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On trees admitting morphisms onto hedgehogs or onto chains

F. Pakovich

In this note, within the framework of Grothendieck’s theory of “Dessins d’Enfants” (see [1], [2]),

we describe in purely combinatorial terms necessary and sufficient conditions under which an n-
edged tree admits a morphism onto a d-edged tree in the classes ‘hedgehogs’ or ‘chains’, the

simplest classes of trees. We note that in the case of chains, the corresponding result has a
particular interest in view of its connection with arithmetic hyperelliptic curves (see [3]).

We recall that a sketch is defined to be a connected graph λ embedded in a compact oriented

Riemann surface X such that its complement is a disjoint union of topological discs. If X \ λ
consists of a single cell, then the sketch is called unicellular. A unicellular sketch lying on the

Riemann sphere is called a tree. A tree is called a hedgehog if it has only one vertex whose valency
is strictly greater than 1, and a chain if the valency of each of its vertices is less than or equal

to 2.
By a morphism of a sketch λ1 ⊂ X1 onto a sketch λ2 ⊂ X2 we mean a branched covering of

the oriented surfaces γ : X1 → X2 such that γ−1(λ2) = λ1. The category of sketches is equivalent

to the category of finite homogeneous C+
2 sets, where C+

2 = 〈ρ0, ρ1, ρ2 | ρ2
1 = ρ0ρ1ρ2 = 1〉 is

the cartographic Grothendieck group. Let λ ⊂ X be a sketch. The group C+
2 acts on the set

of oriented edges of λ in the following way: the generator ρ0 cyclically permutes the edges in
the order induced by the orientation of X around the vertices from which they issue, and the

generator ρ1 reverses the orientation of the edges. For a sketch λ, let ER(λ) denote the group of
permutations of the oriented edges generated by ρ0 and ρ1.

For a tree λ the branch issuing from one of its verticesu is the maximal subgraph of λ containing
u as a hanging vertex (that is, of valency one). The cyclic ordering of the edges associated with

u induces in a natural way an ordering of the branches issuing from u. We shall say that two
branches are adjacent if they issue from the same vertex and in a circuit of this vertex one of the

branches follows the other. The number of edges of a branch a is called its weight |a|.

Theorem. Let λ be an n-edged tree and let d |n. Then λ admits a morphism onto a d-edged

chain (respectively, a d-edged hedgehog) if and only if the sum (respectively, the difference) of the
weights of any two adjacent branches of λ is divisible by d.

The proof of the theorem follows easily from the lemmas given below, which also have inde-
pendent interest.

With each n-edged unicellular sketch λ we associate an involution φλ ⊂ S2n according to the

following rule: we enumerate the oriented edges of λ by the symbols 0,1, . . . , 2n − 1 in such a
way that the cycle ρ0ρ1coincides with the cycle (01 . . . 2n − 1) and we put φλ(i) = ρ1(i). It is

clear that two such involutions correspond to the same sketch if and only if they are conjugate
by some power of the cycle (01 . . . 2n− 1). In what follows, we shall assume for convenience that

φλ is defined on the whole set Z, by putting φλ(j) = φλ(i), for j ∈ Z, where i ≡ j (mod 2n) and
0 ≤ i ≤ 2n− 1.

Lemma 1. Let λ be an n-edged tree and let d |n. Then λ admits a morphism onto a d-edged
tree µ if and only if for any i ∈ Z

φλ(i+ 2d) ≡ φλ(i) (mod 2d). (1)

Here φµ(i) ≡ φλ(i) (mod2d).

Proof. Since ER(λ) contains the cycle (01 . . . 2n−1), it is easy to show that a system of imprimi-

tivity for ER(λ) consisting of 2d blocks can only be the collection of sets Ai, 0 ≤ i ≤ d− 1, where
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Ai consists of the numbers congruent to i mod 2d. Moreover, since ER(λ) is generated by the
permutations (01 . . .2n− 1) and φλ, the collection Ai, 0 ≤ i ≤ d− 1, is a system of imprimitivity

for ER(λ) if and only if φλ(Ai) = Aφλ(i).

Lemma 2. Let µ be a d-edged tree. Then µ is a chain (respectively, a hedgehog) if and only if

φµ(i)− φµ(i+ 1) ≡ 1 (mod 2d), (2)

respectively,

φµ(i) + φµ(i+ 1) ≡ 2i+ 1 (mod 2d). (2′)

Proof. For a d-edged chain the corresponding involution can be given by the equation φ1(j) =
2d− 1− j, and the involution conjugate to φ1 by the kth power of the cycle (01 . . .2d− 1) has the

form φ̃1(j) = 2d−2k−1−j, which implies that conditions (2) are satisfied. Conversely, if conditions
(2) are satisfied, then by summing them from i = 0 to i = j, we find that φµ(j) = φµ(0)− j.
Thus, since φµ(j) has no fixed points, φµ(0) is an odd integer and hence φµ(j) coincides with

φ̃1(j) = 2d− 2k− 1− j for some k, which proves the sufficiency of the conditions of the lemma in
the case of chains. The case of hedgehogs can be investigated similarly.

The author thanks G. B. Shabat for his attention to the work and for useful observations.
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