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Abstract. We introduce a class of rational functions A : CP1 → CP
1 which

can be considered as a natural extension of the class of Lattès maps, and establish
basic properties of functions from this class.

1 Introduction

Lattès maps are rational functions A : CP1 → CP
1 of degree at least two which

can be characterized in one of the following equivalent ways (see [10]). First, a
Lattès map A can be defined by the condition that there exist a compact Riemann
surface R of genus one and holomorphic maps B : R → R and π : R → CP1 such
that the diagram

(1)

R
B−−−→ R⏐⏐�π ⏐⏐�π

CP1 A−−−→ CP1

commutes. This condition can be replaced by the apparently stronger condition
that there exists a diagram as above such that π is the quotient map π : R → R/�

for some finite subgroup � of the automorphism group Aut(R). Finally, Lattès
maps can be characterized in terms of their ramification.

The last characterization uses the notion of orbifold. By definition, an
orbifold O on CP

1 is a ramification function ν : CP
1 → N which takes the

value ν(z) = 1 except at a finite set of points. We always will assume that consid-
ered orbifolds are good meaning that we forbid O to have exactly one point with
ν(z) �= 1 or two such points z1, z2 with ν(z1) �= ν(z2). A rational function f is called
a covering map f : O1 → O2 between orbifolds with ramification functions ν1

and ν2 if for any z ∈ CP1 the equality

ν2(f (z)) = ν1(z) degz f
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holds. In these terms, a Lattès map can be defined as a rational function A such
that A : O → O is a covering self-map for some orbifold O.

In the recent paper [13], a class of rational functions A satisfying (1) under
the assumption that the surface R is the Riemann sphere was considered. It was
shown in [13] that under certain restrictions such functions possess a number of
remarkable properties similar to properties of Lattès maps. In particular, they are
related to finite subgroups of the group Aut(CP1), and admit a description in terms
of orbifolds. In this paper, modifying the approach of [13], we construct a unified
theory which equally fits the classical Lattès maps and functions studied in [13],
using the term “generalized Lattès maps” for the set of functions obtained in this
way.

Notice that allowing R in (1) to be an arbitrary compact Riemann surface does
not lead to a yet more general class of functions, since for R of genus at least
two any holomorphic map B : R → R has degree one. Notice also that in order
to define an interesting class of functions A through diagram (1) with R = CP1

some restrictions on A, B, and π are necessary, since there exist too many rational
functions making diagram (1) commutative. Say, for any rational functions U
and V the diagram

CP
1 U◦V−−−→ CP

1⏐⏐�V

⏐⏐�V

CP
1 V◦U−−−→ CP

1

commutes, and it is clear that the function V ◦ U does not posses any special
properties in general.

The easiest way to define generalized Lattès maps uses the concept of a minimal
holomorphic map between orbifolds. By definition, a rational function f is called a
minimal holomorphic map f : O1 → O2 between orbifolds if for any z ∈ CP

1

the condition

ν2(f (z)) = ν1(z) gcd(degz f, ν2(f (z))

holds. It is easy to see that any covering map A : O1 → O2 between orbifolds
is a minimal holomorphic map, but the inverse is not true. We say that a rational
function A of degree at least two is a generalized Lattès map if there exists an
orbifold O distinct from the non-ramified sphere such that A : O → O is a minimal
holomorphic map between orbifolds.

We recall that for an orbifold O the Euler characteristic of O is the number

χ(O) = 2 +
∑

z∈CP1

( 1
ν(z)

− 1
)
,
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the set of singular points of O is the set

c(O) = {z1, z2, . . . , zs, . . . } = {z ∈ CP
1 | ν(z) > 1},

and the signature of O is the set

ν(O) = {ν(z1), ν(z2), . . . , ν(zs), . . . }.

It is well known that if A : O → O is a covering map between orbifolds, then the
Euler characteristic of O equals zero, implying that the signature of O belongs to
the list

(2) {2, 2, 2, 2}, {3, 3, 3}, {2, 4, 4}, {2, 3, 6}.

On the other hand, if A : O → O is a minimal holomorphic map between orbifolds,
then the Euler characteristic of O is non-negative. Thus, to the above list we should
add the signatures

(3) {n, n}, n ≥ 2, {2, 2, n}, n ≥ 2, {2, 3, 3}, {2, 3, 4}, {2, 3, 5},

corresponding to orbifolds of positive Euler characteristic.

In this paper, we provide three characterizations of generalized Lattès maps
parallel to three characterizations of Lattès maps given in the paper [10] by J. Mil-
nor. Let R1,R2, and R′ be Riemann surfaces. We say that a holomorphic map
h : R1 → R′ is a compositional right factor of a holomorphic map f : R1 → R2

if there exists a holomorphic map g : R′ → R2 such that f = g ◦ h. Compositional
left factors are defined similarly. In this notation, the following statement holds.

Theorem 1.1. Let A be a rational function of degree at least two. Then the

following conditions are equivalent.

(1) There exist a compact Riemann surface R of genus zero or one and holomor-

phic maps B : R → R and π : R → CP
1 such that the diagram

(4)

R
B−−−→ R⏐⏐�π ⏐⏐�π

CP1 A−−−→ CP1

commutes, and π is not a compositional right factor of B◦s for some s ≥ 1.
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(2) There exist a compact Riemann surface R of genus zero or one, a finite non-

trivial group � ⊆ Aut(R), an isomorphism ϕ : � → �, and a holomorphic
map B : R → R such that the diagram

(5)

R
B−−−→ R⏐⏐�π ⏐⏐�π

CP
1 A−−−→ CP

1,

where π : R → R/� is the quotient map, commutes, and for any σ ∈ � the
equality

(6) B ◦ σ = ϕ(σ) ◦ B

holds.

(3) There exists an orbifold O, distinct from the non-ramified sphere, such that

A : O → O

is a minimal holomorphic map between orbifolds.

Let us make several comments concerning conditions of Theorem 1.1. By
definition, A : O → O is a minimal holomorphic map between orbifolds if

(7) ν(A(z)) = ν(z) gcd(degz A, ν(A(z))), z ∈ CP
1,

and it is easy to see that for the Riemann sphere, considered as a non-ramified
orbifold, this condition holds for any rational function A. Thus, we must exclude
this case in the third condition. For the same reason, we assume that � �= {e} in
the second condition.

The assumption in the first condition, requiring that π is not a compositional
right factor of some iterate of B, is always satisfied if g(R) = 1, since for any
decomposition

R
π−→ R′ w−→ R

of B◦s, s ≥ 1, the genus of R′ must be equal to one. However, this assumption
is essential if R = CP

1. It can be replaced by the assumption that π is not
a compositional left factor of some iterate of A. Further, notice that for any
diagram (5) such that π : R → R/� is the quotient map for some finite group
� ⊆ Aut(R), condition (6) holds for some homomorphism ϕ : � → �. Moreover,
this homomorphism is always an isomorphism if g(R) = 1, however it may have a
non-trivial kernel if R = CP1.

The paper is organized as follows. In the second section, we recall main
technical results of [13] about Riemann surfaces orbifolds and different kinds of
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maps between orbifolds. In the third section, we describe a general structure
of holomorphic maps satisfying the semiconjugacy condition (1), where R is a
compact Riemann surface of genus zero or one, and prove Theorem 1.1. In
the fourth section, we study properties of generalized Lattès maps related to the
operations of composition and decomposition. In the fifth section, we describe
rational functions satisfying condition (7) for orbifolds O with signatures {n, n},
n ≥ 2, and {2, 2, n}, n > 2.

In the sixth section, we investigate the following problem: given a rational
function A, what are orbifolds O such that A : O → O is a minimal holomorphic
map between orbifolds? For ordinary Lattès maps, there exists at most one such
orbifold defined by dynamical properties of A. On the other hand, for generalized
Lattès maps there might be several and even infinitely many such orbifolds. For
example, it is easy to see that z±n : O → O is a minimal holomorphic map for
any O defined by

ν(0) = m, ν(∞) = m, gcd(n,m) = 1,

while ±Tn : O → O is a minimal holomorphic map for any O defined by the
conditions

ν(−1) = ν(1) = 2, ν(∞) = m, gcd(n,m) = 1.

Nevertheless, we show that if A is not conjugate to z±n or ±Tn, then there exists a
“maximal” orbifold O such that (7) holds. In more detail, for orbifolds O1 and O2

we write O1 
 O2 if for any z ∈ CP
1 the condition ν1(z) | ν2(z) holds. In this

notation, the main result of the sixth section and one of the main results of the
paper is the following.

Theorem 1.2. Let A be a rational function of degree at least two not conjugate
to z±d or ±Td. Then there exists an orbifoldOA

0 such that A : OA
0 → OA

0 is a minimal

holomorphic map between orbifolds, and for any orbifold O such that A : O → O

is a minimal holomorphic map between orbifolds the relation O 
 OA
0 holds.

Furthermore, OA◦l

0 = OA
0 for any l ≥ 1.

In the seventh section, we relate the problem of describing generalized Lattès
maps, which are not ordinary Lattès maps, with the problem of describing rational
functions commuting with a finite automorphism group of Aut(CP1). We recall
a description of such functions obtained by Doyle and McMullen ([3]), and give
examples of practical calculations of corresponding generalized Lattès maps of
small degrees. Finally, we show that polynomial generalized Lattès maps reduce
to the series Tn and zrRn(z),where R ∈ C[z] and gcd(r, n) = 1, emerging in the Ritt
theory of polynomial decompositions [19].
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2 Orbifolds and maps between orbifolds

In this section, we recall basic definitions concerning Riemann surface orbifolds
(see [11], Appendix E), and overview some technical results obtained in the
paper [13].

A Riemann surface orbifold is a pair O = (R, ν) consisting of a Riemann
surface R and a ramification function ν : R → N which takes the value ν(z) = 1
except at isolated points. For an orbifold O = (R, ν) the Euler characteristic
of O is the number

χ(O) = χ(R) +
∑
z∈R

( 1
ν(z)

− 1
)
,

the set of singular points of O is the set

c(O) = {z1, z2, . . . , zs, . . . } = {z ∈ R | ν(z) > 1},
and the signature of O is the set

ν(O) = {ν(z1), ν(z2), . . . , ν(zs), . . . }.
For orbifolds O1 = (R1, ν1) and O2 = (R2, ν2) we write

(8) O1 
 O2

if R1 = R2, and for any z ∈ R1 the condition

ν1(z) | ν2(z)

holds. Clearly, (8) implies that

χ(O1) ≥ χ(O2).

Let R1, R2 be Riemann surfaces provided with ramification functions ν1, ν2.
A holomorphic branched covering map f : R1 → R2 is called a covering map
f : O1 → O2 between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2) if for any z ∈ R1

the equality

(9) ν2(f (z)) = ν1(z) degz f

holds, where degz f is the local degree of f at the point z. If for any z ∈ R1 instead
of equality (9) a weaker condition

(10) ν2(f (z)) | ν1(z) degz f

holds, then f is called a holomorphic map f : O1 → O2 between orbifolds O1

and O2.
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A universal covering of an orbifold O is a covering map between orbifolds
θO : Õ → O such that R̃ is simply connected and ν̃(z) ≡ 1. If θO is such a
map, then there exists a group �O of conformal automorphisms of R̃ such that the
equality θO(z1) = θO(z2) holds for z1, z2 ∈ R̃ if and only if z1 = σ(z2) for some
σ ∈ �O. A universal covering exists and is unique up to a conformal isomorphism
of R̃, unless O is the Riemann sphere with one ramified point or with two ramified
points z1 and z2 such that ν(z1) �= ν(z2). Furthermore, R̃ = D if and only if χ(O) < 0,
R̃ = C if and only if χ(O) = 0, and R̃ = CP

1 if and only if χ(O) > 0 (see, e.g., [6],
Section IV.9.12). Abusing notation we will use the symbol Õ both for the orbifold
and for the Riemann surface R̃.

Covering maps between orbifolds lift to isomorphisms between their universal
coverings. More generally, for holomorphic maps the following proposition holds
(see [13], Proposition 3.1).

Proposition 2.1. Let f : O1 → O2 be a holomorphic map between orbifolds.
Then for any choice of θO1 and θO2 there exist a holomorphic map F : Õ1 → Õ2

and a homomorphism ϕ : �O1 → �O2 such that the diagram

(11)

Õ1
F−−−→ Õ2⏐⏐�θO1

⏐⏐�θO2

O1
f−−−→ O2

is commutative and for any σ ∈ �O1 the equality

(12) F ◦ σ = ϕ(σ) ◦ F

holds. The map F is defined by θO1 , θO2 , and f uniquely up to a transformation

F → g ◦ F, where g ∈ �O2 . In the other direction, for any holomorphic map
F : Õ1 → Õ2 which satisfies (12) for some homomorphism ϕ : �O1 → �O2 there

exists a uniquely defined holomorphic map between orbifolds f : O1 → O2 such
that diagram (11) is commutative. The holomorphic map F is an isomorphism if

and only if f is a covering map between orbifolds.

If f : O1 → O2 is a covering map between orbifolds with compact R1 and R2,
then the Riemann–Hurwitz formula implies that

χ(O1) = dχ(O2),

where d = deg f . For holomorphic maps the following statement is true (see [13],
Proposition 3.2).
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Proposition 2.2. Let f : O1 → O2 be a holomorphic map between orbifolds

with compact R1 and R2. Then

χ(O1) ≤ χ(O2)deg f,

and the equality holds if and only if f : O1 → O2 is a covering map between
orbifolds.

Let R1, R2 be Riemann surfaces and f : R1 → R2 a holomorphic branched
covering map. Assume that R2 is provided with ramification function ν2. In order
to define a ramification function ν1 on R1 so that f would be a holomorphic map
between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2) we must satisfy condition (10),
and it is easy to see that for any z ∈ R1 a minimum possible value for ν1(z) is
defined by the equality

(13) ν2(f (z)) = ν1(z) gcd(degz f, ν2(f (z)).

In case (13) is satisfied for any z ∈ R1 we say that f is a minimal holomorphic
map between orbifolds O1 = (R1, ν1) and O2 = (R2, ν2).

It follows from the definition that for any orbifold O = (R, ν) and holomorphic
branched covering map f : R′ → R there exists a unique orbifold structure ν′

on R′ such that f becomes a minimal holomorphic map between orbifolds. We will
denote the corresponding orbifold by f ∗O. Notice that any covering map between
orbifolds f : O1 → O2 is a minimal holomorphic map. In particular, O1 = f ∗O2.
For orbifolds O1 and O2 we will write

(14) ν(O1) ≤ ν(O2)

if for any x ∈ c(O1) there exists y ∈ c(O2) such that ν(x) | ν(y). Clearly, the
condition that f : O1 → O2 is a minimal holomorphic map implies condition (14).
Notice that (8) implies (14) but the inverse is not true in general.

Minimal holomorphic maps between orbifolds possess the following funda-
mental property (see [13], Theorem 4.1).

Theorem 2.3. Let f : R′′ → R′ and g : R′ → R be holomorphic branched

covering maps, and O = (R, ν) an orbifold. Then

(g ◦ f )∗O = f ∗(g∗O).

Theorem 2.3 implies in particular the following corollaries (see [13], Corol-
lary 4.1 and Corollary 4.2).

Corollary 2.4. Let f : O1 → O′ and g : O′ → O2 be minimal holomorphic

maps (resp., covering maps) between orbifolds. Then g◦ f : O1 → O2 is a minimal
holomorphic map (resp., covering map).
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Corollary 2.5. Let f : R1 → R′ and g : R′ → R2 be holomorphic branched

covering maps, and O1 = (R1, ν1) and O2 = (R2, ν2) orbifolds. Assume that
g ◦ f : O1 → O2 is a minimal holomorphic map (resp., a covering map). Then

g : g∗O2 → O2 and f : O1 → g∗O2 are minimal holomorphic maps (resp. covering
maps).

With each holomorphic map f : R1 → R2 between compact Riemann surfaces
one can associate in a natural way two orbifolds Of

1 = (R1, ν
f
1) and O

f
2 = (R2, ν

f
2),

setting νf
2(z) equal to the least common multiple of local degrees of f at the points

of the preimage f−1{z}, and

ν
f
1(z) = νf

2(f (z))/ degz f.

By construction, f : Of
1 → O

f
2 is a covering map between orbifolds. It is easy to

see that the covering map f : Of
1 → O

f
2 is minimal in the following sense. For any

covering map between orbifolds f : O1 → O2 we have

O
f
1 
 O1, O

f
2 
 O2.

On the other hand, for any holomorphic map f : O1 → O2 we have

f ∗O2 
 O1.

Orbifolds Of
1 and O

f
2 are useful for the study of the functional equation

(15) f ◦ p = g ◦ q,

where

p : R → C1, f : C1 → CP
1, q : R → C2, g : C2 → CP

1

are holomorphic maps between compact Riemann surfaces. Recall that the fiber
product of the coverings f : C1 → CP1 and g : C2 → CP1 is defined as the set of
pairs (z1, z2) ∈ C1 × C2 such that f (z1) = g(z2). The fiber product is a finite union
of singular Riemann surfaces, and can be described in terms of the monodromy
groups of f and g (see, e.g., [12], Section 2). We say that a solution f, p, g, q of
(15) is good if the fiber product of f and g consists of a unique component, and p
and q have no non-trivial common compositional right factor. By definition, the
last condition means that if

p = p̃ ◦w, q = q̃ ◦w
for some holomorphic maps

w : R → R̃, p̃ : R̃ → C1, q̃ : R̃ → C2,
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then necessarily degw = 1. Notice that if f and g are rational functions, then the
fiber product of f and g has a unique component if and only if the algebraic curve

f (x) − g(y) = 0

is irreducible. On the other hand, the Lüroth theorem implies that if p and q

are rational functions, then they have no non-trivial common compositional right
factor if and only if C(p, q) = C(z).

In the above notation, the following statement holds (see [13], Theorem 4.2).

Theorem 2.6. Let f, p, g, q be a good solution of (15). Then the commutative

diagram

O
q
1

p−−−→ O
f
1⏐⏐�q
⏐⏐�f

O
q
2

g−−−→ O
f
2

consists of minimal holomorphic maps between orbifolds.

Below we will use the following criterion (see [13], Lemma 2.1).

Lemma 2.7. A solution f, p, g, q of (15) is good whenever any two of the

following three conditions are satisfied:

• the fiber product of f and g has a unique component,
• p and q have no non-trivial common compositional right factor,

• deg f = deg q, degg = degp.

In this paper essentially all considered orbifolds will be defined on CP
1. The

only exceptions from this rule are orbifolds which are universal coverings. So,
usually we will omit the Riemann surface R in the definition of O = (R, ν) meaning
that R = CP

1. We also will assume that all considered orbifolds have a universal
covering.

The central role in our exposition is played by orbifoldsO of non-negativeEuler
characteristic. For such orbifolds the corresponding groups �O and functions θO
are described as follows. Groups �O ⊂ Aut(C) corresponding to orbifolds O with
signatures (2) are generated by translations of C by elements of some lattice L ⊂ C

of rank two and the rotation z → εz, where ε is an nth root of unity with n equal
to 2, 3, 4, or 6, such that εL = L. In more detail, the subgroup
O ⊂ �O generated
by all translations is a free group of rank two so that R = C/
O is a torus, 
O is
normal in �O, and �O/
O is a cyclic group of order 2, 3, 4, or 6, which acts as
a group of automorphisms of R = C/
O. Accordingly, the functions θO may be
written in terms of the corresponding Weierstrass functions as ℘(z), ℘′(z), ℘2(z),
and ℘′2(z) (see [6], Section IV.9.5 and [10]).
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Groups�O ⊂ Aut(CP1) corresponding to orbifoldsOwith signatures (3) are the
well-known finite subgroups Cn,D2n, A4, S4, A5 of Aut(CP1), and the functions θO
are Galois coverings of CP1 by CP

1 of degrees n, 2n, 12, 24, 60, calculated for
the first time by Klein in [7].

In conclusion of this section, let us mention the following more precise version
of Proposition 2.1 forminimal holomorphic self-maps between orbifolds of positive
characteristic (see [13], Theorem 5.1).

Theorem 2.8. Let A and F be rational functions of degree at least two and O

an orbifold with χ(O) > 0 such that A : O → O is a holomorphic map between
orbifolds and the diagram

(16)

Õ
F−−−→ Õ⏐⏐�θO ⏐⏐�θO

O
A−−−→ O

commutes. Then the following conditions are equivalent.
(1) The holomorphic map A is a minimal holomorphic map.

(2) The homomorphism ϕ : �O → �O defined by the equality

F ◦ σ = ϕ(σ) ◦ F, σ ∈ �O,

is an automorphism of �O.

(3) The triple F, A, θO is a good solution of the equation

A ◦ θO = θO ◦ F.

3 Semiconjugacies and generalized Lattès maps

In this section, we describe a general structure of holomorphic maps satisfying the
semiconjugacy condition (1), where R is a compact Riemann surface of genus zero
or one, and prove Theorem 1.1. We recall that we defined a generalized Lattès
map as a rational function of degree at least two such that A : O → O is a minimal
holomorphic map between orbifolds for some O distinct from the non-ramified
sphere. By Proposition 2.2, for such O necessarily χ(O) ≥ 0. Notice that if
χ(O) = 0, then A : O → O is a covering map by Proposition 2.2, and therefore A

is an ordinary Lattès map.
Let B be a rational function of degree at least two. For any decomposition

B = V ◦U,where U and V are rational functions, the rational function B̃ = U ◦V is
called an elementary transformation of B, and rational functions B and A are called



12 F. PAKOVICH

equivalent if there exists a chain of elementary transformations between B and
A. For a rational function B we will denote its equivalence class by [B]. Since for
any invertible rational function W the equality

B = (B ◦ W) ◦ W−1

holds, each equivalence class [B] is a union of conjugacy classes. Thus, the relation
∼ can be considered as a weaker form of the classical conjugacy relation. Notice
that an equivalence class [B] contains infinitely many conjugacy classes if and only
if B is a flexible Lattès map (see [15]).

The connection between the relation ∼ and semiconjugacy is straightforward.
Namely, for B̃ and B as above we have

B̃ ◦ U = U ◦ B, B ◦ V = V ◦ B̃,

implying inductively that if B ∼ B̃, then B is semiconjugate to B̃, and B̃ is semi-
conjugate to B. Moreover, the following statement is true.

Lemma 3.1. Let

B → B1 → B2 → · · · → Bs

be a chain of elementary transformations, and Ui, Vi, 1 ≤ i ≤ s, rational functions
such that

B = V1 ◦ U1, Bi = Ui ◦ Vi, 1 ≤ i ≤ s,

and

(17) Ui ◦ Vi = Vi+1 ◦ Ui+1, 1 ≤ i ≤ s − 1.

Then the functions

U = Us ◦ Us−1 ◦ · · · ◦ U1, V = V1 ◦ · · · ◦ Vs−1 ◦ Vs

make the diagram

CP
1 B−−−→ CP

1

U

⏐⏐� ⏐⏐�U

CP
1 Bs−−−→ CP

1

V

⏐⏐� ⏐⏐�V

CP
1 B−−−→ CP

1,

commutative and satisfy the equalities

V ◦ U = B◦s, U ◦ V = B◦s
s .
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Proof. Indeed, we have

Bs ◦ (Us ◦ Us−1 ◦ · · · ◦ U1) = Us ◦ (Vs ◦ Us) ◦ Us−1 ◦ · · · ◦ U1

= Us ◦ (Us−1 ◦ Vs−1) ◦ Us−1 ◦ · · · ◦ U1

= Us ◦ Us−1 ◦ (Vs−1 ◦ Us−1) ◦ Us−2 ◦ · · · ◦ U1

= · · · = (Us ◦ Us−1 ◦ · · · ◦ U1) ◦ B,

and
B ◦ (V1 ◦ · · · ◦ Vs−1 ◦ Vs) = V1 ◦ (U1 ◦ V1) ◦ V2 ◦ · · · ◦ Vs−1 ◦ Vs

= V1 ◦ (V2 ◦ U2) ◦ V2 ◦ · · · ◦ Vs−1 ◦ Vs

= V1 ◦ V2 ◦ (U2 ◦ V2) ◦ · · · ◦ Vs−1 ◦ Vs

= · · · = (V1 ◦ · · · ◦ Vs−1 ◦ Vs) ◦ Bs.

Further,

B◦s = (V1 ◦ U1) ◦ (V1 ◦ U1) ◦ · · · ◦ (V1 ◦ U1) = V1 ◦ B◦s−1
1 ◦ U1

= V1 ◦ V2 ◦ B◦s−2
2 ◦ U2 ◦ U1 = · · · = (V1 ◦ V2 ◦ · · · ◦ Vs) ◦ (Us ◦ · · · ◦ U2 ◦ U1)

and
B◦s

s = (Us ◦ Vs) ◦ (Us ◦ Vs) ◦ · · · ◦ (Us ◦ Vs) = Us ◦ B◦s−1
s−1 ◦ Vs

= Us ◦ Us−1 ◦ B◦s−2
s−2 ◦ Vs−1 ◦ Vs = · · ·

= (Us ◦ Us−1 ◦ · · · ◦ U1) ◦ (V1 ◦ · · · ◦ Vs−1 ◦ Vs). �
The notion of equivalence can be extended to endomorphisms of complex

tori. Namely, if B : R → R is such an endomorphism, and B = V ◦ U is a
decomposition of B into a composition of holomorphic maps U : R → R′ and
V : R′ → R between complex tori, then the endomorphism U ◦ V : R′ → R′

is called an elementary transformation of B, and endomorphisms B : R → R

and A : T → T between complex tori are called equivalent if there exists a
chain of elementary transformations between B and A. Clearly, an analogue of
Lemma 3.1 holds verbatim for any chain of elementary transformations between
endomorphisms of complex tori. Abusing the notation, below we will use for
equivalent endomorphisms of complex tori the same symbol ∼ as for equivalent
rational functions.

Theorem 3.2. Let R be a compact Riemann surface of genus zero or one,
and A : CP1 → CP1, B : R → R, and π : R → CP1 holomorphic maps of

degree at least two such that diagram (1) commutes. Then A is a generalized
Lattès map, unless R = CP1 and B ∼ A. In more detail, there exist a compact

Riemann surface R0 of the same genus as R and holomorphic maps ψ : R → R0,

π0 : R0 → CP1, and B0 : R0 → R0 satisfying the following conditions.
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(1) B0 ∼ B and π = π0 ◦ψ.

(2) The diagram

(18)

R
B−−−→ R⏐⏐�ψ ⏐⏐�ψ

R0
B0−−−→ R0⏐⏐�π0

⏐⏐�π0

CP1 A−−−→ CP1

commutes.
(3) The map π0 has degree at least two, unless R = CP1 and B ∼ A, and the

collection

(19) f = π0, p = B0, g = A, q = π0

is a good solution of (15).
(4) The maps A : Oπ0

2 → Oπ0
2 and B0 : Oπ0

1 → Oπ0
1 are minimal holomorphic

maps between orbifolds.
(5) The map ψ is a compositional right factor of B◦s and a compositional left

factor of B◦s
0 for some s ≥ 1.

Proof. If the collection

(20) f = π, p = B, g = A, q = π

is a good solution of (15), we can set

R0 = R, B0 = B, π0 = π, ψ = z.

Then A : Oπ0
2 → Oπ0

2 and B0 : Oπ0
1 → Oπ0

1 are minimal holomorphic maps by
Theorem 2.6. The other conditions hold trivially.

Assume now that (20) is not a good solution of (15). Since for solution (20)
the third condition of Lemma 2.7 is always satisfied, this implies that π and B have
a non-trivial common compositional right factor, that is, there exist a Riemann
surface R′ and holomorphic maps

U1 : R → R′, π′ : R′ → CP
1, V1 : R′ → R,

such that

(21) π = π′ ◦ U1, B = V1 ◦ U1,
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and degU1 ≥ 2. Furthermore, since B : R → R is decomposed as

R
U1−→ R′ V1−→ R,

the equality g(R′) = g(R) holds.
Substituting (21) in the equality

A ◦ π = π ◦ B,

we obtain the equality
A ◦ π′ = π′ ◦ U1 ◦ V1

and the commutative diagram

R
B−−−→ R⏐⏐�U1

⏐⏐�U1

R′ U1◦V1−−−→ R′⏐⏐�π′
⏐⏐�π′

CP
1 A−−−→ CP

1.

If the solution
f = π′, p = U1 ◦ V1, g = A, q = π′

of (15) is still not good, we can perform a similar transformation once again.
Since degU1 ≥ 2 implies that degπ′ < degπ, it is clear that after a finite number
of steps we will arrive at diagram (18), where B0 is obtained from B by a chain
of elementary transformations (17) (in the notation of Lemma 3.1, B0 = Bs), the
function ψ has the form

ψ = Us ◦ · · · ◦ U2 ◦ U1,

and the maps π0 and B0 have no non-trivial common compositional right factor.
Furthermore, degπ0 = 1 only if R = CP1 and B ∼ A. By Lemma 2.7, solution
(19) of (15) is good, and applying Theorem 2.6 we obtain that A : Oπ0

2 → Oπ0
2 and

B0 : Oπ0
1 → Oπ0

1 are minimal holomorphic maps between orbifolds. Notice that
by Proposition 2.2 this implies that χ(Oπ0

2 ) ≥ 0. Finally, by Lemma 3.1, ψ is a
compositional factor of B◦s and a compositional left factor of B◦s

0 . �

Remark 3.3. Theorem 3.2 implies in particular that the problem of describing
rational solutions of the functional equation

(22) A ◦ π = π ◦ B
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in a sense reduces to the casewhereχ(Oπ2 ) ≥ 0 (see [13] formore detail). Moreover,
it is shown in the paper [14], based on methods of [13], that for any good rational
solution of the more general functional equation

(23) A ◦ δ = π ◦ B,

such that
degA ≥ 84degπ,

the inequality χ(Oπ2 ) ≥ 0 still holds. The rational functions π with χ(Oπ2 ) ≥ 0 are
characterized by the condition that the genus of the Galois closure of C(z)/C(π)
equals zero or one (see [14]). For a detailed description of such functions we
refer the reader to the paper [17]. Notice that functional equations (22) and (23)
naturally arise in arithmetic and dynamics (see, e.g., [1], [5], [9], [16]).

Let us prove now the chain of implications 3 ⇒ 2 ⇒ 1 ⇒ 3 between the
conditions of Theorem 1.1.

3 ⇒ 2. By Proposition 2.1, for any minimal holomorphic map A : O → O

between orbifolds there exists a holomorphicmapF : Õ → Õ and a homomorphism
ϕ : �O → �O such that the diagram

Õ
F−−−→ Õ⏐⏐�θO ⏐⏐�θO

O
A−−−→ O

commutes and
F ◦ σ = ϕ(σ) ◦ F, σ ∈ �O.

If χ(O) > 0, then Õ = CP1 is a compact Riemann surface, so (5) holds for

R = CP
1, B = F, π = θO, � = �O,

and the assumption O �= CP1 implies that the group � is non-trivial. Finally, the
homomorphism ϕ in (6) is an isomorphism by Theorem 2.8.

Assume now that χ(O) = 0 and Õ = C. Observe first that since in this case
A : O → O is a covering map, the homomorphism ϕ in (12) is a monomorphism.
Indeed, by Proposition 2.1, the map F : C → C is an isomorphism, that is it has
the form

F = az + b, a, b ∈ C.

Thus, F is invertible and hence the equality F ◦ σ = F implies that σ is the identity
mapping.
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Let now 
O be the subgroup of �O generated by translations. By the classifi-
cation of groups �O given in the previous section, θO is decomposed as

θO : C
ψ−→ C/
O

∼= R
π−→ R/� ∼= CP

1,

where R = C/
O is a complex torus and � ∼= �O/
O is a finite subgroup of
Aut(R). Since ϕ is a monomorphism, it maps elements of infinite order of �O to
elements of infinite order. Therefore, ϕ(
O) ⊂ 
O, implying that F descends to
a holomorphic map B : R → R which makes the diagram

C
F=ax+b−−−→ C⏐⏐�ψ ⏐⏐�ψ

R
B−−−→ R⏐⏐�π ⏐⏐�π

CP
1 A−−−→ CP

1

commutative. Finally, the condition that diagram (5) commutes implies that B
commutes with the group � (see [10], p. 16). Thus, (6) holds for the identical
automorphism ϕ.

2 ⇒ 1. It is enough to show that if A,B and π satisfy the second condition,
then π is not a compositional right factor of B◦s, s ≥ 1. If g(R) = 1, this is obvious,
since for any decomposition

R
π−→ R′ w−→ R

of B◦s, s ≥ 1, the genus of R′ must equal one. So, assume that R = CP
1.

Since

(24) π : CP1 → CP
1/� ∼= CP

1

is a Galois covering, for any branch point zi, 1 ≤ i ≤ r, of π there exists a
number di such that π−1{zi} consists of |�|/di points, and at each of these points
the multiplicity of f equals di. In other words, the orbifold Oπ1 is non-ramified.
Since CP

1 is simply-connected, this implies that π is the universal covering of Oπ2 .
Therefore, diagram (5) has form (16), where O = Oπ2 , and Theorem 2.8 implies
that A : Oπ2 → Oπ2 is a minimal holomorphic map. Assume now that

(25) B◦s = w ◦ π
for some rational function w and s ≥ 1. Clearly, (5) implies

(26) A◦s ◦ π = π ◦ B◦s,
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and substituting (25) in (26), we see that

(27) A◦s = π ◦w,
that is π is a compositional left factor of A◦s. Since A : Oπ2 → Oπ2 is a minimal
holomorphic map, Theorem 2.3 implies that

(A◦s)∗Oπ2 = Oπ2 .

On the other hand, it follows from (27) by Theorem 2.3 that

(A◦s)∗Oπ2 = (π ◦w)∗Oπ2 = w∗(π∗Oπ2 ) = w∗Oπ1 = w∗
CP

1 = CP
1.

Therefore, Oπ2 = CP
1. However, for � �= e the orbifold Oπ2 for quotient map (24) is

ramified. The contradiction obtained finishes the proof.
1 ⇒ 3. Let us consider good solution (19) provided by Theorem 3.2 for the

maps A,B and π satisfying (4). We observe that degπ0 ≥ 2, for otherwise the
function π along with ψ is a compositional right factor of B◦s and a compositional
left factor of A◦s, in contradiction with the assumption. By Theorem 2.6, A :
Oπ0

2 → Oπ0
2 is a minimal holomorphic map, and it follows from degπ0 ≥ 2 that

Oπ0
2 �= CP

1. �

Remark 3.4. The above proof shows that the assumption in the first condition
of Theorem 1.1, requiring that π is not a compositional right factor of some iterate
of B, can be replaced by the assumption that π is not a compositional left factor of
some iterate of A.

Further, we observe that for any diagram (5), condition (6) holds automatically
for some homomorphism ϕ : � → �. Moreover, if g(R) = 1, then ϕ is an
automorphism, since in this case the commutativity of diagram (5) implies that B
commutes with �. On the other hand, if g(R) = 0, then, by Theorem 2.8, the
condition that ϕ is an automorphism can be replaced by the requirement that π
and B have no common compositional right factor.

Finally, we observe that for surfaces R of genus one the second condition of
Theorem 1.1 can be replaced by the condition that there exists a subgroup � of
Aut(C) acting properly discontinuously on C whose translation subgroup is a free
group of rank two, and a holomorphic map F : C → C such that diagram (5),
where π : C → C/� is the quotient map, commutes (cf. [10]).

4 Compositions and decompositions

For a given orbifold O, we denote by E(O) the set of rational functions A such that
A : O → O is a minimal holomorphic map. In this section we study compositional
properties of elements of E(O).
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Theorem 4.1. Let O be an orbifold and U, V rational functions of degree at

least two. Assume that U and V are contained in E(O). Then the composition
U ◦ V is also contained in E(O). In the other direction, if U ◦ V is contained in

E(O), then ν(U∗O) = ν(O) and V : O → U∗O and U : U∗O → O are minimal
holomorphic maps. In particular, whenever ν(O) �= {2, 2, 2, 2}, there exists a

Möbius transformation μ such that U ◦ μ and μ−1 ◦ V are contained in E(O).

Proof. If U,V are contained in E(O), then Corollary 2.4 obviously implies
that the composition U ◦ V is also contained in E(O).

In the other direction, assume that U ◦ V ∈ E(O), and set O′ = U∗O. Since by
Corollary 2.5

(28) U : O′ → O, V : O → O′

are minimal holomorphic maps between orbifolds, we have

(29) ν(O) ≤ ν(O′) ≤ ν(O).

Furthermore, by Proposition 2.2, the inequalities

χ(O) ≤ χ(O′)degV, χ(O′) ≤ χ(O)degU

hold. Therefore,

χ(O) ≤ χ(O′)degV ≤ χ(O)degUdegV,

implying that χ(O′) = 0 whenever χ(O) = 0, and χ(O′) > 0 whenever χ(O) > 0.
Assume first that χ(O) = 0. Then a direct analysis of Table 1

{2,2,2,2} {3,3,3} {2,4,4} {2,3,6}
{2,2,2,2} ≤ ≤ ≤
{3,3,3} ≤ ≤
{2,4,4} ≤
{2,3,6} ≤

Table 1.

listing all ν(O1) and ν(O2) such that

χ(O1) = χ(O2) = 0

and ν(O1) ≤ ν(O2), shows that (29) is possible only if ν(O′) = ν(O).
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If χ(O) > 0 the proof can be done as follows (cf. [13], Corollary 5.1). Since
maps (28) are minimal holomorphic maps, it follows from Proposition 2.1 that
there exist rational functions FU and FV which make the diagram

CP
1 FV−−−→ CP

1 FU−−−→ CP
1⏐⏐�θO ⏐⏐�θO′

⏐⏐�θO
CP1 V−−−→ CP1 U−−−→ CP1

commutative and satisfy

FV ◦ σ = ϕV(σ) ◦ FV, σ ∈ �O, FU ◦ σ = ϕU(σ) ◦ FU, σ ∈ �O′,

for some homomorphisms

ϕV : �O → �O′, ϕU : �O′ → �O.

Since the function FU ◦ FV makes the diagram

CP
1 FU◦FV−−−→ CP

1⏐⏐�θO ⏐⏐�θO
CP1 U◦V−−−→ CP1

commutative, Theorem 2.8 implies that the composition of homomorphisms

ϕU ◦ ϕV : �O → �O

is an automorphism. Therefore, �O′ ∼= �O, implying that ν(O′) = ν(O).
Finally, if ν(O) �= {2, 2, 2, 2}, the orbifoldsO and O′ have at most three singular

points, implying that we can find μ as required. �
In a sense, Theorem 4.1 reduces the study of generalized Lattès maps to the

study of indecomposable maps. Recall that a rational function A is called inde-
composable if the equality A = U ◦ V , where U and V are rational functions,
implies that at least one of the functions U and V has degree one. Clearly, any
rational function A of degree at least two can be decomposed into a composition

A = A1 ◦ A2 ◦ · · · ◦ Al

of indecomposable rational functions of degree at least two. Such decompositions
are called maximal.

Corollary 4.2. Let O be an orbifold whose signature is distinct from

{2, 2, 2, 2}. Then any rational function A of degree at least two contained in
E(O) has a maximal decomposition whose elements are contained in E(O).
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Proof. Indeed, if A is indecomposable we have nothing to prove. Otherwise,
A = U ◦ V for some rational functions U and V , and changing U to U ◦μ and V to
μ−1 ◦ V , where μ is a Möbius transformation provided by Theorem 4.1, without
loss of generality we may assume that U,V ∈ E(O). Continuing in this way we
will obtain the required maximal decomposition. �

Corollary 4.3. Let O be an orbifold whose signature is distinct from

{2, 2, 2, 2}. Assume that A ∈ E(O) and B ∼ A. Then B is conjugate to some
B′ ∈ E(O).

Proof. By Theorem 4.1, the statement is true for any elementary transforma-
tion of A. It follows now from the definition of the equivalence ∼ that it is true for
any B ∼ A. �

Corollary 4.4. Let A be a Lattès map and B ∼ A. Then B is a Lattès map.

Proof. It follows from Theorem 4.1 and Corollary 2.4 that if A = U ◦ V is
contained inE(O), then the elementary transformationV◦U is contained inE(U∗O).
Moreover, since ν(U∗O) = ν(O), if χ(O) = 0, then χ(U∗O) = 0. Therefore, if
A = U ◦ V is a Lattès map, then V ◦ U is also a Lattès map. �

For orbifolds O1,O2, . . . ,Os we define the orbifold O = lcm(O1,O2, . . . ,Os)
by the condition

ν(z) = lcm
(
ν1(z), ν2(z), . . . , νs(z)

)
, z ∈ CP

1.

Theorem 4.5. Let O1, O2, . . . ,Os and O′
1, O

′
2, . . . ,O

′
s be orbifolds, and A a

rational function such that the maps A : Oi → O′
i, 1 ≤ i ≤ s, are holomorphic

maps (resp., minimal holomorphic maps, covering maps) between orbifolds. Then

A : lcm(O1,O2, . . . ,Os) → lcm(O′
1,O

′
2, . . . ,O

′
s)

is also a holomorphic map (resp., a minimal holomorphic map, a covering map)
between orbifolds.

Proof. In order to prove the first part of the proposition, it is enough to observe
that the conditions

ν′
i(A(z)) | νi(z) degz A, 1 ≤ i ≤ s,

imply the condition

lcm
(
ν′

1(A(z)), ν′
2(A(z)), . . . ,ν′

s(A(z))
) |

lcm
(
ν1(z) degz A, ν2(z) degz A, . . . , νs(z) degz A

)
= lcm

(
ν1(z), ν2(z), . . . , νs(z)

)
degz A.
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In order to prove the second part, we must show that if

ν′
i(A(z)) = νi(z) gcd

(
ν′

i(A(z)), degz A
)
, 1 ≤ i ≤ s,

then

(30)

lcm
(
ν′

1(A(z)),ν′
2(A(z)), . . . , ν′

s(A(z))
)

= lcm
(
ν1(z), ν2(z), . . . , νs(z)

)
× gcd

(
lcm(ν′

1(A(z)), ν′
2(A(z)), . . . , ν′

s(A(z))), degz A
)
.

Let p be an arbitrary prime number and z ∈ CP1. Set

bi = ordpν
′
i(A(z)), ai = ordpνi(z), c = ordp degz A, 1 ≤ i ≤ s.

Considering the orders at p of the numbers in the left and the right sides of equal-
ity (30), we see that we must prove the following statement: if ai, bi, 1 ≤ i ≤ s,

and c are integer non-negative numbers such that

(31) bi = ai + min{c, bi}, 1 ≤ i ≤ s,

then

(32) max
i

{bi} = max
i

{ai} + min{c,max
i

{bi}}.
Let I1 (resp., I2) be the subset of {1, 2, . . . , s} consisting of indices i such that

c ≤ bi (resp., c > bi). Clearly, we have

max
i

{bi} = max
{

max
i∈I1

{bi},max
i∈I2

{bi}
}
.

For each i, 1 ≤ i ≤ s, equality (31) implies that bi = ai + c, if i ∈ I1, and ai = 0,
if i ∈ I2. If c > maxi{bi}, that is, the set I1 is empty, then maxi{ai} = 0, and
hence (32) holds. On the other hand, if c ≤ maxi{bi}, then I1 is non-empty and for
an arbitrary i0 ∈ I1 we have bi0 = ai0 + c, implying that for any i ∈ I2 the inequality

bi < c ≤ c + ai0 = bi0 ≤ max
i∈I1

{bi}

holds. Thus,
max
i∈I2

{bi} < max
i∈I1

{bi}
and hence

max
i

{bi} = max
i∈I1

{bi} = max
i∈I1

{ai + c} = max
i∈I1

{ai} + c.

Furthermore, since ai = 0 whenever i ∈ I2, we have

max
i∈I1

{ai} = max
i

{ai}.
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Therefore, if c ≤ maxi{bi}, then

max
i

{bi} = max
i

{ai} + c,

as required.
Finally, since a minimal holomorphic map f : O → O′ is a covering map if

and only if degz A|ν′(A(z)) for any z ∈ CP
1, in order to prove the last part of the

theorem it is enough to observe that the conditions

degz A | ν′
i(A(z)), 1 ≤ i ≤ s, z ∈ CP

1,

imply the condition

degz A | lcm
(
ν′

1(A(z)), ν′
2(A(z)), . . . , ν′

s(A(z))
)
, z ∈ CP

1. �

Corollary 4.6. Let A be a rational function of degree at least two, and O an
orbifold such that the function A◦l is contained in E(O) for some l ≥ 2. Then,

unless the signature of O is {2, 2}, {3, 3}, {2, 2, 2}, or {2, 2, 4}, the function A is

also contained in E(O).

Proof. Set O′ = A∗O. Applying Theorem 4.1 to the decomposition

A◦l = A ◦ A◦(l−1)

we see that ν(O′) = ν(O) and the maps

(33) A : O′ → O, A◦(l−1) : O → O′

are minimal holomorphic maps. In particular, in order to show that A ∈ E(O) it is
enough to prove that O′ = O. Since (33) are minimal holomorphic maps, applying
Corollary 2.4 to the decomposition

A◦l = A◦(l−1) ◦ A,

we see that A◦l ∈ E(O′). It follows now from Theorem 4.5 that A◦l ∈ E(Õ), where
Õ = lcm(O,O′). However, this implies that χ(Õ) ≥ 0, and it is easy to see that if O
andO′ are two orbifolds of non-negative Euler characteristic such that ν(O′) = ν(O)
and χ(Õ) ≥ 0, then O′ = O, unless the signature of O is {2, 2}, {3, 3}, {2, 2, 2},
or {2, 2, 4}. Indeed, assume that, say, ν(O) = {2, 2, n}, n ≥ 2. Since χ(Õ) ≥ 0,
if c(O′) �= c(O), then c(Õ) contains four points and ν(Õ) = {2, 2, 2, 2}, so that
n = 2. On the other hand, if c(O′) = c(O) but O′ �= O, then ν(Õ) = {2, d, d}, where
d = lcm(2, n), implying that n = 4. Other signatures can be considered similarly. �

Notice that Corollary 4.6 implies in particular the following statement.

Corollary 4.7. Let A be a rational function of degree at least two such that
some iterate A◦l is a Lattès map. Then A is a Lattès map.
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5 Generalized Lattès maps for the signatures {n, n}
and {2, 2, n}

In this section we describe minimal holomorphic maps A : O → O for orbifolds O
with signatures {n, n} and {2, 2, n}. To be definite, we normalize considered
orbifolds by the conditions

(34) ν(0) = n, ν(∞) = n, n ≥ 2,

and

(35) ν(−1) = 2, ν(1) = 2, ν(∞) = n, n > 2.

For the orbifoldO defined by (34) the corresponding group �O is a cyclic group Cn

generated by

(36) α : z → e2πi/nz,

and
θO = zn.

For O defined by (35) the group �O is a dihedral group Dn generated by

(37) α : z → e2πi/nz, β : z → 1
z
,

and
θO =

1
2

(
zn +

1
zn

)
.

Notice that the assumption n > 2 in (35) is due to the fact that the description of
the group Aut(D2n) in the case n = 2 is different from the general case. The case
n = 2 can be analyzed by the method of the seventh section.

By Theorem 2.8, A : O → O is a minimal holomorphic map for an orbifold O

with χ(O) > 0 if and only if the solution of (15) provided by the commutative
diagram

(38)

CP
1 F−−−→ CP

1⏐⏐�θO ⏐⏐�θO
CP

1 A−−−→ CP
1

is good, or, equivalently, the homomorphism ϕ : �O → �O defined by

(39) F ◦ σ = ϕ(σ) ◦ F, σ ∈ �O,
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is an automorphism. Thus, the problem of describing minimal holomorphic map
A : O → O for orbifolds O defined by (34) and (35) essentially is equivalent to the
problem of describing good solutions of the functional equations

(40) A ◦ zn = zn ◦ F, n ≥ 2,

and

(41) A ◦ 1
2

(
zn +

1
zn

)
=

1
2

(
zn +

1
zn

)
◦ F, n > 2,

or, equivalently, to the problemof describingF satisfying (39) for automorphismsϕ
of �O = Cn and �O = D2n.

Abusing the notation, we will say that a couple of rational functions A, F is a
good solution of (40) if the functions A, zn, zn, F form a good solution of (15). A
good solution of (41) is defined similarly.

Theorem 5.1. A couple of rational functions A, F is a good solution of (40)
if and only if A = zrRn(z) and F = zrR(zn), where R ∈ C(z) and gcd(r, n) = 1. In
particular, any minimal holomorphic map A : O → O for O defined by (34) has

the above form.

Proof. Since for �O generated by (36) any automorphism ϕ : �O → �O has
the form

(42) ϕ(α) = α◦r, 1 ≤ r ≤ n − 1, gcd(n, r) = 1,

a rational function F satisfies (39) if and only if for some r coprime with n the
function F/zr is �O-invariant, that is, F/zr is a rational function in zn. Thus, F

satisfies (39) if and only if F = zrR(zn), where R ∈ C(z) and gcd(r, n) = 1. Finally,
it follows from

A ◦ zn = zn ◦ zrR(zn) = zrRn(z) ◦ zn

that A makes diagram (38) commutative if and only if A = zrRn(z). �
Notice that A = zrRn(z) and F = zrR(zn) make diagram (38) commutative

for any r ≥ 0, not necessarily coprime with n. However, if gcd(r, n) > 1, the
homomorphism ϕ has a non-trivial kernel, and A : O → O is a holomorphic map
but not a minimal holomorphic map.

Corollary 5.2. Let A, F be a good solution of (40) and m = degA = degF.
Then m ≥ n, unless F = cz±m and A = cnz±m, where c ∈ C.

Proof. Indeed, if a rational function R has a zero or a pole distinct from 0
and ∞, then the degree of the function F = zrR(zn) is at least n. Otherwise,
F = cz±m implying that A = cnz±m. �
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Corollary 5.3. Let A be a rational function of degree m ≥ 2 such that

A : O → O is a minimal holomorphic map between orbifolds with ν(O) = {n, n},
n ≥ 2. Then m ≥ n, unless A is conjugate to z±m. �

Let us denote by T the set of rational functions commuting with the involution

β : z → 1
z
.

Since the equality G(z)G(1/z) = 1, where G is a rational function, implies that
a ∈ CP

1 is a zero of G of order k if and only if 1/a is a pole of G of order k, it is
easy to see that elements of T have the form

G = ±z±l0 (z − a1)l1(z − a2)l2 · · · (z − as)ls

(a1z − 1)l1(a2z − 1)l2 · · · (asz − 1)ls
,

where a1, a2, . . . , as ∈ C \ {0} and l0, l1, l2, . . . , ls ∈ N.

Theorem 5.4. A couple of rational functions A, F is a good solution of (41)
if and only if F = εzrR(zn) and

(43) A =
εn

2
(zrRn(z) ◦ (z +

√
z2 − 1) + zrRn(z) ◦ (z −

√
z2 − 1)),

where R ∈ T, gcd(r, n) = 1, and ε2n = 1. In particular, any minimal holomorphic

map A : O → O for O defined by (35) has the above form.

Proof. Since an automorphism ϕ of the group �O generated by (37) maps any
element of order n of the group �O = D2n to an element of order n, and n > 2,
equality (42) still holds. On the other hand, since ϕ maps β to an element of order
two not belonging to the subgroup generated by α, we have

(44) ϕ(β) = α◦k ◦ β = e2πik/nz ◦ 1
z
, 0 ≤ k ≤ n − 1.

It was shown above that condition (42) holds if and only if F = zrR(zn), where
R ∈ C(z) and gcd(r, n) = 1. On the other hand, condition (44) holds if and only if

(45) F(1/z) = e
2πi
n k 1

F(z)
,

or equivalently if and only if e− πi
n kF ∈ T, 0 ≤ k ≤ n − 1. This implies that F

satisfies (39) for some automorphism ϕ of �O if and only if

(46) F = εzrR(zn),

where R ∈ T, ε2n = 1, and gcd(r, n) = 1.
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Finally, if

(47) A ◦ 1
2

(
zn +

1
zn

)
=

1
2

(
zn +

1
zn

)
◦ εzrR(zn),

then it follows from

A ◦ 1
2

(
zn +

1
zn

)
= A ◦ 1

2

(
z +

1
z

)
◦ zn

and
1
2

(
zn +

1
zn

)
◦ εzrR(zn) =

εn

2

(
z +

1
z

)
◦ zrRn(z) ◦ zn,

that

(48)
A ◦ 1

2

(
z +

1
z

)
=
εn

2

(
z +

1
z

)
◦ zrRn(z)

=
εn

2

(
zrRn(z) + zrRn(z) ◦ 1

z

)
.

Substituting now z by z +
√

z2 − 1 in the left and the right sides of the last equality
we obtain (43). On the other hand, if (43) holds, then substituting z by

1
2

(
z +

1
z

)

we obtain (48) and (47). �

Corollary 5.5. Let A, F be a good solution of (41) and m = degA = degF.

Then m ≥ n + 1, unless F = εz±m, where ε2n = 1, and A = εnTm.

Proof. Indeed, if a rational function R ∈ T has say a zero a distinct from 0
and ∞, then it has a pole 1/a also distinct from 0 and ∞. Therefore, the function
F = εzrR(zn) has the degree at least n + r ≥ n + 1.

On the other hand, if R ∈ T has no zeros or poles distinct from 0 and ∞, then
R = ±z±l, l ≥ 1. Therefore, F = εz±m, where ε2n = 1, and the well known identity

Tm(z) =
1
2
((z +

√
z2 − 1)m + (z −

√
z2 − 1)m)

implies that A = εnTm. �

Corollary 5.6. Let A be a rational function of degree m ≥ 2 such that

A : O → O is a minimal holomorphic map between orbifolds with ν(O) = {2, 2, n},
n > 2. Then m ≥ n + 1, unless A is conjugate to ±Tm. �
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In conclusion of this section, we provide a description of good solutions of the
equation

(49) A ◦ Tn = Tn ◦ B, n > 2,

based on Theorem 5.4.

Theorem 5.7. A couple of rational functions A, B is a good solution of (49)
if and only if

(50) B =
1
2
(zrR(zn) ◦ (z +

√
z2 − 1) + zrR(zn) ◦ (z −

√
z2 − 1)),

and

(51) A =
1
2
(zrRn(z) ◦ (z +

√
z2 − 1) + zrRn(z) ◦ (z −

√
z2 − 1)),

where R ∈ T and gcd(r, n) = 1.

Proof. Assume that A, B is a good solution of (49). Let us observe that for
n > 2 the orbifold Õ = OTn

1 is defined by the equalities

ν̃(−1) = 2, ν̃(1) = 2.

Since B : Õ → Õ is a minimal holomorphic map by Theorem 2.6, this implies by
Proposition 2.1 that we can complete (49) to the diagram

(52)

CP
1 F−−−→ CP

1⏐⏐� 1
2 (z+ 1

z )

⏐⏐� 1
2 (z+ 1

z )

CP1 B−−−→ CP1⏐⏐�Tn

⏐⏐�Tn

CP1 A−−−→ CP1.

Furthermore, since A : OTn
2 → OTn

2 is also a minimal holomorphic map, and OTn
2

coincides with O defined by (35), the solution A, F of (41) induced by (52) is good
by Theorem 2.8, so that equalities (43) and (46) hold.
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Applying Proposition 2.1 to the upper square of diagram (52), we see that F

maps the subgroup generated by β to itself. Thus, k = 0 in (45), and hence
F = zrR(zn), implying that (43) reduces to (51). Moreover, substituting z by
z +

√
z2 − 1 in the left and the right sides of the equality

B ◦ 1
2

(
z +

1
z

)
=

1
2

(
z +

1
z

)
◦ zrR(zn) =

1
2

(
zrR(zn) + zrR(zn) ◦ 1

z

)
,

we obtain (50).

In the other direction, assume that A and B are given by (50) and (51). Since in
this case the function F = zrR(zn) satisfies the equalities (41) and

B ◦ 1
2

(
z +

1
z

)
=

1
2

(
z +

1
z

)
◦ F,

the functions A and B satisfy (49). Finally, Lemma 2.7 implies that A, B is a good
solution of (49). Indeed, since A, F is a good solution of (41), the curve

A(x) − 1
2

(
yn +

1
yn

)
= 0

is irreducible. Therefore, since Tn(z) is a compositional left factor of 1
2 (z

n + 1
zn ),

the curve

A(x) − Tn(y) = 0

is also irreducible, implying that A, B is a good solution of (49). �

Corollary 5.8. Let A, B be a good solution of (49) and m = degA = degB.
Then m ≥ n + 1, unless B = ±Tm and A = (±1)nTm.

Proof. Since a good solution A, B of (49) induces a good solution A, F of
(41), the corollary is obtained by a modification of the proof of Corollary 5.5,
taking into account that k = 0 in (45). �

6 Orbifold OA
0

Let A be a rational function of degree at least two. In this section we study the
totality of orbifolds O such that A : O → O is a minimal holomorphic map, and
prove Theorem 1.2.

If A is an ordinary Lattès maps, then an orbifold O such that A : O → O is a
covering map is defined in a unique way by dynamical properties of A (see [10]).
We start by reproving the uniqueness of O using Theorem 4.5.
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Theorem 6.1. Let A be a rational function of degree at least two. Then there

exists at most one orbifold O of zero Euler characteristic such that A : O → O is a
minimal holomorphic map between orbifolds.

Proof. Assume that O1, O2 are two such orbifolds, and set O = lcm(O1,O2).
By Proposition 2.2, A : O1 → O1 and A : O2 → O2 are covering maps between
orbifolds. Therefore, A : O → O is also a covering map, by Theorem 4.5. Thus,
χ(O) = 0. However, it is easy to see that whenever ν(O1) and ν(O2) belong to
list (2) the equality χ(O) = 0 implies the equality O1 = O2. �

In general, there might be more than one orbifold O such that A : O → O

is a minimal holomorphic map between orbifolds, and even infinitely many such
orbifolds. The last phenomenon occurs for the functions z±d and ±Td, which play
a special role in the theory. Namely, z±d : O → O is a minimal holomorphic map
for any O defined by the conditions

(53) ν(0) = ν(∞) = n, n ≥ 2, gcd(d, n) = 1,

and ±Td : O → O is a minimal holomorphic map for any O defined by the
conditions

(54) ν(−1) = ν(1) = 2, ν(∞) = n, n ≥ 1, gcd(d, n) = 1.

Indeed, it is enough to check condition (7) only at points of the finite set

(55) c(O) ∪ A−1(c(O)),

since at other points it holds trivially, and at points of (55) this condition holds by
the well-known ramification properties of z±d and ±Td .

Notice that for odd d, additionally, ±Td : O → O is a minimal holomorphic
map for O defined by

(56) ν(1) = 2, ν(∞) = 2,

or

(57) ν(−1) = 2, ν(∞) = 2.

Theorem 6.2. Let O be an orbifold distinct from the non-ramified sphere.
(1) The map z±d : O → O, d ≥ 2, is a minimal holomorphic map between

orbifolds if and only if O is defined by conditions (53).
(2) The map ±Td : O → O, d ≥ 2, is a minimal holomorphic map between

orbifolds if and only if either O is defined by conditions (54), or d is odd
and O is defined by conditions (56) or (57).
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Proof. We prove the theorem for ±Td. For z±d the proof is similar. As-
sume that ±Td : O → O is a minimal holomorphic map between orbifolds,
and set On equal to LCM of the orbifolds O and (54). By Theorem 4.5, the
map ±Td : On → On is a minimal holomorphic map between orbifolds, implying
that χ(On) ≥ 0. However, it is easy to see that for n big enough this inequality
holds only if O is defined either by (56), or by (57), or by

ν(−1) = ν(1) = 2, ν(∞) = n′, n′ ≥ 1.

Finally, checking condition (7) at the points of ±T−1
d {−1, 1,∞}, we see that in

the last case d and n′ must be coprime. �

Lemma 6.3. Let A be a rational function of degree d ≥ 2 such that some
iterate A◦l is conjugate to z±dl. Then A is conjugate to z±d. Similarly, if A◦l is

conjugate to ±Tdl, then A is conjugate to ±Td.

Proof. Assume say that A◦l is conjugate to z±dl. Then for any n coprime
with dl there exists an orbifold O with the signature {n, n} such that z±dl ∈ E(O),
implying by Corollary 4.6 that A ∈ E(O). It follows now from Corollary 5.3 that A
is conjugate to z±d. The case where A◦l is conjugate to ±Tdl is considered similarly.

�

Proof of Theorem 1.2. In order to prove the existence of OA
0 it is enough

to show that there exist at most finitely many orbifolds O such that A : O → O is a
minimal holomorphic map. Indeed, it follows from Theorem 4.5 that in this case
we can set

OA
0 = lcm(O1,O2, . . . ,Ol),

where O1, O2, . . . ,Ol is a complete list of such orbifolds.
Assume to the contrary that there exists an infinite sequence of pairwise distinct

orbifolds O1,O2, . . . such that A : Oi → Oi is a minimal holomorphic map for
every i ≥ 0. Set

Us = lcm(O1,O2, . . . ,Os), s ≥ 1.

By Theorem 4.5, the maps A : Us → Us, s ≥ 1, are minimal holomorphic
maps between orbifolds. Clearly, if the set U1,U2, . . . is finite, then the set
O1,O2, . . . is also finite. Therefore, the set U1,U2, . . . is infinite. Since χ(Us) ≥ 0
by Proposition 2.2, and Us 
 Us+1, this implies that for s big enough either
ν(Us) = {n, n}, or ν(Us) = {2, 2, n}, where n → ∞ as s → ∞. However, in this
case Corollary 5.3 and Corollary 5.6 imply that the function A is conjugate either
to z±d or to ±Td, in contradiction with the assumption.
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By Lemma 6.3, the orbifolds OA◦l

0 either exist for all l ≥ 1, or do not exist for
all l ≥ 1. Assuming that they exist, the proof of the equality

(58) OA◦l

0 = OA
0

is obtained by a modification of the proof of Corollary 4.6. Set

O′ = A∗(OA◦l

0 ), Õ = lcm(OA◦l

0 ,O
′).

Then A : O′ → OA◦l

0 and A◦l : Õ → Õ are minimal holomorphic maps. Since
OA◦l

0 
 Õ, it follows from the maximality of OA◦l

0 that Õ = OA◦l

0 . This condition
is stronger than the condition χ(Õ) ≥ 0 used in Corollary 4.6 and combined with
ν(O′) = ν(OA◦l

0 ) implies that O′ = OA◦l

0 . Thus, A : OA◦l

0 → OA◦l

0 is a minimal
holomorphic map, and hence OA◦l

0 
 OA
0 . On the other hand, the first part of

Theorem 4.1 implies that OA
0 
 OA◦l

0 . Therefore, (58) holds. �
Notice that generalized Lattès maps are exactly rational functions for which the

orbifold OA
0 is distinct from the non-ramified sphere, completed by the functions

conjugate to z±d or ±Td for which the orbifold OA
0 is not defined. Furthermore, the

following statement holds.

Lemma 6.4. A rational function is a Lattès map if and only if χ(OA
0 ) = 0.

Proof. The “if” part is obvious. On the other hand, if A : O → O is a covering
map, then it follows from O 
 OA

0 that χ(O) ≥ χ(OA
0 ). Therefore, since χ(OA

0 ) ≥ 0
and χ(O) = 0, the equality χ(OA

0 ) = 0 holds. �

Remark 6.5. The functions z±n and ±Tn can be considered as covering self-
maps between orbifolds if we allow the base Riemann surface to be non-compact.
Namely, it is easy to see that the map z±n : O → O is a covering map for the
non-ramified orbifold with the base surfaceR = C\{0,∞}, while ±Tn : O → O is
a covering map for the orbifold defined on R = C \ {∞} by the condition ν(1) = 2,
ν(−1) = 2. The corresponding functions θO are ez and cos z. Notice that the
functions z±n and ±Tn along with Lattès maps play a key role in the description of
commuting rational functions obtained by Ritt (see [20], [4], [18]).

In order to check whether or not a given rational function A is a generalized
Lattès map one can use the following lemma.

Lemma 6.6. Let A be a rational function of degree at least five, and O1, O2

orbifolds distinct from the non-ramified sphere such that A : O1 → O2 is a minimal
holomorphic map between orbifolds. Assume thatχ(O1) ≥ 0. Then c(O2) ⊆ c(OA

2 ).
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Proof. Suppose that z0 ∈ c(O2) is not a critical value of A. Then (13) implies
that for every point z ∈ A−1{z0} we have ν1(z) = ν2(z0) > 1, implying that c(O1)
contains at least five points in contradiction with χ(O1) ≥ 0. �

Corollary 6.7. Let A be a rational function of degree at least five, and O an

orbifold distinct from the non-ramified sphere such that A : O → O is a minimal
holomorphic map between orbifolds. Then c(O) ⊆ c(OA

2 ). �

Corollary 6.7 provides a practical method for finding OA
0 . Indeed, it implies

that for a given rational function A of degree at least five, not conjugate to z±d

or ±Td, any orbifold O such that (7) holds satisfies c(O) ⊆ c(OA
2 ). Combined with

Corollary 5.3 and Corollary 5.6, this implies that there exist only finitely many
possibilities for O. Finally, for each possible O it is enough to check condition (7)
only at points of the finite set (55).

7 Generalized Lattès maps for the signatures {2, 3, 3},
{2, 3, 4} and {2, 3, 5}

In this section, we describe an approach to the description of minimal holomorphic
maps A : O → O for O with χ(O) > 0 basing on a link between such maps and
rational functions F commuting with �O. We also describe the class of polynomial
generalizedLattès maps. Denote by Out(�O) the outer automorphism group of�O,
and by dO the order of Out(�O).

Lemma 7.1. Let O be an orbifold with χ(O) > 0, A a rational function such
that A : O → O is a minimal holomorphic map between orbifolds, and F a rational

function such that diagram (38) commutes. Then there exists σ ∈ �O such that
σ ◦ F◦dO commutes with �O and the diagram

CP
1 σ◦F◦dO−−−→ CP

1⏐⏐�θO ⏐⏐�θO
CP

1 A◦dO−−−→ CP
1

commutes.

Proof. We recall that by Proposition 2.1 a rational function F satisfying (38)
for given A and θO is defined up to the composition σ ◦ F, where σ ∈ �O.
Furthermore, it is easy to see that for σ ∈ �O the change F → σ ◦ F corresponds
to the change ϕ → σ ◦ ϕ ◦ σ−1. In particular, if the automorphism ϕ is inner, then
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for an appropriate σ the automorphism σ ◦ ϕ ◦ σ−1 is identical, or equivalently the
function σ ◦ F commutes with �O. Therefore, since (38) implies the equalities

A◦n ◦ θO = θO ◦ F◦n, n ≥ 1,

F◦n ◦ σ = ϕ◦n(σ) ◦ F◦n, σ ∈ �O,

and the automorphism ϕ◦dO is inner, there exists σ ∈ �O as required. �
Notice that if O is given by (34), then a rational function F = zrR(zn) from

Theorem 5.1 commutes with �O = Cn if and only if r = 1. Thus, since dO = ϕ(n),
where ϕ(n) is the Euler totient function, Lemma 7.1 is equivalent in this case to the
Euler theorem saying that

rϕ(n) ≡ 1mod n

whenever gcd(r, n) = 1. Further, since Out(S4) is trivial, Lemma 7.1 reduces
the description of minimal holomorphic maps A : O → O for orbifolds O with
ν(O) = {2, 3, 4} to the description of rational functions commuting with S4. On
the other hand, since

Out(A5) = Out(A4) = Z/2Z,

it follows from Lemma 7.1 that in order to describe all minimal holomorphic
maps A : O → O with ν(O) = {2, 3, 3} or ν(O) = {2, 3, 5} it is enough to
describe the maps corresponding to functions commuting with �O as well as
“compositional square roots” of such maps. The method for describing rational
functions commuting with finite automorphism groups of CP1 was given in [3].
We overview it below.

We identify a rational function f with its dual 1-form as follows. Let us take
a representation f = f1/f2, where f1 and f2 are polynomials without common roots,
construct the homogenization Fi of fi to the degree n = max{deg f1, deg f2}, and set

ω = −F2dx + F1dy.

It is clear that the form ω is defined up to a multiplication by λ ∈ C \ {0}, and
forms ω1 and ω2 represent the same function if and only if ω2 = λω1 for some
λ ∈ C \ {0}. Under this identification the function μ−1 ◦ f ◦ μ, where

μ =
αz + β
γz + δ

, α, β, γ, δ ∈ C,

is identified with the pullback μ′∗ω, where

μ′ : (x, y) −→ (αx + βy, γx + δy).
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Thus, the problem of describing rational functions commuting with a group �
reduces to the problem of describing forms ω such that for any μ ∈ � the equality

μ′∗ω = χ(μ)ω

holds for some χ(μ) ∈ C. On the other hand, it was shown in [3] that a 1-form of
degree n satisfies this condition if and only if

(59) ω = U(x, y)λ + dV(x, y),

where U and V are invariant homogeneous polynomials with the same character,
degV = n + 1, degU = n − 1, and

λ = −ydx + xdy.

It is easy to see that the function f corresponding to form (59) is obtained by
setting z = x/y in

(60)
xU(x, y) + ∂V

∂y (x, y)

yU(x, y) − ∂V
∂x (x, y)

.

Notice that since 0 is a form of every degree, U and V can equal zero. In particular,
for any homogeneous polynomial V we obtain a function commuting with� setting
z = x/y in

(61) −
∂V
∂y (x, y)
∂V
∂x (x, y)

.

On the other hand, if V = 0, then for any U formula (60) leads to the same function
f = z.

Let us illustrate the above considerations by finding explicitly all rational
functions of degree ≤ 7 commuting with the group �O for an orbifold O with
ν(O) = {2, 3, 3}, and corresponding minimal holomorphic maps A : O → O. Ac-
cording to Klein [7], homogenous polynomials for the corresponding group� = A4

are polynomials in the forms

� = x4 + 2i
√

3x2y2 + y4, � = x4 − 2i
√

3x2y2 + y4, t = xy(x4 − y4).

Furthermore, t is absolutely invariant, while � and � are invariant with cha-
racters χ� and χ� whose product is the trivial character. This implies that all
forms (59) of degree ≤ 6 are obtained from (61) for V equal to�, �, or t. Indeed,
for non-zero U and V such a form may satisfy the condition degV = degU + 2
only if U is equal to � or �, and V is equal to t. However, for such U and V the
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condition concerning characters is not true. Rational functions commuting with
� = A4 which correspond to forms (61) with V equal�,�, t are

F1 = − i
√

3z2 + 1

z(i
√

3 + z2)
,

F2 = − i
√

3z2 − 1

z(i
√

3 − z2)
,

F3 = −z(z4 − 5)
5z4 − 1

.

For the degree seven we obtain a one-parameter series setting in (59)

U = ct, c ∈ C, V = ��.

In order to obtain the corresponding generalized Lattès map in a compact form, it
is convenient to rescale this parametrization setting c = 8i

√
3a, a ∈ C, so that

F4 =
1
z

(3az6 − 7iz4
√

3 − 3az2 − i
√

3

i
√

3z6 + 3az4 + 7i
√

3z2 − 3a

)
.

The generalized Lattès maps corresponding to Fi, 1 ≤ i ≤ 4, are

L1 =
27z

(4z − 1)3
,

L2 = − (z − 4)3

27z2
,

L3 = − (5z − 4)3

z2(4z − 5)3
,

and

L4 = z
( (a − 1)4z2 − 2(a − 1)(a3 − 3a2 − 9a − 21)z + (a − 7)(a + 1)3

(a + 7)(a − 1)3z2 − 2(a + 1)(a3 + 3a2 − 9a + 21)z + (a + 1)4

)3
.

The functions Li, 1 ≤ i ≤ 4, and Fi, 1 ≤ i ≤ 4, are related by the commutative
diagram

CP
1 Fi−−−→ CP

1⏐⏐�θO ⏐⏐�θO
CP

1 Li−−−→ CP
1,

where O is normalized by the condition

(62) ν(0) = 3, ν(1) = 2, ν(∞) = 3,
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and the function

θO =
(z4 + 2i

√
3z2 + 1)3

(z4 − 2i
√

3z2 + 1)3

is obtained from �3/�3 by setting z = x/y.

Of course, the fact that Li : O → O, 1 ≤ i ≤ 4, are indeed minimal holomorphic
maps between orbifolds can be checked directly. For example, for L4 we must
check condition (7) at points of the set L−1

4 {0, 1,∞}. Clearly, (7) holds for any
point z such that L4(z) = ∞, since all points of L−1

4 {∞} distinct from ∞ have the
multiplicity divisible by 3 while the multiplicity of ∞ is one. Similarly, (7) holds
for points z with L4(z) = 0. Finally, formula

L4 − 1 = (z − 1) ((a−1)6z3−(3a3+3a2+45a+109)(a−1)3z2+(3a3−3a2+45a−109)(a+1)3z−(a+1)6)2

((a+7)(a−1)3z2−2(a+1)(a3+3a2−9a+21)z+(a+1)4)3

implies that (7) holds for points z with L4(z) = 1.

Notice that the functions L1 and L2 are conjugate by the function μ = 1/z.1

This is explained by the symmetry of the orbifold O given by (62) with respect
toμ, implying that if L : O → O is a minimal holomorphic map between orbifolds,
then μ−1 ◦ L ◦ μ is also such a map. Correspondingly, L1 and L2 are conjugate
by μ, the function L3 commutes with μ, and

μ−1 ◦ L4(a, z) ◦ μ = L4(−a, z).

In conclusion, we describe the class of polynomial generalized Lattès maps.

Theorem7.2. Let A be a polynomial of degree at least two such that A :O → O

is a minimal holomorphic map between orbifolds for some O distinct from the non-
ramified sphere. Then either A is conjugate to zrRn(z), where R ∈ C[z] and

gcd(r, n) = 1, or A is conjugate to ±Tm, where gcd(m, n) = 1.

Proof. We showfirst thatχ(O) > 0. Indeed, if χ(O) = 0, then arguing as in the
proof of Theorem 1.1 we can construct commutative diagram (4) with g(R) = 1.
Since A is a polynomial, A−1{∞} = ∞, implying that the set S = π−1{∞}
is completely invariant with respect to B. On the other hand, since g(R) = 1,
the map B is non-ramified by the Riemann–Hurwitz formula, implying that the
set B−1(S) contains

|S| degB ≥ 2|S| > |S|
points.

1We thank Benjamin Hutz who drew our attention to this fact.
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Let us assume now that χ(O) > 0, and consider diagram (38) provided by
Theorem 2.8. It is well known that the complete F-invariance of a finite set implies
that it contains at most two points. Therefore, the set S = θ−1

O {∞} contains at most
two points, and without loss of generality we may assume that either S = {∞},
or S = {0,∞}. Since θ−1

O {∞} is an orbit of �O, where �O is one of the five
finite rotation groups of the sphere, in the first case it follows from |θ−1

O {∞}| = 1
that ν(O) = {n, n}, n ≥ 2. Therefore, since θ−1

O {∞} = {∞}, without loss of
generality we may assume that θO = czn, c ∈ C. Moreover, considering instead of
the polynomial A the polynomial A(cz)/c, we can assume that θO = zn. Arguing
now as in the proof of Theorem 5.1 and taking into account that F is a polynomial
since F−1{∞} = {∞}, we obtain that A = zrRn(z), where R is a polynomial and
gcd(r, n) = 1.

Similarly, if S = {0,∞}, then it follows from |θ−1
O {∞}| = 2 that without loss of

generality we may assume that

(63) θO = μ ◦ 1
2

(
zn +

1
zn

)
, n ≥ 1,

for some Möbius transformation μ such that μ(∞) = ∞. Indeed, if θ−1
O {∞} is a

singular orbit of �O, then ν(O) = {2, 2, n}, n ≥ 2, implying (63). On the other
hand, if the orbit θ−1

O {∞} is non-singular, then ν(O) = {2, 2}. Therefore,

θO = az +
b
z

+ c

for some a, b, c ∈ C, implying that composing θO with
√

b/a z we still can assume
that (63) holds. Moreover, sinceμ(∞) = ∞, the transformationμ is a polynomial,
so conjugating A by μ we can assume that μ is the identical mapping.

The equality F−1{0,∞} = {0,∞} implies that F = cz±m, c ∈ C. On the other
hand, by Theorem 2.8, the homomorphism ϕ in (39) is an automorphism implying
that F injectively maps any fiber of θO onto another fiber. Therefore, the singular
fiber θ−1

O {1} consisting of nth roots of 1 is mapped either to itself or to the other
singular fiber θ−1

O {−1} consisting of nth roots of -1. Since this implies that c2 is
an nth root of unity, it follows now from

A ◦ 1
2

(
zn +

1
zn

)
=

1
2

(
zn +

1
zn

)
◦ czm

= ±Tm ◦ 1
2

(
zn +

1
zn

)

that A is conjugate to ±Tm. �
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