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Abstract
We show that describing rational functions f1, f2, . . . , fn sharing the measure of
maximal entropy reduces to describing solutions of the functional equation A ◦ X1 =
A ◦ X2 = · · · = A ◦ Xn in rational functions. We also provide some results about
solutions of this equation.
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1 Introduction

Let f be a rational function of degree d ≥ 2 on CP
1. It was proved by Freire et al.

(1983), and independently by Ljubich (1983) that there exists a unique probability
measure μ f on CP

1, which is invariant under f , has support equal to the Julia set
J ( f ) of f , and achieves maximal entropy log d among all f -invariant probability
measures. In this note, we study rational functions sharing the measure of maximal
entropy, that is rational functions f and g such that μ f = μg, and more generally
rational functions f1, f2, . . . , fn such that μ f1 = μ f2 = · · · = μ fn . We assume that
considered functions are non-special in the following sense: they are neither Lattès
maps nor conjugate to z±n or ±Tn .

In case if f and g are polynomials, the condition μ f = μg is equivalent to the
condition J ( f ) = J (g). In turn, for non-special polynomials f and g the equality
J ( f ) = J (g) = J holds if and only if there exists a polynomial h such that J (h) = J
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and

f = η1 ◦ h◦s, g = η2 ◦ h◦t (1)

for some integers s, t ≥ 1 and rotational symmetries η1, η2 of J (see Atela and
Hu 1996; Schmidt and Steinmetz 1995, and also Atela 1998; Baker and Eremenko
1987; Beardon 1990 for other related results). Note that a similar conclusion remains
true if instead of the condition J ( f ) = J (g) one were to assume only that f and g
share a completely invariant compact set in C (see Pakovich 2008). Note also that in
the polynomial case any of the conditions J ( f ) = J (g) and (1) is equivalent to the
condition that

f ◦k = η ◦ g◦l , (2)

for some integers k, l ≥ 1 and Möbius transformation η such that η(J (g)) = J (g).
Since μ f = μ f ◦k , the equality μ f = μg holds whenever f and g share an iterate,

that is satisfy

f ◦k = g◦l (3)

for some integers k, l ≥ 1.Moreover,μ f = μg whenever f and g commute. However,
the latter condition in fact is a particular case of the former one, since non-special
commuting f and g always satisfy (3) by the result of Ritt (1923). Note that in
distinction with the polynomial case rational solutions of (3) not necessarily have the
form (1) (see Ritt 1923; Pakovich 2019b).

The problem of describing rational functions f and g with μ f = μg can be
expressed in algebraic terms. Specifically, the results of Levin (1990) and Levin and
Przytycki (1997) imply that for non-special f and g the equalityμ f = μg holds if and
only if some of their iterates F = f ◦k and G = g◦l satisfy the system of functional
equations

F ◦ F = F ◦ G, G ◦ G = G ◦ F (4)

(see Ye 2015 for more detail).
Examples of rational functions f , g withμ f = μg , which do not have the form (2),

were constructed byYe (2015). These examples are based on the following remarkable
observation: if X , Y , and A are rational functions such that

A ◦ X = A ◦ Y , (5)

then the functions

F = X ◦ A, G = Y ◦ A
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satisfy (4). The simplest examples of solutions of (5) can be obtained from rational
functions satisfying A ◦ η = A for some Möbius transformation η, by setting

X = η ◦ Y . (6)

In this case, the corresponding solutions of (4) have the form (2). However, other
solutions of (5) also exist, allowing to construct solutions of (4) which do not have
the form (2).

Roughly speaking, the main result of this note states that in fact all solutions of (4)
can be obtained from solutions of (5). More generally, the following statement holds.

Theorem 1.1 Let f1, f2, . . . , fn be non-special rational functions of degree at least
two on CP

1. Then they share the measure of maximal entropy if and only if some of
their iterates F1, F2, . . . , Fn can be represented in the form

F1 = X1 ◦ A, F2 = X2 ◦ A, . . . , Fn = Xn ◦ A, (7)

where A and X1, X2, . . . , Xn are rational functions such that

A ◦ X1 = A ◦ X2 = · · · = A ◦ Xn (8)

and C(X1, X2, . . . , Xn) = C(z).

Theorem 1.1 shows that “up to iterates” describing pairs of rational functions f and
g withμ f = μg reduces to describing solutions of (5). In particular, since polynomial
solutions of (5) satisfy (6), we immediately recover the result that polynomials f , g
with μ f = μg satisfy (2). Nevertheless, the problem of describing solutions of (5)
for arbitrary rational A, X , Y is still widely open. In fact, a complete description of
solutions of (5) is obtained only in the case where A is a polynomial (while X and Y
can be arbitrary rational functions) in the paper by Avanzi and Zannier (2003). The
approach of Avanzi and Zannier (2003) is based on describing polynomials A for
which the genus of an irreducible algebraic curve

CA : A(x) − A(y)

x − y
= 0 (9)

is zero, and analyzing situations where CA is reducible but has a component of genus
zero. Although the same strategy can be applied to an arbitrary rational function A,
both its stages become much more complicated and no general results are known to
date.

Note that the problem of describing solutions of equation (5) for rational A and
meromorphic on the complex plane X , Y was posed in the paper of Lyubich and
Minsky (see Lyubich and Minsky 1997, p. 83) in the context of studying the action of
rational functions on the “universal space” of non-constant functions meromorphic on
C. In algebraic terms, the last problem is equivalent to describing rational functions
A such that (9) has a component of genus zero or one.
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Theorem 1.1 implies an interesting corollary, concerning dynamical characteristics
of rational functions sharing themeasure ofmaximal entropy. Recall that themultiplier
spectrum of a rational function f of degree d is a function which assigns to each
s ≥ 1 the unordered list of multipliers at all ds + 1 fixed points of f ◦s taken with
appropriate multiplicity. Two rational functions are called isospectral if they have the
same multiplier spectrum.

Corollary 1.1 If non-special rational functions f1, f2, . . . , fn of degree at least two
share the measure of maximal entropy, then some of their iterates F1, F2, . . . , Fn are
isospectral.

The rest of this note is organized as follows. In the second section,weproveTheorem
1.1 and Corollary 1.1. Then, in the third section, we prove two results concerning
equation (5) and system (8). The first result states that if the curve CA is irreducible
and rational functions X , Y provide a generically one-to-one parametrization of CA,
then X = Y ◦ η for some involution η ∈ Aut(CP1). The second result states that if
A and X1, X2, . . . , Xn are rational functions such that (8) holds and X1, X2, . . . , Xn

are distinct, then n ≤ deg A, and n = deg A only if the Galois closure of the field
extensionC(z)/C(A) has genus zero or one. In fact, we prove these results in the more
general setting, allowing the functions X , Y and X1, X2, . . . , Xn to be meromorphic
on C.

2 Functions sharing themeasure of maximal entropy

In this section, we deduce Theorem 1.1 and Corollary 1.1 from the criterion (4) and
the following four lemmas.

Lemma 2.1 Let A1, A2, . . . , An and Y1,Y2, . . . ,Yn be rational functions such that

Ai ◦ Y1 = Ai ◦ Y2 = · · · = Ai ◦ Yn, i = 1, . . . n, (10)

and

C(A1, A2, . . . , An) = C(z). (11)

Then

Y1 = Y2 = · · · = Yn . (12)

Proof. By (11), there exists a rational function P ∈ C(z1, z2, . . . , zn) such that

z = P(A1, A2, . . . , An),

implying that

Y j = P(A1 ◦ Y j , A2 ◦ Y j , . . . , An ◦ Y j ), 1 ≤ j ≤ n. (13)
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Now (12) follows from (13) and (10).

Lemma 2.2 Let F1, F2, . . . , Fn be rational functions such that

Fi ◦ F1 = Fi ◦ F2 = · · · = Fi ◦ Fn, i = 1, . . . n. (14)

Then there exist rational functions A and X1, X2, . . . , Xn such that

Fi = Xi ◦ A, i = 1, . . . n, (15)

C(X1, X2, . . . , Xn) = C(z), (16)

and

A ◦ X1 = A ◦ X2 = · · · = A ◦ Xn . (17)

Proof. By the Lüroth theorem,

C(F1, F2, . . . , Fn) = C(A)

for some rational function A, implying that equalities (15) hold for some rational
functions X1, X2, . . . , Xn satisfying (16). Substituting now (15) in (14) we see that

Xi ◦ (A ◦ X1) = Xi ◦ (A ◦ X2) = · · · = Xi ◦ (A ◦ Xn), i = 1, . . . n.

Applying now Lemma 2.1 to the last system we obtain (17).

Lemma 2.3 Let A and B be rational functions such that the equality

A ◦ A = A ◦ B

holds. Then

A◦l ◦ A◦l = A◦l ◦ B◦l

for any l ≥ 1.

Proof. The proof is by induction on l. Assuming that the lemma is true for l = k, we
have:

A◦(k+1) ◦ B◦(k+1) = A◦k ◦ (A ◦ B) ◦ B◦k = A◦k ◦ A◦2 ◦ B◦k =
= A◦2 ◦ A◦k ◦ B◦k = A◦2 ◦ A◦2k = A2k+2.

Lemma 2.4 Let di ≥ 2, 1 ≤ i ≤ n, and ni, j ≥ 1, 1 ≤ i, j ≤ n, i �= j, be integers
such that

d
ni, j
i = d

n j,i
j , 1 ≤ i, j ≤ n, i �= j .
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Then there exist integers li ≥ 1, 1 ≤ i ≤ n, such that

dl11 = dl22 = · · · = dlnn .

Proof. The proof is by induction on n. For n = 2, we obviously can set

l1 = n1,2, l2 = n2,1.

Assuming that the lemma is true for n = k, we can find integers ai , 1 ≤ i ≤ k, and
bi , 2 ≤ i ≤ k + 1, such that

da11 = da22 = · · · = dakk

and

db22 = db33 = · · · = dbk+1
k+1 ,

implying that

da1b21 = da2b22 = · · · = dakb2k

and

db2a22 = db3a23 = · · · = dbk+1a2
k+1 .

Therefore,

da1b21 = db2a22 = db3a23 = · · · = dbk+1a2
k+1 ,

and hence the lemma is true for n = k + 1.

Proof of Theorem 1.1 For any rational functions A and X1, X2, . . . , Xn satisfying (8)
the corresponding functions (7) satisfy system (14). In particular, for any pair i, j
1 ≤ i, j ≤ n, i �= j, the equalities

Fi ◦ Fi = Fi ◦ Fj , Fj ◦ Fj = Fj ◦ Fi , 1 ≤ i, j ≤ n,

hold, implying that the functions fi , f j share the measure of maximal entropy. There-
fore, all f1, f2, . . . , fn share the measure of maximal entropy.

In the other direction, if μ f1 = μ f2 = · · · = μ fn , then using the criterion (4) we
can find integers ni, j , 1 ≤ i, j ≤ n, i �= j, such that

f
◦ni, j
i ◦ f

◦ni, j
i = f

◦ni, j
i ◦ f

◦n j,i
j , f

◦n j,i
j ◦ f

◦n j,i
j = f

◦n j,i
j ◦ f

◦ni, j
i . (18)

Suppose first that

deg f1 = deg f2 = · · · = deg fn . (19)
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Then (18) and (19) imply that ni, j = n j,i , 1 ≤ i, j ≤ n. Applying now Lemma
2.3 to (18), we see that for any integer number M divisible by all the numbers ni, j ,
1 ≤ i, j ≤ n, the equalities

f ◦M
i ◦ f ◦M

i = f ◦M
i ◦ f ◦M

j , 1 ≤ i, j ≤ n,

hold. Thus, the functions Fi = f ◦M
i , 1 ≤ i ≤ n, satisfy system (14), implying by

Lemma 2.2 that equalities (15), (16), and (17) hold.
For arbitrary rational functions f1, f2, . . . , fn sharing the measure of maximal

entropy, we still can write system (18), implying that

(deg fi )
ni, j = (deg f j )

n j,i , 1 ≤ i, j ≤ n, i �= j .

Applying Lemma 2.4, we can find li , 1 ≤ i ≤ n, such that the rational functions
f ◦li
i , 1 ≤ i ≤ n, have the same degree. Since these functions along with the functions
f1, f2, . . . , fn share the measure of maximal entropy, we can write system (18) for
these functions. Using now the already proved part of the theorem, we conclude that
there exist mi , 1 ≤ i ≤ n, such that the rational functions Fi = f ◦mi

i , 1 ≤ i ≤ n,

satisfy (14), implying (15), (16), and (17).

Proof of Corollary 1.1 The corollary follows from the statement of the theorem and the
fact that for any rational functions U and V the rational functions U ◦ V and V ◦ U
are isospectral (see Pakovich 2019a, Lemma 2.1).

3 Functional equation A(�) = A(Ã)

Equation (5) is a particular case of the functional equation

A ◦ X = B ◦ Y ,

which, under different assumptions on A, B and X ,Y , has been studied inmany papers
(see e.g. An and Diep 2013; Avanzi and Zannier 2001; Bilu and Tichy 2000; Fried
1973; Ng and Wang 2013; Pakovich 2009, 2010, 2018b; Ritt 1922). Nevertheless, to
our best knowledge precisely equation (5) was the subject of only two papers. One of
them is the paper of Avanzi and Zannier cited in the introduction. The other one is the
paper byRitt (1924), written 80 years earlier, where some partial results were obtained.
In particular, Ritt observed that solutions of (5) with X �= Y can be obtained using
finite subgroups of Aut(CP1) as follows. Let � be a finite subgroup of Aut(CP1) and
θ� its invariant function, that is a rational function such that θ�(x) = θ�(y) if and
only if y = σ(x) for some σ ∈ �. Then for any subgroup �′ ⊂ � the equality

θ� = ψ ◦ θ�′ (20)

holds for some ψ ∈ C(z), implying that

ψ ◦ θ�′ = ψ ◦ (θ�′ ◦ σ)
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for every σ ∈ �. Nevertheless, θ�′ �= θ�′ ◦ σ unless σ ∈ �′. For example, for the

dihedral group D2n , generated by z → 1/z and z → εz, where ε = e
2π i
n , and its

subgroup D2 equality (20) takes the form

1

2

(
zn + 1

zn

)
= Tn ◦ 1

2

(
z + 1

z

)

giving rise to the solution

Tn ◦ 1

2

(
z + 1

z

)
= Tn ◦ 1

2

(
εz + 1

εz

)

of (5) not satisfying to (6).Ritt also constructed solutions of (5) using rational functions
arising from the formulas for the period transformations of the Weierstrass functions
℘(z) for lattices with symmetries of order greater than two.

In this note, we do not make an attempt to obtain an explicit classification of
solutions of (5) in spirit of Avanzi and Zannier (2003). Instead, we prove two general
results which emphasize the role of symmetries in the problem.

Theorem 3.1 Let A be a rational function and ϕ,ψ distinct functions meromorphic
on C such that

A ◦ ϕ = A ◦ ψ.

Assume in addition that the algebraic curve CA is irreducible. Then the desingu-
larization R of CA has genus zero or one and there exist holomorphic functions
ϕ1 : R → CP

1, ψ1 : R → CP
1 and h : C → R such that

ϕ = ϕ1 ◦ h, ψ = ψ1 ◦ h,

and the map from R to CA given by z → (ϕ1(z), ψ1(z)) is generically one-to-one.
Moreover,

ϕ1 = ψ1 ◦ η (21)

for some involution η : R → R.

Proof. The first conclusion of the theorem holds for any parametrization of an algeb-
raic curve by functions meromorphic on C (see e.g. Beardon and Ng 2006, Theorem
1 and Theorem 2), so we only must show the existence of an involution μ satisfying
(21).

Since the equation ofCA is invariant under the exchange of variable, along with the
meromorphic parametrization z → (ϕ1, ψ1) the curve CA admits the meromorphic
parametrization z → (ψ1, ϕ1). Since the desingularization R is defined up to an
automorphism, it follows now from the first part of the theorem that

ϕ1 = ψ1 ◦ η, ψ1 = ϕ1 ◦ η
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for some η ∈ Aut(R), implying that

ϕ1 = ϕ1 ◦ (η ◦ η), ψ1 = ψ1 ◦ (η ◦ η). (22)

Finally, η ◦ η = z since otherwise (22) contradicts to the condition that the map
z → (ϕ1(z), ψ1(z)) is generically one-to-one.

Theorem 3.2 Let A be a rational function of degree d and ϕ1, ϕ2, . . . , ϕn distinct
meromorphic functions on C such that

A ◦ ϕ1 = A ◦ ϕ2 = · · · = A ◦ ϕn . (23)

Then n ≤ d. Moreover, if n = d, then the Galois closure of the field extension
C(z)/C(A) has genus zero or one.

Proof. Since for any z0 ∈ CP
1 the preimage A−1(z0) contains at most d distinct

points, if (23) holds for n > d, then for every z ∈ CP
1 at most d of the val-

ues ϕ1(z), ϕ2(z), . . . , ϕn(z) are distinct, implying that at most d of the functions
ϕ1, ϕ2, . . . , ϕn are distinct.

The second part of the theorem is the “if” part of the following criterion (see
Pakovich 2018c, Theorem 2.3). For a rational function A of degree d, the Galois
closure of the field extension C(z)/C(A) has genus zero or one if and only if there
exist d distinct functions ψ1, ψ2, . . . , ψd meromorphic on C such that

A ◦ ψ1 = A ◦ ψ2 = · · · = A ◦ ψd .

Note that rational functions A for which the genus gA of the Galois closure of the
field extensionC(z)/C(A) is zero are exactly all possible “compositional left factors”
of Galois coverings of CP1 by CP

1 and can be listed explicitly. On the other hand,
functions with gA = 1 admit a simple geometric description in terms of projections of
maps between elliptic curves (see Pakovich 2018a). The simplest examples of rational

functions with gA ≤ 1 are zn, Tn , 1
2

(
zn + 1

zn

)
, and Lattès maps.
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