Locally Nilpotent Derivations of Polynomial Rings

F. B. Pakovich

§1. Let A be a ring and let D be a derivation on A, i.e., D is a mapping of the ring A into itself that satisfies the following conditions:

$$
D(x+y)=D x+D y \quad \text { and } \quad D(x y)=x D y+y D x
$$

The subring C which is the kernel of this mapping is called the subring of constants. Denote by Nil (D) the subset of A that consists of all elements x for which there exists an $n \subset \mathbb{N}$ such that $D^{n}(x)=0$. It is clear that $\operatorname{Nil}(D)$ is a subring of A. A derivation D is said to be locally nilpotent if $\operatorname{Nil}(D)=A$. A subring $A^{\prime} \subset A$ is said to be D-simple if the condition $D x \subset A^{\prime}$ implies $x \subset A^{\prime}$.

Lemma. $\operatorname{Nil}(D)=\bigcap A^{\prime}$, where the intersection is taken over all D-simple subrings of the ring A.
Proof. Indeed, since both $\operatorname{Nil}(D)$ and $\bigcap A^{\prime}$ are clearly D-simple subrings, we have $\cap A^{\prime} \subset \operatorname{Nil}(D)$. On the other hand, if $x \subset \operatorname{Nil}(D)$, then there exists an n such that $D^{n}(x)=0 \subset \cap A^{\prime}$. Since all A^{\prime} are D-simple, this implies $x \subset \cap A^{\prime}$.

Corollary 1. A derivation D is locally nilpotent if and only if the ring A has no proper D-simple subrings.

Theorem 1 below also implies the following known assertion.
Corollary 2. Let a ring A contain the field of rationals. If there exists $t \subset A$ such that $D t=1$, then $\mathrm{Nil}(D) \cong C[t]$, where C is the subring of constants.

Proof. Indeed, we have $C[t] \subset \operatorname{Nil}(D)$; moreover, if $D x=\sum_{i=0}^{n} a_{i} t^{i} \quad\left(a_{i} \subset C\right)$, then we have the decomposition

$$
x=\sum_{i=0}^{n} \frac{a_{i} t^{i+1}}{i+1}+u, \quad \text { where } u \subset C
$$

Therefore, the ring $C[t]$ is D-simple, i.e., it coincides with $\operatorname{Nil}(D)$. Moreover, it can be readily seen that t is transcendental over C, because otherwise we obtain a contradiction by differentiating a polynomial of minimal degree with the root t (at the point t).
§2. Denote by A^{n} the n-dimensional affine space over an algebraically closed field k, char $k=0$.
Theorem 1. Let F be an irreducible algebraic curve in A^{2} given by the equation $f(x, y)=0$. Then $F \cong A^{1}$ if and only if

$$
D_{f}=f_{y} \frac{\partial}{\partial x}-f_{x} \frac{\partial}{\partial y}
$$

is a locally nilpotent derivation of the ring $k[x, y]$.
Proof. Assume that $F \cong A^{1}$; then, by the Abhyankar-Moh theorem [1], there exists a polynomial $g(x, y)$ such that $k[x, y] \cong k[f, g]$. Hence, we can define a locally nilpotent derivation $\partial / \partial g$ of the ring $k[x, y]$. Denote by $J(g, f)$ the Jacobian of the map $(x, y) \mapsto(g(x, y), f(x, y))$. Clearly, $J(g, f) \subset k^{*}$. Consider the derivation $D=D_{f}-J(g, f)(\partial / \partial g)$. We have $D f=D g=0$. Hence, $D_{f} \equiv J(g, f)(\partial / \partial g)$. Conversely, let D_{f} be a locally nilpotent derivation. Then, by the Rentschler theorem [2], there exists an automorphism M of the ring $k[x, y]$ such that

$$
M D_{f} M^{-1}=p(y) \frac{\partial}{\partial x}, \quad p(y) \subset k[y]
$$

Since $M D_{f} M^{-1}(M f)=M D_{f} f=0$, we obtain $M f=q(y) \subset k[y]$. Since the curve F is irreducible, the polynomial $q(y)$ is linear, i.e., it defines the equation of a straight line. Thus, $F \cong A^{1}$.

The surface $G \subset A^{3}$ given by the equation $g(x, y, z)=0$ is said to be rectifiable if there exist polynomials $t_{1}, t_{2} \subset k[x, y, z]$ such that $k[x, y, z] \cong k\left[t_{1}, t_{2}, g\right]$.

Theorem 2. The surface $G \subset A^{3}$ given by the equation $g(x, y, z)=0$ is rectifiable if and only if there exists a locally nilpotent derivation D of the ring $k[x, y, z]$ such that $D g=1$.

Proof. If G is rectifiable, then it is clear that the derivation $\partial / \partial g$ has the required properties.
Conversely, let D be a locally nilpotent derivation such that $D g=1$. Then, by Corollary 2 , we have

$$
\begin{equation*}
k[x, y, z] \cong C[g] \tag{1}
\end{equation*}
$$

where C is the subring of constants. Moreover, from the Zariski theorem (see [3, p. 52]) it follows that C is finitely generated, hence, it is a coordinate ring of some affine variety B. Since $C[g] \cong C \bigotimes_{k} k[g]$, relation (1) can be rewritten in the form $A^{3} \cong B \times A^{1}$. Now from the cancellation theorem [4] it follows that $B \cong A^{2}$, i.e., the ring C is isomorphic to the polynomial ring in two variables. Hence, $k[x, y, z] \cong C[g] \cong k\left[t_{1}, t_{2}, g\right]$, and the surface G is rectifiable.

References

1. S. S. Abhyankar and T. T. Moh, J. Reine Angew. Math., 276, 148-166 (1975).
2. R. Rentschler, C. R. Acad. Sci. Paris, 267, 384-387 (1968).
3. M. Nagata, On the Fourteenth Problem of Hilbert, Lecture in Tata Institute of Fundamental Research, Bombay (1965).
4. T. Fujita, Proc. Japan Acad., 55, ser. A, 106-110 (1979).

Université de Grenoble, 1, Institut Fourier
Translated by A. I. Shtern

Special Representation of an Aperiodic Automorphism of a Lebesgue Space

A. A. Prikhod'ko

An aperiodic automorphism T of a Lebesgue space $(X, \mathcal{B}, \mu), \mu(X)=1$, has the following property: for every $n \in \mathbb{N}$ and $\varepsilon>0$ there exists a measurable set B such that

$$
\mu\left(\bigsqcup_{j=0}^{n-1} T^{j} B\right)>1-\varepsilon
$$

where the symbol \bigsqcup denotes, here and below, the union of disjoint sets. This assertion, which is known in ergodic theory as the Rokhlin-Halmos lemma, has numerous applications and generalizations [1-4]. In this note we present a generalization of this lemma concerning the following notions.

Definitions. By an I-configuration we mean a pair (I, α), where I is a subset of \mathbb{N} and the mapping $\alpha: I \rightarrow \mathbb{R}^{+}$satisfies the condition $\sum_{i \in I} i \alpha(i)=1$. A configuration (I, α) is said to be finite if the cardinality of the set I is finite. Let $\operatorname{gcd}(I)$ denote $\operatorname{gcd}\{i: i \in I\}$. We say that a configuration (I, α) is regular if $\operatorname{gcd}(I)=1$.

[^0]
[^0]: Translated from Matematicheskie Zametki, Vol. 58, No. 2, pp. 314-317, August, 1995.
 Original article submitted November 29, 1994.

