\square
 Math-Net.Ru

F. B. Pakovich, On analogues of the Ritt theorems for rational functions with two poles, Russian Mathematical Surveys, 2008, Volume 63, Issue 2, 386-387

DOI: 10.1070/RM2008v063n02ABEH004530

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use
http://www.mathnet.ru/eng/agreement

Download details:
IP: 132.72.200.104
October 28, 2023, 14:23:46

On analogues of the Ritt theorems for rational functions with two poles

F. B. Pakovich

Let $F(z)$ be a rational function with complex coefficients. The function $F(z)$ is said to be indecomposable if the equality $F=F_{1} \circ F_{2}$, where F_{1}, F_{2} are rational functions and $F_{1} \circ F_{2}$ denotes the composition $F_{1}\left(F_{2}(z)\right)$, implies that at least one of the functions $F_{1}(z)$ and $F_{2}(z)$ is a Möbius transformation. Any rational function $F(z)$ can be decomposed into a composition $F=F_{r} \circ F_{r-1} \circ \cdots \circ F_{1}$ of indecomposable rational functions, though not uniquely in general. Such decompositions are said to be maximal. Two decompositions $F=F_{1} \circ F_{2} \circ \cdots \circ F_{r}$ and $F=G_{1} \circ G_{2} \circ \cdots \circ G_{r}$, maximal or not, are said to be equivalent if there exist Möbius transformations $\mu_{i}, 1 \leqslant i \leqslant r-1$, such that

$$
F_{1}=G_{1} \circ \mu_{1}, \quad F_{i}=\mu_{i-1}^{-1} \circ G_{i} \circ \mu_{i}, \quad 1<i<r, \quad \text { and } \quad F_{r}=\mu_{r-1}^{-1} \circ G_{r} .
$$

A theory of decompositions of polynomials was constructed by Ritt in his classical paper [1]. The theorem below extends Ritt's theory to the case of rational functions with at most two poles.

Theorem. Let

$$
\begin{equation*}
L=A \circ C=B \circ D \tag{1}
\end{equation*}
$$

be two decompositions of a rational function L with at most two poles into compositions of rational functions A, C and $\underset{\sim}{B}, D$. Then either $A \circ C$ is equivalent to $B \circ D$, or there exist rational functions $U, W, \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}$ such that

$$
A=U \circ \widetilde{A}, \quad B=U \circ \widetilde{B}, \quad C=\widetilde{C} \circ W, \quad D=\widetilde{D} \circ W, \quad \widetilde{A} \circ \widetilde{C}=\widetilde{B} \circ \widetilde{D}
$$

and, up to a possible replacement of A by B and C by D, one of the following conditions holds:

1) $\widetilde{A} \circ \widetilde{C} \sim z^{n} \circ z^{r} L\left(z^{n}\right), \quad \widetilde{B} \circ \widetilde{D} \sim z^{r} L^{n}(z) \circ z^{n}$,
where $L(z)$ - is a Laurent polynomial, $r \geqslant 0, n \geqslant 1$, and $\operatorname{GCD}(n, r)=1$;
2) $\widetilde{A} \circ \widetilde{C} \sim z^{2} \circ \frac{z^{2}-1}{z^{2}+1} S\left(\frac{2 z}{z^{2}+1}\right), \widetilde{B} \circ \widetilde{D} \sim\left(1-z^{2}\right) S^{2}(z) \circ \frac{2 z}{z^{2}+1}$,
where $S(z)$ is a polynomial;
3) $\widetilde{A} \circ \widetilde{C} \sim T_{n} \circ T_{m}, \widetilde{B} \circ \widetilde{D} \sim T_{m} \circ T_{n}$,
where $T_{n}(z)$ and $T_{m}(z)$ are the corresponding Chebyshev polynomials with $m, n \geqslant 1$, and $\operatorname{GCD}(n, m)=1$;
4) $\widetilde{A} \circ \widetilde{C} \sim T_{n} \circ \frac{1}{2}\left(z^{m}+\frac{1}{z^{m}}\right), \widetilde{B} \circ \widetilde{D} \sim \frac{1}{2}\left(z^{m}+\frac{1}{z^{m}}\right) \circ z^{n}$,
where $m, n \geqslant 1$ and $\operatorname{GCD}(n, m)=1$;
5) $\widetilde{A} \circ \widetilde{C} \sim-T_{n l} \circ \frac{1}{2}\left(\varepsilon z^{m}+\frac{\bar{\varepsilon}}{z^{m}}\right), \quad \widetilde{B} \circ \widetilde{D} \sim T_{m l} \circ \frac{1}{2}\left(z^{n}+\frac{1}{z^{n}}\right)$,
where $T_{n l}(z)$ and $T_{m l}(z)$ are the corresponding Chebyshev polynomials with $m, n \geqslant 1$, $l>1, \varepsilon^{n l}=-1$, and $\operatorname{GCD}(n, m)=1$;
[^0]DOI 10.1070/RM2008v063n02ABEH004530.
6) $\widetilde{A} \circ \widetilde{C} \sim\left(z^{2}-1\right)^{3} \circ \frac{3\left(3 z^{4}+4 z^{3}-6 z^{2}+4 z-1\right)}{\left(3 z^{2}-1\right)^{2}}$,

$$
\widetilde{B} \circ \widetilde{D} \sim\left(3 z^{4}-4 z^{3}\right) \circ \frac{4\left(9 z^{6}-9 z^{4}+18 z^{3}-15 z^{2}+6 z-1\right)}{\left(3 z^{2}-1\right)^{3}} .
$$

Furthermore, if \mathscr{D} and \mathscr{E} are two maximal decompositions of L, then there exists a chain of maximal decompositions $\mathscr{F}_{i}, 1 \leqslant i \leqslant s$, of L such that $\mathscr{F}_{1}=\mathscr{D}, \mathscr{F}_{s} \sim \mathscr{E}$, and \mathscr{F}_{i+1} is obtained from \mathscr{F}_{i} by replacing two successive functions in \mathscr{F}_{i} by two other functions with the same composition.

A complete proof of the theorem is given in the preprint [2]. We note that the second part of the theorem follows from the first part, while the first part reduces to an analysis of the equations

$$
A\left(L_{1}\right)=B\left(L_{2}\right), \quad A\left(L_{1}\right)=L_{2}\left(z^{d}\right)
$$

where A, B are polynomials and L_{1}, L_{2} are Laurent polynomials. We stress that our analysis of the first equation provides a new proof of the classification, obtained in [3], [4], of algebraic curves of the form $A(x)-B(y)=0$ which have a factor of genus zero with at most two points at infinity. Finally, we note that our proof of the theorem is self-contained and involves several new ideas leading to a simplification of the approach to the problem. In particular, we consider equation (1) in a more general context of the function equation $f \circ p=g \circ q$, where $f: C_{1} \rightarrow \mathbb{C P}^{1}, g: C_{2} \rightarrow \mathbb{C P}^{1}, p: C \rightarrow C_{1}$, and $q: C \rightarrow C_{2}$ are holomorphic functions on compact Riemann surfaces.

Bibliography

[1] J. F. Ritt, Trans. Amer. Math. Soc. 23:1 (1922), 51-66.
[2] F. Pakovich, Prime and composite Laurent polynomials, arXiv: 0710.3860, 2007.
[3] Yu. F. Bilu and R. F. Tichy, Acta Arith. 95:3 (2000), 261-288.
[4] M. Fried, J. Reine Angew. Math. 264 (1973), 40-55.
F. B. Pakovich

Ben-Gurion University of the Negev, Israel
E-mail: pakovich@math.bgu.ac.il

Presented by S. K. Lando
Accepted 07/DEC/07 Translated by F. B. PAKOVICH

[^0]: AMS 2000 Mathematics Subject Classification. Primary 30D05; Secondary 14H30.

