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ON RATIONAL FUNCTIONS ORTHOGONAL TO ALL POWERS

OF A GIVEN RATIONAL FUNCTION ON A CURVE

F. PAKOVICH

Abstract. In this paper we study the generating function f(t) for the
sequence of the moments

∫
γ
P i(z)q(z)dz, i > 0, where P (z), q(z) are

rational functions of one complex variable and γ is a curve in C. We
calculate an analytical expression for f(t) and provide conditions imply-
ing that f(t) is rational or vanishes identically. In particular, for P (z)
in generic position we give an explicit criterion for a function q(z) to be
orthogonal to all powers of P (z) on γ. As an application, we prove a
stronger form of the Wermer theorem, describing analytic functions sat-
isfying the system of equations

∫
S1 h

i(z)gj(z)g′(z)dz = 0, i > 0, j > 0,
in the case where the functions h(z), g(z) are rational. We also gen-
eralize the theorem of Duistermaat and van der Kallen about Laurent
polynomials L(z) whose integer positive powers have no constant term,
and prove other results about Laurent polynomials L(z), m(z) satisfying∫
S1 L

i(z)m(z)dz = 0, i > i0.
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1. Introduction

In this paper we study the generating function f(t) =
∑∞

i=0mit
i for the sequence

of the moments

mi =

∫

γ

P i(z)q(z)dz, i > 0, (1)

where P (z), q(z) are rational functions of one complex variable and γ is a curve
in C. In particular, we study conditions under which f(t) is a rational function, a
polynomial, or an identical zero.

Our main motivation for such a study is related to differential equations and may
be described as follows. Let F (x, y), G(x, y) be real-valued analytical functions
vanishing at the origin together with their first derivatives. Then the classical
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Poincaré problem is to find conditions under which all solutions of the system
{
ẋ = −y + F (x, y),

ẏ = x+G(x, y),
(2)

around zero are closed (see e.g. the recent survey [11] and the bibliography therein).
This problem remains wide open even in the case where F (x, y) and G(x, y) are
polynomials of degree 3, and any advances in its understanding are of a great
interest.

It is known [9] that if F (x, y), G(x, y) are homogeneous polynomials of the
same degree, then one can construct trigonometric polynomials f(cosϕ, sinϕ),
g(cosϕ, sinϕ) such that (2) has a center if and only if all solutions of the trigono-
metric Abel equation

dr

dϕ
= f(cosϕ, sinϕ) r2 + g(cosϕ, sinϕ) r3 (3)

with r(0) small enough are periodic on [0, 2π]. In its turn, the trigonometric Abel
equation can be transformed by an exponential substitution into the equation

dy

dz
= l(z)y2 +m(z)y3, (4)

where l(z) and m(z) are Laurent polynomials. Furthermore, all solutions of (3)
with r(0) small enough are periodic on [0, 2π] if and only if all solutions of (4) with
y(1) small enough are non-ramified along S1.

In the series of papers [3]–[6] the following modification of the center problem
for equation (4) was proposed: find conditions under which for any solution y(z) of
the Abel differential equation

dy

dz
= p(z)y2 + q(z)y3 (5)

with polynomial coefficients p(z), q(z) the equality y(1) = y(0) holds whenever y(0)
is small enough. This modification seems to be easier than the initial problem at
the same time keeping its main features, and in this context can be considered as
a simplified form of the classical center-focus problem of Poincaré.

The center problem for Abel equation (5) naturally leads to the following “poly-
nomial moment problem”, which is a prototype of problems considered in this
paper: find conditions under which polynomials P =

∫
p(z)dz and Q =

∫
q(z)dz

satisfy the system of equations
∫ 1

0

P i(z)dQ(z) = 0, i > 0, (6)

or, in other words, find conditions implying that the corresponding generating func-
tion of moments vanishes identically (for a detailed description of relations between
the center problem for Abel equation (5) and the polynomial moment problem see
[8] and the bibliography therein).

The polynomial moment problem has been studied in the papers [3]–[7], [10],
[23]–[27], [35] and was completely solved in the recent papers [31], [29]. The solution
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involves the following “composition condition” imposed on P (z) and Q(z): there

exist polynomials P̃ , Q̃, W such that

P = P̃ (W (z)), Q = Q̃(W (z)), W (0) =W (1). (7)

It is easy to see using the change z →W (z) that (7) implies (6) and it was shown in
[31] that if polynomials P (z), Q(z) satisfy (6), then there exist polynomials Qj(z)
such that Q(z) =

∑
j Qj(z) and

P (z) = P̃j(Wj(z)), Qj(z) = Q̃j(Wj(z)), Wj(0) =Wj(1) (8)

for some polynomials P̃j(z), Q̃j(z), Wj(z). Moreover, in [29] polynomial solutions
of (8) were described in a very explicit form suitable for applications.

In the same way as the center problem for Abel equation (5) leads to the poly-
nomial moment problem, the original center problem for equations (3), (4) leads
to the moment problem for trigonometric polynomials or, more generally, to the
following “Laurent polynomial moment problem”, which is the main motivation for
investigations of this paper: describe Laurent polynomials L(z), m(z) such that

∫

S1

Li(z)m(z)dz = 0, i > 0. (9)

An analogue of condition (7) in this setting is that there exist a Laurent polynomial

W (z) and polynomials L̃(z), m̃(z) such that the equalities

L(z) = L̃(W (z)), m(z) = m̃(W (z))W ′(z) (10)

hold. Clearly, (10) implies (9). Furthermore, if for given L(z) there exist several
such m(z), then (9) is satisfied for their sum. However, in distinction with the
polynomial moment problem other mechanisms for (9) to be satisfied also exist.

For example, if L(z) = L̃(zd) for some d > 1, then the residue calculation shows
that condition (9) is satisfied for any Laurent polynomial m(z) containing no terms
czn with n ≡ −1 (mod d).

Notice that questions concerning the function f(t) appear also in domains not
related to differential equations, providing additional motivations for investigations
of this paper. Let us mention for example the following particular case of the
Mathieu conjecture concerning compact Lie groups [21] proved by Duistermaat
and van der Kallen [14]: if all integer positive powers of a Laurent polynomial L(z)
have no constant term, then L(z) is either a polynomial in z, or a polynomial in
1/z. Clearly, the assumption of this theorem is equivalent to the condition that
the function f(t) for P (z) = L(z), m(z) = 1/z, and γ = S1 is a constant. Another
related question is the problem of description of polynomials P (z), q(z) for which
the function f(t) is equal to a constant, and not just to zero as in the polynomial
moment problem, which was recently raised by Zhao [41] in connection with his
conjecture about images of commuting differential operators. Finally, notice that
the classical Wermer theorem [36], [37] describing analytic functions on S1 satisfying

∫

S1

hi(z)gj(z)g′(z)dz = 0, i, j > 0, (11)
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in the case where the functions h(z), g(z) are rational, obviously is also related to
the subject of this paper.

Since the paper is rather long and involves many different problems, in the next
section we give a detailed description of the results obtained in each section.

2. Main Results

2.1. In Section 3 we fix the notation and introduce basic sufficient conditions
implying the rationality and the vanishing of f(t). We also calculate an explicit
analytical expression for f(t).

We start from introducing an auxiliary function I∞(t) which is defined near
infinity by the Cauchy type integral

I∞(t) = I∞(q, P, γ, t) =
1

2π
√
−1

∫

γ

q(z)dz

P (z)− t
. (12)

The calculation of the Taylor series of I∞(t) at infinity shows that

I∞(t) = − 1

2π
√
−1

1

t
f
(1
t

)

implying that we may study I∞(t) instead of f(t).
Then we introduce the so-called “composition condition” relating the functions

P (z) and q(z). In its most general form the composition condition is defined as

follows: there exist rational functions q̃(z), P̃ (z), W (z) such that degW (z) > 1
and

P (z) = P̃ (W (z)), q(z) = q̃(W (z))W ′(z). (13)

In case if the composition condition is satisfied, the change of variable z → W (z)
reduces questions about the function I∞(q, P, γ, t) to similar questions for the

function I∞(q̃, P̃ , W (γ), t), which is defined by rational functions of lesser degrees.
Furthermore, in certain cases the new integration path W (γ) turns out more con-
venient for investigation than the initial one. Notice that if the indefinite integral∫
q(z)dz is a rational function, then the composition condition is equivalent to the

condition that

P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)) (14)

for some rational functions Q̃(z), P̃ (z), W (z) with degW (z) > 1.
Finally, we introduce basic sufficient topological conditions for rationality and

vanishing of f(t). Let P be a rational function and γ be a curve. Say that poles
of P (z) lie “on one side” (resp. “outside”) of γ, if γ is closed and homologous to
zero in CP1 (resp. in C) with poles of P (z) removed. It is not hard to prove that
if poles of P (z) lie on one side of γ, then the function f(t) is rational for any q(z)
(Corollary 3.2). More generally, I∞(t) is rational whenever P (z) and q(z) satisfy

composition condition (13) and poles of the function P̃ (z) lie on one side of W (γ).
On the other hand, if P (z) and q(z) satisfy composition condition (13) and poles

of both P̃ (z) and q̃(z) lie outside of W (γ), then I∞(t) vanishes identically by the
Cauchy theorem.
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The main results of Section 3 (Theorem 2.1 and Theorem 2.4) are explicit analyt-
ical expressions for f(t). In particular, these expressions imply that if γ is closed,
then f(t) is an algebraic function from the field KP generated over C(t) by the
branches P−1

i (t), 1 6 i 6 n, of the algebraic function P−1(t) inverse to P (z). On
the other hand, if γ is non-closed, then the function f(t) is a linear combination of
branches of the logarithm with coefficients from KP . As an application we obtain
an important necessary condition for rationality of f(t) for non-closed γ (Proposi-
tion 3.5) which generalizes the conditions for vanishing of f(t) obtained earlier in
[24], [33], [27].

2.2. In Section 4 we give a criterion (Theorem 4.1) for rationality of f(t) which is
more convenient for the use than explicit formulas obtained in Section 3. Namely,
we show that f(t) is rational if and only if superpositions of the rational function
(q/P ′)(z) with branches of P−1(t) satisfy a system of equations

n∑

i=1

fs,i

( q

P ′

)
(P−1

i (t)) = 0, fs,i ∈ Z, 1 6 s 6 k, (15)

where fs,i and k are calculated in an effective way and depend on P (z) and γ
only. This result generalizes the corresponding criterion for polynomials given in
[27] and relies on similar ideas. In particular, we use combinatorial objects called
“constellations” (similar to what is called “Dessins d’enfants”) which represent the
monodromy group GP of the algebraic function P−1(z) in a combinatorial way.
Notice that expressions (15) can be interpreted as “Abelian integrals along zero-
dimensional cycles” [16].

We also show (Theorem 4.1) that if P (z) and q(z) satisfy the conditions

q−1{∞} ⊆ P−1{∞}, P (∞) = ∞, (16)

then the rationality of f(t) yields that f(t) ≡ 0. Notice that this result implies
immediately the theorem of Duistermaat and van der Kallen cited above. Indeed,
if L(z) is not a polynomial in z or in 1/z, then for P (z) = L(z), q(z) = 1/z
conditions (16) are satisfied and therefore the equality f(t) = c would imply that
c = 0 in contradiction with the fact that for i = 0 the integral in (9) is equal to
2πi. Another corollary is the following statement, which gives the answer to the
question of Zhao: if the polynomial moments in (6) vanish for all i > i0, then they
vanish for all i > 0.

2.3. In Section 5 we solve the problems of rationality and vanishing of f(t) in
the case where the function P (z) is in “generic position”. Clearly, we can assume
that such P (z) is indecomposable, that is can not be represented as a composition

P (z) = P̃ (W (z)) of rational functions of lesser degrees. In particular, for such P (z)
the composition condition (13) is equivalent to the condition that

q(z) = q̃(P (z))P ′(z). (17)

Further, we may assume that P (z) has only simple branch points. Under these
conditions we show (Corollary 5.4) that, unless poles of P (z) lie on one side of γ,
the function f(t) is rational if and only if the curve P (γ) is closed and the function
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q(z) has the form (17). We also show (Corollary 5.7) that f(t) vanishes identically
if and only if poles of the function q̃(z) lie outside of the curve P (γ).

2.4. In Section 6 we prove two results which can be considered as more precise
versions of the Wermer theorem [36], [37], describing analytic functions on S1 sat-
isfying (11), in the case where the functions h(z), g(z) are rational.

Let P (z), Q(z) be rational functions and γ be an arbitrary curve in C. For fixed
j > 0 denote by Ij(t) the generating function for the sequence of the moments

mi =

∫

γ

P i(z)Qj(z)Q′(z) dz, i > 0. (18)

Our first result (Theorem 6.1) states that all the functions Ij(t), j > 0, are rational

if and only if composition condition (14) holds and poles of P̃ (z) lie on one side of
the curveW (γ). In fact, we show that it is enough to assume that Ij(t) are rational
for all j in the finite interval j0 6 j 6 j0 + n − 1, where j0 is any non-negative
integer and n = degP (z).

Our second result (Theorem 6.2) states that all the moments (18) vanish if and

only if composition condition (14) holds and poles of P̃ (z) and Q̃(z) lie on one side
of the curve W (γ). Moreover, we show that it is enough to assume that moments
(18) vanish for all i > i0, j > j0, where i0, j0 are some non-negative integers.

2.5. In Section 7 we study the Laurent polynomial moment problem (9). In
particular, we prove the following generalization of the theorem of Duistermaat
and van der Kallen (Theorem 7.1): if L(z) and m(z) are Laurent polynomials such
that the coefficient of the term 1/z in m(z) is distinct from zero and (9) holds for all
i > i0, where i0 > 0, then L(z) is either a polynomial in z, or a polynomial in 1/z.
Notice that this result implies that if L(z) is a proper Laurent polynomial (that is,
not a polynomial in z or in 1/z) and m(z) is a Laurent polynomial such that (9)
holds, then M(z) =

∫
m(z)dz is a Laurent polynomial. In particular, equalities (9)

may be written in the form
∫

S1

Li(z)dM(z) = 0, i > 0. (19)

Another result proved in Section 4 is a convenient necessary and sufficient con-
dition for equalities (19) to be satisfied. Namely, denoting by M0(z) the principal
part ofM(z) at zero and byM∞(z) the differenceM(z)−M0(z) we prove (Theorem
7.5) that M(z) satisfies (19) if and only if

∑

i∈J0

M∞(L−1
i (t)) ≡

∑

i∈J∞

M0(L
−1
i (t)),

where J0 (resp. J∞) is a subset of {1, 2, . . . , r}, r = degL(z), consisting of all
i ∈ {1, 2, . . . , r} such that for t close to infinity, L−1

i (t) is close to 0 (resp. to ∞).
We also show that for L(z) in generic position any solution M(z) of (19) has the

formM(z) = M̃(L(z)), where M̃(z) is a polynomial, and prove some partial results
about solutions of (9) in the case where M(z) is a polynomial (Theorem 7.6 and
Theorem 7.7).
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2.6. In Section 8 we study the following problem: how many first integrals in (19)
should vanish in order to conclude that all of them vanish. Using the fact that the
corresponding function f(t) is contained in the field KL, we give a bound (Theorem
8.1) which depends on degrees of Laurent polynomial L(z) and M(z) only.

2.7. By the results of Section 5, for P (z) in generic position and γ such that poles
of P (z) do not lie on one side of γ, the rationality of f(t) always implies condition
(13). In Section 9, using a general algebraic result of Girstmair [18], we establish
a relationship between rationality of f(t) and condition (13) in the general case
(Theorem 9.3), and discuss an explanatory example.

3. Analytic Expression for I∞(t)

3.1. Notation. The main object studied in this paper is the generating function

f(t) =

∞∑

i=0

mit
i

for the sequence of the moments

mi =

∫

γ

P i(z)q(z)dz, (20)

where P (z), q(z) are rational functions considered as mappings from CP1 to CP1

and γ is an oriented piecewise-smooth curve in C containing no poles of P (z) or
q(z). We set n = degP (z) and always will assume that n > 0, q(z) 6≡ 0 and that γ
has only transversal self-intersections. We study conditions under which f(t) is an
identical zero, a polynomial, or a rational function. Clearly, the first two conditions
are equivalent to the conditions that mi = 0 for i > 0 or mi = 0 for all i > i0,
while the third one is equivalent to the condition that mi satisfy a linear recurrence
relation with constant coefficients.

Actually, instead of studying the function f(t) directly, we will study an auxiliary
function I∞(t) defined near infinity by the integral

I∞(t) =
1

2π
√
−1

∫

γ

q(z)dz

P (z)− t
. (21)

More precisely, integral (21) defines a holomorphic function in each domain of the
complement of P (γ) in CP1 and, by definition, I∞(t) is a function defined in the
domain U∞ containing infinity. Calculating the Taylor series of I∞(t) at infinity
we see that

I∞(t) = − 1

2π
√
−1

1

t
f
(1
t

)
. (22)

Therefore, the study of f(t) near zero is equivalent to the study of I∞(t) near
infinity and vice versa.

Under certain conditions the function I∞(t) = I∞(q, P, γ, t) coincides with a

similar function I∞(q̃, P̃ , γ̃, t), where P̃ (z), q̃(z) are rational functions of lesser
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degrees. Namely, suppose that there exist rational functions q̃(z), P̃ (z), W (z) such
that degW (z) > 1 and

P (z) = P̃ (W (z)), q(z) = q̃(W (z))W ′(z). (23)

Then changing the variable z to W (z) we see that

I∞(q, P, γ, t) = I∞(q̃, P̃ , W (γ), t), (24)

or equivalently ∫

γ

P i(z)q(z)dz =

∫

W (γ)

P̃ i(z)q̃(z)dz, i > 0. (25)

Notice that in the case where a rational function Q(z) such that q(z) = Q′(z) exists,
the condition (23) is equivalent to the condition that

P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)) (26)

for some rational functions Q̃(z), P̃ (z), W (z), degW (z) > 1. If condition (26) is
satisfied, we will say that rational functions P (z), Q(z) have a non-trivial common

compositional right factor.
Let CP ⊂ CP1 be the set of branch points of the algebraic function P−1(t) inverse

to P (z). Throughout this paper, U will always denote a fixed simply connected
subdomain of C whose boundary contains the points CP and ∞. We also will
assume that U does not contain the point P (∞). Notice that the condition ∞ ∈ ∂U
implies that U ∩ U∞ is not empty. Furthermore, since U is simply connected, it
follows from CP ∩ U = ∅ that in U there exist n single valued analytical branches
of P−1(t). We will denote these branches by P−1

i (t), 1 6 i 6 n.

Under the analytic continuation along a closed curve the set P−1
i (t), 1 6 i 6 n,

transforms to itself and this induces a homomorphism

π1(CP
1 \ CP , c) → Sn, c ∈ U. (27)

The image of the group π1(CP
1 \ CP , c) under homomorphism (27) is called the

monodromy group of P (z). We will denote this group by GP and use the notation
σ(i) = j for σ ∈ GP if P−1

i (t) transforms to P−1
j (t) by a preimage of σ under

(27). Recall that the group GP is permutation equivalent to the Galois group of
the algebraic equation P (t)− z = 0 over the ground field C(z).

3.2. Calculation of I∞(t) for closed γ. In this subsection we will assume that
γ is a closed curve. In this case for any point z ∈ CP1 \ γ the winding number of
γ around z is well defined. We will denote this number by µ(γ, z). Let zq1 , . . . , z

q
l

be finite poles of q(z). For s, 1 6 s 6 l, denote by qs(z) the principal part of the
Laurent series of q(z) at zqs , and set

ψs(t) =
n∑

i=1

( qs
P ′

)
(P−1

i (t)), t ∈ U.

Clearly, ψs(t) is invariant with respect to the action of the group GP . Therefore,
by the main theorem of the Galois theory this is a rational function.

Furthermore, denote by zP1 , . . . , z
P
r finite poles of P (z) and define Je, 1 6 e 6 r,

as a subset of {1, 2, . . . , n} consisting of all i ∈ {1, 2, . . . , n} such that for t close
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to infinity P−1
i (t) is close to zPe . Clearly, the cardinality of Je, 1 6 e 6 r, coincides

with the multiplicity of P (z) at zPe .

Theorem 3.1. Let γ be a closed curve. Then for t ∈ U ∩ U∞ the equality

I∞(t) =

r∑

e=1

µ(γ, zPe )
∑

i∈Je

( q

P ′

) (
P−1
i (t)

)
−

l∑

s=1

µ(γ, zqs)ψs(t) +

+
1

2π
√
−1

1

(P (∞)− t)

∫

γ

q(z)dz (28)

holds.

Proof. It is enough to prove equality (28) for t ∈ U ∩ U∞ close enough to infinity.
For such t, poles of the function

q(z)

P (z)− t

split into two disjointed groups one of which contains poles of q(z) while the other
one contains the points P−1

i (t), 1 6 i 6 n. Moreover, restrictions imposed on U
imply that the poles from the second group are simple and finite. In particular,
this implies that

1

P (z)− t
=

1

P (∞)− t
+

n∑

i=1

1

P ′(P−1
i (t))

1(
z − P−1

i (t)
) . (29)

Setting

W (z, t) =

n∑

i=1

1

P ′(P−1
i (t))

1(
z − P−1

i (t)
) ,

we have:

I∞(t) =
1

2π
√
−1

1

(P (∞)− t)

∫

γ

q(z)dz +
1

2π
√
−1

∫

γ

q(z)W (z, t)dz =

=
1

2π
√
−1

1

(P (∞)− t)

∫

γ

q(z)dz +

n∑

i=1

µ(γ, P−1
i (t))ResP−1

i
(t){q(z)W (z, t)}+

+

l∑

s=1

µ(γ, zqs)Reszq
s
{q(z)W (z, t)}. (30)

Clearly,

ResP−1

i
(t){q(z)W (z, t)} =

( q

P ′

)
(P−1

i (t)), 1 6 i 6 n. (31)

On the other hand,

Reszq
s
{q(z)W (z, t)} = Reszq

s
{qs(z)W (z, t)} =

= −
n∑

i=1

ResP−1

i (t){qs(z)W (z, t)} − Res∞{qs(z)W (z, t)} =

= −ψs(t)− Res∞{qs(z)W (z, t)}, 1 6 s 6 l. (32)
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Furthermore, since for any s, 1 6 s 6 l, both functions qs(z) and W (z, t) have
zeros at infinity the residue of qs(z)W (z, t) at infinity equals zero. Therefore, since
for t close enough to infinity and i ∈ Je the equality µ(γ, P

−1
i (t)) = µ(γ, zPe ) holds,

formula (28) follows from formulas (30), (31), and (32). �

Following [33], we will say that points x1, x2, . . . , xk ∈ CP1 lie on one side of
a curve γ, if γ is closed and homologous to zero in CP1 \ {x1, x2, . . . , xk}. An
equivalent condition is that γ is closed and

µ(γ, x1) = µ(γ, x2) = · · · = µ(γ, xk). (33)

Further, if x1, x2, . . . , xk ∈ CP1 lie on one side of γ and all numbers in (33) equal
zero, then we will say that x1, x2, . . . , xk lie outside γ.

Corollary 3.2. If poles of P (z) lie on one side of γ, then for any rational function

q(z) the function I∞(t) is rational. If poles of P (z) and q(z) lie outside γ, then
I∞(t) ≡ 0.

Proof. If poles of P (z) and q(z) lie outside γ, then it follows directly from the
Cauchy theorem applied to coefficients (20) of I∞(t) that I∞(t) ≡ 0. On the other
hand, if poles of P (z) lie on one side of γ, then (33) implies that the expression

r∑

e=1

µ(γ, zPe )
∑

i∈Je

( q

P ′

) (
P−1
i (t)

)

in formula (28) is invariant with respect to the action of the group GP and therefore
is a rational function. Since other terms of (28) also are rational, this implies the
rationality of I∞(t). �

3.3. Calculation of I∞(t) for non-closed γ. In this subsection we will assume
that γ is a non-closed curve with the starting point a and the ending point b.

Lemma 3.3. Let q(z) be a rational function and γ be a curve. Then the function

q̂(t) =

∫

γ

q(z)− q(t)

z − t
dz (34)

is rational.

Proof. Since q(z) may be represented as a linear combination of rational functions
q(z) = (z − β)−l, l > 0, and monomials, it is enough to prove the lemma for such
functions. If q(z) is a monomial, then

q(z)− q(t)

z − t

is a polynomial in z, t implying that function (34) is a polynomial in t. On the
other hand,

(z − β)−l − (t− β)−l

z − t
=

(t− β)l − (z − β)l

(z − t)(t− β)l(z − β)l
=

R(z, t)

(t− β)l(z − β)l
,

where R(z, t) is a polynomial. Therefore, if q(z) = (z − β)−l, l > 0, then function
(34) is rational. �
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For fixed t ∈ U denote by Log1,i(z−P−1
i (t)), 1 6 i 6 n, a branch of the logarithm

defined in a neighborhood of the point z = a and by Log2,i(z−P−1
i (t)), 1 6 i 6 n,

its analytical continuation along γ to a neighborhood of b.

Theorem 3.4. Let γ be a non-closed curve with the starting point a and the ending

point b. Then in a neighborhood of t ∈ U ∩ U∞ the equality

I∞(t) =
1

2π
√
−1

1

(P (∞)− t)

∫

γ

q(z)dz +
1

2π
√
−1

n∑

i=1

( q̂

P ′

)
(P−1

i (t)) +

+
1

2π
√
−1

n∑

i=1

( q

P ′

)
(P−1

i (t))
[
Log2,i

(
(b − P−1

i (t)
)
− Log1,i

(
(a− P−1

i (t)
)]

(35)

holds.

Proof. Since in U equality (29) holds, we have:

I∞(t) =
1

2π
√
−1

1

(P (∞)− t)

∫

γ

q(z)dz +
1

2π
√
−1

n∑

i=1

1

P ′(P−1
i (t))

∫

γ

q(z)dz

z − P−1
i (t)

.

Writing now q(z) as

q(z) = q(z)− q(P−1
i (t)) + q(P−1

i (t)), 1 6 i 6 n,

we obtain (35). �

Define Ja (resp. Jb) as a subset of {1, 2, . . . , n} consisting of all i, 1 6 i 6 n,
such that for z close to P (a) (resp. to P (b)), P−1

i (z) is close to a (resp. b). The
following statement is a more general version of previous results proved in [24], [33],
[27].

Proposition 3.5. If γ is non-closed and P (a) 6= P (b), then the rationality of I∞(t)
implies the equalities

∑

i∈Ja

( q

P ′

)
(P−1

i (t)) = 0,
∑

i∈Jb

( q

P ′

)
(P−1

i (t)) = 0. (36)

On the other hand, if γ is non-closed and P (a) = P (b), then the rationality of I∞(t)
implies the equality

1

db

∑

i∈Jb

( q

P ′

)
(P−1

i (t)) =
1

da

∑

i∈Ja

( q

P ′

)
(P−1

i (t)). (37)

Proof. Denote a multivalued analytical function obtained by the complete analyt-
ical continuation of I∞(t) by I(t). Clearly, I∞(t) is rational if and only if I(t) is
rational. Suppose first that P (a) 6= P (b). Then Theorem 3.4 implies that near
P (a) any branch of I(t) has the form

I(t) = − 1

2π
√
−1

∑

i∈Ja

( q

P ′

)
(P−1

i (t)) Log(a− P−1
i (t)) + χ(t),
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where Log(z) is a branch of the logarithm and χ(t) is a branch of a function which
has only a finite ramification at P (a). Furthermore, if i0 ∈ Ja is a fixed index, then
it is easy to see using Puiseux series that for any i ∈ Ja the limit

lim
t→P (a)

a− P−1
i (t)

a− P−1
i0

(t)

is a finite number distinct from zero and hence

Log(a− P−1
i (t)) = Log(a− P−1

i0
(t)) + ψi(t),

where

ψi(t) = Log

(
a− P−1

i (t)

a− P−1
i0

(t)

)

is a function analytical at P (a). This implies that

I(t) = − 1

2π
√
−1

Log(a− P−1
i0

(t))
∑

i∈Ja

( q

P ′

)
(P−1

i (t)) + χ1(t), (38)

where χ1(t) is a branch of a function which has only a finite ramification at P (a).
Since Log(z) has an infinite ramification at 0 it follows from (38) that if I(t) is

rational (or just has a finite ramification at P (a)), then the first equality in (36)
holds.

Similarly, near P (b) any branch of I(t) has the form

I(t) =
1

2π
√
−1

Log(b − P−1
j0

(t))
∑

j∈Jb

( q

P ′

)
(P−1

i (t)) + χ2(t),

where j0 ∈ Jb and χ2(t) is a branch of a function which has only a finite ramification
at P (b). Therefore, if I(t) is rational, then the second equality in (36) holds.

Finally, if P (a) = P (b), then setting x = P (a) = P (b), we obtain that near x
any branch of I(t) has the form

I(t) =
1

2π
√
−1

Log(b− P−1
j0

(t))
∑

j∈Jb

( q

P ′

)
(P−1

i (t)) −

− 1

2π
√
−1

Log(a− P−1
i0

(t))
∑

i∈Ja

( q

P ′

)
(P−1

i (t)) + χ3(t),

where χ3(t) is a branch of a function which has only a finite ramification at x.
Furthermore, if da (resp. db) is the multiplicity of P (z) at a (resp. at b), then for
the functions

f(t) = (a− P−1
i0

(t))da , g(t) = (b− P−1
j0

(t))db

the inequalities

lim
t→x

f(t)

g(t)
6= 0, lim

t→x

f(t)

g(t)
6= ∞

hold.
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Therefore, near x

Log(b− P−1
j0

(t)) =
1

db
Log(g(t)) =

1

db
Log

(
f(t)

g(t)

f(t)

)
=

=
da
db

Log(a− P−1
i0

(t)) + ψ(t),

where

ψ(t) =
1

db
Log

(
g(t)

f(t)

)

is a function analytical at x, and hence

I(t) =
1

2π
√
−1

Log(a−P−1
i0

(t))

[
da
db

∑

i∈Jb

( q

P ′

)
(P−1

i (t))−
∑

i∈Ja

( q

P ′

)
(P−1

i (t))

]
+χ4(t),

where χ4(t) is a branch of a function which has only a finite ramification at the
point x. This implies that if I(t) has a finite ramification at x, then (37) holds. �

Corollary 3.6. If γ is non-closed, then the rationality of I∞(t) implies that either

P (a) = P (b) or both points a, b are ramification points of P .

Proof. Indeed, if P (a) 6= P (b) and say a is not a ramification point of P , then the
first equality (36) has the form (q/P ′)(P−1

i (t)) ≡ 0 for some i ∈ {1, 2, . . . , n},
which is impossible unless q ≡ 0. �

4. Conditions for I∞(t) to Be Rational and to Vanish

Let P (z) be a rational function and γ be a curve in C. In this section we construct
a finite system of equations

n∑

i=1

fs,i

( q

P ′

)
(P−1

i (z)) = 0, fs,i ∈ Z, 1 6 s 6 k, (39)

where fs,i and k depend on P (z) and γ only, such that for a given rational function
q(z) the function I∞(t) = I∞(q, P, γ, t) is rational if and only if (39) holds. We
also show that if functions P (z), q(z) satisfy the conditions q−1{∞} ⊆ P−1{∞}
and P (∞) = ∞, then (39) holds if and only if I∞(t) vanishes identically.

Let P (z) be a rational function of degree n. Define an embedded into the Rie-
mann sphere graph λP , associated with P (z), setting λP = P−1{S}, where S is
a “star” joining a non-branch point c of P−1(z) with all its finite branch points
c1, c2, . . . , ck by non-intersecting oriented arcs γ1, γ2, . . . , γk. More precisely, de-
fine vertices of λP as preimages of the points c and cs, 1 6 s 6 k, under the mapping
P (z) : CP1 → CP1, and edges of λP as preimages of the arcs γs, 1 6 s 6 k. Fur-
thermore, for each s, 1 6 s 6 k, mark vertices of λP which are preimages of the
point cs by the number s (see Fig. 1).

By construction, the restriction of P (z) on CP1 \ λP is a covering of the topo-
logical punctured disk CP1 \ {S ∪∞} and therefore CP1 \ λP is a disjointed union
of punctured disks (see e.g. [15]). This implies that the graph λP is connected and
the faces fe, 1 6 e 6 r, of λP are in a one-to-one correspondence with poles ze,
1 6 e 6 r, of P (z). Define a star of λP as a subset of edges of λP consisting of
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Figure 1.

edges adjacent to some non-marked vertex. We will assume that the interior of S
is contained in the domain U defined above. Then the set of stars of λP may be
naturally identified with the set of single-valued branches of P−1(z) in U as follows:
to the branch P−1

i (z), 1 6 i 6 n, corresponds the star Si such that P−1
i (z) maps

bijectively the interior of S to the interior of Si. Notice that the Riemann existence
theorem implies that a rational function P (z) is defined by c1, c2, . . . , ck and λP
up to a composition P (z) → P (µ(z)), where µ(z) is a Möbius transformation. The
graph λP constructed above is known under the name “constellation” and is closely
related to what is called “Dessins d’enafnts” (see [20] for further details and other
versions of the construction)

Below we will use the graph λP for the study of the function I∞(q, P, γ, t) which
depends on the curve γ. By this reason it is more convenient to define the graph
λP in such a way that the end points a, b of non-closed γ would be marked vertices
of λP even in the case if P (a) or P (b) is not a branch point of P−1(z). So, in the
case where γ is non-closed redefine the collection c1, c2, . . . , ck in the definition of
λP as the set of finite branch points of P (z) supplemented if necessary by P (a) or
P (b) (or by both of them) if the corresponding point is not a critical value of P (z).
Clearly, λP is still connected and the points a, b are vertices of λP .

Denote by Ĩ∞(t) an auxiliary function obtained from I∞(t) by the change of γ
to a new integration path γ̃ such that γ̃ is completely contained in the graph λP
and poles of P (z) lie on one side of γ̃− γ (see Fig. 2). More precisely, if γ is closed,
set

γ̃ =

r∑

e=1

µ(γ, ze)δe, (40)

where the curve δe ⊂ λP is the boundary of the face fe of λP which contains the
pole ze, while if γ is non-closed, set

γ̃ = δ +

r∑

e=1

µ(γ − δ, ze)δe,

where δ ⊂ λP is a path such that γ − δ is closed.
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Figure 2.

Since

Ĩ∞(t) =

∫

γ̃

q(z)dz

P (z)− t
=

∫

γ̃

q(z)dP (z)

P ′(z)(P (z)− t)
, (41)

making the change of variable z → P (z) we can represent Ĩ∞(t) in the form

Ĩ∞(t) =
k∑

s=1

∫

γs

ϕs(z)

z − t
dz, (42)

where ϕs(z), 1 6 s 6 k, are linear combinations of the functions (q/P ′)(P−1
i (z)),

1 6 i 6 n, in U . In more details, let cs,i, 1 6 i 6 n, 1 6 s 6 k, be the unique
vertex of the star Si marked by the number s. Then

ϕs(z) =

n∑

i=1

fs,i

( q

P ′

)
(P−1

i (z)), 1 6 s 6 k, (43)

where fs,i is a sum of “signed” appearances of cs,i on the path γ̃. By definition, this
means that an appearance is taken with the sign plus if the center of Si is followed
by cs,i and minus if cs,i is followed by the center of Si. For example, for the graph
λP shown on Fig. 1 and the path γ̃ ⊂ λP pictured by the fat line we have:

ϕ1(z) = −
( q

P ′

)
(P−1

2 (z)) +
( q

P ′

)
(P−1

3 (z)),

ϕ2(z) =
( q

P ′

)
(P−1

2 (z))−
( q

P ′

)
(P−1

1 (z)) +
( q

P ′

)
(P−1

6 (z))−
( q

P ′

)
(P−1

4 (z)),

ϕ3(z) =
( q

P ′

)
(P−1

1 (z))−
( q

P ′

)
(P−1

6 (z)) +
( q

P ′

)
(P−1

4 (z))−
( q

P ′

)
(P−1

3 (z)).

Theorem 4.1. Let P (z), q(z) be rational functions and γ be a curve. Then the

function I∞(t) is rational if and only if

ϕs(z) ≡ 0, 1 6 s 6 k. (44)

Furthermore, if q−1{∞} ⊆ P−1{∞} and P (∞) = ∞, then I∞(t) is rational if and

only if it vanishes identically.
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Proof. First of all observe that without loss of generality we may assume that
q−1{∞} ⊆ P−1{∞}. Indeed, we always may find a polynomial R(z) such that for
the function r(z) = q(z)R(P (z)) the inclusion r−1{∞} ⊆ P−1{∞} becomes true.
On the other hand, since

I∞(qP, P, γ, t) =
I∞(q, P, γ, t)−

∫
γ
q(z)dz

t
,

it is easy to see inductively that the function I∞(r, P, γ, t) is rational if and only
if the function I∞(q, P, γ, t) is rational.

Assume now that q−1{∞} ⊆ P−1{∞}. Deforming if necessary the star S in the
definition of λP , without loss of generality we may assume that either infinity is an
interior point of some face fe0 of λP or P (∞) = cs0 for some s0. In the first case,

expressions (41), (42) for the auxiliary function Ĩ∞(t) are well-defined. Further, by
construction

µ(γ̃, ze) = µ(γ, ze)− µ(γ, ze0), 1 6 e 6 r. (45)

Therefore, poles of P (z) lie on one side of γ̃ − γ implying by Corollary 3.2 that

Ĩ∞(t) − I∞(t) is a rational function. Moreover, if P (∞) = ∞, then µ(γ, ze0) = 0

implying that Ĩ∞(t) ≡ I∞(t). Finally, it is easy to see that Ĩ∞(t) is rational if
and only if equalities (44) hold. Indeed, by the well-known boundary property of
Cauchy type integrals (see e.g. [22]), for any s, 1 6 s 6 k, and any interior point
z0 of γs we have:

lim
t→z0

+ Ĩ∞(t)− lim
t→z0

− Ĩ∞(t) = ϕs(z0), (46)

where the limits are taken when t approaches z0 from the “right” and “left” side

of γs correspondingly. Therefore, if the function Ĩ∞(t) is rational, then the limits
above are equal and hence (44) holds. On the other hand, if (44) holds, then it

follows directly from formula (42) that Ĩ∞(t) ≡ 0. In particular, we see that Ĩ∞(t)
is rational if and only if it vanishes identically.

Figure 3.



ON FUNCTIONS ORTHOGONAL TO ALL POWERS OF A GIVEN FUNCTION 709

In the case where P (∞) = cs0 for some s0, in order to avoid the situation where
γ̃ passes through infinity, consider a small loop δ around cs0 and deform the star S
and the graph λP as it is shown on Fig. 3. Making obvious changes in the definition
of γ̃ we obtain that, up to addition of a rational function, the equality

I∞(t) =

k∑

s=1

∫

γs

ϕs(z)

z − t
dz +

∫

δ

ψ(z)

z − t
dz

holds, where ψ(z) is a function obtained by the analytical continuation along δ of
some linear combinations of the functions (q/P ′)(P−1

i (z)), 1 6 i 6 n.
Clearly, the rationality of I∞(t) still implies (44) by (46). On the other hand,

it follows from Theorem 3.1 and Theorem 3.4 that I∞(t) may branch only at the
points cs, 1 6 s 6 k, and that if I∞(t) does not branch at these points, then I∞(t)
is rational. Since (44) implies that I∞(t) does not branch at cs, 1 6 s 6 k, by (46),
we conclude that (44) implies the rationality of I∞(t). �

Corollary 4.2. Suppose that poles of P (z) do not lie on one side of γ. Then there

exist integer numbers fi, 1 6 i 6 n, not all equal between themselves such that the

equality

n∑

i=1

fi

( q

P ′

)
(P−1

i (z)) ≡ 0 (47)

holds whenever the function I∞(t) = I∞(q, P, γ, t) is rational.

Proof. Indeed, by construction, for any s, 1 6 s 6 k, the numbers fs,i, 1 6 i 6 n, in
(43) satisfy either the equality

∑n
i=1 fs,i = 0 or the equality

∑n
i=1 fs,i = ±1, where

the last case has the place if and only if γ is non-closed and exactly one of the end
points a, b of γ is an s-vertex of λP . This implies that for any s coefficients of ϕs(z)
are not all equal, unless they all equal to zero. Further, if γ is non-closed and x is
the starting point or the ending point of γ, then it follows from the construction
that for s, 1 6 s 6 k, such that P (x) = cs and i, 1 6 i 6 n, such that x ∈ Si, the
coefficient fs,i of the equation ϕs(z) is distinct from zero. Therefore, it is enough
to show that if γ is a closed curve such that all the equations ϕs(z) = 0, 1 6 s 6 k,
have zero coefficients, then poles of P (z) lie on one side of γ.

Assume that γ is a such a curve. It follows from (40) that for any s, 1 6 s 6 k,
the equation ϕs(z) is obtained as a sum

ϕs(z) =
r∑

j=1

µ(γ, ze)ϕs,e(z),

where ϕs,e(z) is an equation similar to ϕs(z) but written for δe, 1 6 e 6 r. Since
by condition all fs,i equal zero, this implies that if µ(γ, zj0) is distinct from zero,
then for any face fi0 of λP adjacent to fj0 the equality µ(γ, zj0) = µ(γ, zi0) holds.
Since we can join any two faces of λP by a connected chain of faces, we conclude
that all µ(γ, ze), 1 6 e 6 r, are equal. �
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Corollary 4.3. Let P (z), q(z) be rational functions and γ be a curve such that

q−1{∞} ⊆ P−1{∞}, P (∞) = ∞, and
∫

γ

P i(z)q(z)dz = 0 (48)

for all i > i0, where i0 > 0. Then (48) holds for all i > 0.

Proof. Since (48) implies that I∞(t) is a rational function, the statement follows
from Theorem 4.1. �

Notice that conditions of Corollary 4.3 are satisfied in particular if P (z), q(z)
are polynomials or if P (z), q(z) are Laurent polynomials such that P (z) is not a
polynomial in z or in 1/z.

In conclusion of this section observe that if there exists a rational function Q(z)
such that Q′(z) = q(z), then conditions (44) implying the rationality of I∞(t) can
be written in a slightly different form, which is used in [27], [31].

Proposition 4.4. Suppose that γ is closed and q(z) = Q′(z) for some rational

function Q(z). Then I∞(t) is rational if and only if the equalities

n∑

i=1

fs,iQ(P−1
i (z)) = 0, 1 6 s 6 k, (49)

hold for any choice of Q(z) =
∫
q(z)dz.

Proof. Since equations (44) are obtained from (49) by differentiation, condition (49)
is clearly sufficient. Furthermore, Theorem 4.1 implies that if I∞(t) is rational, then
for any s, 1 6 s 6 k, we have:

n∑

i=1

fs,iQ(P−1
i (z)) = ds, ds ∈ C. (50)

On the other hand, since γ is closed the construction of system (44) yields that the
limit of the left side of (50) as z tends to cs is zero. Therefore, ds = 0. �

Proposition 4.5. The conclusion of Proposition 4.4 remains true for non-closed

γ if q−1{∞} ⊆ P−1{∞}, P (∞) = ∞, and Q(z) =
∫
q(z)dz is chosen in such a

way that Q(a) = 0.

Proof. Indeed, if γ is non-closed, then calculating the limit of the left side of (50) as
z tends to cs, we obtain one of the following equalities: ds = 0 if cs 6= P (a), P (b),
ds = −Q(a) if cs = P (a) and cs 6= P (b), ds = Q(b) if cs = P (b) and cs 6= P (a),
or ds = Q(b) − Q(a) if cs = P (b) = P (a). Furthermore, if I∞(t) is rational, then
Theorem 4.1 implies that Q(a) = Q(b) by (48) taken for i = 0. Therefore, the
equality ds = 0 holds in all cases whenever Q(a) = 0. �

5. Case of Generic Position

In this section we give criteria for I∞(t) to be rational or to vanish identically
under certain conditions which are satisfied in particular if the function P (z) is
indecomposable and has only simple branch points. Since the last two conditions
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are obviously satisfied for P (z) in generic position, this solves the problem in this
case.

We start from recalling the following simple fact (see e.g. [31, Lemma 2.3])
explaining the theoretic-functional meaning of the equality

Q(P−1
i1

(z)) = Q(P−1
i2

(z)), 1 6 i1, i2 6 n, (51)

where P (z), Q(z) are rational functions, degP (z) = n.

Lemma 5.1. Let P (z), Q(z) be non-constant rational functions. Then P (z) and

Q(z) have a non-trivial compositional right factor if and only if equality (51) holds

for some i1 6= i2. In particular, Q(z) = Q̃(P (z)) for some rational function Q̃(z)
if and only if all the functions Q(P−1

i (z)), 1 6 i 6 n, are equal. �

Let G ⊂ Sn be a transitive permutation group and K be a field which is sup-
posed to be either Q or C. Recall that the permutation matrix representation
of G over K is the homomorphism ρG : G → GL(Kn), where ρG(g), g ∈ G, is
defined as a linear map which sends a vector ~a = (a1, a2, . . . , an) to the vector
~ag = (ag(1), ag(2), . . . , ag(n)). Notice that Kn always has at least two ρG-invariant
subspaces: the subspace EK ⊂ Kn generated by the vector (1, 1, . . . , 1), and its
orthogonal complement E⊥

K with respect to the inner product

(~u, ~v) = u1v̄1 + u2v̄2 + · · ·+ unv̄n, ~v = (v1, v2, . . . , vn), ~u = (u1, u2, . . . , un).

Theorem 5.2. Let P (z), q(z) be rational functions and γ ⊂ C be a curve. Assume

that EQ and E⊥
Q are the only invariant subspaces with respect to the permutation

matrix representation of the monodromy group GP of P (z) over Q. Then the func-

tion I∞(t) is rational if and only if either γ is closed and poles of P (z) lie on one

side of γ, or P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some rational function

q̃(z).

Proof. The sufficiency follows from Corollary 3.2 taking into account that if q(z) =
q̃(P (z))P ′(z), then

I∞(q, P, γ, t) = I∞(q̃, z, P (γ), t). (52)

Assume now that I∞(t) is rational and poles of P (z) do not lie on one side of γ.
In this case by Corollary 4.2 there exist integers fi, 1 6 i 6 s, not all equal between
themselves, such that equality (47) holds. Furthermore, acting on equality (47) by
an element σ−1, σ ∈ GP , we see that the equality

n∑

i=1

fσ(i)

( q

P ′

)
(P−1

i (z)) = 0

holds for any σ ∈ GP .
Let V be a subspace of Qn generated by the vectors ~vσ, σ ∈ GP , where

~vσ = (fσ(1), fσ(2), . . . , fσ(n)).

Clearly, V is ρGP
-invariant and for any ~v = (v1, v2, . . . , vn) from V the equality

n∑

i=1

vi

( q

P ′

)
(P−1

i (z)) = 0 (53)
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holds. Since fi, 1 6 i 6 s, are not all equal between themselves, V 6= EQ. Further-
more, we may assume that V 6= Qn since otherwise the elements ~ei, 1 6 i 6 n, of
the Euclidean basis of Qn are contained in V , and (53) yields that

( q

P ′

)
(P−1

1 (z)) ≡
( q

P ′

)
(P−1

2 (z)) ≡ · · · ≡
( q

P ′

)
(P−1

n (z)) ≡ 0

implying that q(z) ≡ 0. Thus, V = E⊥
Q . Since this implies that V contains the

vectors ~ei − ~ej, 1 6 i, j 6 n, it follows from (53) that

( q

P ′

)
(P−1

1 (z)) ≡
( q

P ′

)
(P−1

2 (z)) ≡ · · · ≡
( q

P ′

)
(P−1

n (z)). (54)

Therefore, (q/P ′)(z) = q̃(P (z)) for some rational function q̃(z) by Lemma 5.1.
Finally, it follows from equality (52) and Corollary 3.6 that P (γ) is closed. �

Recall that a permutation group G acting on a set C is called doubly transitive
if it acts transitively on the set of pairs of elements of C. Notice that the full
symmetric group is obviously doubly transitive.

Corollary 5.3. Let P (z), q(z) be rational functions and γ ⊂ C be a curve. Assume

that the monodromy group GP of P (z) is doubly transitive. Then the function I∞(t)
is rational if and only if either γ is closed and poles of P (z) lie on one side of γ,
or P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some rational function q̃(z).

Proof. Indeed, it is known (see e.g. [38, Th. 29.9]) that a permutation group G is
doubly transitive if and only if the subspaces EC and E⊥

C are the only ρG-invariant
subspaces with respect to the permutation matrix representation of GP over C.
Since Q ⊂ C, this implies that if GP is doubly transitive, then EQ and E⊥

Q are the
only invariant subspaces with respect to the permutation matrix representation of
GP over Q and hence the corollary follows from Theorem 5.2. �

Recall that a branch point x of a rational function f(z) of degree n is called
simple if f−1{x} contains n− 1 points.

Corollary 5.4. Assume that P (z) is indecomposable and has only simple branch

points. Then the function I∞(t) is rational if and only if either γ is closed and

poles of P (z) lie on one side of γ, or P (γ) is closed and q(z) = q̃(P (z))P ′(z) for

some rational function q̃(z).

Proof. Restrictions imposed on the function P (z) imply that its monodromy group
is primitive and contains a transposition. Since a primitive permutation group
containing a transposition is the full symmetric group (see e.g. Theorem 13.3 of
[38]) the corollary follows now from Corollary 5.3. �

Notice that the conditions for P (z) to be indecomposable and to have only simple
branch points are satisfied if P (z) is in generic position in the sense of algebraic
geometry.

Theorem 5.5. Let P (z), q(z) be rational functions and γ ⊂ C be a curve such

that poles of P (z) do not lie on one side of γ, and subspaces EQ and E⊥
Q are the
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only invariant subspaces with respect to the permutation matrix representation of

the monodromy group GP of P (z) over Q. Then equalities
∫

γ

P i(z)q(z)dz = 0, i > 0, (55)

hold if and only if P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some rational function

q̃(z) whose poles lie outside the curve P (γ).

Proof. The “if” part follows from Corollary 3.2. In other direction, if (55) holds,
then by Theorem 5.2 the curve P (γ) is closed and q(z) = q̃(P (z))P ′(z) for some
rational function q̃(z). Furthermore, it follows from (52) and Theorem 3.1 that

I∞(t) = −
l̃∑

s=1

µ(P (γ), zq̃s)q̃s,

where zq̃1 , z
q̃
2 , . . . , z

q̃

l̃
are finite poles of q̃(z) and q̃s(z) is the principal part of q̃(z)

at z̃s. Therefore, the equality I∞(t) = 0 implies that

µ(P (γ), zq̃s) = 0, 1 6 s 6 l̃. �

The Corollaries 5.6 and 5.7 below are obtained from Theorem 5.5 in the same
way as Corollaries 5.3 and 5.4 are obtained from Theorem 5.2.

Corollary 5.6. Let P (z), q(z) be rational functions and γ ⊂ C be a curve such

that poles of P (z) do not lie on one side of γ and the monodromy group GP of

P (z) is doubly transitive. Then equalities (55) hold if and only if P (γ) is closed

and q(z) = q̃(P (z))P ′(z) for some rational function q̃(z) whose poles lie outside the

curve P (γ). �

Corollary 5.7. Let P (z) be a rational function whose poles do not lie on one side

of γ. Assume that P (z) is indecomposable and has only simple branch points. Then

the equalities (55) hold if and only if P (γ) is closed and q(z) = q̃(P (z))P ′(z) for

some rational function q̃(z) whose poles lie outside of the curve P (γ). �

Remark. Notice that if P (z) is a polynomial, then the requirement of Theorem 5.2
imposed on ρGP

-invariant subspaces of Qn may be weakened to the requirement of
indecomposability of P (z) via the Schur theorem (see [24]). However, there exist
indecomposable rational functions P (z) for which the conclusion of Theorem 5.2
fails to be true (see Section 9).

6. Double Moments of Rational Functions

In this section we prove two results which can be considered as versions of the
Wermer theorem [36], [37], describing analytic functions on S1 satisfying

∫

S1

hi(z)gj(z)g′(z)dz = 0, i, j > 0,

in the case where the functions h(z), g(z) are rational while the integration path is
allowed to be an arbitrary curve in C. Notice that for rational functions the Wermer
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theorem is equivalent to the following statement [2]: rational functions P (z) and
Q(z) satisfy equalities

∫

S1

P i(z)Qj(z)Q′(z)dz = 0, i > 0, j > 0,

if and only there exist rational functions P̃ (z), Q̃(z), W (z) such that (7) holds and

poles of of P̃ (z) and Q̃(z) lie on one side of W (S1).
For given P (z), Q(z) and j > 0 denote by Ij(t) the generating functions for the

sequence of the moments

mi =

∫

γ

P i(z)Qj(z)Q′(z) dz, i > 0. (56)

Theorem 6.1. Let P (z), Q(z) be rational functions and γ be a curve such that the

functions Ij(t) are rational for any j in the interval j0 6 j 6 j0 + n − 1, where

j0 > 0 and n = degP (z). Then there exist rational functions P̃ (z), Q̃(z), W (z)
such that:

P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)), (57)

the curve W (γ) is closed, and poles of P̃ (z) lie on one side of W (γ).

Proof. First, observe that if C(P (z), Q(z)) = C(W (z)), where degW (z) > 1, then

the corresponding functions P̃ (z), Q̃(z) in (57) have no common compositional right
factor and

∫

γ

P i(z)Qj(z)Q′(z) dz =

∫

W (γ)

P̃ i(z)Q̃j(z)Q̃′(z) dz, i > 0, j > 0.

Therefore, it is enough to show that if P (z) andQ(z) have no common compositional
right factor, then γ is closed and poles of P (z) lie on one side of γ. Assume the
inverse. Then it follows from Corollary 4.2 applied to the functions P (z) and
Qj(z)Q′(z), j0 6 j 6 j0 + n− 1, that the system

n∑

s=1

fiQ
j(P−1

i (z))
(Q′

P ′

)
(P−1

i (z)) = 0, j0 6 j 6 j0 + n− 1, (58)

considered as a system of linear equations over the field KP , generated over C(z) by
P−1
i (z), 1 6 i 6 n, has a non-trivial solution f1, f2, . . . , fn. Since the determinant

of system (58) is a product of the Vandermonde determinant D = ‖Qj(P−1
i (z))‖

and a non-zero function
n∏

i=1

Qj0(P−1
i (z))

(Q′

P ′

)
(P−1

i (z)),

this implies that

Q(P−1
i1

(z)) ≡ Q(P−1
i2

(z)) (59)

for some i1 6= i2, 1 6 i1, i2 6 n, and hence P (z), Q(z) have a common compositional
right factor by Lemma 5.1. The obtained contradiction proves the theorem. �
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Theorem 6.2. Let P (z), Q(z) be rational functions and γ be a curve. Then equal-

ities ∫

γ

P i(z)Qj(z)Q′(z)dz = 0 (60)

hold for all i > i0, j > j0, where i0 > 0, j0 > 0, if and only if there exist rational

functions P̃ (z), Q̃(z), W (z) such that:

P (z) = P̃ (W (z)), Q(z) = Q̃(W (z)), (61)

the curve W (γ) is closed, and poles of P̃ (z) and Q̃(z) lie on one side of the curve

W (γ). In particular, if equalities (60) hold for all i > i0, j > j0, then they hold for

all i > 0, j > 0.

Proof. Using the same reduction as in the proof of Theorem 6.1, it is enough to
show that if P (z) and Q(z) have no common compositional right factor, then (60)
holds if and only if the curve γ is closed and poles of P (z) and Q(z) lie on one side
of γ.

Assume first that poles of P (z) and Q(z) lie on one side of γ and show that this
implies that Ij(t) = 0 for any j > 0. Applying Theorem 3.1 to q(z) = Qj(z)Q′(z)
and taking into account that the equality

q(z) =

(
Qj+1(z)

j + 1

)′
(62)

implies the equality
∫
γ q(z)dz = 0, we see that

Ij(t) = µ

n∑

i=1

(q∞
P ′

)
(P−1

i (t)), (63)

where

q∞(z) = q(z)−
l∑

s

qs(z)

and µ equals to the common winding number of poles of P (z) and Q(z). If ∞ is a
pole of Q(z), then µ = 0 implying that Ij(t) = 0. On the other hand, if ∞ is not a
pole of Q(z), then q∞(z) is a constant which is actually zero in view of (62).

In another direction, assume that (60) holds and show that then points from the
set P−1{∞} ∪Q−1{∞} lie on one side of γ. Clearly, for any s > i0 the function

R(z) = P s(z) +Q(z)

satisfies the equalities
∫

γ

Ri(z)Qj(z)Q′(z)dz = 0, i > 0, j > j0.

Furthermore,

R−1{∞} ⊆ P−1{∞} ∪Q−1{∞}
and, if s is big enough, then

R−1{∞} = P−1{∞} ∪Q−1{∞}.
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Therefore, since we may apply Theorem 6.1 to the functions R(z), Q(z), it is
enough to prove that for any k > 1 there exists s > k such that P s(z) and Q(z),
or equivalently R(z) and Q(z), have no common compositional right factor.

In order to prove the last statement observe that since the monodromy group of a
rational function has only finite number of imprimitivity systems, there exist a finite
number of right factors Qj(z), degQj(z) > 1, of Q(z) such that any other right
factor of Q(z) of degree greater than one has the form µ(Qj(z)) for some Qj(z) and
a Möbius transformation µ. Further, it is easy to see that if P s(z) and Q(z) have
a common compositional right factor µ(Qj(z)), then s is a multiple of a minimal

number sj such that Qj(z) is a common compositional right factor of P sj (z) and
Q(z). Since by assumption P (z) and Q(z) have no common compositional right
factor, the inequalities sj > 1 hold and hence R(z) and P (z) have no common
compositional right factor whenever s is not a multiple of any sj . �

Notice that the above results also generalize Theorem 6.1 and Corollary 6.2 of
the paper [33].

7. Laurent Polynomial Moment Problem

In this subsection we study the following problem: for a given Laurent polynomial

L(z) describe Laurent polynomials m(z) such that
∫

S1

Li(z)m(z)dz = 0, (64)

for all i > i0, where i0 > 0. It is easy to see that if L(z) is a polynomial in z or in
1/z, then for any m(z) there exists i0 > 0 such that (64) holds. So, the interesting
case is the one where L(z) is not a polynomial in z or in 1/z. We will call such
Laurent polynomials proper.

We start from a generalizations of the following result proved by Duistermaat
and van der Kallen [14]: if all integer positive powers of a Laurent polynomial L(z)
have no constant term, then L(z) is either a polynomial in z, or a polynomial in 1/z.
Clearly, the condition that all powers of L(z) have no constant term is equivalent
to the condition that integrals in (64) vanish for m(z) = 1/z and i > 1.

Theorem 7.1. Let L(z) and m(z) be Laurent polynomials such that the coefficient

of the term 1/z in m(z) is distinct from zero and (64) holds for all i > i0, where
i0 > 0. Then L(z) is either a polynomial in z, or a polynomial in 1/z.

Proof. Assume the inverse. Then by Corollary 4.3 equalities (64) hold for all i > 0.
On the other hand, for i = 0 the integral in (64) does not vanish since it coincides
with the coefficient of the term 1/z in m(z) multiplied by 2π

√
−1. �

Corollary 7.2. Let L(z) be a proper Laurent polynomial and m(z) be a Laurent

polynomial such that (64) holds for all i > i0, where i0 > 0. Then there exists a

Laurent polynomial M(z) such that m(z) =M ′(z). �

Let

L(z) = an1
zn1 + an1+1z

n1+1 + · · ·+ an2
zn2 , an1

6= 0, an2
6= 0,
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be a Laurent polynomial. Define the bi-degree of L(z) as the ordered pair (n1, n2) of
integers n1, n2. Notice that ifM(z) is another Laurent polynomial whose bi-degree
is (m1, m2), then the bi-degree of the product L(z)M(z) is (n1 +m1, n2 +m2).

The next result provides yet another generalization of the theorem of Duister-
maat and van der Kallen.

Theorem 7.3. Let L(z) be a Laurent polynomial of bi-degree (n1, n2) and m(z)
be a Laurent polynomial of bi-degree (m1, m2) such that (64) holds for all i > i0,
where i0 > 0. Assume additionally that m(z) is either a polynomial in z such that

m1 ≡ −1 (mod n1), or a polynomial in 1/z such that m2 ≡ −1 (mod n2), Then
L(z) is either a polynomial in z, or a polynomial in 1/z.

Proof. Assume the converse. Observe that then in particular n1 < 0 and n2 > 0.
Furthermore, Corollary 4.3 implies that (64) hold for all i > 0. Therefore, in order
to prove the theorem it is enough to show that if m(z) has the form as above, then
there exists k > 0 such that for i = k integral in (64) is distinct from zero.

If m(z) is a polynomial in z and l1 > 0 is a number such that m1 + n1l1 = −1,
then the integral in (64) is distinct from zero for i = l1 since the bi-degree of
Ll1(z)m(z) is (−1, m2 +n2l1) implying that the residue of Ll1(z)m(z) at zero does
not vanish. Similarly, if m(z) is a polynomial in 1/z and l2 > 0 is a number such
m2 + n2l2 = −1, then the integral in (64) is distinct from zero for i = l2, since the
bi-degree of Ll2(z)m(z) is (m1 + n1l2, −1). �

Corollary 7.4. Let L(z) be a Laurent polynomial of bi-degree (n1, n2) and d be

either a non-negative integer such that d ≡ 0 (mod n2), or a non-positive integer

such that d ≡ 0 (mod n1). Suppose that for all i > i0, where i0 > 0, the coefficient

of zd in Li(z) vanishes. Then L(z) is either a polynomial in z, or a polynomial in

1/z. �

For a Laurent polynomial M(z) denote by M0(z) the principal part of M(z) at
zero and by M∞(z) the difference M(z) −M0(z). Taking into account Corollary
7.2 in the following we usually will write system (64) in the form

∫

S1

Li(z)dM(z) = 0, (65)

i > i0, where it is always assumed that M∞(0) = 0.
Define J0 (resp. J∞) as a subset of {1, 2, . . . , r}, r = degL(z), consisting of

all i ∈ {1, 2, . . . , r} such that for t close to infinity, L−1
i (t) is close to 0 (resp. to

∞). Notice that {1, 2, . . . , r} = J0 ∪ J∞. The theorem below summarizes general
results about I∞(t) obtained above in the particular case where I∞(t) corresponds
to moments in (65).

Theorem 7.5. Let L(z) be a proper Laurent polynomial and M(z) be a Laurent

polynomial such that (65) holds for all i > i0, where i0 > 0. Then (65) holds for

all i > 0. Furthermore, condition (65) is equivalent to the condition
∑

i∈J0

M∞(L−1
i (t)) ≡

∑

i∈J∞

M0(L
−1
i (t)). (66)
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Finally, if the monodromy group of L(z) is doubly transitive, or more generally, if

EQ and E⊥
Q are the only invariant subspaces with respect to the permutation matrix

representation of the monodromy group GL of L(z) over Q, then (65) holds if and

only if M(z) = M̃(L(z)), where M̃(z) is a polynomial.

Proof. The first statement follows from Corollary 4.3. Furthermore, it follows from
Theorem 3.1, taking into account the equality

∫
S1

dM(z) = 0, that

I∞(t) =
∑

i∈J0

(
M ′

L′

)
(L−1

i (t))−
degL∑

i=1

(
M ′

0

L′

)
(L−1

i (t)) =

=
∑

i∈J0

(
M ′

∞
L′

)
(L−1

i (t))−
∑

i∈J∞

(
M ′

0

L′

)
(L−1

i (t)). (67)

Taking the primitive of both sides of this equality we see that condition (65) is
equivalent to the condition

∑

i∈J0

M∞(L−1
i (t)) −

∑

i∈J∞

M0(L
−1
i (t)) = c, (68)

where c ∈ C. Furthermore, since the limit of the left part of (68) as t tends to
infinity is M∞(0)|J0| = 0, we conclude that (65) is equivalent to (66).

Finally, Theorem 5.5 implies that if EQ and E⊥
Q are the only invariant subspaces

with respect to the permutation matrix representation of GL of L(z) over Q, then
there exists a rational function N(z) such that

M ′(z) = N(L(z))L′(z). (69)

Since M ′(z) is a Laurent polynomial it follows from (69) that N(L(z)) also is a
Laurent polynomial, implying that N(z) is a polynomial for otherwise N(L(z))

would have a pole distinct from 0, ∞. Therefore, M(z) = M̃(L(z)), where M̃(z) =∫
N(z)dz is a polynomial. �

Notice that if L(z) is decomposable, then Laurent polynomials M(z) which sat-
isfy (65) but are not polynomials in L(z) always exist. Indeed, it is easy to see
that if L(z) = A(B(z)) is a decomposition of a Laurent polynomial L(z) into a
composition of rational functions A(z) and B(z), with degA(z) > 1, degB(z) > 1,
then the condition B−1{A−1{∞}} = {0, ∞} implies that there exists a Möbius
transformation µ(z) such that either A(µ(z)) is a polynomial and µ−1(B(z)) is a
Laurent polynomial, or A(µ(z)) is a Laurent polynomial and µ−1(B(z)) = zd, for
some d > 1 1. Therefore, if L(z) is decomposable, then either there exist a poly-

nomial L̃(z) and a Laurent polynomial L1(z) such that L(z) = L̃(L1(z)), or there
exists a Laurent polynomial L1(z) such that L(z) = L1(z

d) for some d > 1. In the

first case it is easy to see that any Laurent polynomial M(z) = M̃(L1(z)), where

M̃(z) is a polynomial, satisfies (65) for all i > 0. On the other hand, in the second
case the residue calculation shows that any Laurent polynomial M(z) containing
no terms of degrees which are multiples of d satisfies (65). Furthermore, if L(z)

1For a comprehensive decomposition theory of Laurent polynomials generalizing the decompo-
sitions theory of polynomials developed by Ritt [34] we refer the reader to [28]
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admits several decompositions, then the sum of corresponding M(z) also satisfies
(65).

It seems natural to start the investigation of the Laurent polynomial moment
problem from a description of its polynomial solutions, and two theorems below
are initial results in this direction. Another interesting subproblem is to describe
solutions of the Laurent polynomial moment problem in the case where L(z) is
indecomposable. In the last case “expected” solutions have the form M(z) =

M̃(L(z)), where M̃(z) is a polynomial. However, one can show (see Section 9 and
the paper [32]) that other solutions also may exist.

Theorem 7.6. Let L(z) be a proper Laurent polynomial of bi-degree (n1, n2) such
that either n1 = −1 or n2 = 1. Then a Laurent polynomial M(z) which is a

polynomial in z may not satisfy (65) for i > i0, where i0 > 0, unless M(z) ≡ 0.

Proof. Indeed, if M(z) is a polynomial, then (66) is equivalent to
∑

i∈J0

M(L−1
i (t)) ≡ 0. (70)

If n1 = −1, then (70) immediately implies that M(z) ≡ 0 since in this case J0
contains a single element. Suppose now that n2 = 1 and denote by L−1

∞ (z) a unique
branch of L−1(z) for which limz→∞ L−1

∞ (z) = ∞. It follows from the transitivity
of the monodromy group GL of L(z) that there exists σ ∈ GL such that acting on
equality (70) by σ we obtain the equality

M(L−1
∞ (t)) +

∑

i∈J0\j
M(L−1

i (t)) = 0, (71)

where j ∈ J0. Since for any M(z) 6≡ 0 we have:

lim
t→∞

M(L−1
∞ (t)) = ∞

while

lim
t→∞

M(L−1
i (t)) = 0, i ∈ J0,

equality (71) implies that M(z) ≡ 0. �

Theorem 7.7. Let L(z) be a proper Laurent polynomial of bi-degree (n, p), where
p is a prime, and M(z) 6≡ 0 be a polynomial in z such that (65) holds for i > i0,
where i0 > 0. Then L(z) = L1(z

p) for some Laurent polynomial L1(z) while M(z)
is a linear combination of the monomials zj, where j 6≡ 0 (mod p).

Proof. Show first that J∞ is a block of an imprimitivity system for the monodromy
group GL of L(z). Indeed, if J∞ is not a block then there exists σ ∈ GL such that
σ{J∞} ∩ J∞ 6= ∅ and σ{J∞} ∩ J0 6= ∅. This implies that acting on equality (70)
by σ we obtain the equality

∑

i∈A

M(L−1
i (t)) +

∑

i∈B

M(L−1
i (t)) = 0, (72)

where A is a subset of J0 and B is a proper subset of J∞.
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Without loss of generality we may assume that L−1
i (t), 1 6 i 6 p + n, are

numbered in such a way that J∞ = {1, 2, . . . , p} and that to the loop around
infinity corresponds the element

(12 . . . p)(p+ 1 p+ 2 . . . p+ n) (73)

of GL. Then Puiseux series of L−1
i (t), 1 6 i 6 p, at infinity have the form

L−1
i (z) =

∞∑

k=−1

ukε
(i−1)k
p

(
1

z

) k
p

,

where εp = exp(2π
√
−1

p ) and u−1 6= 0. Therefore,

M(L−1
i (z)) = βε(i−1)m

p z
m
p + o(z

m
p ), 1 6 i 6 p,

where m = degM(z), β = um−1 6= 0. On the other hand, for any i, p+1 6 i 6 n+p,
near infinity we have:

M(L−1
i (z)) = o(1).

Therefore, for the coefficient γ of z
m
p in the Puiseux series of the function in the

left side of (72) the equality

γ = β
∑

j∈B

ε(j−1)m
p (74)

holds. Thus, if we will show that γ 6= 0, the contradiction obtained will imply that
J∞ is a block.

Set

r(z) =
∑

j∈B

zj−1.

Clearly, γ = βr(εmp ). Since p is a prime, the number εmp is either 1 or a primitive
p-th root of unity. In the first case obviously γ 6= 0. On the other hand, in the
second case the equality r(εmp ) = 0 implies that the p-th cyclotomic polynomial
Φp(z) divides r(z) in the ring Z[z]. However, since

Φp(z) = 1 + z + z2 + · · ·+ zp−1,

the bi-degree (t1, t2) of the product Φp(z)f(z) for any non-constant polynomial
f(z) satisfies the inequality t2 − t1 > p. Since by assumption B is a proper subset
of J∞ = {1, 2, . . . , p} this implies that the equality r(εmp ) = 0 is impossible.
Therefore, γ 6= 0, and hence J∞ is a block.

Since the group GL contains a block, the Laurent polynomial L(z) may be de-
composed into a composition L(z) = A(B(z)) of rational functions A(z) and B(z)
of degree greater than one. Furthermore, since element (73) transforms the block
J∞ of the corresponding imprimitivity B system to itself, the function A(z) is not
a polynomial for otherwise (73) would permute blocks of B cyclically. Therefore,
taking into account that p is a prime, we conclude that there exists a Laurent poly-
nomial L1(z) such that L(z) = L1(z

p), where the bi-degree of L1(z) is (n/p, 1).
Clearly, M(z) can be written as

M(z) =M1(z
p) +M2(z),
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where M1(z) is a polynomial in z and M2(z) is a combination of the monomials zj ,
where j 6≡ 0 (mod p). Furthermore, clearlyM2(z) satisfies (65). Therefore,M1(z

p)
also should satisfy (65). Since after the change of variable this implies that M1(z)
satisfies (65) for L(z) = L1(z) it follows from Theorem 7.6 that M1(z) ≡ 0. �

8. Bautin Index for the Laurent Polynomial Moment Problem

In this section we study the following problem: for Laurent polynomials L(z),
M(z) to find a number i0 such that the vanishing of the integrals

∫

S1

Li(z)dM(z) = 0, (75)

for i satisfying 0 6 i 6 i0 implies that they vanish for all i > 0.
A progress in the study of a similar problem for polynomials was achieved in

the recent paper [19]. The approach of [19] is based on the fact that the function
I∞(t) = I∞(q, P, γ, t) satisfies a Fuchsian linear differential equation (see e.g. [33,
p. 250]). Since Theorems 3.1, 3.4 give an explicit expression for the function I∞(t),
they provide an approach to the problem in the general case. We demonstrate this
approach below in the case where L(z), M(z) are Laurent polynomials.

For a Laurent polynomial L(z) of degree n define numbers τi, 1 6 i 6 n, as
follows: τi, 1 6 i 6 n, equals 1 if i ∈ J0 and 0 otherwise. Further, define a number
N(L) as the number of different vectors in the collection

(τσ(1), τσ(2), . . . τσ(n)), σ ∈ GL. (76)

Notice that obviously N(L) 6 |GL| 6 n!. Finally, for a function ψ(t) whose Puiseux
series at infinity is

ψ(t) =

∞∑

k=j

wk

(
1

t

) k
l

, (77)

where l > 1 and wj 6= 0, set ord∞ψ(t) = j/l.

Theorem 8.1. Let L(z), M(z), degL(z) = n, degM(z) = m, be Laurent polyno-

mials such that the equality
∫

S1

Li(z)dM(z) = 0, (78)

holds for all i satisfying 0 6 i 6 m(N(L)−1)+1. Then (78) holds for all i > 0. In
particular, equalities (78) hold for all i > 0 whenever they hold for all i satisfying
0 6 i 6 m(n!− 1) + 1.

Proof. Set

ψ(t) =

∫
I∞(t)dt =

1

2πi

∞∑

k=1

mk

k

(
1

t

)k

.

Clearly, we only must show that if

ord∞ψ(t) > m(N(L)− 1), (79)

then ψ(t) ≡ 0.
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Equality (67) implies that

ψ(t) =
∑

i∈J0

M(L−1
i (t))−

n∑

i=1

M0(L
−1
i (t)) (80)

is an algebraic function. Therefore, ψ(t) satisfies an irreducible algebraic equation

yN (t) + a1(t)y
N−1(t) + · · ·+ aN (t) = 0, aj(t) ∈ C(t), (81)

whose roots ψj(t), 1 6 j 6 N , are all possible analytic continuations of ψ(t)
and whose coefficients are elementary symmetric functions of ψj(t), 1 6 j 6 N .
Furthermore, since M(t), L(t) are Laurent polynomials, it follows from (80) that
the functions ψj(t), 1 6 j 6 N , have no poles in C implying that the functions
aj(t), 1 6 j 6 N , are polynomials. Finally, since the second sum in (80) is a
rational function, the inequality

N 6 N(L) (82)

holds.
Let (n1, n2) be the bi-degree of L(t). Then Puiseux series at infinity of branches

L−1
i (t), i ∈ J0, have the form

∞∑

k=1

vk,i

(
1

t

) k
n1

, (83)

where v1,i is distinct from zero, while Puiseux series of branches L−1
i (t), i ∈ J∞,

have the form
∞∑

k=−1

ṽk,i

(
1

t

) k
n2

, (84)

where ṽ−1,i is distinct from zero. Since Puiseux series at infinity of the functions

M(L−1
i (t)), 1 6 j 6 N , and M0(L

−1
i (t)), 1 6 j 6 N , are obtained by the substitu-

tion of series (83), (84) intoM(t) andM0(t), this implies that for any j, 1 6 j 6 N ,
the inequality

ord∞ψj(t) > −m (85)

holds. Therefore, since aj(t), 1 6 j 6 N , are elementary symmetric functions of
ψj(t), 1 6 j 6 N , the inequalities

ord∞aj(t) > −mj, 1 6 j 6 N,

hold and hence

deg aj(t) = −ord∞aj(t) 6 mj, 1 6 j 6 N. (86)

Now we are ready to show that if (79) holds, then ψ(t) ≡ 0. Indeed, assume
the inverse. Then the coefficient aN (t) in (81) does not vanish and the inequality
ord∞aN (t) 6 0 holds. On the other hand, (79) and (82) imply the inequality
ord∞ψ(t) > m(N − 1) and hence for any i, 1 6 i 6 N , taking into account
inequalities (86), we have:

ord∞{aN−i(t)ψ
i(t)} > ord∞{aN−i(t)ψ(t)} =

= ord∞ψ(t)− deg aN−i(t) > ord∞ψ(t)−m(N − 1) > 0
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(here we set a0(t) ≡ 1). Therefore,

ord∞{ψN (t) + a1(t)ψ
N−1(t) + · · ·+ aN−1(t)ψ(t)} > 0

in contradiction with

ψN (t) + a1(t)ψ
N−1(t) + · · ·+ aN(t) = 0. �

Remark. The proof of Theorem 8.1 uses the same approach as Section 2.4 of
[27]. Notice that corresponding formulas in [27] on the page 758 contain misprints.
Namely, all printed powers of the expression m/n are actually its factors.

9. Interrelations between the Rationality of I∞(q, P, γ, t) and the

Composition Condition

9.1. Definition of the subspace MP,γ. Let γ be a curve and P (z) be a rational
function such that poles of P (z) do not lie on one side of γ. By Corollary 5.4, if P (z)
is in generic position, then the rationality of I∞(q, P, γ, t) for a rational function
q(z) implies that q(z) = q̃(P (z)) for some rational function q̃(z). For arbitrary
P (z) such a statement fails to be true. However, in many cases the rationality of
I∞(q, P, γ, t) still implies that composition condition (23) holds. For brevity, if
(23) holds, we will say that the function I∞(q, P, γ, t) is reducible.

For example, if γ is a non-closed curve such that its end points a, b are not rami-
fication points of P (z), then the rationality of I∞(q, P, γ, t) implies its reducibility.
Indeed, it follows from Corollary 3.6 that P (a) = P (b). Furthermore, equality (37)
from Proposition 3.5 reduces to the equality

( q

P ′

)
(P−1

i1
(z)) =

( q

P ′

)
(P−1

i2
(z)) (87)

for some i1 6= i2, 1 6 i1, i2 6 n. Therefore, by Lemma 5.1 there exist rational

functions R(z), P̃ (z), and W (z) with degW (z) > 1 such that
( q

P ′

)
(z) = R(W (z)), P (z) = P̃ (W (z)) (88)

and hence (23) holds for q̃(z) = R(z)P̃ ′(z) since (88) yields that

q(z) = R(W (z))P ′(z) = R(W (z))P̃ ′(W (z))W ′(z) = q̃(W (z))W ′(z).

In this section we in a sense describe the class of pairs P (z), γ for which the
rationality of I∞(q, P, γ, t) implies its reducibility. For given P (z) and γ such that
poles of P (z) do not lie on one side of γ, a natural necessary condition for the
existence of q(z) such that I∞(q, P, γ, t) is rational but is not reducible may be
formulated as follows. Let

n∑

i=1

fs,i

( q

P ′

)
(P−1

i (z)) = 0, 1 6 s 6 k,

be the system of equations from Theorem 4.1 and let MP,γ be a linear subspace of
Qn generated by the vectors

(fs,σ(1), fs,σ(2), . . . , fs,σ(n)), σ ∈ GP , 1 6 s 6 k,
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where GP is the monodromy group of P (z) and n = degP (z). By Corollary 4.2
the subspace MP,γ is not zero-dimensional. Furthermore, by construction MP,γ

is invariant with respect to the permutation representation of GP over Q and it
follows from Theorem 4.1 by the analytic continuation that for any vector ~v ∈MP,γ ,
~v = (v1, v2, . . . , vn), the equality

n∑

i=1

vi

( q

P ′

)
(P−1

i (z)) = 0 (89)

holds.
Observe now that if MP,γ contains a vector of the form ~ei − ~ej , i 6= j, where

~ei, 1 6 i 6 n, denote vectors of the Euclidean basis of Qn, then the rationality of
I∞(q, P, γ, t) implies its reducibility since for such a vector equality (89) implies
(87) and (88). Therefore, a necessary condition for the existence of q(z) such that
I∞(q, P, γ, t) is rational but is not reducible is that MP,γ contains no vectors of
the form ~ei − ~ej, i 6= j, and in this section, using a general result of [18], we prove
(Theorem 9.3 below) that this condition is also sufficient. As an application we show
that the requirement of Theorem 5.2 can not be weakened to the requirement of
indecomposability of P (z) already for Laurent polynomials (see the remark before
Section 6).

9.2. Girstmair’s theorem. Let f(t) ∈ K[t] be an irreducible polynomial over a
field of characteristic zero K. Denote by x1, x2, . . . , xn roots of f(t), by L the field
K(x1, x2, . . . , xn), and by G the Galois group Gal (L/K). We will identify G with
a permutation group acting on the set {1, 2, . . . , n} setting σ(i) = j if xj = σ(xi),
1 6 i, j 6 n. In this subsection, following [18], we sketch a solution of the following
problem: under what conditions on a collection W of vectors from Kn there exists

a rational function R(t) ∈ K(t) such that for all ~w ∈ W , ~w = (w1, w2, . . . , wn),
the equality

w1R(x1) + w2R(x2) + · · ·+ wnR(xn) = 0 (90)

holds, and R(xi) 6= R(xj) for any i 6= j, 1 6 i, j 6 n. If such a function R(t) exists
we will say that W is admissible.

Notice that if (90) holds for vectors ~w1, ~w2, then it holds for any vector of the
form α~w1+β~w2, α, β ∈ K. Furthermore, for any element σ ∈ G, acting on equality
(90) by σ−1, we obtain the equality

wσ(1)R(x1) + wσ(2)R(x2) + · · ·+ wσ(n)R(xn) = 0.

Therefore, equality (90) holds for all ~w ∈ W if and only if it holds for all vectors
from the linear subspace of Kn generated by the vectors

~wσ = (wσ(1), wσ(2), . . . wσ(n)), w ∈ W, σ ∈ G.

Thus, without loss of generality we may assume that the collection W is a linear
subspace of Kn invariant with respect to the permutation representation of G.

We start from reformulating the problem above in the form it was considered
in [18]. Fix a root x of f(t). Denote by H the stabilizer Gx of x in G and by
G/H = {s̄ : s ∈ G} the set of left cosets s̄ = sH of the subgroup H in G. Further,
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denote by K[G] the group ring of G over K and by K[G/H ] a K-module with the
basis (s̄ : s̄ ∈ G/H). Thus, elements of K[G] have the form

λ =
∑

s∈G

lss, ls ∈ K, (91)

while elements of K[G/H ] have the form

α =
∑

s̄∈G/H

as̄s̄, as̄ ∈ K. (92)

Notice that K[G/H ] is a K[G]-module with respect to the scalar multiplication
defined by the formula

gs̄ = gs, g ∈ G, s̄ ∈ G/H.

If y ∈ L satisfies Gy = H , then for any α ∈ K[G/H ] defined by (92) the
expression

αy =
∑

s̄∈G/H

as̄s(y)

is a well defined element of L. We say that a subset M of K[G/H ] is admissible

if there exists y ∈ L such that Gy = H and for any α ∈ M the equality αy = 0
holds. Clearly, M is admissible if and only if the K[G]-submodule of K[G/H ]
generated by M is admissible so without loss of generality we may assume that M
is a K[G]-submodule of K[G/H ].

Recall that linear subspaces of Kn invariant with respect to the permutation
representation of G on Kn are in one-to-one correspondence with K[G]-submodules

of K[G/H ]. Namely, to a subspace W corresponds a submodule Ŵ consisting of
elements

α =

n∑

i=1

ais̄i,

where si, 1 6 i 6 n, is an element of G which transforms 1 to i and ~a =
(a1, a2, . . . , an) runs elements of W .

Proposition 9.1. A linear subspace W of Kn, invariant with respect to the per-

mutation representation of G on Kn, is admissible if and only if the corresponding

K[G]-submodule Ŵ of K[G/H ] is admissible.

Proof. Show first that if W is admissible, then we can set y = R(x1). Indeed, since
y ∈ K(x1) we have H ⊆ Gy . Furthermore, H may not be a proper subgroup of
Gy since otherwise the length of the orbit of y under the action of G would be
strictly less than n in contradiction with the conditions that all R(xi), 1 6 i 6 n,

are different between themselves. Finally, αy = 0 for any α ∈ Ŵ .

In other direction, if Ŵ is admissible and y is an element of L such that αy = 0

for all α ∈ Ŵ , then Gy = H implies that y ∈ K(x1). Therefore, there exists
R(t) ∈ K(t) such that y = R(x1) and for such R(z) equality (90) holds for all
~w ∈ W . Furthermore, since the length of the orbit of y under the action of G
equals n, all R(xi), 1 6 i 6 n, are different between themselves. �
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Theorem 9.2 [18]. A K[G]-submodule Ŵ of K[G/H ] is admissible if and only if

Ŵ contains no elements s̄1 − s̄2, s1, s2 ∈ G, unless s̄1 = s̄2. Equivalently, a linear

subspace W of Kn, invariant with respect to the permutation representation of G
on Kn, is admissible if and only W contains no vectors ~ei−~ej, 1 6 i, j 6 n, unless
i = j.

Proof. If W contains a vector ~w = ~ei − ~ej, i 6= j, 1 6 i, j 6 n, then equality (90)
implies that R(xi) = R(xj).

In another direction, assume that Ŵ contains no elements s̄1 − s̄2, s1, s2 ∈ G,
such that s̄1 6= s̄2. Consider the canonical K[G]-linear map

ρ : K[G] → K[G/H ]

which maps s to s̄, and let γ = ρ−1(Ŵ ) be the inverse image of Ŵ . Since K[G] is
semisimple, the ideal γ is generated by an idempotent element ε. Notice that for
any λ ∈ γ the equalities λ = aε, a ∈ K[G], and ε2 = ε imply that λε = λ. Set
µ = 1− ε.

For any s ∈ H the element s− 1 is in the kernel of ρ and therefore in γ. Hence
s− 1 = (s − 1)ε and (s − 1)µ = 0 implying that H ⊆ Gµ. On the other hand, for
any s ∈ Gµ we have (s− 1)µ = 0. Therefore, s− 1 = (s− 1)ε and s− 1 ∈ γ. This

implies that s̄− 1̄ is in Ŵ and therefore s ∈ H by the assumption. This proves that
Gµ = H .

Since Gµ = H , for any α ∈ Ŵ the expression

αµ =
∑

s̄∈G/H

as̄sµ

is a well defined element of K[G]. Furthermore, in fact for any α ∈ Ŵ the equality
αµ = 0 holds. Indeed, if λ is an element of γ such that ρ(λ) = α, then we have:

αµ = λµ = λ− λε = 0.

Finally, let us show that from the existence of µ ∈ K[G] such that H = Gµ and

αµ = 0 for any α ∈ Ŵ , it follows that Ŵ is admissible. For this purpose observe
that by the normal basis theorem there exists an element x ∈ L such that gx,

g ∈ G, is a basis of L over K. Set now y = µx. Then obviously for any α ∈ Ŵ the
equality αy = 0 holds and H ⊆ Gy . Furthermore, H = Gy. Indeed, if there exists
g0 ∈ G such that g0y = y but g0µ 6= µ, then the equalities g0µx = y, µx = y imply
that gx, g ∈ G, are linearly dependent over K. �

9.3. Existence of q(z) with rational but not reducible I∞(q, P, γ, t).
Theorem 9.2 permits to solve the problem posed in Subsection 9.1 as follows.

Theorem 9.3. Let γ be a curve and P (z) be a rational function of degree n such

that poles of P (z) do not lie on one side of γ. Then a rational function q(z) such

that I∞(q, P, γ, t) is rational but is not reducible exists if and only if the subspace

MP,γ contains no vectors ~ei − ~ej, 1 6 i, j 6 n, unless i = j.

Proof. As it was already observed in Subsection 9.1 the requirement of the theorem
is necessary. On the other hand, since vectors with rational coefficients which are
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linear independent overQ remain linearly independent overC(z), if this requirement

is satisfied, then the subspace M̃P,γ of (C(z))n, generated over C(z) by the same
vectors

(fs,σ(1), fs,σ(2), . . . , fs,σ(n)), σ ∈ GP , 1 6 s 6 k,

which generate MP,γ over Q, still contains no vectors ~ei − ~ej, 1 6 i, j 6 n, unless
i = j.

Therefore, applying Theorem 9.2 to the roots

x1 = P−1
1 (z), x2 = P−1

2 (z), . . . , xn = P−1
n (z)

of the polynomial P (x) − z = 0 over the field C(z), we conclude that there exists

a rational function R̃(t) over the field C(z) such that for any vector ~v ∈ M̃P,γ ,
~v = (v1, v2, . . . , vn), the equality

n∑

i=1

viR̃(P
−1
i (z)) = 0 (93)

holds and all R̃(P−1
i (z)), 1 6 i 6 n, are different between themselves. Furthermore,

since z = P (P−1
i (z)), 1 6 i 6 n, we can write any rational function in z as a rational

function in P−1
i (z), 1 6 i 6 n, and hence there exists a rational function R(t) over

C such that
R(P−1

i (z)) = R̃(P−1
i (z)), 1 6 i 6 n.

Setting now q(z) = R(z)P ′(z) we see that for any vector ~v ∈MP,γ the equality (89)
holds, implying that I∞(q, P, γ, t) is a rational function. Furthermore, equality
(23) is impossible since otherwise the functions P (z) and (q/P ′)(z) have a non-
trivial common right factor and Lemma 5.1 implies that

R(P−1
i (z)) = R(P−1

j (z))

for some i 6= j, 1 6 i, j 6 n. �

Using Theorem 9.3 one can prove the existence of an indecomposable Lau-
rent polynomial L(z) for which there exists a rational function q(z) such that
I∞(q, P, γ, t) is rational but is not reducible, without an actual calculation L(z)
and q(z). Indeed, let L(z) be a Laurent polynomial whose constellation is shown on
Fig. 4 (since L(z) has only two finite critical values, in correspondence with the no-

8

1
5

2

9
10

6

7 4

3

Figure 4.

tation of “dessins d’enfants” theory, we picture here 1-vertices as “black”, 2-vertices
as “white”, and do not mark non-numerated vertices at all). Such a choice of L(z)
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is motivated by the fact that the action of the monodromy group G of L(z) on
branches of L−1(z), generated by the permutations α = (2, 5, 7, 6, 10, 9)(3, 8, 4)
and β = (1, 5)(2, 8)(4, 7), is permutation equivalent to the action of the group S5

on two element subsets of {1, 2, 3, 4, 5}. Since the last action is primitive while
the corresponding matrix representation of dimension 10 over Q is not a sum of VQ
and V ⊥

Q , one can expect that L(z) provides a desired example.
By Theorem 4.1 the function I∞(q, P, γ, t) is rational if and only if the equality

Q(L−1
2 (z))−Q(L−1

7 (z)) +Q(L−1
4 (z))−Q(L−1

8 (z)) ≡ 0, (94)

holds. Therefore, the subspace ML,S1 is generated by the single vector

~v = (0, 1, 0, 1, 0, 0, −1, −1, 0, 0).

Show now that ML,S1 may not contain a vector w of the form

w = ~ei − ~ej, i 6= j, 1 6 i, j 6 n. (95)

Consider the vector subspace V of Q10 generated by the vectors

~v1 = (1, 0, 0, 0, 1, 1, 0, 0, 1, 0),

~v2 = (1, 1, 0, 0, 0, 0, 1, 0, 0, 1),

~v3 = (0, 1, 1, 0, 0, 1, 0, 1, 0, 0),

~v4 = (0, 0, 1, 1, 0, 0, 1, 0, 1, 0),

~v5 = (0, 0, 0, 1, 1, 0, 0, 1, 0, 1).

Since α and β permute the vectors ~vi, 1 6 i 6 5, between themselves, V is ρG-
invariant. Furthermore, since ~v is orthogonal to ~vi, 1 6 i 6 5, the inclusion

ML,S1 ⊆ V ⊥

holds. On the other hand, it is easy to see that for any vector (95) there exists ~vi,
1 6 i 6 5, such that (w, vi) 6= 0. Indeed, since G is transitive and permute ~vi,
1 6 i 6 5, it is enough to verify this property only for w whose first coordinate
equals 1 and for such w we may take one of the vectors v1, v2. Therefore, ML,S1

may not contain vectors (95) and hence by Theorem 9.3 there exists a rational
function q(z) such that I∞(q, P, γ, t) is rational but is not reducible.
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Addendum

This paper essentially coincides with the preprint [30] published in 2009. Below
we briefly mention some related publications that appeared afterwards.

In the paper [17]—among other things— the moment problem for meromorphic
functions on compact Riemann surfaces was investigated. In particular, some of
results of Sections 4 and 5 were generalized to this case.

In the papers [32], [1] were constructed explicit examples of indecomposable
Laurent polynomials L(z), the existence of which was shown in the Section 9, such
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that I∞(q, P, γ, t) is rational for some rational function q(z) but is not reducible.
The paper [1] also contains some further results concerning Laurent polynomial
moment problem. Notice that both these papers make use of the bound on the
Bautin index for Laurent polynomial moment problem obtained in Section 8.

In the paper [40] the results of Section 4 were applied to the study of Mathieu
subspaces of associative algebras.

Finally, in the recent preprints [13], [12] the problem of vanishing of double
moments for real trigonometric polynomials on a segment was investigated in the
context of the center problem for the Abel equation. In particular, it was shown
in [13] that if f, g are real trigonometric polynomials such that all the moments∫ 2π

0 f igj dg (i, j > 0) vanish, then there exist polynomials f̃ , g̃ and a trigonometric

polynomial h such that f = f̃(h), g = g̃(h). Notice that this result follows from
results of Section 6 by an exponential substitution. However, the proof obtained in
[13] for the real case is much easier.
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