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Abstract. We obtain an improvement and broad generalisation of a result of
N. Ailon and Z. Rudnick (2004) on common zeros of shifted powers of poly-
nomials. Our approach is based on reducing this question to a more general
question of counting intersections of level curves of complex functions. We
treat this question via classical tools of complex analysis and algebraic geom-

etry.

1. Introduction

Recall that Ailon and Rudnick [1, Theorem 1] have shown that for any multi-
plicatively independent polynomials P1(z) and P2(z) with complex coefficients there
exists a polynomial F (z) ∈ C[z] such that for any positive integer k the greatest
common divisor of P1(z)

k − 1 and P2(z)
k − 1 divides F , that is,

gcd
(
P1(z)

k − 1, P2(z)
k − 1

)
| F (z), k = 1, 2, . . . .

Since it is easy to see that for a non-trivial polynomial P (z) ∈ C[z] the mul-
tiplicity of any factor of P (z)k − 1 does not exceed degP , the theorem of Ailon
and Rudnick is equivalent to the following statement: if P1 and P2 are complex
polynomials; then

(1.1) #

∞⋃
k=1

{z ∈ C : P1(z)
k = P2(z)

k = 1} ≤ C(P1, P2)

for some constant C(P1, P2) that depends only on P1 and P2, unless for some non-
zero integers m1 and m2 we have

(1.2) Pm1
1 (z)Pm2

2 (z) = 1

identically. Different versions and generalisations of the Ailon-Rudnick result [1,
Theorem 1] have been studied in many recent papers (see, for example, [5, 6, 9, 10]
and the references therein).

Informally, the result of [1, Theorem 1] gives a bound on the number of z ∈ C

for which the point (P1(z), P2(z)) ∈ C2 has components which are roots of unity.
Here we show the same finiteness result under a much more relaxed condition that
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the point (P1(z), P2(z)) ∈ C2 is unimodular , that is, has components on the unit
circle

(1.3) T = {z ∈ C : |z| = 1}.

The method of Ailon and Rudnick [1] relies on a result conjectured by Lang and
proved by Ihara, Serre, and Tate, which states that the intersection of an irreducible
curve C in C∗×C∗ with the roots of unity μ∞×μ∞ is finite, unless C is of the form
XnY m − η = 0 or Xm − ηY n = 0, where η ∈ μ∞, that is, unless C is a translate by
a torsion point of an algebraic subgroup of C∗ × C∗ (see [7], [8], and also [2]).

Corvaja, Masser, and Zannier in the paper [3] ask about a possible extension of
the Lang statement [7], where instead of the intersection of C with μ∞ × μ∞ the
intersection with T × T is considered (here T is treated as the topological closure
of torsion points); see also [12, Example 1.1]. In particular, they prove that the
system

(1.4) |z| = |P (z)| = 1,

where P (z) is a polynomial, has finitely many solutions, unless P (z) is a mono-
mial. They also remark that if P (z) is allowed to be a rational function, then the
system (1.4) might have infinitely many solutions for non-monomial P (z).

In this paper we consider the system of equations for the level curves

(1.5) |P1(z)| = |P2(z)| = 1,

where P1(z) and P2(z) are arbitrary rational functions, generalising the systems
(1.1) and (1.4). Using classical tools of complex analysis and algebraic geometry,
we describe P1 and P2 for which this system has infinitely many solutions and
provide bounds for the number of solutions in the other cases. Thus, our results
can be considered as extensions of the result of Ailon and Rudnick [1] as well as of
the Lang statement [7] in the particular case concerning curves of genus zero.

2. Results

Recall that a finite Blaschke product is a rational function B(z) ∈ C(z) of the
form

B(z) = ζ

n∏
i=1

(
z − ai
1− āiz

)mi

,

where ai are complex numbers in the open unit disc

D = {z ∈ C : |z| < 1},

the exponents mi, i = 1, . . . , n, are positive integers, and |ζ| = 1. A rational
function Q(z) of the form Q(z) = B1(z)/B2(z), where B1 and B2 are finite Blaschke
products, is called a quotient of finite Blaschke products.

In the above notation, our first result is the following.

Theorem 2.1. Let C : F (x, y) = 0, where F (x, y) ∈ C[x, y], be an irreducible
algebraic curve of genus zero and of degree d = degF . Then C has at most d2

unimodular points, unless it can be parametrised by some quotients of finite Blaschke
products x = Q1(z) and y = Q2(z).

Our second result is the following generalisation of the bound (1.1).
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Theorem 2.2. Let P1(z) and P2(z) be complex rational functions of degrees n1

and n2. Then

(2.1) #{z ∈ C : |P1(z)| = |P2(z)| = 1} ≤ (n1 + n2)
2,

unless

(2.2) P1 = Q1 ◦W and P2 = Q2 ◦W
for some quotients of finite Blaschke products Q1 and Q2 and rational function W .

In order to see that Theorem 2.2 implies (1.1) it is enough to observe that if
a quotient of finite Blaschke products is a polynomial, then this polynomial is
necessarily a power. Thus, (2.2) reduces to

P1 = Wm1 and P2 = Wm2 ,

implying (1.2).
Notice that since any quotient of finite Blaschke products maps the unit cir-

cle (1.3) to itself, if P1 and P2 satisfy (2.2), then the level curves |P1(z)| = 1 and
|P2(z)| = 1 have a common component W−1{T}, so a bound like (2.1), or any
other finiteness result, cannot exist. In particular, this happens if P1 is a unimod-
ular constant and P2 is an arbitrary rational function (in this case (2.2) holds for
Q1 = P1, Q2 = z, and W = P2).

3. Proofs

Since the inverse Cayley transform

z �→ T (z) = i
1 + z

1− z

maps D to the upper half-plane, and the unit circle T maps under T to the extended
real line, a rational function Q is a quotient of a finite Blaschke product if and only
if the rational function

R = T ◦Q ◦ T−1

maps R ∪ ∞ to R ∪ ∞. In turn, the last condition is equivalent to the condition
that R has real coefficients (since R(z) and R(z) coincide for infinitely many values
of z).

Thus, Theorem 2.1 is equivalent to the following statement.

Theorem 3.1. If an irreducible algebraic curve C : F (x, y) = 0 of genus zero
and degree d has more than d2 real points, then C can be parametrised by rational
functions with real coefficients.

Proof. Observe that real points of C belong to the intersection of the curve C and
the curve C : F (x, y) = 0. Therefore, it follows from the Bézout theorem that
whenever C has more than d2 real points there exists c ∈ C such that F = cF .
Such c must satisfy cc = 1, implying that we can find a complex number λ such
that λ2 = c and λλ = 1. Since

λF = λλ2F = λF,

the polynomial λF has real coefficients, and hence C can be defined over R.
Since the maximal number of singular points of a plane curve of degree d does

not exceed
(d− 1)(d− 2)

2
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(see, for example, [4, Page 49]) and C has more than d2 real points, C has a non-
singular real point. Finally, an algebraic curve C of genus zero defined over R admits
a parametrisation by rational functions defined over R whenever C has at least one
non-singular R-point (see, for example, [11, Theorem 7.6]). �

In order to prove Theorem 2.2, recall that if a parametrisation x = P1(z), y =
P2(z) of an algebraic curve C, given by F (x, y) = 0 with an irreducible polynomial
F , of genus zero is proper, that is, if

C(z) = C(P1(z), P2(z)),

then

degP1 = degy F and degP2 = degx F

(see, for example, [11, Theorem 4.21]).
Let now P1 and P2 be rational functions of degrees n1 and n2. Then the Lüroth

theorem implies that there exist a rational function W and rational functions Q1

and Q2 such that the equalities (2.2) hold, and

x = Q1(z), y = Q2(z),

is a proper parametrisation of an algebraic curve C of degree at most n1 + n2.
Therefore, if (2.1) does not hold, then Q1 and Q2 are quotients of finite Blaschke
products by Theorem 2.1.

Remark 3.2. We observe that the above argument provides a simple geometric
criterion for a curve C : G(x, y) = 0 to have infinitely many unimodular points.

Namely, considering instead of the curve C a curve Ĉ : Ĝ(x, y) = 0, where

Ĝ(x, y) = G (T (x), T (y)) ,

we reduce the question to the question about real points of Ĉ. On the other hand,
it is easy to see that an algebraic curve has infinitely many real points if and only
if it is defined over R and has at least one simple R-point. Indeed, the necessity
has been proved above. In the other direction, if a curve defined over R has a
simple R-point, then the implicit function theorem implies that it has infinitely
many R-points.
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[1] Nir Ailon and Zéev Rudnick, Torsion points on curves and common divisors of ak − 1 and
bk − 1, Acta Arith. 113 (2004), no. 1, 31–38, DOI 10.4064/aa113-1-3. MR2046966

[2] F. Beukers and C. J. Smyth, Cyclotomic points on curves, Number theory for the millennium,
I (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 67–85. MR1956219

[3] Pietro Corvaja, David Masser, and Umberto Zannier, Sharpening ‘Manin-Mumford’ for cer-
tain algebraic groups of dimension 2, Enseign. Math. 59 (2013), no. 3-4, 225–269, DOI
10.4171/LEM/59-3-2. MR3189035

[4] Gerd Fischer, Plane algebraic curves, Student Mathematical Library, vol. 15, American Math-
ematical Society, Providence, RI, 2001. Translated from the 1994 German original by Leslie
Kay. MR1836037

[5] Dragos Ghioca, Liang-Chung Hsia, and Thomas J. Tucker, On a variant of the Ailon-Rudnick
theorem in finite characteristic, New York J. Math. 23 (2017), 213–225. MR3625452

https://www.ams.org/mathscinet-getitem?mr=2046966
https://www.ams.org/mathscinet-getitem?mr=1956219
https://www.ams.org/mathscinet-getitem?mr=3189035
https://www.ams.org/mathscinet-getitem?mr=1836037
https://www.ams.org/mathscinet-getitem?mr=3625452


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LEVEL CURVES OF RATIONAL FUNCTIONS 1833

[6] Liang-Chung Hsia and Thomas J. Tucker, Greatest common divisors of iterates of polyno-
mials, Algebra Number Theory 11 (2017), no. 6, 1437–1459, DOI 10.2140/ant.2017.11.1437.
MR3687102

[7] Serge Lang, Division points on curves, Ann. Mat. Pura Appl. (4) 70 (1965), 229–234, DOI
10.1007/BF02410091. MR190146

[8] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983.
MR715605

[9] Alina Ostafe,On some extensions of the Ailon-Rudnick theorem, Monatsh. Math. 181 (2016),
no. 2, 451–471, DOI 10.1007/s00605-016-0911-3. MR3539944

[10] Hector Pasten and Julie Tzu-Yueh Wang, GCD bounds for analytic functions, Int. Math.
Res. Not. IMRN 1 (2017), 47–95, DOI 10.1093/imrn/rnw028. MR3632098

[11] J. Rafael Sendra, Franz Winkler, and Sonia Pérez-Dı́az, Rational algebraic curves, Algorithms
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