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ABSTRACT

We investigate the following existence problem for rational functions: for a given
collection Π of partitions of a number n to define whether there exists a rational function
f of degree n for which Π is the branch datum. An important particular case when the
answer is known is the one when the collection Π contains a partition consisting of a single
element (in this case, the corresponding rational function is equivalent to a polynomial).
In this paper, we provide a solution in the case when Π contains a partition consisting
of two elements.
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1. Introduction

Let f : S2 → S2 be an n-fold branched covering or equivalently a rational function
on the Riemann sphere, and z1, z2, . . . , zq ∈ S2 be its branching points (i.e. points
z ∈ S2 for which f−1{z} contains less than n points). Then for each i, 1 ≤ i ≤ q,

the set Πi = {ai,1, ai,2, . . . , ai,pi} of local degrees of f at points of f−1{zi} is a
partition of n. Furthermore, it follows from the Riemann–Hurwitz formula that

q∑

i=1

pi = (q − 2)n + 2. (1.1)

The collection Π = {Π1, . . . , Πq} is called the branch datum of f. In this paper,
we investigate the following existence problem for rational functions: for a given
collection Π of partitions Πi = {ai,1, ai,2, . . . , ai,pi}, 1 ≤ i ≤ q, of a number n such
that (1.1) holds to define whether there exists a rational function f for which Π is
the branch datum.

The existence problem for rational functions is a particular case of the existence
problem for branched coverings f : N → M between closed Riemann surfaces
which goes back to Hurwitz [5]. This problem was studied by many authors (see
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e.g. [1–6, 11, 12]) and essentially remains open only for the case when M = S2.
Namely, the results obtained in [2, 3, 6] imply that if χ(M) ≤ 0, then natural
necessary conditions, involving the Euler characteristic and the orientability of M

and N , as well as the degree of f and its local degrees at the branching points, are
also sufficient. Similarly, these conditions are sufficient if M is the projective plane
and N is non-orientable (see [2, Theorem 5.1]). On the other hand, if M is the
projective plane and N is orientable, then the problem reduces to the case when
M = S2 (see e.g. [2, Proposition 2.7]).

In contrast to the case χ(M) ≤ 0, if M = S2, then natural necessary conditions
which reduce in this case to the Riemann–Hurwitz formula, in general are known
to be not sufficient. For example, the collection {2, 2}, {2, 2}, {3, 1} is compatible
with (1.1) nevertheless it cannot be the branch datum of a rational function (see [2,
Corollary 6.4 and Theorem 1.1 below]). A survey of known results and techniques
related to the existence problem for branched coverings can be found in [11].

The existence problem for branched coverings is closely related to the problem
of enumeration of equivalence classes of covering with prescribed branch datum
posed by Hurwitz [5]. Note that this last problem in a sense can be solved using
the representation theory of the symmetric group (see [9, 10]), nevertheless the
corresponding formulas are usually too complicated to be calculated exactly. In
particular, an explicit criterion which permits to define whether a collection of
partitions is the branch datum for at least one rational function does not exist.

An important particular case when the answer to the existence problem for
rational functions is known is the one when the collection Π contains a partition
consisting of a single element. It was shown in [13] (see also [2, 7, 8]) that for
any such a collection necessary condition (1.1) is also sufficient for the existence of
a rational function for which Π is the branch datum. Note that the requirement
imposed on Π implies that this rational function is equivalent to a polynomial.

Since the polynomial case seems to be rather special, the following particu-
lar case of the existence problem for rational functions, in a sense the simplest
possible after the polynomial one, is of interest: to describe the collections of par-
titions, containing a partition ∆ consisting of two elements, which are branch date
of rational functions. Clearly, this problem is essentially equivalent to the exis-
tence problem for Laurent polynomials. To our best knowledge the only results
relevant to this problem are: [2, Proposition 5.3] which provides the solution of the
general existence problem for coverings in the case when ∆ = {1, n− 1}, [12, The-
orem 1.1] which solves the existence problem for Laurent polynomials in the case
when ∆ = {2, n − 2} under the additional assumption that q = 3, and [2, Corol-
lary 6.4] which states that a Laurent polynomial with ramification {2, 2, . . . , 2},
{2, 2, . . . , 2}, {s, n− s} exists if and only if s = n/2.

In this paper, we provide a complete solution of the existence problem for Lau-
rent polynomials. To formulate our result explicitly, let us introduce the following
notation. Say that a collection Π of q partitions Πi = {ai1, ai2, . . . , aipi}, 1 ≤ i ≤ q,
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of a number n is an (n, q)-passport if the numbers pi, 1 ≤ i ≤ q, are less than n

and satisfy (1.1). Say that a passport Π is realizable if Π coincides with the branch
datum of a rational function. Finally, say that a passport Π is a Laurent passport
if pq = 2. Under this notation our main result is the following theorem.

Theorem 1.1. Any Laurent passport Π for which q > 3 is realizable. A Laurent
passport Π for which q = 3 is realizable if and only if Π is distinct from the triplets
listed below:

(1) {l, l, . . . , l}, {1, 1, . . . , 1, d}, {s, n− s}, where d ≥ 3, l ≥ 2, s ≥ 1, s ≡ 0 mod l,

(2) {2, 2, . . . , 2}, {2, 2, . . . , 2}, {s, n − s}, where s ≥ 1, s �= n/2,

(3) {2, 2, . . . , 2}, {1, 1, . . . , 1, d − 1, d}, {2d− 3, n − 2d + 3}, where d ≥ 3,

(4) {2, 2, . . . , 2}, Π2 = {1, 1, . . . , 1, d, d}, Π3 = {2d − 3, n− 2d + 3}, where d ≥ 3,

(5) {2, 2, . . . , 2}, {1, 1, . . . , 1, d, d}, {2d− 1, n − 2d + 1}, where d ≥ 3,

(6) {2, 2, . . . , 2}, Π2 = {1, 2, 2, . . . , 2, 3}, Π3 = {n/2, n/2},
(7) {2, 2, 2, 2, 2, 2}, {1, 1, 1, 3, 3, 3}, {6, 6}.

Our approach to the existence problem for rational functions is based on a
one-to-one correspondence between equivalence classes of n-fold branched coverings
f : S2 → S2 with branching points c1, c2, . . . , cq, and equivalence classes of so-called
planar (n, q)-constellations (see [8] and Sec. 2 below). Roughly speaking, a planar
(n, q)-constellation is a connected planar graph Γ obtained by gluing together n

copies of a planar (q − 1)-gone with numerated vertices along vertices with equal
numbers. The correspondence between coverings and constellations reduces the exis-
tence problem for rational functions with prescribed branch data to the existence
problem for constellations with prescribed valency data, and in this paper we will
consider the existence problem in this purely combinatorial setting.

Note that in the case when q = 3 constellations are simply bicolored planar
graphs that is planar graphs whose vertices can be colored by two colors so that
adjacent vertices have different colors. Such graphs, also called “dessins d’enfants”,
are closely related to Galois theory and for this reason appear in a large number
of recent papers (see e.g. [8] and the bibliography there). In general case, however,
constellations have more subtle combinatorial structure, and one of the objectives of
this paper is to develop some combinatorial techniques to work with constellations
in order to make these beautiful combinatorial objects useful for the questions like
the Hurwitz existence problem. Note also that the correspondence above extends to
a correspondence between coverings f : N → S2, where N is any closed orientable
Riemann surface, and constellations embedded in N . Therefore, in principle our
method is applicable for such coverings too.

The paper is organized as follows. In the second section, we recall the correspon-
dence between constellations and coverings and introduce the notation. Besides, we
prove two lemmas which we will often use in the following. In the third section, we
develop the necessary techniques and give the constructive proof of the main the-
orem in the case when q > 3. Finally, in the fourth section, we separately analyze
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the case when q = 3 which turns out to be essentially different from the general
one.

2. Preliminaries and Notation

2.1. Constellations and coverings

In this subsection, we recall the correspondence between constellations and cover-
ings. For more information and other versions of the definition of a constellation,
we refer the reader to [8].

A q-star is a connected planar graph S, consisting of one vertex of valency q, q

vertices of valency 1, and q edges, such that the vertices of valency 1 are numer-
ated in the counterclockwise direction with respect to the natural cyclic ordering
induced by the embedding of S (see Fig. 1(a)). A planar (n, q)-constellation Γ is a
connected planar graph obtained by gluing together n copies of a q − 1-star along
their numerated vertices with equal numbers (see Fig. 1(b)). We will suppose addi-
tionally that for each i, 1 ≤ i ≤ q − 1, the graph Γ contains a vertex with number i

whose valency is ≥ 2 and that the number of faces of Γ is less than n. Two planar
constellations, Γ̃ and Γ are called equivalent if Γ̃ = h(Γ), where h : S2 → S2 is
an orientation preserving homeomorphism which preserves the numbers of vertices.
Since in this paper we will work only with planar constellations, in the following
we will omit the word “planar”. Note that if we traverse a face of a constellation
Γ, then the numbers of numerated vertices appear in the cyclic order and between
any two consecutive numerated vertices there is exactly one non-numerated vertex.
In particular, the valency of each face of Γ is divisible by 2(q − 1).

The numerated vertices of a constellation Γ with number i, 1 ≤ i ≤ q − 1, are
called i-vertices of Γ and the collection of valencies of i-vertices of Γ is denoted by
Γi = {ai,1, ai,2, . . . , ai,pi}. By Γq = {aq,1, aq,2, . . . , aq,pq}, we will denote the collec-
tion of valencies of faces of Γ divided by 2(q − 1). Note that in view of the remark
above, for any i, 1 ≤ i ≤ q − 1, the number aq,j , 1 ≤ j ≤ pq, equals the number of

(a) (b)

Fig. 1.
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appearances of i-vertices when traversing the corresponding face. We will call the
collection Γ1, Γ2, . . . , Γq the valency datum of the constellation Γ. For example, for
a (9, 5)-constellation shown on Fig. 1(b), its valency datum is Γ1 = {1, 2, 3, 3}, Γ2 =
{1, 1, 1, 1, 1, 2, 2}, Γ3 = {1, 1, 1, 1, 1, 1, 3}, Γ4 = {1, 1, 1, 1, 1, 1, 1, 2}, Γ5 = {1, 2, 6}.

Since each star of a constellation Γ is adjacent to a unique i-vertex of Γ, each
collection Γi = {ai,1, ai,2, . . . , ai,pi}, 1 ≤ i ≤ q − 1, is a partition of n. Furthermore,
since the sum of valencies of faces of Γ coincides with the doubled number of edges
of Γ, the collection Γq = {aq,1, aq,2, . . . , aq,pq} also is a partition of n. Notice that
the additional requirement made in the definition of a constellation is equivalent
to the requirement that the numbers pi, 1 ≤ i ≤ q, are less than n. Finally, observe
that Euler’s formula implies that the numbers pi, 1 ≤ i ≤ q, satisfy (1.1).

Starting from an n-fold branched covering f : S2 → S2 with q branching points
c1, c2, . . . , cq and the branch datum Π = {Π1, . . . , Πq}, we can obtain an (n, q)-
constellation Γ = Γ(f) for which Γi = Πi, 1 ≤ i ≤ q, as follows. Let c be a non-
branching value of f(z) and S ⊂ S2 be a q− 1-star joining c with c1, c2, . . . , cq−1 such
that cq ∈ S2\S. Define Γ as the preimage of S under the map f : S2 → S2. More
precisely, define edges of Γ as preimages of edges of S, i-vertices of Γ as preimages
of ci, 1 ≤ i ≤ q − 1, and non-numerated vertices of Γ as preimages of c (see Fig. 2).
It is not hard to verify that Γ is indeed a constellation and that Γi = Πi, 1 ≤ i ≤ q.

Conversely, if Γ is an (n, q)-constellation with the valency datum Γ1, Γ2, . . . , Γq,
then for any c1, c2, . . . , cq ∈ S2 there exists an n-fold branched covering f : S2 → S2

with branching points c1, c2, . . . , cq and the branch datum Π = {Π1, . . . , Πq} such
that Πi = Γi, 1 ≤ i ≤ q. To construct the covering needed first of all modify the
constellation Γ as follows. Encircle each star Sl, 1 ≤ l ≤ n, of Γ with a simple
closed curve γl so that the closure of the domain Dl bounded by γl contains Sl,
and γl ∩ Γ consists of numerated vertices of Sl only. Then, delete all the edges and
non-numerated vertices of Γ (see Fig. 3(a), where this operation is applied to the
constellation shown on Fig. 2). Clearly, the obtained graph Ω has a natural two-
colored structure on his faces. We will color the faces Dl, 1 ≤ l ≤ n, by the black
color and the rest faces Lj, 1 ≤ j ≤ pq, by the white one.

Fig. 2.
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Fig. 3.

Let γ be a simple closed curve which passes through c1, c2, . . . , cq−1 consecu-
tively. It divides the sphere into two parts. Denote the bounded part by D and
the unbounded part by L (see Fig. 3(b), where D (respectively, L) is colored by
black (respectively, white) color). Suppose additionally that γ is chosen in such a
way that cq ∈ L. It is not hard to see that we can define a continuous function
f : S2 → S2 which satisfies the following condition: f maps D̄l, 1 ≤ l ≤ n, on D̄

homeomorphically such that the i-vertex of D̄i is mapped on ci, 1 ≤ i ≤ q, while
the restriction of f on Lj, 1 ≤ j ≤ pq, is a aq,j-fold branched covering of L with the
unique branching point cq (f on Lj looks like zaq,j on the unit circle). Clearly, f is
an n-branched covering and by construction the valency datum of Γ coincides with
the branch datum of f.

It is easy to check that the correspondence above descends to a one-to-
one correspondence between equivalence classes of n-fold branched coverings
f : S2 → S2 with branching points c1, c2, . . . , cq, and equivalence classes of pla-
nar (n, q)-constellations. In particular, this implies that instead of proving that a
covering with a given branch datum exists or does not exist it is enough to prove
the corresponding fact about constellations.

Notice that (n, 3)-constellations are in a one-to-one correspondence with n-edged
bicolored planar graphs. Indeed, it is enough “to forget” about non-colored vertices
and paint 1-vertices (respectively, 2-vertices) by the back (respectively, the white)
color (see Fig. 4). The corresponding rational functions are called Belyi functions
and have very interesting arithmetical properties (see e. g. [8]).

2.2. Constellations with two faces and Laurent passports

In this subsection, we fix notation concerning two-face constellations and Laurent
passports. Besides, we prove two simple lemmas about such constellations and pass-
ports which we will often use in the following.
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Fig. 4.

2.2.1. Notation for Laurent passports

First of all, since for a Laurent (n, q)-passport Π the partition Πq = {s, n − s}
essentially depends only on the parameter s (for given n), we will always indicate
only this parameter instead of writing explicitly the partition itself. Besides, it is
convenient to denote the number q − 1 which will appear in most formulas by
another letter r.

Furthermore, for a Laurent passport Π we will denote by qi (respectively, ei),
1 ≤ i ≤ r, the number of elements of Πi = {ai,1, ai,2, . . . , ai,pi} which are greater
than 1 (respectively, equal 1) and by bi,1, bi,2, . . . , bi,qi , 1 ≤ i ≤ r, the elements of
Πi which are greater than 1. Clearly, we have ei + qi = pi, 1 ≤ i ≤ r, and equality
(1.1) reduces to the equality

r∑

i=1

pi = (r − 1)n. (2.1)

To be definite we will always assume that bi,1 ≤ bi,2 ≤ · · · ≤ bi,qi , 1 ≤ i ≤ r, and
q1 ≥ q2 ≥ · · · ≥ qr.

2.2.2. Notation for constellations with two faces

First of all, notice that although a constellation is an object embedded in S2, all
our pictures will be plane. In view of this fact we will use the following notation.
For a pictured two-face constellation a bounded (respectively, an unbounded) face
of Γ is called an interior (respectively, an exterior) face of Γ. To lighten notation
the corresponding number aq,i ∈ Γq, i = 1, 2, is denoted by i(Γ) (respectively, e(Γ)).

Furthermore, a union of all stars of a two-face constellation Γ which have an
edge adjacent to both faces of Γ is called a skeleton of Γ and is denoted by sk(Γ).
The graph obtained from sk(Γ) by removing all vertices of valency 1, together
with adjacent to them edges, and all non-colored vertices is called the cycle of Γ
and is denoted by c(Γ). For example, for the constellation shown on Fig. 5, the
corresponding skeleton and cycle are shown on Fig. 6.

Let v be a numerated vertex of Γ adjacent to a star which belongs to sk(Γ).
A subconstellation λ of Γ such that λ contains v, λ\v belongs to the bounded
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Fig. 5.

(respectively, the unbounded) part of S2\sk(Γ), and Γ\λ is connected is called an
interior (respectively, an exterior) branch of Γ growing from v. The number of stars
of a branch λ is called the weight of λ and is denoted by |λ|. For example, the
constellation shown on Fig. 5 has one exterior branch of weight 2 and two interior
branches whose weights are 1 and 3. A constellation Γ which does not have interior
branches is called a sunflower.

It is convenient to use for two-face constellations the notation similar to
the one for Laurent passports. So, for a two-face (n, q)-constellation Γ we will
denote by r the number q − 1, by qi (respectively, ei) the number of elements
of Γi = {ai,1, ai,2, . . . , ai,pi}, 1 ≤ i ≤ r, which are greater than 1 (respectively,
equal to 1), and by bi1, bi2, . . . , biqi , 1 ≤ i ≤ r, the elements of Γi which are greater
than 1. To avoid any confusion, in case of necessity we will write in parenthesis to
which passport or constellation these quantities and the parameters n, r are related.
Clearly, formula (2.1) holds also for two-face (n, q)-constellations.

Since in the rest of this paper we will deal only with Laurent passports and
two-faced constellations, in the following we will omit the corresponding adjectives.

Fig. 6.
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2.2.3. Two lemmas

Lemma 2.1. For any passport Π or constellation Γ, we have:
r∑

i=2

qi∑

j=1

(bi,j − 2) = e1 + q1 − (q2 + q3 + · · · + qr).

Proof. Indeed,
r∑

i=2

qi∑

j=1

(bi,j − 2) =
r∑

i=1

qi∑

j=1

(bi,j − 2) −
q1∑

j=1

(b1,j − 2)

=
r∑

i=1

qi∑

j=1

(bi,j − 2) + 2q1 −
q1∑

j=1

b1,j.

On the other hand,
r∑

i=1

qi∑

j=1

(bi,j − 2) −
r∑

i=1

ei =
r∑

i=1

pi∑

j=1

(ai,j − 2)

= nr − 2
r∑

i=1

pi = nr − 2(r − 1)n = (2 − r)n.

Therefore,
r∑

i=2

qi∑

j=1

(bi,j − 2) = (2 − r)n +
r∑

i=1

ei + 2q1 −
q1∑

j=1

b1,j

= (2 − r)n +
r∑

i=1

(ei + qi) −
r∑

i=2

qi + q1 −
q1∑

j=1

b1,j

= (2 − r)n +
r∑

i=1

pi −
r∑

i=2

qi + q1 − (n − e1)

= (2 − r)n + (r − 1)n −
r∑

i=2

qi + q1 − (n − e1)

= e1 + q1 − (q2 + q3 + · · · + qr).

Lemma 2.2. Let Π be a passport and Γ be a constellation such that r(Γ) =
r(Π), qi(Γ) = qi(Π), 1 ≤ i ≤ r, and bi,j(Γ) = bi,j(Π), 1 ≤ i ≤ r, 1 ≤ j ≤ qi.

Then Γi = Πi, 1 ≤ i ≤ r.

Proof. Indeed, it follows from Lemma 2.1 that e1(Γ) = e1(Π). Since b1,j(Γ) =
b1,j(Π), 1 ≤ j ≤ q1, this implies that Γ1 = Π1. Therefore, n(Γ) = n(Π). But then
also ei(Γ) = ei(Π), 2 ≤ i ≤ r, and therefore Γi = Πi, 1 ≤ i ≤ r.

Lemma 2.2 implies that in order to prove that a passport Π is realizable, it
is enough to find a constellation Γ for which qi(Γ) = qi(Π), 1 ≤ i ≤ r, and
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Fig. 7.

bi,j(Γ) = bi,j(Π), 1 ≤ i ≤ r, 1 ≤ j ≤ qi, without checking that n(Γ) = n(Π) and
ei(Γ) = ei(Π), 1 ≤ i ≤ r. We will often use this fact without mentioning it explicitly.

3. Passports with r > 2

Proposition 3.1. Let r > 2 and q1 ≥ q2 ≥ q3 ≥ · · · ≥ qr > 0 be integers such that
q1 ≤ q2 + q3 + · · · + qr. Then for any s, 1 ≤ s ≤ q2 + q3 + · · · + qr, there exists a
sunflower Ω such that all numerated vertices of Ω have valencies ≤ 2, r(Ω) = r,

qi(Ω) = qi, 1 ≤ i ≤ r, and i(Ω) = s.

Proof. We will prove the proposition in three stages. First, we will construct a
sunflower ∆ for which q1(∆) = q2, qi(∆) = qi, 2 ≤ i ≤ r, and i(∆) = q2. Then, we
will construct a sunflower Σ such that qi(Σ) = qi, 1 ≤ i ≤ r, and i(Σ) = q1. Finally,
we will construct the sunflower Ω.

To construct the sunflower ∆ first dispose 2q2+q3 + · · ·+qr vertices, q2 of which
are 1-vertices and qi, 2 ≤ i ≤ r, of which are i-vertices, on the circle as follows: place
a 1-vertex as the “first”, a 2-vertex as the “second”, and so on till an r-vertex (we
move in the clockwise direction). Then, place again a 1-vertex and continue as above
skipping however those i-vertices, 2 ≤ i ≤ r, which are already out of stock (see
Fig. 7, where q2 = 3, q3 = 2, q4 = 1). Now, replace each edge of the obtained graph
by a star respecting the vertex numeration as it is shown on Fig. 8. Clearly, we
obtain a sunflower ∆ for which q1(∆) = q2, qi(∆) = qi, 2 ≤ i ≤ r. Furthermore, the
construction implies that 1-vertices of valency 1 cannot be adjacent to the interior
face of ∆. It follows that there are exactly q2 1-vertices adjacent to the interior face
of ∆ and hence the equality i(∆) = q2 holds.

To construct the sunflower Σ modify ∆ as follows. Replace any star S of ∆ for
which its 1-vertex is of valency 1 (see Fig. 9(a)) by two stars shown on Fig. 9(b)
so that to obtain a sunflower ∆̃ such that q1(∆̃) = q1(∆) + 1 and qi(∆̃) = qi(∆),
2 ≤ i ≤ r (see Fig. 10, where this operation is applied to the sunflower shown
on Fig. 8). Observe that the number of appearances of 1-vertices when traversing
the exterior face of ∆̃ equals the corresponding number for ∆ while the number
of appearances of 1-vertices when traversing the interior face of ∆̃ exceeds the

Fig. 8.
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(a) (b)

Fig. 9.

corresponding number for ∆ by 1. Therefore, the equalities e(∆̃) = e(∆), i(∆̃) =
i(∆)+1 hold. Since by construction there are exactly q3 +q4+ · · ·+qr stars of ∆ for
which 1-vertex is of valency 1, and q1−q2 ≤ q3+· · ·+qr by condition, after repeating
this operation q1−q2 times, we obtain a sunflower Σ for which qi(Σ) = qi, 1 ≤ i ≤ r,

and i(Σ) = q1. Notice that by construction, Σ has q2 + q3 + · · ·+ qr − q1 1-vertices
of valency 1.

Now, we are ready to construct the sunflower Ω. First, observe that since
e(Σ) = e(∆) = q2 + q3 + · · · + qr, in order to construct Ω for s = q2 + q3 + · · ·+ qr,
it is enough “to turn inside out” Σ (see Fig. 13 where this operation is applied to
the sunflower shown on Fig. 10). For s, 1 ≤ s ≤ q2 + q3 + · · · + qr − 1, modify the
sunflower Σ as follows. Suppose first that q1 < q2 + q3 + · · ·+ qr. Then, there exists
a 1-vertex u of Σ of valency 2 such that the next 1-vertex v, when traversing the
exterior face of Σ in the counterclockwise direction, is of valency 1 (see Fig. 10,
where a possible choice of u and v is shown). Indeed, consider an arbitrary 1-vertex
t of valency 2. If the condition above is not satisfied for t, then the next 1-vertex t1
is also of valency 2. Check now the condition for t1 and so on. Since the condition
q1 < q2 + q3 + · · · + qr implies that Σ contains at least one 1-vertex of valency 1,
continuing in this way we will arrive to the vertex needed (recall that 1-vertices of
valency 1 cannot be adjacent to the interior face of Σ).

Now, traverse the exterior face of Σ in the counterclockwise direction starting
from the vertex v till the moment when a 1-vertex will appear for the s time and
denote this 1-vertex by w. If the valency of w is 2 (see Fig. 10, where s = 1 and
the corresponding vertex is denoted by w1), then divide w into two (not connected)
1-vertices and glue one of them with v as it shown on Fig. 11 (note that if s =
q2 + q3 + · · · + qr − 1 then w = u).

On the other hand, if the valency of w is 1 (note that in this case necessarily
s < q2 + q3 + · · · + qr − 1, see Fig. 10, where s = 2 and the corresponding vertex
is denoted by w2), then glue vertices v and w and then divide u into two (not
connected) 1-vertices as it is shown on Fig. 12. Clearly, in both cases, we obtain a
sunflower Ω for which qi(Ω) = qi, 1 ≤ i ≤ r, and i(Ω) = s.

Fig. 10.
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Fig. 11.

To finish the proof we only must consider the case when q1 = q2 + q3 + · · ·+ qr

and s satisfies

1 ≤ s ≤ q2 + q3 + · · · + qr − 1. (3.1)

Set

q̃1 = q2 + q3 + · · · + qr − 1, q̃i = qi, 2 ≤ i ≤ r.

Since q̃1 < q̃2 + q̃3 + · · ·+ q̃r, for any number s satisfying 1 ≤ s ≤ q̃2 + q̃3 + · · ·+ q̃r

using the already proved part of the proposition, we can construct a sunflower Ω̃
for which qi(Ω̃) = q̃i, 1 ≤ i ≤ r, and i(Ω̃) = s. Furthermore, if s satisfies

1 ≤ s ≤ q̃2 + q̃3 + · · · + q̃r − 1 (3.2)

(that is if Ω̃ is distinct from the sunflower shown on Fig. 13), then by construc-
tion Ω̃ contains a 1-vertex y of valency 1 adjacent to the exterior face of Ω̃ (see
Fig. 11). Gluing now to the vertex y a star, we obtain a sunflower Ω for which
qi(Ω) = qi, 1 ≤ i ≤ r, and i(Ω) = s. Since inequalities (3.1) and (3.2) are equiva-
lent, this proves the proposition.

Lemma 3.2. A passport Π for which s(Π) ≤ q2(Π)+q3(Π)+· · ·+qr(Π) is realizable
whenever r(Π) > 2.

Proof. Suppose first that q1(Π) ≤ q2(Π) + q3(Π) + · · · + qr(Π). Then by Propo-
sition 3.1, there exists a sunflower Ω such that i(Ω) = s(Π), qi(Ω) = qi(Π),
1 ≤ i ≤ r and all numerated vertices of Ω have valencies ≤ 2. Clearly, we can

Fig. 12.
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Fig. 13.

glue a number of stars to the vertices of valency 2 of Ω so that for the obtained
constellation Ω1 to get

bi,j(Ω1) = bi,j(Π), 1 ≤ i ≤ r, 1 ≤ j ≤ qi. (3.3)

Furthermore, since Ω is a sunflower we can glue the stars needed so that the constel-
lation Ω1 also will be a sunflower (see Fig. 14, where

s(Π) < q2(Π) + q3(Π) + · · · + qr(Π)

and Fig. 17, where s(Π) = q2(Π) + q3(Π) + · · · + qr(Π)). Then, i(Ω1) = s(Π)
and therefore the valency datum of Ω1 coincides with Π (see the remark after
Lemma 2.2).

In the case when q1(Π) > q2(Π) + q3(Π) + · · ·+ qr(Π), we act as follows. In the
beginning, using Proposition 3.1 construct a sunflower Ω such that i(Ω) = s(Π) and

q1(Ω) = q2(Π) + q3(Π) + · · · + qr(Π), qi(Ω) = qi(Π), 2 ≤ i ≤ r.

Note that since q1(Ω) = q2(Ω)+q3(Ω)+ · · ·+qr(Ω), the construction of Proposition
3.1 implies that Ω contains no 1-vertices of valency 1. On the next stage, glue a
number of stars to the vertices of valency 2 of Ω so that to obtain a sunflower Ω1

for which i(Ω1) = s(Π) and

bi,j(Ω1) = bi,j(Π), 2 ≤ i ≤ r, 1 ≤ j ≤ qi,

while

{b1,1(Ω1), b1,2(Ω1), . . . , b1,q1(Ω1)(Ω1)} = {b1,l+1(Π), b1,l+2(Π), . . . , b1,q1(Π)(Π)},
where

l = q1(Π) − (q2(Π) + q3(Π) + · · · + qr(Π))

(see Fig. 15, where s(Π) < q2(Π) + q3(Π) + · · · + qr(Π)).

Fig. 14.
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Fig. 15.

Since Ω have no 1-vertices of valency 1, it is easy to see that for the number ν

of 1-vertices of valency 1 of Ω1 the equality

ν =
r∑

i=2

qi(Π)∑

j=1

(bi,j(Π) − 2)

holds. Note that all these 1-vertices are adjacent to the exterior face of Ω1. Since
Lemma 2.1 implies that ν ≥ l, on the last stage of our construction, we can glue l

stars to the 1-vertices of valency 1 of Ω1 so that to obtain a sunflower Ω2 for which
i(Ω2) = s(Π), qi(Ω2) = qi(Π), 1 ≤ i ≤ r, and

bi,j(Ω2) = bi,j(Π), 1 ≤ i ≤ r, 1 ≤ j ≤ qi

(see Fig. 16, where s(Π) < q2(Π) + q3(Π) + · · · + qr(Π) and Fig. 19, where s(Π) =
q2(Π) + q3(Π) + · · · + qr(Π)).

Proposition 3.3. A passport Π for which q1(Π) ≤ q2(Π) + q3(Π) + · · · + qr(Π) is
realizable whenever r(Π) > 2.

Fig. 16.
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Fig. 17.

Proof. In view of Lemma 3.2, we only must consider the case when s(Π) satisfies

q2(Π) + q3(Π) + · · · + qr(Π) < s(Π) ≤ n/2.

Let Ω be a sunflower such that Ωi = Πi, 1 ≤ i ≤ r, and

i(Ω) = q2(Π) + q3(Π) + · · · + qr(Π)

constructed in Lemma 3.2. Since q1(Π) ≤ q2(Π) + q3(Π) + · · · + qr(Π), Ω has the
form shown on Fig. 17 (that is all vertices of Ω of valency ≥ 2 are on c(Ω)).

Observe that if we “shift” any of branches of Ω from outside to inside (see
Fig. 18), then we obtain a constellation Ω̃ with qi(Ω̃) = qi(Π), 1 ≤ i ≤ r, and

i(Ω̃) = q2(Π) + q3(Π) + · · · + qr(Π) + 1.

It is clear that repeating this operation we can obtain a constellation Ω1 with
qi(Ω1) = qi(Π), 1 ≤ i ≤ r, and i(Ω1) equal to any s which satisfies

q2(Π) + q3(Π) + · · · + qr(Π) + 1 ≤ s ≤ µ,

where

µ = q2(Π) + q3(Π) + · · · + qr(Π) +
r∑

i=1

qi(Π)∑

j=1

(bi,j(Π) − 2). (3.4)

Fig. 18.
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So, to finish the proof we only must show that µ ≥ n/2. Since by Lemma 2.1

µ =
q1(Π)∑

j=1

(b1,j(Π) − 2) + e1(Π) + q1(Π) = n − e1(Π) − 2q1(Π) + e1(Π) + q1(Π)

= n − q1(Π), (3.5)

it follows from the obvious equality q1(Π) ≤ n/2 that

µ ≥ n/2. (3.6)

Lemma 3.4. Let u1, u2, . . . ul, t be integers such that 1 < u1 ≤ u2 ≤ · · · ≤ ul and
t ≥ 1. Then, the equation

s = y + x1u1 + x2u2 + · · · + xlul (3.7)

has a solution in xi, y with xi ∈ {0, 1}, 1 ≤ i ≤ l, and y ∈ {0, 1, 2, . . . , t} for any
s satisfying 0 ≤ s ≤ t + u1 + u2 + · · · + ul if and only if for any k, 1 ≤ k ≤ l, the
inequality

t +
k−1∑

i=1

ui ≥ uk − 1 (3.8)

holds. In particular, the condition t ≥ ul − 1 is sufficient.

Proof. First, notice that condition (3.8) is necessary since if (3.8) fails to be true,
say, for k = h, then Eq. (3.7) has no solutions for s = uh − 1. Indeed, since
s < uh ≤ uh+1 ≤ · · · ≤ ul if such a solution exists, then necessary xi = 0 for i ≥ h.

On the other hand, since t +
∑h−1

i=1 ui < uh − 1, the inequality

y + x1u1 + x2u2 + · · · + xh−1uh−1 < s

holds for any choice of xi, 1 ≤ i ≤ h − 1 and y, 0 ≤ y ≤ t.

To prove the sufficiency of (3.8), we use the induction on l. For l = 1 the lemma
is obvious. Suppose that it holds for l = n and prove it for l = n + 1. If s satisfies
0 ≤ s ≤ t + u1 + u2 + · · · + un, then the statement is true since by the inductive
hypothesis there exist xi, 1 ≤ i ≤ n, and y, 0 ≤ y ≤ t, such that

s = y + x1u1 + x2u2 + · · · + xnun.

On the other hand, if

t + u1 + u2 + · · · + un < s ≤ t + u1 + u2 + · · · + un + un+1 (3.9)

then (3.8) taken for k = l = n + 1 implies that s = un+1 + s̃ for some s̃ ≥ 0.

Furthermore, since (3.9) implies that 0 ≤ s̃ ≤ t + u1 + u2 + · · · + un, the inductive
hypothesis implies that there exist xi, 1 ≤ i ≤ n, and y, 0 ≤ y ≤ t, such that

s̃ = y + x1u1 + x2u2 + · · · + xnun
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Fig. 19.

and hence

s = y + x1u1 + x2u2 + · · · + xnun + xn+1un+1

with xn+1 = 1.

Lemma 3.5. A passport Π for which q1(Π) > q2(Π) + q3(Π) + · · · + qr(Π) and
s satisfies q2(Π) + q3(Π) + · · · + qr(Π) < s(Π) ≤ n/2 is realizable whenever Π1 �=
{2, 2, . . . , 2} and r(Π) > 2.

Proof. Let Ω be a sunflower such that Ωi = Πi, 1 ≤ i ≤ r, and i(Ω) =
q2(Π) + q3(Π) + · · · + qr(Π) constructed in Lemma 3.2. In view of the inequal-
ity q1(Π) > q2(Π) + q3(Π) + · · · + qr(Π), Ω has the form shown on Fig. 19 and by
construction admits two types of branches. First, Ω has

l = q1(Π) − (q2(Π) + q3(Π) + · · · + qr(Π))

“long” branches λi for which |λi| = b1,i, 1 ≤ i ≤ l. Second, Ω has

t =
q1(Π)∑

j=l+1

(b1,j(Π) − 2) +
r∑

i=2

qi(Π)∑

j=1

(bi,j(Π) − 2) − l (3.10)

“short” branches µj , 1 ≤ j ≤ t, for which |µj | = 1. Note that in view of Lemma 2.1,
we have:

t =
q1(Π)∑

j=l+1

(b1,j(Π) − 2) + e1(Π).

Clearly, shifting a number of branches λi, 1 ≤ i ≤ l, µj , 1 ≤ j ≤ t, from outside to
inside (see Fig. 20), we can obtain a constellation Ω1 such that Ω1i = Πi, 1 ≤ i ≤ r,
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Fig. 20.

and i(Ω1) = s, where s is any number which can be represented as the sum

s = q2(Π) + q3(Π) + · · · + qr(Π) + y + x1b1,1(Π) + x2b1,2(Π)

+ · · · + xlb1,l(Π) (3.11)

for some xi, y with xi ∈ {0, 1}, 1 ≤ i ≤ l, and y ∈ {0, 1, 2, . . . , t}. Furthermore, since
for the maximal possible value smax of s, we have:

smax = q2(Π) + q3(Π) + · · · + qr(Π) +
l∑

j=1

b1,j(Π) + t

= q1(Π) − l +
l∑

j=1

b1,j(Π) +
q1(Π)∑

j=l+1

(b1,j(Π) − 2) + e1(Π)

= q1(Π) − l +
q1(Π)∑

j=1

b1,j(Π) − 2(q1(Π) − l) + e1(Π)

=
q1(Π)∑

j=1

b1,j(Π) + e1(Π) − (q1(Π) − l)

= n − (q2(Π) + q3(Π) + · · · + qr(Π)),

it follows from

q2(Π) + q3(Π) + · · · + qr(Π) < q1(Π) ≤ n/2
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that

smax > n/2. (3.12)

Therefore, in order to prove the lemma, we only must show that s can take any
value between 0 and smax. By Lemma 3.4, it is enough to establish that

t =
q1(Π)∑

j=l+1

(b1,j(Π) − 2) + e1(Π) ≥ b1,l(Π) − 1. (3.13)

Since the condition r > 2 implies that

q1(Π) − l = q2(Π) + q3(Π) + · · · + qr(Π) ≥ 2, (3.14)

we have:
q1(Π)∑

j=l+1

(b1,j(Π) − 2) + e1(Π) ≥ b1,q1(Π) + b1,q1−1(Π) − 4 + e1(Π).

Furthermore, since Π1 �= {2, 2, . . . , 2}, at least one of the inequalities b1,q1(Π) ≥ 3,
e1(Π) > 1 holds. In both cases, we have:

b1,q1(Π) + b1,q1−1(Π) − 4 + e1(Π) ≥ b1,q1−1(Π) − 1 ≥ b1,l(Π) − 1. (3.15)

Proposition 3.6. A passport Π for which q1(Π) > q2(Π) + q3(Π) + · · · + qr(Π) is
realizable whenever r(Π) > 2.

Proof. If s(Π) ≤ q2(Π) + q3(Π) + · · · + qr(Π), then the proposition follows from
Lemma 3.2. If q2(Π) + q3(Π) + · · · + qr(Π) < s(Π) ≤ n/2 and Π1 �= {2, 2, . . . , 2},
then the proposition follows from Lemma 3.5. Therefore, we only must consider the
case when

Π1 = {2, 2, . . . , 2}, q2(Π) + q3(Π) + · · · + qr(Π) < s(Π) ≤ n/2.

Let Ω be a sunflower such that Ωi = Πi, 1 ≤ i ≤ r, and i(Ω) =
q2(Π) + q3(Π) + · · · + qr(Π) constructed in Lemma 3.2 (see Fig. 21). Since Π1 =
{2, 2, . . . , 2}, it has a more restrictive form than the one shown on Fig. 19, in par-
ticular the branches of Ω can grow only from non 1-vertices and have weight 2. As
above, shifting these branches from outside to inside, we can obtain a constellation
Ω1 such that Ω1i = Πi, 1 ≤ i ≤ r, and i(Ω1) = s, where s is any number which has
the form

s = q2(Π) + q3(Π) + · · · + qr(Π) + 2k, 0 ≤ k ≤
r∑

i=2

qi(Π)∑

j=1

(bi,j(Π) − 2).

Since in view of Lemma 2.1 for the maximal possible value smax of s, we have:

smax = 2q1(Π) − (q2(Π) + q3(Π) + · · · + qr(Π))
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Fig. 21.

and q1(Π) > q2(Π) + q3(Π) + · · · + qr(Π), the inequality smax > q1(Π) holds.
It follows now from q1(Π) = n/2 that smax > n/2 and therefore Π is realizable
whenever s(Π) = q2(Π) + q3(Π) + · · · + qr(Π) (mod 2).

In order to treat the case when

s(Π) = 1 + q2(Π) + q3(Π) + · · · + qr(Π) (mod 2),

q2(Π) + q3(Π) + · · · + qr(Π) < s ≤ n/2,

we act as follows. In the beginning, using the already proved part of the proposition,
construct a sunflower Ω2 such that Ω2i = Πi, 1 ≤ i ≤ r, and i(Ω2) = s(Π) − 1.

Recall that by construction (see Proposition 3.1) the cycle c(Ω2) of Ω2 possesses
the following property: the 1- and non 1-vertices of c(Ω2) alternate and if a non
1-vertex v follows a non 1-vertex u, when traversing c(Ω2) in the counterclockwise
direction, then the number of v is greater than the number of u unless v is a 2-vertex
(see Fig. 22). In particular, since r > 2, we can find a pair of vertices u, v such that
u is a 2-vertex, v is a 3-vertex, and v follows u.

Consider the corresponding adjacent stars S, R of Ω2 (see Fig. 23(a)) and per-
form the following operation: remove S, R and glue instead two new stars shown on
Fig. 23(b) leaving the branches possibly growing from u and v (denoted by dotted
lines) unchanged (see Fig. 24, where this operation is applied to the constellation
shown on Fig. 21).

Taking into account that the branches of Ω2 can grow only from the non
1-vertices of valency 2, it is easy to see that this operation is well defined and
that as a result we obtain a constellation Ω3 for which Ω3i = Πi, 1 ≤ i ≤ r, and
i(Ω3) = s(Π).

Fig. 22.
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(a) (b)

Fig. 23.

Theorem 3.7. Any passport for which r(Π) > 2 is realizable.

Proof. Follows from Propositions 3.3, 3.6.

4. Passports with r = 2

In this section, we will picture all constellations in the form of bicolored graphs (see
subsection 2.1).

Lemma 4.1. Let Π be a passport such that r(Π) = 2 and at least one of partitions
Π1, Π2 is distinct from {2, 2, . . . , 2}. Then, either b1,q1(Π) > 2 or b2,q2(Π) > 2.

Proof. If Π1 �= {2, 2, . . . , 2}, then either b1,q1(Π) > 2 or e1(Π) > 0. On the other
hand, by Lemma 2.1

q2(Π)∑

j=1

(b2,j(Π) − 2) = e1(Π) + q1(Π) − q2(Π). (4.1)

Since it is assumed that q1(Π) ≥ q2(Π), it follows that if e1(Π) > 0 then
b2,q2(Π) > 2.

Fig. 24.
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If Π1 = {2, 2, . . . , 2}, then (2.1) implies that e2(Π)+ q2(Π) = n/2. Furthermore,
since Π2 �= {2, 2, . . . , 2}, the inequality q2(Π) < n/2 holds. Therefore, e2(Π) > 0
and hence b2,q2(Π) > 2 since otherwise

p2(Π)∑

j=1

a2,j = e2(Π) + 2q2(Π) = e2(Π) + 2(n/2 − e2(Π)) = n − e2(Π) < n.

Lemma 4.2. A passport Π with r(Π) = 2 and s(Π) ≤ q2(Π) is realizable whenever
at least one of partitions Π1, Π2 is distinct from {2, 2, . . . , 2}.

Proof. To construct the constellation needed, we act similarly to the case when
r(Π) > 2 with some simplifications. Suppose first that s(Π) < q2(Π). In the begin-
ning construct a sunflower Ω, which has one vertex of valency 1, one vertex of
valency 3, and all other vertices of valency 2, such that q1(Ω) = q2(Ω) = q2(Π) and
i(Ω) = s as it is shown on Fig. 25 (the number of the vertex of valency 3 coincides
with i = 1, 2 for which bi,qi(Π) > 2).

If q1(Π) = q2(Π), then in order to construct a sunflower Σ for which Σi =
Πi, 1 ≤ i ≤ 2, and i(Σ) = s(Π), it is enough to glue a number of edges to the
vertices of valency 2 and 3 of the sunflower Ω (see Fig. 26).

In case when q1(Π) > q2(Π) starting from Ω, first construct a sunflower Ω1 such
that

Ω11 = {b1,l+1(Π), b1,l+2(Π), . . . , b1,q1(Π)(Π)},
where l = q1(Π) − q2(Π), Ω12 = Π2, and i(Π) = s(Π) (see again Fig. 26). It is easy
to see that for the number ν of 1-vertices of valency 1 of Ω1, the equality

ν =
q2(Π)∑

j=1

(b2,j(Π) − 2)

Fig. 25.
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Fig. 26.

holds (this formula turns out to be true for any choice of the color for the vertex
of valency 3 on Fig. 25). Since by (4.1)

ν ≥ q1(Π) − q2(Π) (4.2)

and all vertices of valency 1 of Ω1 are adjacent to the exterior face of Ω1 by con-
struction, it follows that after gluing a number of edges to the 1-vertices of valency
1 of Ω1, we obtain a sunflower Ω2 for which Ω2i = Πi, 1 ≤ i ≤ 2, and i(Ω2) = s(Π)
(see Fig. 27).

For s(Π) = q2(Π) the proof of the lemma is similar. The only difference is that
we start from the chain Ω all the vertices of which have valency 2 and q1(Ω) =
q2(Ω) = q2(Π), i(Ω) = s(Π) (see Figs. 28(a)–(c)).

Lemma 4.3. A passport Π with r(Π) = 2 and q1(Π) = q2(Π) is realizable whenever
at least one of partitions Π1, Π2 is distinct from {2, 2, . . . , 2}.

Fig. 27.
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Fig. 28.

Proof. If s(Π) ≤ q2(Π), then the proposition follows from Lemma 4.2. In order to
prove it for q2(Π) < s(Π) ≤ n/2, we begin from the sunflower Ω for which Ωi = Πi,
1 ≤ i ≤ 2, and i(Ω) = q2(Π) shown on Fig. 28(b) and then start shifting its branches
from outside to inside. Clearly, in this way we can obtain the sunflower Ω1 with
Ω1i = Πi, 1 ≤ i ≤ 2, and i(Ω1) = s for any s such that q2(Π) < s ≤ µ, where

µ = q2(Π) +
q2(Π)∑

j=1

(b2,j(Π) − 2).

Since µ coincides with the value given by formula (3.4) for r = 2, the lemma follows
now from formulas (3.5), (3.6).

Lemma 4.4. A passport Π with r(Π) = 2 for which q1(Π) > q2(Π) and
q2(Π) < s(Π) ≤ n/2 is realizable whenever Π1 �= {2, 2, . . . , 2} and q2(Π) > 1.

Proof. The proof of the lemma is similar to the one of Lemma 3.5. Starting from
the sunflower Ω for which Ωi = Πi, 1 ≤ i ≤ 2, and i(Ω) = q2(Π), shown on
Fig. 28(c), and shifting its branches from outside to inside, we can obtain a con-
stellation Ω1 for which Ω1i = Πi, 1 ≤ i ≤ 2, and i(Ω1) = s, where s is any number
which can be represented as a sum

s = q2(Π) + y + x1b1,1(Π) + x2b1,2(Π) + · · · + xlb1,l(Π) (4.3)

for some xi, y with xi ∈ {0, 1}, 1 ≤ i ≤ l, and y ∈ {0, 1, 2, . . . , t}, where l =
q1(Π) − q2(Π) and

t =
q1(Π)∑

j=l+1

(b1,j(Π) − 2) +
q2(Π)∑

j=1

(b2,j(Π) − 2) − l. (4.4)

Formulas (4.3), (4.4) are particular cases of formulas (3.11), (3.10) for r = 2, in
particular inequality (3.12) holds for smax.
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As in Lemma 3.5, in order to finish the proof, it is enough to establish formula
(3.13), and for this purpose it is enough to prove formulas (3.14), (3.15). In dis-
tinction with Lemma 3.5 formula (3.14) follows now directly from the condition
q2(Π) > 1 while formula (3.15) follows from the condition Π1 �= {2, 2, . . . , 2} as in
Lemma 3.5.

Lemma 4.5. A passport Π with r(Π) = 2 for which q2(Π) = 1 is realizable if and
only if Π is distinct from Π1 = {l, l, . . . , l}, Π2 = {1, 1, . . . , 1, d}, Π3 = {s, n − s},
where l ≥ 2, d ≥ 3, and s ≡ 0 mod l.

Proof. It is easy to see that if Π is realizable then the corresponding constella-
tion Σ has the form shown on Fig. 29 (1-vertices are colored by the black color).
Furthermore, we can assume that b2,1 ≥ 3 since otherwise q1(Σ) = q2(Σ) and Π is
realizable by Lemma 4.3.

Placing a 1-vertex of the maximal valency on the cycle and acting as in the
proof of Lemma 4.4, we can obtain a constellation Ω with Ωi = Πi, 1 ≤ i ≤ 2, and
i(Ω) = s for any s which can be represented in the form

s = 1 + y + x1b1,1(Π) + x2b1,2(Π) + · · · + xq1−1b1,q1−1(Π)

for some xi ∈ {0, 1}, 1 ≤ i ≤ q1(Π) − 1, and y ∈ {0, 1, 2, . . . , t}, where

t = b1,q1(Π) − 2 + (b2,1(Π) − 2) − (q1(Π) − 1)

(these formulas are particular cases for q2(Π) = 1 of formulas (4.3), (4.4), in par-
ticular inequality (3.12) holds for smax).

Observe that by formula (4.1)

t = b1,q1(Π) − 2 + e1(Π).

Fig. 29.
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Therefore, if e1(Π) > 0, then inequality (3.13) holds and as above Lemma 3.4
implies that Π is realizable.

Similarly, if b1,1(Π) < b1,q1(Π), then Π is also realizable since in this case all
conditions (3.8) hold. Indeed, for k = 1 we have

t ≥ b1,q1(Π) − 2 ≥ b1,1(Π) − 1

and for k > 1 we have:

t +
k−1∑

i=1

b1,i(Π) ≥ t + 2 ≥ b1,q1(Π) ≥ b1,k(Π) > b1,k(Π) − 1.

It follows that Π may be non-realizable only if e1 = 0 and b1,1 = b1,q1 that is
if Π1 = {l, l, . . . , l}, Π2 = {1, 1, . . . , 1, d}. Now it is easy to establish by a direct
calculation that such Π is realizable if and only if s �≡ 0 mod l.

Lemma 4.6. Let Π be a passport with r(Π) = 2 for which Π1 = {2, 2, . . . , 2}, Π2 �=
{2, 2, . . . , 2} and q2(Π) > 1. Suppose that

q2(Π)∑

i=2

(b2,i(Π) − 2) < b2,1(Π). (4.5)

Then either

(1) Π2 = {1, 1, . . . , 1, d, d}, where d ≥ 3, or
(2) Π2 = {1, 1, . . . , 1, d − 1, d}, where d ≥ 3, or
(3) Π2 = {1, 1, 1, 3, 3, 3}, or
(4) Π2 = {1, 2, 2, . . . , 2, 3}.

Proof. If q2(Π) = 2, then
q2(Π)∑

i=2

(b2,i(Π) − 2) = b2,2(Π) − 2

and (4.5) holds only if

Π2 = {1, 1, . . . , 1, d, d} or Π2 = {1, 1, . . . , 1, d − 1, d},
where d = b2,q2(Π) ≥ 3 in view of Lemma 4.1. So, in the following we will assume
that q2(Π) ≥ 3.

If b2,1(Π) ≥ 3, then

q2(Π)∑

i=2

(b2,i(Π) − 2) ≥ b2,2(Π) + b2,3(Π) − 4 ≥ 2b2,1(Π) − 4 ≥ b2,1(Π) − 1,

where the equality attains only if q2(Π) = 3 and b2,3(Π) = b2,2(Π) = b2,1(Π) = 3.

Therefore, in this case condition (4.5) holds only if Π2 = {1, 1, . . . , 1, 3, 3, 3}. Denot-
ing the number of appearances of the unit in Π2 by l1, we obtain that l1 + 9 = n

and l1 + 3 = n/2. It follows that l1 = 3.
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Suppose now that b2,1(Π) = 2. In view of Lemma 4.1, we have b2,q2(Π) > 2. If
b2,q2(Π) > 3, then

q2(Π)∑

i=2

(b2,i(Π) − 2) ≥ b2,q2(Π) − 2 ≥ 2 = b2,1(Π).

On the other hand, if b2,q2(Π) = 3 and b2,q2(Π)−1 = 3, then

q2(Π)∑

i=2

(b2,i(Π) − 2) ≥ 2(b2,q2(Π) − 2) ≥ 2 = b2,1(Π).

Hence, (4.5) holds only if b2,q2(Π) = 3, b2,q2−1(Π) = 2 or equivalently if Π2 =
{1, 1, . . . , 1, 2, 2, . . . , 2, 3}. Denoting the number of appearances of the number i, 1 ≤
i ≤ 2, in Π2 by li, we obtain that l1 + 2l2 + 3 = n and l1 + l2 + 1 = n/2. It follows
that l1 = 1.

Lemma 4.7. A passport Π with r(Π) = 2 for which Π1 = {2, 2, . . . , 2}, Π2 �=
{2, 2, . . . , 2} and q2(Π) > 1 is realizable if and only if Π is distinct from the pass-
ports listed below:

(1) Π1 = {2, 2, . . . , 2}, Π2 = {1, 1, . . . , 1, d, d}, Π3 = {2d − 3, n − 2d + 3},
(2) Π1 = {2, 2, . . . , 2}, Π2 = {1, 1, . . . , 1, d, d}, Π3 = {2d − 1, n − 2d + 1},
(3) Π1 = {2, 2, . . . , 2}, Π2 = {1, 1, . . . , 1, d − 1, d}, Π3 = {2d − 3, n− 2d + 3},
(4) Π1 = {2, 2, 2, 2, 2, 2}, Π2 = {1, 1, 1, 3, 3, 3}, Π3 = {6, 6},
(5) Π1 = {2, 2, . . . , 2}, Π2 = {1, 2, 2, . . . , 2, 3}, Π3 = {n/2, n/2},
where d ≥ 3.

Proof. In view of Lemma 4.2, if s(Π) ≤ q2(Π) then Π is realizable, so we only
must consider the case when q2(Π) < s(Π) ≤ n/2.

First, observe that if s(Π) ≡ q2(Π) mod 2, then Π is realizable. Indeed, starting
from a constellation Γ for which Γ1 = Π1, Γ2 = Π2 and i(Γ) = q2(Π) constructed in
Lemma 4.2 (see Fig. 30(a), where the condition Π1 = {2, 2, . . . , 2} is reflected) and
shifting the branches of Γ from outside to inside (see Fig. 30(b)), one can obtain a
constellation Σ for which Σ1 = Π1, Σ2 = Π2, and i(Σ) = s for any s ≡ q2(Π) mod 2
such that

s ≤ q2(Π) + 2
q2(Π)∑

j=1

(b2,j(Π) − 2).

Since in view of (4.1)

smax = q2(Π) + 2(e1(Π) + q1(Π) − q2(Π)) = n − q2(Π)

and n − q2(Π) ≥ n/2, this implies the statement.
Consider now the case when s(Π) ≡ 1 + q2(Π) mod 2. Modify the constellation

shown on Fig. 30(a) so that to obtain a constellation Γ̃ for which all 2-vertices of
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(a) (b)

Fig. 30.

valency > 1 except one are on the cycle (see Fig. 31(a)) and the valency of the
exceptional vertex is b2,1 (recall that q2(Π) ≥ 2 by assumption, and b2,q2(Π) > 2
by Lemma 4.1). Clearly, we have Γ̃1 = Π1, Γ̃2 = Π2 and i(Γ̃) = q2(Π) − 1. Shifting
now the branches of Γ̃ from outside to inside (see Fig. 31(b)), one can obtain
a constellation Σ for which Σ1 = Π1, Σ2 = Π2 and i(Σ) = s for any s ≡ 1 +
q2(Π) mod 2 which can be represented as

s = q2(Π) − 1 + 2y + 2b2,1(Π)x

with x ∈ {0, 1} and y ∈ {0, 1, . . . , t}, where

t =
q2(Π)∑

i=2

(b2,i(Π) − 2) − 1.

(a) (b)

Fig. 31.
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Furthermore, in view of Lemma 3.4 if

q2(Π)∑

i=2

(b2,i(Π) − 2) ≥ b2,1(Π), (4.6)

then we obtain in this way any s such that

s ≡ 1 + q2(Π) mod 2, q2(Π) < s ≤ smax,

where, in view of (4.1),

smax = q2(Π) − 1 + 2(e1(Π) + q1(Π) − q2(Π) − (b2,1(Π) − 2)) − 2 + 2b2,1(Π)

= −q2(Π) + 1 + 2(e1(Π) + q1(Π))

= n − q2(Π) + 1 ≥ n/2.

This implies that we only must investigate when the passports with Π1, Π2 listed
in Lemma 4.6 and satisfying

s(Π) ≡ 1 + q2(Π) mod 2, q2(Π) < s(Π) ≤ n/2

are realizable.
First of all, observe that if for some constellation Γ, we have:

Γ1 = {2, 2, 2, 2, 2, 2}, Γ2 = {1, 1, 1, 3, 3, 3}, where

i(Γ) ≡ 1 + q2(Γ) ≡ 0 mod 2, q2(Γ) = 3 < i(Γ) ≤ n/2 = 6, (4.7)

then the first of conditions (4.7) together with the condition Γ1 = {2, 2, 2, 2, 2, 2}
imply that the cycle of Γ can contain only an even number of 2-vertices. Therefore,
this number equals 2 and it is easy to see that Γ necessarily has the form shown
on Fig. 32. It follows that a passport Π for which Π1 = {2, 2, 2, 2, 2, 2}, Π2 =
{1, 1, 1, 3, 3, 3} is realizable if and only if Π3 is distinct from {6, 6}.

Furthermore, if for some constellation Γ we have Γ1 = {2, 2, . . . , 2}, Γ2 =
{1, 2, 2, . . . , 2, 3}, then it is easy to see that Γ has the form shown on Fig. 33.

Fig. 32.
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Fig. 33.

Moreover, since for such Γ the equality q2(Γ) = n/2 − 1 holds, the condition
q2(Γ) < i(Γ) ≤ n/2 turns out to be equivalent to the condition i(Γ) = n/2.

Clearly, this condition cannot be realized for such Γ and therefore a passport Π
for which Π1 = {2, 2, . . . , 2}, Π2 = {1, 2, 2, . . . , 2, 3} is realizable if and only if
Π3 �= {n/2, n/2}.

Finally, if for a constellation Γ, we have:

Γ1 = {2, 2, . . . , 2}, Γ2 = {1, 1, . . . , 1, d − 1, d}, i(Γ) ≡ 1 + q2(Γ) ≡ 1 mod 2,

then the cycle of Γ contains only one 2-vertex which is of valency d or of valency
d−1 and therefore Γ necessarily has the form shown on Fig. 34(a) or (b). It follows
easily that a passport Π for which Π1 = {2, 2, . . . , 2}, Π2 = {1, 1, . . . , 1, d − 1, d} is
realizable if and only if Π3 distinct from Π3 = {2d − 3, n− 2d + 3}.

In the same way, one can show that a passport Π for which Π1 = {2, 2, . . . , 2},
Π2 = {1, 1, . . . , 1, d, d} is realizable whenever Π3 �= {2d − 3, n − 2d + 3}, Π3 �=
{2d − 1, n − 2d + 1}.

(a) (b)

Fig. 34.
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Fig. 35.

Theorem 4.8. A passport with r(Π) = 2 is realizable whenever Π is distinct from
the passports listed in the main theorem.

Proof. Indeed, if a passport Π with Π1 = {2, 2, 2, . . . , 2}, Π2 = {2, 2, 2, . . . , 2} is
realizable, then the bicolored graph Γ corresponding to Π should have the form
shown on Fig. 35 and therefore s = n/2. So, we can assume that either Π1 �=
{2, 2, . . . , 2} or Π2 �= {2, 2, . . . , 2}. In view of Lemmas 4.2–4.4 such a passport may
be non-realizable only if Π1 = {2, 2, . . . , 2} or q2(Π) = 1.

If q2(Π) = 1, then by Lemma 4.5 the passport Π is realizable whenever it is
distinct from the passport 1. On the other hand, if q2(Π) > 1 but Π1 = {2, 2, . . . , 2},
then by Lemma 4.7, the passport Π is realizable if and only if it is distinct from
the passports (3)–(7).
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