuation S*(I;) of I; into the domain D;
and the function 7;. Let S, 4 be any admissible curve with ¢ € D; and d € D;.

LEMMA 4.3: The germ of I; at ¢ can be analytically continued along S. The
resulting germ S*(I;) at d satisfies

(4.3) SHL)(8) = I;(t) = 9(S,7)(D).
Proof: It follows by induction on the number r of the intersection points of S
and . If we write (4.3) in the form

(4.4) Ii(t) = S*(L)(E) + (S, 7)(D),

then for the first crossing of S and + the equality (4.4) follows directly from the
description of the behavior of I on 7 given in the steps a, b, ¢ above. Assuming
that (4.4) holds after [ crossings of S and v and combining the above description
with the definition of the sum of branches along S, we get that (4.4) is valid
also after [ + 1 crossings. ]

Let S.,. be a closed admissible curve with ¢ € D;. According to Proposition
4.2, the sum of branches along S across v depends only on the element S of
the fundamental group m(U,c) defined by S. We define a combinatorial
monodromy of I; at ¢ as the mapping A; of 71 (U, ¢) to the analytic germs at
¢ which associates to each S € 71 (U, ¢) the germ A4;(S) at ¢ equal to the sum of
branches along S across 7.

We say that the combinatorial monodromy of I; at c is finite if the image
of 71 (U, ¢) under A4, is finite, and we say that the combinatorial monodromy
of I; at ¢ is trivial if 4;(S) =0 for any S € m (U, ¢).
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The combinatorial monodromy depends only on the monodromy of g and on
the geometry of 7, and in principle it can be explicitly computed. In the present
paper we mostly restrict ourselves to the local behavior of the combinatorial
monodromy. See Remarks 1-3 at the end of this section, where we outline
a certain global algebraic approach that captures naturally the combinatorial
monodromy and simplifies its computation.

Now we are ready to prove the main results of this section. The following
Theorem 4.4 provides a description of the complete analytic continuation of
the Cauchy integral I;(t) from the domain D; where it was initially defined
by expression (1.1). So fix a point ¢ € D; and let I;(t) be the function in D;
defined by (1.1). Remember that the usual monodromy mapping M A; of the
fundamental group 71 (U, ¢) to the analytic germs at ¢ is given by

MA;(8) = S*(I(t)),
for any S € m (U, ¢).

THEOREM 4.4: The function I,;(t) allows for a complete analytic continuation
as a regular multivalued function fi(t) in U. For any admissible curve S. 4 with
c € D; and d € D; the analytic continuation S:,d(‘[i) of I; along S.,q is given
by S ,(I;) = I; — g(S,v). In particular, the monodromy mapping M A; of
I;(t) is given by M Ay(S) = I;(t) — Ay(S) for any S € m (U, c), where A; is the
combinatorial monodromy of I;.

At the singular points of g in Xy any leaf of the function I;(t) may have only
the finite order ramifications. In fact, singularities of I;(t) at the points of ¥,
are those of certain sums of the branches of g, up to a regular addition.

At each point of £ all the leaves of the function I;(t) have simultaneously
either a finite or an infinite order of the local branching. The analytic represen-
tation of each of the leaves of the function I;(t) at these points (up to addition
of an algebraic germ) is given by Theorem 3.4.

Proof:  The analytic continuation of I;(f) along any admissible curve S and
its expression via the sum of branches of g across 7 is provided by Lemma
4.3. Applying this expression to the closed curve S = S; . we get the required
description of the monodromy action M A;.

Now let us take S with the end-point d near a singular point wy € ¥; of g.
By the representation above we get the leaf of the function I;(¢) obtained by the
analytic continuation along S as the difference between the regular function I;(t)
and a certain sum of the branches of g. This implies the required description of
the singularities of the leaves of I;(t) at the points of ¥;.
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Taking S with the end-point d near a point w; € X, we get the corresponding
leaf of I;(t) as the difference between the possibly singular function I;(t) at
wi and a certain finite sum of the branches of g. Therefore, the property of
this leaf to have a finite or an infinite local ramification at w; depends only
on the local branching of I;(t). Hence all the leaves simultaneously have at w;
either a finite or an infinite order of the local branching. Since the analytic
representation of I (t) at w; is given by Theorem 3.4, this provides the required
analytic description of the singularities of all the leaves of fi(t) at the points of
3, up to addition of an algebraic germ. This completes the proof of Theorem
4.4. ]

Remark 1: Simple examples show that the combinatorial monodromy of I;
may be infinite. This happens, for instance, in Example 1 of Section 3 and in
Examples 2 and 5 below. In this case we still get certain finite sums of branches
of g at each step of forming the sum of branches across v. However, it is exactly
this step of forming sums that may lead ultimately to infinite branching.

Remark 2: Let us return for a moment to the comparison between the functions
I(t) and the Abelian integrals. One of the most important analytic properties
of the Abelian integrals is the fact that they satisfy certain Fuchsian linear
differential equations with rational coefficients (see [6, 7, 25-28, 32-35, 43, 46,
56, 59]). Theorem 4.4 allows us to show that the same is true for the Cauchy-type
integrals of algebraic functions. Indeed, a necessary and sufficient condition for a
multivalued function y(x) to satisfy a linear differential equation with univalued
coefficients is that the linear space spanned by the germs of all the branches of
y(z) at each point z is finite dimensional. Now, by Theorem 4.4 all the branches
of the analytic continuation of I;(t) over the domain D; are obtained by adding
to I;(t) certain sums of the branches of the algebraic function g. Hence the linear
space spanned by the germs of all the branches of the analytic continuation of
I;(t) over the domain D; always has the basis consisting of I;(¢) and of all the
branches of g. More detailed analysis allows one to show that I(t) satisfies in
fact a Fuchsian linear differential equation with rational coefficients. It would be
important to construct such an equation explicitly and to investigate its relation
to the differential equation which is satisfied by the algebraic function ¢ itself.

Remark 3: There is another natural way to compute the monodromy of the
Cauchy-type integrals of algebraic functions. As the argument ¢ of the function
I;(t) follows the loop S and approaches v, we start to deform v in order to
avoid the crossing of v by ¢. Under these circumstances the integral expression
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(1.1) on the deformed curve v defines the analytic continuation of I;(t). After ¢
completes the full loop S, the integration contour v must be modified to 7' by
adding certain loops related to S. The analytic continuation S*(I;(t)) is given
by the Cauchy integral (1.1) over 4'. Of course, the explicit computation of the
resulting additions leads to the same formula with the sum of the branches of g
as in Theorem 4.4.

We would like to thank L. Gavrilov for pointing out the facts and questions
mentioned in Remarks 2 and 3.

Remark 4: The results above provide also a comparison of the analytic contin-
uations of the functions I; and I; from two different domains D; and D;: these
continuations differ by a certain sum of the branches of g.

Theorem 4.4 allows us to give a necessary and sufficient condition for I;(t)
to be an algebraic function. Let us remember briefly some basic definitions.
A (multivalued) function y(z) is called algebraic if it satisfies an equation
y? 4+ ag_1(2)y? 4+ - 4+ a1(2)y + ap(z) = 0 with a;(z) rational functions. A
singular point 29 of a multivalued analytic function f(z) is called algebroid
if f(z) has a finite ramification at 29 and an absolute value of f(z) near zq
is bounded by a certain negative power of |z — zp|. A multivalued analytic
function f(z) is called locally algebroid if all its singularities are algebroid.
As we show in a moment, under some additional finiteness assumptions locally
algebroid functions are in fact algebraic.

Let V = C\{z0,...,2n}. Let f(2) be a multivalued regular analytic function
in V. We say that f(z) has a globally finite branching in V if the number
of different univalued branches of f(z) over each simply-connected domain Q
in V is finite. (This number does not depend on €.) A basic fact here is the
following: a locally algebroid function f(z) which has a globally finite branching
in V is algebraic. Let us give for completeness a very short proof of this fact.
Let y1(2),...,y4(2) be the values of all the branches of f(z) at z € V (taken in
any order). Consider the product (y—y1(2)) -+ (y—ya(2)) = y?+aq_1(2)y? 1+
<+-+ay(2)y+ag(z). The coefficients ag_1(2), ..., ao(z) are symmetric functions
of y1(2),...,ya(z), so they are univalued on V. Since the singularities of all
the branches y1(z),...,yq(2) of f(2) at the points zg,. .., zx are algebroid, the
same is true for ag—1(2),...,a0(z). Now, a univalued function on V with all
the singularities at zg, .. .,zN algebroid is rational. Indeed, if we multiply such
a function by a polynomial with zeros of a sufficiently high order at all the
finite singularities, we get a regular function on C with a polynomial growth at
infinity, i.e., another polynomial.
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Now we are ready to give a criterion for algebraicity of I;(t).

THEOREM 4.5: The function I;(t) (and hence every I;(t)) is algebraic if and
only if the combinatorial monodromy of I; is finite.

Proof:  Assume that I;(t) is algebraic (which is the same as to assume that
its full analytic continuation I;(¢) is algebraic). In this case the image of the
monodromy mapping M A; is finite. By Theorem 4.4 the same is true for the
combinatorial monodromy of I;. Conversely, assume that the combinatorial
monodromy of I; is finite. Then by Theorem 4.4 the monodromy mapping
M A; has a finite image. Hence fl(t) has globally only a finite branching. The
singularities of all the branches of I;(t) at the points of £, are algebraic (up
to a regular addition) by Theorem 4.4. In our case of the finite branching, the
singularities of all the branches of fi(t) at the points of ¥ are algebroid. Indeed,
by Theorem 4.4 each of these singularities at a certain point zg € X is given
by the sum of the algebraic germ and the germ of the Cauchy integral I; at zo,
where D; is the domain adjacent to  near zy. Since I;(¢) has a finite branching
at zo the same is true also for I;(t) at z,. Consider, for simplicity, the case
of the end-point zg of 7. The case of the interior jump point zg is treated in
exactly the same way.

According to the representation of I;(t) given by Theorem 3.4, it has the form
(4.5)

M |

_ s 1
2 (———)g +o— ;O i)Logi(e~t;) = 5—g:(t) Log(t - z0).

In the case of the finite branching of I;(¢), the last term in (4.5) containing
log(t — zo) must disappear. Now, the first three terms of (4.5) are bounded near
20 and have at this point a finite ramification (remember that the constant ¢
in the third term is different from zero). Hence the singularity of I;(¢) at zo is
algebroid. Therefore, the same is true for the singularity of I;(t) at zo.

Also at infinity the singularity of any branch of I; () is algebroid. Indeed, I;(t)
has there a finite branching. Moreover, up to addition of an algebraic germ at
infinity any branch of I;(t) coincides there with the regular germ Io(t) given
by (1.1). Thus I;(t) has globally a finite branching and all its singularities
algebroid. By the classical description of algebraic functions given above, this
implies that fi(t) is algebraic. This completes the proof of Theorem 4.5. ]

Using the same approach we obtain some local conditions on g that are nec-
essary for algebraicity of I(¢). Below, v may be open or closed.
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COROLLARY 4.6: Let I(t) be algebraic. Then at each “jump” point 29 € ¥
(including each of the end-points of y) a certain non-trivial integer linear com-
bination of the local branches of g must be zero.

Proof: Consider the case of the end-point. Let zg be one of the end-points of
~ and let the adjacent domain to v near zg be D;. Denote by ¢ a small closed
loop going around zg in the counter-clockwise direction from a certain point ¢
near v, and let o* denote as above the operator of the analytic continuation
along o. Let g1 be the branch of g on ¥ near zy. By Proposition 4.1 the sum of
the branches along o repeated n times is given by

(4.5) g+ (1) + 0 (1) + -+ 0" (91).

Now I;(t) is algebraic and its ramification at zg is finite. Fix the smallest n
for which o*"(I;(t)) = I;(t). Then the formula (4.3) of Lemma 4.3 shows that
for this n the sum (4.5) is zero. This provides the required relation. The proof
for the interior point zy is essentially the same. We get an equality of certain
sums of the branches of g on the two sides of z; on . Since zy; was assumed to
be a “jump” point of g, the branches of g on the two sides of zg on v cannot
be transformed one into another by the local monodromy of g and hence the
resulting sum of the branches of ¢ is non-trivial. (We would like to thank the
referee for suggesting the above calculation.) |

Remark 1: Corollary 3.9 is formally stronger than Corollary 4.6 since it pro-
vides the specific vanishing sum of the local branches of g. A modification of
the arguments above allows one to get the same specific vanishing sum via the
approach of this section.

Remark 2: Example 5 below shows that in general the vanishing of the sums of
the local branches of g given by Corollary 3.9 does not imply the global finiteness
of the combinatorial monodromy. One can hope that the algebraic approach to
the representation and computing the combinatorial monodromy described in
the remark at the end of this section can provide a unified way to producing
all the necessary and sufficient finiteness conditions in terms of the vanishing of
certain sums of the branches of ¢ (local and global).

Let us continue by providing conditions for I;(¢) to be a rational function.
Notice that, in contrast with the algebraicity case, these conditions depend on
the specific function I;(¢) (and the domain D;) we start with. Indeed, if I;(t) is
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rational then the functions I;(¢) for ¢ # j will be usually only algebraic and not
rational (unless g itself is rational).

THEOREM 4.7: I;(t) is a rational function if and only if the combinatorial mon-
odromy of I; is trivial.

Proof:  Assume that I;(¢) is rational. This is the same as saying that its full
analytic continuation fi(t) is rational. In this case the image of the monodromy
mapping M A; is the germ I;(t). Hence, by Theorem 4.4, the image of the com-
binatorial monodromy of I; is zero. Conversely, assume that the combinatorial
monodromy of I; is trivial. Then by Theorem 4.4 the image of the monodromy
mapping M A; is the germ I;(¢). In particular, this implies that fl(t) is uni-
valued over U. It was shown in the proof of Theorem 4.5 that all the singular
points of I;(¢) (including infinity) are algebroid. By the basic result on rational
functions presented above in this case fl(t) must be rational. ]

Of course, the local conditions of Corollary 4.6 are satisfied if ;(t) is rational.
Let us present some stronger local conditions for rationality (which, in contrast
to the algebraicity local conditions, are both necessary and sufficient). These
conditions just express the non-branching of fl(t) at each of its singularities. We
consider separately three cases: the end-point of 7, the interior “jump” point,
and the singular point of g not in ~.

Let zg be the end-point of v, belonging to the domain D;, and let S. 4 be
an admissible curve with ¢ € D; and with d € D; close to a certain point w
on the curve 7. (See Figure 5.) The sum of branches g(S.,q4,7) of ¢ (along S
across ) is an algebraic germ at d which we extend to the algebraic function F'
(multivalued in general) defined in D;. Denote by o a small closed loop going
around zg in the counter-clockwise direction from the point w to itself. Finally,
let g1 be the branch of g on v near z.

PROPOSITION 4.8: If I;(t) is a rational function, then in a neighborhood of w
we have g1 = F — o*(F). In particular, if D; = D, then F = 0 and therefore
g1 =0on 7.

Proof: Denote by S the curve following S and then going from d to w, and let
T =T, be the curve following S and then following o. If I;(t) is rational, then
by Lemma 4.3 the sum of branches along any two admissible curves leading to
the same point w must be the same. Hence ¢(T,~) = ¢(S,~) = F. Applying
Proposition 4.1 we obtain g(T,v) = g1 + o*(F) or g1 = F — o*(F). |
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Figure 5

Remark: If the end-point zy of 7 belongs to the initial domain D; and I;
is rational, then Proposition 4.8 implies that g; = 0 on 7. This fact follows
immediately also from the possibility of reaching both sides of ¥ near zy from
the same point ¢ in D;. Indeed, g; on « is the difference of the continuations of
I;(t) on the two sides of v. See Figure 6.

Figure 6

Now let zg € ¥ be a simple interior point of 7. According to the definition of
¥ the function g at zp may have a jump and/or a branching point. Denote by
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go and g1 the branches of g on v before and after zg, respectively. See Figure 7.

Figure 7

Let the partition domains on the left and on the right of v near zy be D;
and D, respectively. Let S.q be an admissible curve with ¢ € D; and with
d € Dj close to a certain point w on the curve v after zy (see Figure 7). The
sum of branches g(Sc,q4,7) at d we extend to the algebraic function F' defined in
D;. Denote by o a small closed loop going around zg in the counter-clockwise
direction from the point w to itself and let o1 be the part of ¢ in D;, so o
goes in D; from a certain point wq € v before 29 to the point w € v near d (see
Figure 7).

PROPOSITION 4.9: If I;(t) is a rational function, then in a neighborhood of w
we have g1 — 01*(go) = F — o*(F). In particular, if D; = D; then F = 0 and
therefore g1 = 01*(go) on 7.

Proof: We use the same auxiliary curves S and T = T as in the proof
of Proposition 4.8. In our case application of Proposition 4.1 gives g(T,~) =
o*(F) — 01*(go) + g1 and from the equality g(T,v) = ¢(S,7) = F we get
g1 —01%(90) = F — o*(F). 1

Remark: An important special case of the situation described in Proposition
4.9 occurs when i = 0, I(t) = 0 and zp is on the boundary of the infinite domain
Dy. Since D; = D; = Dy the proposition gives g1 = 01*(go). In the specific case
considered this follows directly from the fact that both go and ¢g; are boundary
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values of the function I; in D;. See Figure 8.

Figure 8

Finally, let 2o € ¥; be a singular point of g inside the domain D;. Let ¢,S.q
and F' be as above, with d near zg. See Figure 9.

PROPOSITION 4.10: If I;(t) is a rational function then F — ¢*(F) = 0. In other
words, F' does not ramify at z.

Proof:  We use the original curve S and the auxiliary curve T'= T, 4 obtained
as S followed by o. As above, we denote ¢g(S,v) by F. In our case o does not
cross v and, by Proposition 4.1, g(T,v) = ¢*(F). Hence the equality ¢(T,~) =
g(S,~y) = F proves the required result. ]

Figure 9

Remark 1: Of course, this result follows directly from Lemma 4.3:

F=S(Li(t) = I;(#)



258 F. PAKOVICH, N. ROYTVARF AND Y. YOMDIN Isr. J. Math.

with I;(¢) regular at zp and S*(I;(¢)) rational (being the analytic continuation
of the rational function I;). In particular, the algebraic function F' in D; may
have only poles as singularities.

Remark 2: The condition of a non-ramification of F' at zy can be translated
into the vanishing of certain sums of the branches of g (as well as most of the
conditions in this section). Indeed, applying o* to each of the summands F, in
F and equating the result to F, we get the vanishing of a certain sum of the
branches of g.

Remark 3: A natural question is: under what conditions do we get here a non-
trivial sum of the branches of g7 In general, it would be important to find the
mutual dependencies between the local conditions of Propositions 4.8-4.10.

Now the necessary conditions for rationality of I;(t) given by the three propo-
sitions above turn out to be also sufficient. Let zx, k£ = 1,..., N, be all the
points of ¥ (including the end-points of ) and of £;, taken in a certain order.
Let us fix a point ¢ € D; and for each z; let us fix an admissible curve S*
leading to a neighborhood of z; and a small loop ¢* around z; (in each case as
described in Propositions 4.8-4.10, respectively).

THEOREM 4.11: Assume that at each z, k = 1,..., N (and for the chosen S*
and o*), the conclusion of Proposition 4.8 (respectively, 4.9 or 4.10) is satisfied.
Then the function I;(t) is rational.

Proof: Denote by S* = S¥  the loop following S*, then ¢, and then returning
via S* in the opposite direction. If the conclusion of the appropriate proposition
above is satisfied, then the sum of branches along the loop Sk is zero. Indeed,
this conclusion expresses the fact that the sum of branches along S* and along
Sk followed by o is the same. But then the sum of branches along the loop
S* is the same as for S* passed forward and then back, and the last path is
homotopic to the constant one. Now the loops S*, k=1,..., N, generate the
fundamental group 71 (U). By Proposition 4.1, if the sum of branches along the
loops S, k =1,..., N, is zero the same is true for the products of these loops.
Therefore, the combinatorial monodromy of [; is trivial and by Theorem 4.7 the
function I;(t) is rational. ]

Finally, we come to the conditions for the identical vanishing of I;(¢). It
is more convenient to characterize first the property of I;(¢) being identically

constant. We shall consider not the complex plane C but the Riemann sphere
CP!.
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PROPOSITION 4.12: [;(t) = Const in D; if and only if the combinatorial mon-
odromy of I; is trivial and the following additional condition is satisfied: for
any j # i and for any admissible curve S. 4 with ¢ € D; and d € D; the sum of
branches F; = g(S,~) is regular in D;. For i =0 (i.e., for the exterior domain
Dq and the Cauchy integral Io(t) on it) the same conditions are necessary and
sufficient for Iy(t) = 0.

Proof: In one direction the result follows from Theorem 4.7 and Lemma 4.3.
Indeed, I;(t) being identically constant is rational. Hence the combinatorial
monodromy of J; is trivial. Since the analytic continuation I;(¢) is the same
constant, the relation F; = I;(t) — I;(t) of Lemma 4.3 with I;(t) regular im-
plies regularity of F; in D;. In the opposite direction, if the combinatorial
monodromy of I; is trivial then I;(¢) is rational by Theorem 4.7. Since F} are
regular in D; for any j # i, the same relation of Lemma 4.3 implies regularity
of I;(t) in each D;. But in D; itself Ii(t) = I;(t) is regular by definition. Hence
the global rational function I;(t) is regular everywhere on CP!, so it is constant.
Since by (1.1) I is equal to zero at infinity, Ip is constant if and only if it is
identically zero. ]

Of course, the condition of Proposition 4.12 essentially coincides with the
classical vanishing condition for the Cauchy-type integrals (i.e., that g|y bounds
a holomorphic one-chain). This chain is provided by the sums of branches F:
the definition of the sum of branches shows immediately that g|y is a boundary

of ZF]

Remark: Regularity of the sum of branches F; = ¢(S,~) in D; is equivalent
to the cancellation of the negative Laurent terms of F; at each singular point
of g in D;. This provides a set of local conditions at the singularities of g in
D; expressed by certain linear equations on the branches of g. By Proposition
4.12, these conditions (together with the requirement that the combinatorial
monodromy of I; be trivial) are equivalent to I;(¢) being identically constant.
However, these conditions (in contrast to the “sum of branches” vanishing con-
ditions) are not a priori invariant under the monodromy action on g. It would
be important to understand the role of these “regularity conditions” and their
relation to the rest of the properties investigated above.

One way to explicitly verify conditions of Proposition 4.12 is to check the
position of the poles of the algebraic function g.
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COROLLARY 4.13: If the combinatorial monodromy of I; is trivial and all the
poles of g are in D;, then I;(t) = Const.

Proof: If the combinatorial monodromy of I; is trivial, then for any j # i the
sum of branches F; = ¢(S,~) is a univalued algebraic function in D;. Since g
has no poles in D, the same is true also for Fj (which is the sum of certain
branches of g in D;). Hence Fj is regular in D;. |

Remark: Tt is interesting to compare this result with the direct computations
for rational functions given in Section 2 above. For g rational and for any 7,
the sum of branches along any S starting in the exterior domain Dy and ending
in some D; is equal to u;¢ (in the notation of Section 2). Consequently, the
condition of Proposition 4.12 is satisfied if and only if all the poles of g belong
to the “outside” of 4, i.e., to the domains D; with u;=0. (In Corollary 2.4
above this result was obtained by a direct computation.) A natural question is
whether it is possible to relax accordingly the conditions of Corollary 4.13.

COROLLARY 4.14: Let all the poles of g belong to the exterior domain Dy.
Then the complete analytic continuation Iy(t) cannot be univalued on U unless
it is identical zero. In particular, Io(t) at infinity cannot be a non-zero germ of
a polynomial, a rational or meromorphic in the C function.

Proof: Theorem 4.4 implies that if fo(t) is univalued on U then the combina-
torial monodromy of Iy(t) is trivial. But since all the poles of g belong to the
exterior domain Dg, by Corollary 4.13 this implies that Iy(t) = 0 at infinity.
|

Let us consider now some examples. Returning to Example 1 given in Section
3, we see that at the end-point 0 of v = [0, 1] the sum of local branches of
g(z) = \/z is zero, while at the end-point 1 the sum of local branches is not
zero. Consequently, I(t) has a logarithmic ramification at z = 1 while each
branch of I(¢) has a finite ramification (of order 2) at z = 0. On can see this
also from the explicit expression for I(#) given in Section 3.

Example 2: Let v be the unit circle S and let g(z) = /z, with g(1) = 1,
analytically continued along S' in a counter-clockwise direction. So ¢ has a
jump at 1. The sum of the branches of ¢ across S' and along the curve S shown
by a dotted line on Figure 10-a is twice the positive branch of the /z at z = 2.
In the same way we can see that the sum of branches along S repeated n times is
+2n,/z. Hence the combinatorial monodromy of I(#) is infinite in this example.
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The analytic continuation of I(t) both from inside and from outside S' has a
logarithmic branching at z = 1.

Example 3: For the same g(z) = /z and a curve v going twice around 0,
Io(t) = 0 at co. Indeed, after the substitution z = w? we get

1 w? dw

I(t) = —
®) T Jgr w2 —t

and for t near infinity the integrand is regular inside S'. Hence in this example
the combinatorial monodromy is trivial. The sum of branches starting in the
exterior domain Dq gives ++/z in the domain D; and the identical zero in the
domain D, containing the origin (see Figure 10-b). Accordingly, the Cauchy
integral which coincides in our case with the sum of branches gives Iy(t) = 0,
I (t) = +V/t, and Ix(t) = 0.

Example 4: Let g(z) = 4/2(2 — 1) and let the curve v go around 0 and 1 in
an “o00” shape (see Figure 10-c). We continue along v the positive branch of
g at z = 2. Here, the continuation “closes up” and ¢ does not have jumps on
v. Nevertheless, the sum of branches across vy and along a curve S shown by a
dotted line on Figure 10-c gives twice the positive branch of the \/m at
z = 3. To simplify the notation we denote the germ of this branch at z = 3 by
a. Since a # 0, the combinatorial monodromy of I is not trivial and Iy(t) is
not rational. Here the obstruction is not in the jump point of g on 7 but rather
in the branching of g at z =0 and z = 1.

Let us show that in this example I(¢) is in fact an algebraic function. To do
this consider a second loop S’ going from z = 3 around the origin as shown on
Figure 10-c. An easy computation gives g(S’,v) = 2a. Applying Proposition
4.1, we obtain that the sum of branches along SS, S'S, SS" and S’S’ is zero as
well as along other products of any two loops S, S’ or their inverses. (We use
the notation for the product of the loops in the fundamental group of C\ {0,1}
where the loops in the product are passed in the order they are written from left
to right.) Remember that the monodromy of g along both S and S’ is given by
a multiplication by —1. Now application of Proposition 4.1 to any product of .S
and S" in the fundamental group of C\ {0, 1} shows that the sum of branches
along this product is either 2a or zero. Hence the combinatorial monodromy of
Iy is of order 2 and, by Theorem 4.5, I is algebraic (as well as the other I;)
but not rational.

Let us stress once more that in this example the curve 7 is closed and the
function ¢ is regular at each point of 4. In particular, g has no “jump point”
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on 7. So the set ¥ contains exactly one point — the double point of . But
since g is regular near this point on both the crossing segments of the curve
7, any branch of Iy(t) at this point is regular (by Lemma 3.2 and Theorem
4.4). Therefore, in this example all the conditions of Propositions 4.8 and 4.9
are automatically satisfied. This is the condition of Proposition 4.10 that is
violated at the singular points 0 and 1 of g and that prevents Iy(t) from being
rational.

a b [

Figure 10

Example 5: Let v be the interval [—1,1] and let g on [—1, 1] be given by the
positive branch of (1 — 22)1/T. We shall show that for r = 2 the Cauchy integral
I(t) is a non-rational algebraic function, while for any integer » > 3 the function
I(t) is a non-algebraic locally algebroid function. First of all we note that g(z)
satisfies the equation g" — (1 — z2) = 0. Hence, the sum of all the branches of
g(z) is identically zero (being equal to the (r — 1)-th coefficient of the equation
defining g(z)). Since the local germs of g(z) at —1 and 1 contain all its branches,
the sum of the local branches of ¢g(z) at each of its ramification points —1 and 1
is zero. By Theorem 3.4 and Theorem 4.4, this implies that for any leaf of the
full analytic continuation I(t) of the Cauchy integral I(t), its branching at —1
and 1 is finite and the growth is bounded. Therefore, all the singularities of all
the leaves of I() are algebroid and hence I(t) is locally algebroid.

Now consider two loops S and S’ going in a counter-clockwise direction around
—1 and 1, respectively, from a fixed point ¢ on the negative part of the imaginary
axis near the interval [—1, 1] (see Figure 11).

Figure 11
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The monodromy of g along both S and S’ is given by a multiplication by
e = exp(27i/r). Denote by a the germ at ¢ of the branch of (1 — 22)1/T that
takes positive values on the interval [—1,1]. On can easily see that the sum of
branches along S and S’ is equal to ea and —a, respectively.

Now let us fix r = 2. In this case ¢ = —1 and the sum of branches gives —a
along both S and S’. Proposition 4.1 then shows that for the sums of branches
along the products SS’ and S!S’ we have g(SS’,7) =0 and g(S~'S’,7) = 0.
Also, the sums of branches along the products of any other two loops S, S’ or
their inverses gives zero. Using this fact we show exactly, as in Example 4 above,
that the sum of branches along any product of S and S’ in the fundamental
group of C\ {—1,1} is either —a or zero. Hence in this case the combinatorial
monodromy of I is of order 2 and, by Theorem 4.5, the function Ip(t) is a
non-rational algebraic function.

Finally, to show that Io(t) is not algebraic for r > 3, consider the loop S~15’
(see Figure 11). The monodromy of ¢ along this loop is trivial. An easy com-
putation shows that the sum of branches g(S~1S5’,7) of g along S™15" is equal
to b = —a(l 4+ €) # 0. Let us formulate the last step of our computation as a
lemma.

LEMMA 4.15: Let S = S. . be an admissible loop. Assume that the monodromy
of g along S is identical. If the sum of branches ¢(S,v) = a, then the sum of
branches g(n.S,~) = na for any natural n.

Proof: This is a direct consequence of Proposition 4.1. |

Applying Lemma 4.15, we see that the sum of branches along the loop S~'5’
passed n times is nb. Since b # 0, we conclude that the combinatorial mon-
odromy of I is infinite and therefore, by Theorem 4.5, I(¢) is not algebraic for
r>3.

Remark: Example 5 presents a sequence of functions

1 _ 2\,
(4.6) I'(t) = / -2 d

1 z—1

with I? algebraic and I" transcendental but “locally algebroid” (according to
the definition above) for any natural » > 3. In fact, the functions I" also for
r > 3 possess a number of remarkable properties which put them very close
to the algebraic ones. First of all, the full analytic continuation IT of IJ is
regular in the domain U = C\{—1,1,00}. Secondly, each of the infinite number
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of the leaves of I" has at the points —1,1, 0o algebroid singularities with the
branching of order r. Finally, the monodromy action of the fundamental group
71(U) on the branches of I" can be represented in a relatively simple way via
the combinatorial monodromy of I” (see Theorem 4.4 and the computations in
Example 5 above).

The functions with the same properties as I" appear as Cauchy Integrals of
algebraic functions in many important cases. In general, by Theorem 4.4 this
happens if and only if the local sums of the branches of g (given by Corollary
3.9) vanish at each of the jump points of g on v (including the end-points of ),
while the combinatorial monodromy is infinite. In particular, the first condition
is satisfied if « is closed and ¢ is regular on . An especially important example
of this sort is provided by the rational Moment generating function (1.3) on
the closed path I' — the case which corresponds to the classical Center-Focus
problem. However, in this case one can easily show that this function is in fact
algebraic.

It turns out that the functions as above are closely related to certain Kleinian
groups and automorphic functions. Indeed, their ramification properties are
rather similar to that of the inverse to the factorization mapping by certain
Kleinian groups. Composing the functions as above with this factorization map-
ping, we get a single-valued meromorphic function whose behavior on the shifts
of the fundamental domain is described via the combinatorial monodromy of
the original Cauchy integral. We plan to present separately the rigorous results
in this direction.

We would like to thank S. Natanzon for pointing out the relations mentioned
in the above remark.

Example 6: Let us return once more to the case of g itself being a rational
function. The direct computations given in Section 2 show that in this case
Iy(t) as well as each I;(¢) are rational functions. As mentioned in the remark
above, for g rational and for any 7 the sum of branches along any S starting in
the exterior domain Dy and ending in some D; is equal to p;¢ (in the notation
of Section 2). As expected, the combinatorial monodromy is trivial (although
the non-trivial sums of the branches of g do appear; these sums reflect just the
geometry of 7). So Iy(¢) is always rational. Now for each domain D; the sum of
branches F; (obtained along any curve going fromDy to D) is equal in D; to
1;g. By Proposition 4.12, I4(t) = 0 if and only if the functions F}; are regular in
Dj for any j # 0. Now for u; = 0 this is automatic, and for p; # 0 the only way
for Fj not to have poles in D; is that g itself does not have poles. Consequently,
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Ip(t) = 0 if and only if all the poles of g belong to the “outside” of v, i.e., to
the domains D; with p;=0.

Example 7: In this example + is the union of the interval [—1, 1] and of the circle
Sy of radius 2 centered at the origin (Figure 12-a). The function g on [—1,1]
is the same as in Example 5 (for r = 2), i.e., the positive branch of 1/(1 — 22).
The function g on Sy is the branch of %\/m taking the values with the
positive real part above the interval [—1,1]. Now the direct computation shows
that the conclusion of Proposition 4.8 is satisfied at each end-point —1 and 1 of
[—1,1] (which are also the only singular points of ¢g). There are no jump points
of g on . Hence the conclusions of Propositions 4.9 and 4.10 are automatically
satisfied. By Theorem 4.11 we obtain that Io(t) = 0. We see also directly that
g on 7 bounds the chain F' equal to the branch of %m taking the values
with the positive real part above the interval [—1,1]. (This statement can be
interpreted also by replacing the interval [—1, 1] with its two copies passed in
the opposite directions and with g equal to the positive branch of %\/m
on the “upper” interval and equal to the negative branch of %\/m on the
“bottom” one.

)
DO
Y Y
a b

Figure 12

One can modify slightly the construction above and get a connected non-
closed curve v’ for which g is not zero on v' but Iy(t) = 0. The curve 7' starts
at —1, goes along [—1, 1] till 0, then goes up till S, encircles Sy in the clockwise
direction, returns to the interval [—1, 1] at 0, and finally goes along [—1, 1] till 1
(see Figure 12-b). The piecewise algebraic function g on ' is defined as above
on the parts of o' belonging to [—1,1] and S5, and it is defined as a linear
interpolation of the end values on the inserted parts. As the integration on the
two inserted intervals goes in the opposite directions, the Cauchy integral of the
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extended g on 7' is the same as the original integral on . An important question
here is whether such an example (with v = P(T") non-closed, g = Q(P~1!), and
Ip(t) = 0) can appear in the polynomial Moment problem.

Example 8: This rather unexpected example presents a curve v and an alge-
braic function g which does have a “jump” on + and still I(, g,t) = 0 for ¢ near
0o. As shown above, under this condition the regular parts (or the normalized
sums of the branches) of g on both sides of the jump point must coincide. How-
ever, in the situation below the branches themselves on the two sides cannot be
transformed one into another by any local analytic continuation. Equivalently,
one can say that the full local germs of g on both sides of the jump point are
different.

From the point of view of Proposition 4.9 above, we see that in this example
the difference between the branch gg of g on one side of 0 and the local analytic
continuation o7 (g1) of the branch ¢g; on the other side of 0 is non-zero. However,
it is compensated by the “monodromy shift” F; — o*(F}) at 0 of the Cauchy
integral I(t) = F; (as defined in the domain D; next to the exterior domain
Dy).

This example seems to us to be quite unexpected. It is based on a recent coun-
terexample ([39]) to the “Moment Composition conjecture” (which asserted that
the vanishing of the moments (1.2) is equivalent to the Composition condition
(PCCQC); see Section 1.1.2 above).

THEOREM 4.16: Let v be the curve in C shown in Figure 13 below, and let
g(z) = Q(P71(z)) with Q(z) = Ty(z) + T3(x) and P(x) = Tg(z), where
Ty (x) = cos(narccos(z)) is the n-th Chebyshev polynomial. The function g
is analytically continued from 0 along ~ in the positive direction, starting with
Q(—V/3/2). Then I(v,g,t) = 0 for t near oo, while the branches of g on the
two sides of 0 € v cannot be obtained from one another by any local analytic
continuation.

Proof: First of all, one can easily check that the curve v shown in Figure 13 is
equal to P(T), with " obtained from the real interval [—/3/2,v/3/2] by a small
shift (preserving the ends) into the positive imaginary direction. Hence I(t) is
given by

b
(%) 2mil (t) :/ %,
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with a = —/3/2, b =1/3/2 and P and Q as above. Therefore, I(7,g,t) = 0 for
t near co. Indeed, for @ = T5 and for ) = T3 the corresponding integrals vanish,
since the Composition condition (PCC) is satisfied: Ts = T2(T3) = T3(T>) and
all these three polynomials take equal values at a and b. Then for the sum
Q@ = T» + T5 the integral I(t) vanishes by linearity in @. Now Claim 2 from [39]
implies that P and @ do not have a common composition factor. Therefore, by
a well-known characterization of the composition factors (see Lemma 5.1 and
the “Gluing condition” in Section 5 below) the branches of g on the two sides of
0 € v cannot be obtained from one another by any local analytic continuation.
This completes the proof. |

Figure 13

Notice that in the example above g=g;+g2, with g1 = To(T; ") and go =
T3(T6_1), respectively. For each g; and gy separately, their branches on the two
sides of 0 €  can be obtained from one another by a local analytic continuation,
but along two different local paths. In fact, these two paths are the two parts
of the small circle around 0. Each one joins the two pieces of v on the two sides
of 0 € v, but in different domains D;.

Let us conclude this section with three remarks outlining some further devel-
opment directions for the tools introduced above.

Remark 1: In the present paper we consider the “sum of branches” of g across
and along an auxiliary admissible curve S. This notion can be further extended
to the “analytic continuation across v and along S” which can be applied to
any analytic germ u at the starting point ¢ of S (not necessarily to the germ
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defined by the Cauchy integral). This operation consists in a continuation of
u along S till the first crossing of S with 4. At this crossing we add the germ
of g at the crossing point (with the sign corresponding to the orientation of
the crossing). The resulting sum is analytically continued along S till the next
crossing of S with . At this crossing we add the germ of ¢ at the crossing
point, and so on till the end-point d of S. Lemma 4.3 shows that the functions
I; are obtained from one another via the analytic continuation across v (and
along any auxiliary admissible curve S). The notion of the continuation across
v allows one to extend the “combinatorial monodromy” (defined above as a
mapping from the fundamental group 71 (U) into the germs at a certain point)
into the action of w1 (U) on these germs.

Remark 2: In some cases it may be convenient to define the continuation across
7 as a combinatorial process related to the functions in the domains D; and not
involving auxiliary curves S. For two adjacent domains D; and D; separated
by their common segment 7, of the curve v and for a function u; in D;, define
its continuation across 7y into the domain D; as follows:

a. u; is analytically continued through 7, into a certain neighborhood 2 of
vs in Dj.

b. An algebraic function gs; in Q (obtained by the analytic continuation of
the branch g of g on ;) is added to u; (multiplied by —1 if the crossing
orientation of v is negative).

€. u; + gs is analytically extended from  to the entire domain D;. The
function u; is equal to this continued function u; + gs.

Let us call the process consisting of steps a, b, ¢ an “elementary combinato-
rial continuation across 7" and let us call any chain of subsequent elementary
continuations a “combinatorial continuation across 7”. Assuming that all the
analytic continuations in the steps a, b, ¢ are possible, the combinatorial con-
tinuation across 7y can be applied to any analytic function defined in one of the
domains D;. In some cases, this notion simplifies significantly the description
of the combinatorial monodromy.

Remark 3: 1In the present paper we do not use a possibility to deform - and
to bring it to a certain simple standard form (without affecting the Cauchy
integral I(¢) near infinity). We also do not try to push forward a unified al-
gebraic framework where the combinatorial monodromy of I can be naturally
represented. Both these tools are important for the study of the Cauchy-type
integrals, and we plan to present them in detail separately, giving here only a
very short and informal outline of our approach.
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In the process of the deformation of it is natural in our setting to keep fixed
the “jump” points 3 of g on ~. Besides this, v can be deformed in an arbitrary
way until it stays in U (defined as above as C with ¥ and all the singularities
of g deleted). In fact, in the process of the deformation certain crossings by ~
of the points of ¥ and of the singularities of g are also permitted (those which
do not affect the local branch of g on v at the crossing). This allows us to bring
7 to a simple standard form which we call the Diagram of I(¢). For the Cauchy
integrals I(t) coming from the Polynomial Moment problem, the Diagram of
I(t) can be computed quite effectively using the methods of the “Topological
Theory of polynomials” involving a graphical representation of the monodromy
group by means of the graphs obtained as the preimages of certain intervals,
etc. Some applications of these methods to the Moment problem can be found
in [40, 41].

The sums of branches across v (and more generally, the result of the contin-
uation across v as defined in Remarks 1 and 2 above) can be easily read off
the Diagram. In these terms, simple necessary and sufficient conditions for the
identical vanishing of the Cauchy integrals I(¢) near infinity can be given.

Now let us describe a global algebraic framework for representing the com-
binatorial monodromy. It was shown above that the continuation across vy and
along a given curve depends only on the homotopy class of S in U. Therefore,
it can be described through a certain action of the fundamental group w1 (U) on
the branches of g. From the algebraic point of view, the object which naturally
appears here is the Z(G)-module M consisting of all the “formal” finite sums
of the branches of the algebraic function g at a given point ¢ € U. Here, G is
the monodromy group of g. There is also an “evaluation homomorphism” from
M into the Z(G)-module of the germs of the analytic functions at c.

In terms of the continuation across v, a certain action A of the fundamental
group 71 (U, c) on the module M can be described. This action A provides an
algebraic representation of the combinatorial monodromy of I. Consequently,
the study of the algebraic structure of the module M and of the action A on it
provides a natural and strong tool for a description of the global ramifications of
the Cauchy integral I(t) and of its singularities. In particular, various “vanishing
sums of the branches” relations given in this section can be naturally expressed
in this language. Indeed, all the vanishing sums of the branches of g form a
Z(@G)-submodule My of M (the kernel of the evaluation homomorphism). The

4

study of the algebraic structure of My allows us to represent the “vanishing

sums of the branches” relations in a uniform way and to determine their mutual
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dependence.

For the Cauchy integrals I(t) coming from the Polynomial moment problem,
an important algebraic information on My C M and A can be obtained explicitly
using the methods of the “Topological Theory of polynomials” mentioned above.

5. Polynomial moments on an interval

In this paper we investigate the polynomial moments (1.2)

6.1 mi=mi(P.Q) = [ PHw)Qa)ple)ds
and the Moment generating function (1.3)
" Q(z)p(x)dx - —k—1
(5.2) H(y) = _— = myy .
/a t - P(x) E *

Here, P(x) and @Q(z) are polynomials in z € C, a,b € C. As above, we denote
by p(z) and ¢(x) the derivatives of P(z) and Q(z), respectively.

However, in most of the preceding papers [8-17, 20, 3941, 47, 61] a slightly
different definition for the moments was used:

a
(5.3) g =/ Pk(z)q(x)dz, &k >0.
b

The setting of (5.1) and (5.2) is more convenient for the purposes of the present
paper since it leads to the Cauchy integral (1.1) with the function g(z) =
Q(P~'(z)), which does not have pole singularities at the finite points of C (see
(5.5) below). In contrast, in the Cauchy integral for the generating function
H(y) of the moments (5.3) the function g is given by ¢(z) = (¢/p)(P~'(z)) and
it may have poles at the finite points of C, in particular, on ~.

Let us show that the problems of the vanishing of the moments m; and
My are essentially the same. We do not assume a priori that P(a) = P(b)
or Q(a) = Q(b). Notice also that adding a constant in @) does not affect the
moments My, while it may affect the moments my,.

CrAaM: The vanishing of the moments 1y, implies Q(a) = Q(b). Assuming that
the primitive function Q@ = [ ¢ is chosen to satisfy Q(b) = Q(a) = 0, all the
moments my, also vanish. In the opposite direction, if @(b) = @Q(a) = 0 then
the vanishing of the moments my, implies that of my.

Proof: Set, as above,

H(t) = mpt="andlet  H(t) =yt~
k=0 k=0
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Then " Q(2)P'(2)d= () = b oq(z)dz
e R CR s et
We have
dH(t) " Q(2)P'(2)dz
Y _ = [ @Gyt
(54) dt a (t_ / ( )
Q(Z) |b

+ H(t).

a

/b q(z)dz  _ Q(a) Q) z

Ct— P(z) t—P(z) t—Pa) t—P(b)

Suppose now that m; = 0 for all i > 0. Then, in particular, g = Q(b) — Q(a) =
0 and hence, for any choice of Q(z) = [ ¢(z)dz, the equality Q(a) = Q(b) holds.
Choose now Q(z) such that Q(a ) = Q(b) = 0. Then by (5.4), dH(t)/dt =
H(t). Therefore ri; = 0, ¢ > 0, implies that m; = 0, ¢ > 0. In the opposite
direction, under the assumption Q(a) = Q(b) = 0 the formula (5.4) shows that
the vanishing of the moments m;, implies that of my,. |

Let us return now to our original expressions (5.1) and (5.2). A change of
variables P(z) = z brings (5.2) to the form

(5.5) 1) = —2mily) = - [ L9Z,
5 )

with v = P([a,b]) and g(z) = Q(P~1(z)). Notice that the requirement that for
2 € 7 the point P~1(2) belongs to I' defines the branch of P~! on + uniquely at
any simple point of z € 7. Therefore, the above expression g(z) = Q(P1(2))
correctly defines a piecewise-algebraic function g on vy which satisfies all the
requirements of (1.1).

Notice also that for |¢| > 1 we can take in (5.2) any integration path joining
a and b. We shall use this later.

To investigate the relation between the vanishing of the moments and the
Composition condition, we need the following property of the algebraic function
Q(P~1(2)) (see [20, 39-41, 44, 45, 47, 50]):

LEMMA 5.1: Let P and Q be two rational functions. There exist rational P, Q
and W, degW > 1 such that

P(x) = P(W(2)), Q(z)=Q(W(x))

if and only if, in a certain simply-connected domain ) not containing critical
values of P for two different branches P, *(z) and P; *(z), the following equality

is satisfied: Q(Py'(2)) = Q(P ' (2)).
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Under the additional assumption that P(a) = P(b) = zo, there exist rational
P, Q and W with

P(z) = P(W(z)), Q(z)=Q(W(z)) and W(a)=W(©)

if and only if the full local germs of go = Q(Py') and g1 = Q(P[') at 2o
coincide. Here, the branches Py ' and P;' of P~! take at z, the values a and
b, respectively.

We shall call the property of the coincidence of the two local germs gg =
Q(Py ') and g1 = Q(P; ') at 2, the Gluing condition. In the setting of the
Cauchy integral (5.5) it is equivalent to the fact that the branches go(z) and
g1(2) of g(2) = Q(P~'(2)) on the two sides of zy on v (corresponding to the
branches P071 and Pfl of P~1 on v taking at zo the values a and b, respectively)
can be obtained from one another by a local analytic continuation near zg.

Below in this section, we always assume that P and ) are polynomials and
P(a) = P(b) = zo. In this case the Gluing condition is equivalent to the
Polynomial Composition condition (PCC) of Section 1.1.2:

P(z) = P(W(z)), Qz)=Q(W(z)), W(a)=W(b),

with P, Q and W polynomials.

As mentioned above, the “sum of the branches” condition provided by Corol-
lary 3.9 (and necessary already for algebraicity of I(t)) plays a central role in
the investigation of the Moment vanishing in [14-17, 20, 40, 41, 47, 61]. The
Gluing condition can be considered as a special case of the vanishing of the sum
of the branches. Indeed, it corresponds to the case where there are exactly two
branches of g in the sum (on each side of zp in ) with the signs 1 and —1.
For a and b regular points of P, this is the case already for the initial relation
produced by Corollary 3.9 (see [20]). The main approach of [14-17] in the case
of real polynomials and of [20, 40, 41, 47, 61] in the general case is to produce
the Gluing condition starting with a more complicated initial vanishing sum of
the branches and using some additional algebraic (or analytic) considerations.
A similar approach is used also in Section 6 below.

In the present section we concentrate on the consequences of the stronger
(than the vanishing of the sum of the branches in Corollary 3.9) condition
provided by Proposition 4.9. This condition is necessary for the rationality of
I(t) and consequently for its identical vanishing. It turns out that under some
additional geometric assumptions on P this stronger condition leads directly to
the Gluing condition for Q(P~1).
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In particular, we shall describe on this base some natural classes of “definite
polynomials”. Let us remember that definite polynomials P have been defined
in Section 1.1.2 above as those for which the vanishing of the one-sided moments
(1.2) implies (and hence is equivalent to) the Composition condition (PCC) for
any . The role of definite polynomials in the local Center-Focus problem is
shown in [10, 13, 61]. They play an even more important role in the global study
of the Center equations near infinity as presented in [17]. (At the end of Section
1.1.2 above, we outlined very briefly these applications.) In the present section,
we describe some classes of definite polynomials P specified by the geometry
of the curve v = P([a,b]). In this connection, a simple geometric invariant of
complex univariate polynomials is introduced and some results and problems
concerning this invariant are stated.

The starting result here is the following;:

THEOREM 5.2: Let P(x) be a complex polynomial, P(a) = P(b) = zp. Assume
that there exists a path T' C C joining a and b such that zq is a simple point
of v = P(T') and zo is on the boundary of the exterior domain Dy. Then for
any polynomial () the moments my (P, Q) defined by (1.2) vanish if and only if
the Composition condition (PCC) is satisfied. In particular, P(z) is definite on
[a, b].

Proof:  We use Proposition 4.9. In a special case where zg is on the boundary of
the exterior domain Dy, it implies that go = o7 (g1) for go and g; the branches of
g on the two sides of zg in 7 and o7 a small path joining these two sides. Hence
go and g; can be obtained from one another by a local analytic continuation
near zg and the Gluing condition is satisfied. |

Figure 14 shows two types of v with respect to zo = P(a) = P(b). Another
case of P(a) = P(b) = 2o being “strongly inside” v = P(T') (and for any T
joining a and b, as we shall see below) is given by Example 8 of Section 4 above
(see Figure 13).

Figure 14



274 F. PAKOVICH, N. ROYTVARF AND Y. YOMDIN Isr. J. Math.

It would be important to characterize explicitly those polynomials P (and
couples a,b € C, 29 = P(a) = P(b)) for which there is a path T joining a and b
such that zg = P(a) = P(b) is a simple point of v = P(T') and this point is on
the boundary of the exterior domain Dg. Let us call this Property (E).

In this context it is natural to generalize slightly this property and to introduce
a certain invariant of complex polynomials measuring how far from the exterior
domain Dy lies the image of the end-points. More accurately, the invariant
D(P,a,b) of a polynomial P(x) with respect to a,b, P(a) = P(b) = zq, is the
minimal “depth” of the point zy with respect to the curve v = P(T) for various
' ¢ C joining a and b. (The “depth” here is the minimal number of crossings
v necessary to join zo to infinity.)

Let us summarize some properties of D(P, a,b).

1. For some P, D(P,a,b) may be strictly positive. For example, for P = T}
the 6-th Chebyshev polynomial, a = —/3/2, b = v/3/2, the invariant D(P, a,b)
is equal to one. Indeed, as shown in [39] for P = Ts and Q = T» + T3, I(t) =0
at oo but (PCC) does not hold (see also Example 8, Section 4). If there exists
a path I' C C joining @ and b for which 0 = P(a) = P(b) lies on the boundary
of the exterior domain Dy with respect to v = P(T'), then by Theorem 5.2 the
Composition condition (PCC) must be satisfied for any polynomial @ for which
the moments (1.2) vanish. In particular, this must be true for Q = T5 + T3 —
a contradiction. On the other hand, Figure 13 after Example 8 shows explicitly
the curve v = P(T") with the depth of P(a) = P(b) = zo equal to one.

2. In many cases one can deform the path v = P(T') in order to reduce
the depth of zg in such a way that this deformation is covered via P by the
corresponding deformation of I'. One of the possible constructions of such de-
formations is given below.

Let S¢.q be a simple (without self-intersections) admissible curve with ¢ € Dy
and d € D; where D; is one of the domains containing zg in its boundary. We as-
sume also that d is sufficiently close to zp. Suppose that SNy = {a1, as, ..., a,}.
Let a; = P(a;), 1 <4 < r, with a; € T. Notice that since S is an admissible
curve then a;, 1 < i < r, are simple points of 7. Therefore, «; are defined in a
unique way. Let {uy, us,...,u,} be the branches of P~! at a;, 1 <i < r, taking
at these points the values a;.

Denote by S, q the part of S connecting a; and d and consider the analytic
continuations h; = S;hd(ui) of the germs u; along S to d. So h; represent certain
branches of P~! at d and they can be analytically extended to zg. Assume
that the germs h;,, ..., h; are regular at zg while the remaining r — [ germs
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h

r—I.

i141s - - -+ hi, have singularities at zo. We denote by v(P,S,~) the difference
Now assume that the polynomial P, the points a,b € C with zg = P(a) =
P(b), and the path T joining a and b are given, and v = P(T).

PROPOSITION 5.3: D(P,a,b) does not exceed the minimum of v(P,S,~) over
all the simple admissible curves S. 4 with ¢ € Dy and d € D; where D; is one
of the domains containing zo in its boundary.

Proof: Fix an admissible curve S; 4 as above. The deformation of y (covered
via P by the corresponding deformation of I') which reduces the depth of zg
to v(P,S,v) = r — 1 is constructed as follows: Consider one of the crossing
points a;., s = 1,...,1, for which the germ h;, is regular at z5. Now we deform
7 along the curve S,; 4 in such a way that the deformation is contained in a
small neighborhood € of S,; 4 and that in the final stage the deformed curve
v passes on another side of zg (see Figure 15). Since 2 is a regular point
of the branch h;, of P~!, and since S by assumption does not contain other
critical values of P, then in fact the function h;, is regular and univalued in
a whole simply-connected neighborhood Q of S,, 4 (and it coincides with u;,
near the crossing point a; ). Moreover, since the curves S,; 4 (and hence the
domain ) do not have self-intersections, the function h;, is one-to-one on ) (as
an inverse function to P). Let us define the domain Q’';, as the image h; ()
(or as the preimage P~1(Q) for the appropriate branch of P7!). We obtain
that P restricted to ';, is a regular covering over Q. Therefore, the above
deformation of y can be lifted by h;, = P~! to the corresponding deformations

of I'. Repeating this operation for each crossing point a;,,...,a; we get a new
curve v that crosses S only at the points a;,,,...,a;,. This completes the
proof. |

B

Figure 15
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3. In general, the deformations of v reducing the depth of zg = P(a) =
P(b) to the minimum can be naturally analyzed in terms of the “diagrams”
(discussed briefly in the concluding remarks in Section 4). As in other cases,
this analysis becomes quite explicit via the methods of the “Topological Theory
of polynomials” mentioned above. We plan to present these results separately.

Let us return now to definite polynomials. Using the approach of Proposition
5.3, in many cases one can show that a given polynomial P possesses Property
(E) and hence it is definite. As the first example let us give the following
corollary:

COROLLARY 5.4: If zq is a regular value of P and P(a) = P(b) = zo, then
D(P,a,b) = 0 and P possesses Property (E). In particular, P is a definite
polynomial on [a, b].

Proof: If zy is a regular value of P, we get for any admissible curve S, 4 as
above v(P, S, ) = 0. Proposition 5.3 now implies that D(P, a,b) = 0 and hence
P possesses Property (E). ]

Corollary 5.4 follows also from the result of [20] that any P is definite with
respect to any two its regular points a and b with P(a) = P(b).

Consider now real polynomials on the real line. An application of Proposition
5.3 provides the following result:

COROLLARY 5.5: Let a,b € R and let P(x) be a real polynomial with P(a) =
P(b) = 0. Assume that all the real zeros x;, i = 1,...,s, belonging to the open
interval (a,b) are simple. Then P(x) possesses Property (E). In particular, it is
definite on [a, b].

Proof: Define T' by shifting slightly the real interval [a, b] into the upper half
plane (and fixing a and b). See Figure 16-a. (The corresponding v is shown in
Figure 16-c. Notice that v crosses the real axis near the critical values d; of P,
on the side of each d; which is determined by the sign of the second derivative
of P at the corresponding critical point of P.) We take as S the part of the
imaginary axes going from ¢ = ¢D, D real and sufficiently big, to zero. Each
crossing a;, of S and v, I = 1,...,r < s, corresponds to the point a;, of I’
lying above and near one of the zeros z;, of P where P'(z;) > 0. (The parts
of I lying above and near the zeros x; of P with P'(z;) < 0 are mapped by P
into the pieces of v lying below zero and hence S does not cross these pieces of
7. Here, we use the assumption that all the real zeros z; of P(z) in the open
interval (a,b) are simple, not only those where P(z) changes sign from - to +.)
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Let u;, be the branch of P~! taking at a;, the value a;,, and let h;, be the
analytic continuation of w;, along S from a;, to zero. The function h;, maps
0 into the root z;, of P and hence, by the assumptions, h;, is regular at 0 for
I=1,...,r. We conclude that v(P, S,v) = 0. Proposition 5.3 now implies that

D(P,a,b) = 0 and hence P possesses Property (E). ]
r
A P
I G
b
s
Y |
. Q\
d, d 0 d d,
Figure 16

Remark 1: Apparently, the result of Corollary 5.5 is not implied by the other
known characterizations of definite polynomials. Indeed, it involves conditions
only on the real roots of P(xz) between a and b, while most of the other results
work for general complex polynomials and cannot take advantage of P(x) being
real and of special properties of its real roots.

Remark 2: Tt seems plausible that the assumptions of Corollary 5.5 may be
relaxed (if we wish to show just that P(z) is definite, without insisting on the
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“geometric” Property (E)). This is because, in general, the fact that if for a
curve S as in Proposition 5.3 we have v(P,S,v) = 0 then P is definite on [a, b]
follows also from Proposition 4.9. Indeed, the sum of branches F' along S across
7 for any integrand g of the form g = Q(P~!) is given by

g(SC,daV) = ZSgn(ail)S;,'wd(Q(uiz)) = ZSQTL(G@,)QU%,),
=1 =1

where the branches u;, and h;, of P~! at a; and at d, respectively, have been
defined in the proof of Proposition 5.3. Since the branches h;, are regular at zg
forl =1,...,r, we conclude that F is regular for any polynomial ). Remember
now that Proposition 4.9 claims that if I(t) = 0 at oo, then the following
equality between the branches gy and g; of g = Q(P~!) on 7 before and after
2o s satisfied:

g1 —01(g0) = F — o™ (F),

where o is a local loop around zy and oy is the part of ¢ joining the segments of
v before and after zg (see Figure 7). An immediate consequence is that if F' is
regular at zg, then the branches gg and ¢; can be obtained from one another by
a local analytic continuation along 1. Hence, the Gluing condition is satisfied,
which implies the Composition condition on P(z) and Q(x).

However, the regularity of F' at z; may follow from a certain cancellation
effect and not just from the regularity of each of the branches h;, of P=1. It
would be interesting to find weaker conditions on P providing regularity of F' for
any polynomial @, besides the conditions given in Corollary 5.5 (and generally
in Proposition 5.3). As mentioned above, these last conditions imply Property
(E) for P, which is presumably stronger than just the regularity of F' for any
polynomial Q. A closely related conjecture is the following;:

CONJECTURE: Let P be a complex polynomial, P(a) = P(b) = 0. If all the
roots of P besides a and b are simple, then P is definite.

Let us now describe some classes of polynomials P which possess Property
(E) by “geometric” reasons. The following simple observation works in many
specific situations:

PROPOSITION 5.6: Let P be a complex polynomial with P(a) = P(b) = 0,
a,b € C, let T' be a piecewise-analytic curve in C joining a and b, and let
v = P(T'). Assume that the open part v \ 0 is contained in an open domain
Q with piecewise-analytic boundary and assume that 0 belongs to the exterior
boundary of Q. Then P possesses Property (E).
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Proof: By the assumptions, 0 already belongs to the exterior boundary of Q2
and hence to the boundary of the domain exterior to 4. The only difficulty is
that (as happens in the examples below and in many other natural examples)
for a specific given I the curve v = P(I') may be not in general position. So we
need to perturb v to provide all its self-intersections transversal. If we can do it
in such a way that the point 0 remains fixed and that for the perturbed curve
7" the open part 4’ \ 0 is still in Q, then 0 belongs to the exterior boundary
of 7 and the result follows. We can restrict the consideration to an arbitrarily
small neighborhood of 0. Indeed, outside such a neighborhood = is at a certain
positive distance from the boundary of 2 and hence it can be brought there to
a general position by any sufficiently small generic smooth perturbation.

Near zero, we use the assumption that v is a piecewise-analytic curve and
that the boundary of 2 is also piecewise-analytic. We obtain that + at 0 has
two local analytic branches 7o and 91 “on the two sides of 0” (these branches
may coincide with one another). Since the boundary of Q is piecewise-analytic
and 70 \ 0 and ~; \ 0 are contained in the open domain 2, we can perform an
analytic deformation of one of these branches (say, of v¢) in such a way that the
point 0 remains fixed, the deformed curve v \ 0 remains in Q, and ~{ \ 0 and
71 '\ 0 do not intersect in a certain neighborhood of 0 (see Figure 17). Indeed, if
vo and v; do not coincide with one another, then no perturbation is necessary.
If v = 71, then the required deformation of 79 can be achieved, for example,
by adding to it (in an appropriate coordinate system) an analytic germ with a
sufficiently high order of the vanishing at the origin.

Figure 17
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Then we extend this deformation in a C* way to the rest of the curve
making all its self-intersections transversal. If this deformation is small enough,
then 4"\ 0 is still in Q. This completes the proof. ]

As the first application of Proposition 5.6 we prove the following corollary
(which is also a special case of Corollary 5.5 above):

COROLLARY 5.7: Let a,b € R and let P(z) be a real polynomial with P(a) =
P(b) =0 and P(z) > 0 for a < x < b. Then property (E) holds for P.

Proof:  Apply Proposition 5.6 with I' = [a,b] and Q an open cone —0 <
Arg(z) < 0 for some § > 0. Notice that in this situation v = P(I") is a real
interval covered several times. So a perturbation is indeed necessary to bring
into a general position. |

Remark: In this specific case we can get I' with v = P(T") in general position
and still inside Q also by shifting slightly the real interval [a,b] into the upper
half plane while fixing a and b. See Figure 18.

Figure 18

The following corollary provides a class of definite polynomials which are
characterized directly by the geometry of their coefficients: these coefficients
are assumed to belong to a certain convex set in C not containing zero. This
assumption is not too restrictive from the algebraic point of view, so the poly-
nomials P satisfying it may have zeros of various multiplicities as well as various
composition factorizations. In this sense, the fact of these polynomials P being
definite does not follow from the results of [14-16, 20, 40, 41, 47] and from the
rest of the results of the present paper.
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COROLLARY 5.8: Let a,b € R, 0 < a < b and let P(z) = (z — a)(b — z) P (z),
with Py(z) = Y_;_, axz®, ax € C. If the convex hull CH of the coefficients ay
does not contain 0 then P has Property (E).

Proof:  Apply Proposition 5.6 with T' = [a,b] and Q some open cone a <
Arg(z) < 8 containing the closed cone with the vertex at 0 € C generated by
CH. For any z € (a,b), P(z) € k(CH), with k > 0. Hence for v = P(I') the

open part v\ 0 is in Q. See Figure 19. ]

Figure 19

Remark: The results of the present section provide some explicit classes of
definite polynomials. Other classes have been described in [14-16, 20, 40, 41,
47] in terms of the monodromy group, indecomposability, or through certain
restrictions on their critical points. Yet another class of definite polynomials
can be produced via the algebraic methods of [15, 16] (see [17]). All these
classes have almost no apparent intersections (besides the polynomials with
regular zeros at a and b, for the first two approaches). The only examples of the
non-definite polynomials we know at present are provided by [39]. In particular,
the polynomial P = Tj is not definite on [—v/3/2,1/3/2]. Each counterexample
to the “Moment Composition conjecture” given in [39] provides also an example
of a non-definite polynomial P, and all these counterexamples are based on the
composition relations A(B) = C(D) classified in [44, 45] (see also [50]). Once
more, the appearance of these non-definite P is not easy to relate with the
properties used in [14-17, 20, 47]. It would be important to understand the
nature of definite polynomials and, in particular, to “unify” the approaches of
the present paper, of [14-16, 20], and of [39-41]. The first steps in this direction
are given in [10, 17].

We conclude this section with a discussion of the following problem: Is it
possible to relax the condition of the vanishing of all the one-sided moments



282 F. PAKOVICH, N. ROYTVARF AND Y. YOMDIN Isr. J. Math.

(1.2) in the Polynomial Moment problem (requiring, for example, the vanishing
of only a part of them) and still to get ultimately that all the m; vanish? Some
initial results in this direction can be derived from Corollary 4.14 above. This
corollary states that if all the poles of the integrand g of the Cauchy integral
I(t) given by (1.1) belong to the exterior domain Dy, then the complete analytic
continuation fo(t) of the “exterior branch” Iy of I cannot be univalued unless
it is identically zero. In particular, Io(¢) at infinity cannot be a non-zero germ
of a polynomial, a rational or a meromorphic in C function.

The algebraic function g = Q(P~') on « that appears in the Cauchy integral
coming from the Polynomial Moment problem does not have poles in the finite
part of C. Therefore, by Corollary 4.14 the Moment generating function H (y)
defined by (1.3) (or by (5.1)) cannot be rational unless it vanishes identically.
This proves the following:

PROPOSITION 5.9: If the moments my, = my (P, Q, ) satisfy a linear recurrence

N
m; = E Q;Mp g
1

for each j > N (in particular, if m; = 0 for each j > N), then in fact m; = 0
for each j > 0.

relation

The next interesting question in this direction is whether H(y) may be a
non-rational algebraic function. In the Examples of Section 4 where I(¢) is a
non-rational algebraic function, the Cauchy integral does not come from the
Polynomial Moment problem (i.e., not from the integral (5.2)). As mentioned
in the remark after Example 5 in Section 4, for the closed integration path
I the rational Moment generating function H(y) is either algebraic or locally
algebroid (i.e., has a finite ramification and a polynomially bounded growth at
each of its singular points). On the other hand, the following proposition shows
that “generically” the polynomial Moment generating function on a non-closed
interval cannot be locally algebroid.

PRrROPOSITION 5.10: Let P and @ be polynomials and let a and b be regular
points of P with P(a) = P(b) = zy. If one of the branches of the analytic
continuation H(y) of the Moment generating function H(y) defined by (5.1) has
a finite ramification at zo, then in fact H(y) = 0 near oc. In particular, H (y)
near oo cannot be a non-zero algebraic function.

Proof: By Theorem 4.4, if one of the branches of f](y) has a finite ramification
at zp, then this is true for all the branches and, in particular, for the one
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represented by the expression in Theorem 3.7 of Section 3. Therefore, the
logarithmic term in this expression must vanish, i.e., the regular parts of g =
Q(P~1') on the two sides of zy in v = P([a, b]) must coincide. Since a and b are
regular points of P, these regular parts are the corresponding regular branches
of g themselves. We get a local coincidence of the branches of g, i.e., the Gluing
condition. This implies the Composition condition (PCC) that in turn implies
the vanishing of all the one-sided moments (1.2) and the identity H(y) = 0 near
0. |

Remark 1: Proposition 5.10 can be informally restated as follows: it shows
that H(y) cannot be a non-zero algebraic function near oo for any P which is
definite by the result of [20] (i.e., because a and b are regular points of P). In
exactly the same way we can show that H(y) near oo cannot be a non-zero
algebraic function for any P which is definite by the results of [40, 41]. Indeed,
in these papers the validity of the Composition condition (PCC) is shown under
certain restrictions on P, starting with the vanishing of a certain sum of the
branches of g which, in turn, is implied just by the algebraicity of H(y) (or even
by the property of H(y) to be locally algebroid). It is not clear whether the
same conclusion is true for the polynomials P which are definite by the results
of [15, 16, 47] or of the present section.

Remark 2: The condition of algebraicity of H(y) can be expressed in terms
of its Taylor coefficients my, but not in a straightforward way (see [23, 48,
49]). Tt would be interesting to find an analogue of Proposition 5.10 with the
assumptions given explicitly in terms of the moments my,.

6. Rational Double moments

In this section we investigate the “Rational Double Moment problem” on the
non-closed curve. This problem consists in providing necessary and sufficient
conditions for the vanishing of the double moments (1.4)

mij = / Pi(x)Qj(x)p(x)dx, 1,7=0,1,....
¥

We assume that P(z), Q(z) are rational functions and the integration path T
is non-closed. Remember that in the case of the closed integration curve the
answer is given by the classical result of Wermer and Harvey—Lawson: double
moments vanish if and only if the image curve § = (P,Q)(I") C C? of the path
I under (P, Q) bounds a compact complex 1-chain in C? (see [2, 22, 30, 57, 58]
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and Section 1.1.3 above). We show that on a non-closed curve + the vanishing
of the double moments (and, in fact, just an algebraicity of the appropriate
generating functions) is equivalent to a certain composition factorization of the
integrand functions which “closes up” the integration path, combined together
with the Wermer and Harvey—Lawson condition for their “left factors”.

Next, we show that under the additional assumption that the monodromy
group of P(z) is doubly transitive, the vanishing of the one-sided moments only
implies a composition factorization which closes up the integration path. More-
over, this composition factorization has a very special form: Q(z) = Q(P(x)).

The results of this section generalize the results of [40].

THEOREM 6.1: Let P(z),Q(x) be rational functions and let T be a non-closed
curve containing no poles of P(x),Q(xz) which starts at the point a and ends at
the point b. Suppose that

WJ=AP%Mymmww=o

for 0 <1 <o0,1<j<d,+dy—1, where d, (resp. dy) is the multiplicity of
the point a (resp. b) with respect to P(z). Then there exist rational functions
P, Q, W such that P(z) = P(W(z)), Q(z) = Q(W (x)), and W (a) = W (b).

Note that if a,b are not critical points of P(z) (that is, if d, = d, = 1), then
the conditions of the theorem reduce to the vanishing of single moments and

therefore Theorem 6.1 can be considered as a wide generalization of the result
of C. Christopher ([20]).

Proof: Suppose first that P(a) = P(b). Let U be a simply connected domain
which contains no critical values of P(z), and such that P(a) = P(b) = zo € 0U.
Denote by P,.'(2), P,;'(2),..., P! (2) (vesp. Py ' (2), PN (2), . .. P;l’l(z)) the
branches of P~!(z) defined in U which map points close to zg to points close to
a (resp. b). Then for any j, 1 < j < d, + dy — 1, Corollary 3.9 applied to the

function g(z) = Q7 (P~!(z)) implies that

da dy
(6.1) dy Y QI(PM(2) =da Y QU(P, M (2)).

Clearly, this equality holds also for 7 = 0. Our assumption that the curve T’
is not closed (i.e., that a # b) implies that the branches of P~!(z) on the two
sides of (6.1) are different. Hence the corresponding branches of Q7 (P~!(z)) are
different and therefore (6.1) provides a non-trivial relation between the branches
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of Q7(P~1(z)). (For a = b, the two sides of (6.1) are identically equal to one
another.)

Consider a Vandermonde determinant D =|| Q7(p; *(¢)) ||, where 0 < j <
d, + dy — 1 and ¢ ranges the set of indices {uy,us,...,uq4,,v1,...,0q, }. Since
system (6.1) implies that D = 0, we conclude that Q(P; ' (t)) = Q(Pfl(t)) for
some i # j, 1 <1i,j < n. (Here, n is the degree of the rational function P.) By
Lemma 5.1 above, the last condition is equivalent to the condition that there
exist rational functions P, Q, W with deg W > 1 such that P(z) = P(W()),
Q(z) = Q(W (x)). Furthermore, without loss of generality we can suppose that
P and () have no non-trivial (of degree greater than 1) common right divisor in
the composition algebra. Indeed, otherwise we compose W with this common
right divisor and get a new W of a higher degree. The fact that W satisfies
additionally the equality W(a) = W (b) we prove below.

Let us suppose now that P(a) # P(b). In this case, instead of (6.1), Corollary
3.9 gives two systems

da dy,

62) > QU(P'(2)=0, Y QP '(2) =0, 1<j<dg+dy—1,

s=1

where P ' (2), P! (2),..., Pu_d}, (2) (vesp. Pyl (2), P'(2),... P;,z(z)) denote
the branches of P~!(z) defined in some neighborhood of P(a) (resp. P(b)) which
map points close to P(a) (resp. P(b)) to points close to a (resp. b). Now the

same reasoning as above applied to the system
da
> QN(PN(=) =0, 1<j<d,
s=1

(taking into account that d, +dy, — 1 > d,) shows that Q(Pi_l(t)) = Q(Pj_l(t))

for two different branches P;™'(2), Pj_l(z) of P71(z). Once more, this implies
the existence of rational functions P, @, W with deg W > 1 such that P(z) =
P(W(z)), Q(z) = Q(W(x)) and such that P and Q have no non-trivial (of
degree greater than 1) common right divisor in the composition algebra.

Let us show that such a W must satisfy W(a) = W(b). Indeed, otherwise,

after the change of variable z — w = W (z) we get
miy = [ P)@ @) w)du =0
5

for 0 <i<o0,1<j<d,+d,—1, where § = W(I') is non-closed and d,
(resp. dp) is (as above) the multiplicity of the point a (resp. b) with respect
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to P(x). Taking into account that for any ¢ € C the multiplicity of ¢ with
respect to P(z) = P(W(x)) is greater than or equal to the multiplicity of
W (c) with respect to P(w), in the same way as above we would conclude that
P(w) = P(U(w)), Q(w) = Q(U(w)) for some rational functions P,Q,U with
degU > 1. This contradicts the assumption that P, Q have no common right
divisor in the composition algebra. |

COROLLARY 6.2: Let P(z),Q(x) be rational functions, and let T be a non-
closed curve containing no poles of P(z),Q(x) which starts at the point a and
ends at the point b. Then

iy = / Pi(2)Q (x)p(x)dz = 0

for 0 < i< o0, 0<j < oo if and only if there exist rational functions P, Q, W

such that P(z) = P(W(z)), Q(z) = Q(W(z)), W(a) = W (b), and all the poles
of P and @ lie on one side of the closed curve § = W (T).

Proof: Sufficiency of these conditions follows from Theorem 1.1.3 above, after
we perform a change of variables * — w = W(z). Necessity is obtained as
follows: assuming that the moments m; ; vanish, we apply Theorem 6.1 and
get the factorization P(z) = P(W(z)), Q(z) = Q(W (x)) with W(a) = W (b).
Performing a change of variables  — w = W(z) we get the vanishing of the
moments

/ P (w) Q7 (w) P! (w)du

5

on the closed curve § = W(T'). Finally, we apply Theorem 1.1.3. ]

COROLLARY 6.3: If the moments m; ; vanish for 0 < i <oc, 1 <j<d,+dy—1
then P(a) = P(b), Q(a) = Q(b).

Notice that the results of Section 5 leave open the question whether the
vanishing of the one-sided moments implies P(a) = P(b) and Q(a) = Q(b).
It turns out that under the additional assumption that the monodromy group
of P(x) is doubly transitive, the vanishing of the one-sided moments does imply
the equality P(a) = P(b) as well as a composition factorization of a very special
form: Q(z) = Q(P(z)) (which, of course, closes up the integration path for
P(a) = P(b)).
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THEOREM 6.4: Let P(x),Q(z) be non-zero rational functions and let T be a
non-closed curve containing no poles of P(x), Q(x) which starts at the point a
and ends at the point b. Suppose that

/F Pi(2)Q(@)p(x)dr = 0

for i > 0. If, additionally, the monodromy group of P(z) is doubly transitive,
then the functions P(z),Q(x) must satisfy P(a) = P(b), Q(a) = Q(b) and there
exists a rational function () such that Q(z) = Q(P(z)).

Proof: Lemma 2 of [40] (see also [29]) states that if the monodromy group of
P(z) is doubly transitive and if the branches Q(P; !(z)) satisfy

> aQ(r ) =0

for some a; € C not all equal between themselves, then there exists a rational
function Q such that Q(z) = Q(P(z)). (Here, as above, n is the degree of the
rational function P.)

Now as in the proof of Theorem 6.1, the vanishing of the one-sided moments
implies via Corollary 3.9 that the branches Q(P; '(z)) are related either by
relation (6.1) or by relation (6.2) (with j = 1). Notice that in each of these
relations the coefficients are not all equal between themselves. This is imme-
diate for (6.1). The only case where both the sums in (6.2) contain all the
branches of Q(P;""(z)) is when P(z) can be reduced to 2" by the transforma-
tion P(x) — A(P(B(x))), where A, B are rational functions of the first degree.
This possibility is excluded by the assumption that the monodromy group of P
is doubly transitive.

It remains to show that P satisfies P(a) = P(b). Let us perform a change of
variable © — z = P(z). We get

(6.3) / 2'Q(2)dz =0

for i > 0, where v = P([a,b]). If P(a) # P(b), then the curve + is non-closed.
In this case, each of the relations (6.2) takes the form Q(z) = 0 (at the points
P(a) and P(b), respectively). Indeed, Q(z), being a rational function, has only
one branch at each point. In other words, the vanishing of the moments (6.3)
for a non-closed curve v is possible only for Q(z) = 0. Since by the assumptions
Q(z) # 0, also Q cannot vanish identically. Hence P(a) = P(b). This completes

the proof of Theorem 6.4. |
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Remark: Corollary 3.9 requires only algebraicity of the Cauchy integral I(t)

(and not necessarily its identical vanishing) to get the vanishing of the local

sum of the branches of g. Accordingly, we can replace the assumption of the

vanishing of the double (the one-sided) moments in Theorem 6.2 (Theorem 6.4,

respectively) by the assumption of the algebraicity of the corresponding moment

generating functions.
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