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A Remark on Complex Polynomials of Least Deviation

I. V. Ostrovskii, F. B. Pakovitch, and M. G. Zaidenberg

In [Pa1] the second author gave a solution of a problem posed by C.-C. Yang [Ya], us-

ing a description of the polynomials of least deviation on certain compacta in C. Namely,

it was proven that, up to a sign, a complex polynomial of a given degree is determined

uniquely by the preimage of the two-point subset {1, −1} ⊂ C. Here we generalize these

results along the same line of ideas. For another generalization, concerning meromorphic

functions on Riemann surfaces, see [Pa2].

Recall that, for a given compact K ⊂ C, a monic polynomial p(z) ∈ C[z] of degree

n > 0 is called the nth polynomial of least deviation (from zero) if ‖p‖K ≤ ‖q‖K for any

monic polynomial q(z) ∈ C[z] of degree n, where ‖p‖K := maxz∈K{|p(z)|}. It is known1 [To],

[VP], [Wa], [Ko] that such a polynomial is unique as soon as card K ≥ n.

Recall the following.

Definition 1. Given a compact K ⊂ C, the closed disc ∆ = ∆a, r of the smallest radius

which contains K is called the Chebyshev disc of K. Its center a is called the Chebyshev

center of K, and its radius r is called the Chebyshev radius of K.

Some properties of Chebyshev discs are mentioned in Lemma 2 below.

The next result generalizes Theorem 1 of [Pa1].

Theorem 1. Let a compact K ⊂ C with card K ≥ 2 have the origin as its Chebyshev

center. For a monic polynomial p ∈ C[z] of degree n, set Kp = p−1(K). Then p is the unique

nth polynomial of least deviation on Kp.

Received 31 May 1996.
Communicated by G. A. Margulis.
1A unicity theorem for Chebyshev approximation in a complex domain was proven by Tonelli (1908). In the
case of a general plane compact K with card K ≥ n, another proof was given by Vallée Poussin (1911). Walsh
(1930) obtained a more general result on rational approximations via the Tonelli approach. The Kolmogorov
unicity theorem (1948), based on his criterion for the best approximation polynomials, deals more generally
with Chebyshev systems.
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In the next corollary we describe a class of plane compacta for which a given

monic polynomial p serves as the polynomial of least deviation. The maximal such class

is called the Chebyshev cluster of p.

Corollary (cf. [Pa, Theorem 1]). Denote ∆r = ∆0, r and Sr = ∂∆r. Let ∆r be the Chebyshev

disc of a compact2 K ⊂ Sr. Let p ∈ C[z] be a monic polynomial of degree n > 0. Then p is

the nth polynomial of least deviation on any compact T such that Kp ⊂ T ⊂ p−1(∆r).

In the proof of Theorem 1 we use the following averaging projection.

Definition 2. Let p, q ∈ C[z] and deg p = n > 0. We call the average of q over p the

transform q 7−→ σp(q) = q̂ ◦ p, where

q̂(z) = 1

n

∑
p−1(z)={ξ1,...,ξn}

q(ξj). (1)

The summation is over all the roots of the polynomial p(ξ) − z, and a root of multiplicity

m is repeated m times.

Lemma 1. (a) σp: C[z] → C[p] is a linear projection. Moreover, it is a homomorphism of

C[p]-moduli, i.e., σp(ϕ(p) · q) = ϕ(p) · σp(q) for any q, ϕ ∈ C[z].

(b) deg q̂ = [(deg q)/n]. In particular, deg q̂ = 1 if deg q = n. Furthermore, if both

p and q are monic polynomials of degree n, then σp(q) = p + c, where c ∈ C.

Proof. By definition, the function σp(q) is constant on each fibre p−1(z) of p, and σp(p) = p.

Let q(z) =∑k bk(z)pk, where bk ∈ C[z] and deg bk < n for all k, be the p-adic decomposition3

of q. Then, clearly, σp(q) = ∑k δkp
k, where δk = σp(bk). Here δk are constants, since σp(q)

is constant for any polynomial q of degree m < n. Indeed, this is enough to check for the

monomials qm(z) = zm, 0 ≤ m < n. But the Newton sum of the roots of p − z

q̂m(z) = 1

n

∑
p−1(z)={ξ1,...,ξn}

ξm
j

is a polynomial in the coefficients an−1, . . . , an−m of p(ξ) = ξn +∑n−1
i=0 aiξ

i, and therefore,

it is constant. The lemma easily follows from these observations.

Remark. The logarithmic residue formula yields an alternative proof of the lemma.

Indeed, by this formula we have

σp(q)(z) = 1

2πin

∫
|u|=R

q(u)p
′
(u)du

p(u) − p(z)
=

∞∑
k=0

pk(z)

2πin

∫
|u|=R

q(u)p
′
(u)du

pk+1(u)
,

2See Lemma 2 (iv) below for a particular choice of such a compact K.
3We are thankful to D. N. Akhiezer, who proposed the use of the p-adic decomposition.



A Remark on Complex Polynomials of Least Deviation 701

where R = R(z) is sufficiently large and where all the members of the series with k >

(deg q)/n are zero.

Proof of Theorem 1. Let q ∈ C[z] be a monic polynomial of the same degree n as p. Since

the compact Kp = p−1(K) is saturated by the fibres of p, from Definition 2 it easily follows

that

‖σp(q)‖Kp ≤ ‖q‖Kp. (2)

By Lemma 1, σp(q) = p + c, where c ∈ C. By our assumption, K has its Chebyshev center

at the origin. Denote by ∆r = ∆0, r the Chebyshev disc of K. We have

r = ‖p‖Kp ≤ ‖p + c‖Kp = ‖σp(q)‖Kp. (3)

From (2) and (3) we obtain

‖p‖Kp ≤ ‖q‖Kp. (4)

This proves that p is, indeed, a polynomial of least deviation on the compact Kp. Note

(see, e.g., [Pa1]) that the geometric preimage of two distinct values a1, a2 of a polynomial

of degree n consists of at least n + 1 distinct points, so that card Kp ≥ n + 1. Now the

unicity of such a polynomial follows from the classical theorem cited above.

Remark. Here we provide an easy proof of the unicity (cf. [VP]). Assume that in (4) the

equality holds. This implies the equality signs also in (2) and (3). The latter is possible

only if c = 0. Therefore, σp(q) = p, i.e., q̂(z) = z. Choose two arbitrary distinct points

a1, a2 ∈ K ∩ Sr, where Sr = ∂∆r. Then

q̂(ai) = 1/n
∑

p−1(ai)={ξi1,...,ξin}
q(ξi j) = ai, i = 1, 2. (5)

Hence ∣∣∣∣∣∣1/n
∑

p−1(ai)={ξi1,...,ξin}
q(ξi j)

∣∣∣∣∣∣ = r = ‖q‖Kp. (6)

Since ξi j ∈ Kp, we have |q(ξi j)| ≤ r for all j = 1, . . . , n. This holds only if q(ξi j) = ai = p(ξi j),

i = 1, 2, j = 1, . . . , n. Thus, the polynomial p − q of degree at most n − 1 vanishes in at

least n + 1 distinct points4 ξi j, i = 1, 2, j = 1, . . . , n. This proves that p = q.

4See the remark at the end of the proof of Theorem 1.
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The proof of the next lemma is a simple exercise.

Lemma 2. Let S = ∂∆ denote the boundary circle of a disc ∆ ⊂ C. Let K ⊂ ∆ be a

compact. The following conditions are equivalent:

(i) ∆ is the Chebyshev disc of K.

(ii) ∆ is the Chebyshev disc of K ∩ S ⊂ S.

(iii) K ∩ S ⊂ S is not contained in an open half-circle (or, what is the same, in an

open half-plane with the boundary line passing through the center of ∆).

(iv) K ∩ S ⊂ S contains either a pair of symmetric points of S, or a triple of points

b, c, d ∈ S such that the center a of ∆ is an inner point of the triangle bcd.

Theorem 2 below shows that, given a plane compact saturated by fibres of a

polynomial of a given degree, there exists a unique such saturation, so that the fibres are

uniquely determined by the compact itself. It follows from Theorem 1 in the same way

as Corollary 1 in [Pa1] follows from Theorem 1 in [Pa1]. For the reader’s convenience we

repeat the arguments.

Theorem 2. Let a compact K ⊂ C contain at least two points. Suppose that p, q ∈ C[z]

are two polynomials of the same degree n such that p−1(K) = q−1(K). Then p = α(q), where

α(z) is a rotation of C with center at the Chebyshev center of K which preserves K.

Proof. Let ∆ = ∆z0, r be the Chebyshev disc of K. Replacing K, p, q, respectively, by

K − z0, p − z0, q − z0, we may assume that z0 = 0, so that ∆ = ∆r = ∆0, r for some r > 0. Set

p̃ = (1/an)p, q̃ = (1/bn)q, where p(z) = anzn + · · ·, q(z) = bnzn + · · ·. Then we have

Kp := p−1(K) = q−1(K) = p̃−1((1/an)K) = q̃−1((1/bn)K).

Since ∆r/|an| (resp. ∆r/|bn|) is the Chebyshev disc of the compact (1/an)K (resp. (1/bn)K),

by Theorem 1, p̃ (resp. q̃) is the unique nth monic polynomial of least deviation on the

compact

Kp = ((1/an)K)p̃ = ((1/bn)K)q̃.

It follows that |an| = |bn| and p̃ = q̃, so that p = eiϕq for some ϕ ∈ R. Since Kp = p−1(K) =
q−1(K), we have

K = p(Kp) = eiϕq(Kp) = eiϕq(Kq) = eiϕK.

This shows that K is stable under the rotation z 7−→ eiϕz.
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