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Abstract Using a geometric approach involving Riemann surface orbifolds, we provide
lower bounds for the genus of an irreducible algebraic curve of the form
EA,B : A(x) − B(y) = 0, where A, B ∈ C(z). We also investigate “series” of curves
EA,B of genus zero, where by a series we mean a family with the “same” A. We show that
for a given rational function A a sequence of rational functions Bi , such that deg Bi → ∞
and all the curves A(x) − Bi (y) = 0 are irreducible and have genus zero, exists if and only
if the Galois closure of the field extension C(z)/C(A) has genus zero or one.

Keywords Separated variable polynomials · Galois coverings · Rational points ·
Two-dimensional orbifolds
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1 Introduction

The study of irreducible algebraic curves of genus zero having the form

EA,B : A(x) − B(y) = 0, (1)

where A and B are complex polynomials, has two main motivations. On the one hand, such
curves have special Diophantine properties. Indeed, by the Siegel theorem, if an irreducible
algebraic curve C with rational coefficients has infinitely many integer points, then C is of
genus zero with at most two points at infinity. More generally, by the Faltings theorem, if
C has infinitely many rational points, then g(EA,B) ≤ 1. Therefore, since many interesting
Diophantine equations have the form A(x) = B(y), where A, B ∈ Q[z], the problem of
description of curvesEA,B of genus zero is important for the number theory (see e.g. [3,7,13]).
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On the other hand, for polynomials A and B with arbitrary complex coefficients the
equality g(EA,B) = 0 holds if and only if there exist C, D ∈ C(z) satisfying the functional
equation

A ◦ C = B ◦ D. (2)

Since Eq. (2) describes situations in which a rational function can be decomposed into a
composition of rational functions in two different ways, this equation plays a central role in
the theory of functional decompositions of rational functions. Furthermore, functional Eq. (2)
where C and D are allowed to be entire functions reduces to the case where C, D ∈ C(z)
(see [2,18]). Thus, the problem of description of curves EA,B of genus zero naturally appears
also in the study of functional equations (see e.g. [7,17–19]).

Having in mind possible applications to Eq. (2) in rational functions, in this paper we
study curves EA,B allowing A and B to be arbitrary rational functions meaning by EA,B

the expression obtained by equating to zero the numerator of A(x) − B(y). Notice that the
curve EA,B may turn out reducible. In this case its analysis is more complicated and has a
different flavor (see e.g. [10]), so below we always will assume that considered curves EA,B

are irreducible.
For polynomial A and B the classification of curves EA,B of genus zero with one point

at infinity follows from the so-called “second Ritt theorem” [21] about polynomial solutions
of (2). Namely, any such a curve has either the form

xn − ys Rn(y) = 0, (3)

where R is an arbitrary polynomial and gcd(s, n) = 1, or the form

Tn(x) − Tm(y) = 0, (4)

where Tn, Tm are Chebyshev polynomials and gcd(n,m) = 1. The classification of polyno-
mial curves EA,B of genus zero with at most two points at infinity was obtained in the paper
of Bilu and Tichy [3], which continued the line of researches started by Fried (see [7–9]). In
this case, in addition to the above curves we have the following possibilities:

x2 − (1 − y2)S2(y) = 0, (5)

where S is an arbitrary polynomial,

T2n(x) + T2m(y) = 0, (6)

where gcd(n,m) = 1, and

(3x4 − 4x3) − (y2 − 1)3 = 0. (7)

Finally, the classification obtained in [3] was extended to the case where A and B are allowed
to be Laurent polynomials in [17]. In this case, to the list above one has to add the possibility
for R in (3) to be a Laurent polynomial, and the curve

1

2

(
yn + 1

yn

)
− Tm(x) = 0, (8)

where gcd(n,m) = 1. Notice also that an explicit classification of curves (1) of genus one
with one point at infinity for polynomial A and B was obtained by Avanzi and Zannier [1].
The above results essentially exhaust the list of general results concerning the problem of
description of irreducible curves EA,B of small genus.
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On algebraic curves A(x) − B(y) = 0 of genus zero 301

All the curvesEA,B of genus zero listed above, except for (7), obviously share the following
feature: in fact they are “series” of curves with the “same” A. We formalize this observation
as follows. Say that a rational function A is a basis of series of curves of genus zero if
there exists a sequence of rational functions Bi such that deg Bi → ∞ and all the curves
A(x) − Bi (y) = 0 are irreducible and have genus zero. Clearly, a description of all bases of
series is an important step in understanding of the general problem, and the main goal of the
paper is to provide such a description in geometric terms.

Recall that for a rational function A its normalization Ã is defined as a holomorphic
function of the lowest possible degree between compact Riemann surfaces Ã : S̃A → CP

1

such that Ã is a Galois covering and Ã = A◦H for some holomorphic map H : S̃A → CP
1.

From the algebraic point of view, the passage from A to Ã corresponds to the passage from
the field extension C(z)/C(A) to its Galois closure. In these terms our main result about
bases of series is the following statement.

Theorem 1 A rational function A is a basis of series of curves of genus zero if and only if
the Galois closure of C(z)/C(A) has genus zero or one.

Thus, the set of possible bases of series splits into two classes. Elements of the first class
are “compositional left factor” of well known Galois coverings of CP1 by CP

1 calculated
for the first time by Klein [12]. In particular, up to the change A → μ1 ◦ A ◦ μ2, where μ1

and μ2 are Möbius transformations, besides the functions

zn, Tn,
1

2

(
zn + 1

zn

)
, n ≥ 1, (9)

this class contains only a finite number of functions which can be calculated explicitly. For
instance, the polynomial 3x4−4x3 appearing in (7) is an example of such a function, implying
that curve (7) in fact also belongs to a series of curves of genus zero (see Sect. 5 below).
Typical representatives of the second class, consisting of rational compositional left factors of
Galois coverings ofCP1 by a torus, are Lattès functions (see e.g. [15]), but other possibilities
also exist.

The approach of the papers [1,3,17] to the calculation of g(EA,B) is based on the for-
mula, given in [9], which expresses g(EA,B) through the ramifications of A and B. Namely,
if c1, c2, . . . cr is a union of critical values of A and B, and fi,1, fi,2, . . . , fi,ui (resp.
gi,1, gi,2, . . . , gi,vi ) is a collection of local degrees of A (resp. B) at the points of A−1({ci })
(resp. B−1({ci })), then g(EA,B) may be calculated as follows:

2 − 2g(EA,B) =
r∑

i=1

ui∑
j1=1

vi∑
j2=1

gcd( fi, j1gi, j2) − (r − 2) deg A deg B. (10)

However, the direct analysis of this formula is quite difficult already in the above cases, and
the further progress requires evenmore cumbersome considerations. In this paper we propose
a new approach to the problem and prove the following general result.

Theorem 2 Let A be a rational function of degree n. Then for any rational function B of
degree m such that the curve EA,B is irreducible the inequality

g(EA,B) >
m − 84n + 168

84
(11)

holds, unless the Galois closure of C(z)/C(A) has genus zero or one.
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302 F. Pakovich

Our approach is based on techniques introduced in the recent paper [20]. This paper studies
rational solutions of the functional equation

A ◦ X = X ◦ B (12)

using Riemann surface orbifolds. For the first time orbifolds were used in the context of
functional equations in the paper [5] devoted to commuting rational functions. However, in
[5] orbifolds appear in a dynamical context as a certain characteristic of the Poincaré function,
while in [20] an orbifold is attached directly to any rational function. The approach of [20]
permits to obtain restrictions on possible ramifications of solutions of (2) in terms of the
corresponding orbifolds, and to give transparent proofs of Theorems 1 and 2.

The paper is organized as follows. In the second section we recall basic facts about
Riemann surface orbifolds and some results from the papers [17,20]. We also express the
condition that the Galois closure of C(z)/C(A) has genus zero or one in terms of orbifolds.
In the third and the fourth sections we prove Theorems 2 and 1 correspondingly. Finally, in
the fifth section we consider an example illustrating Theorem 1.

2 Fiber products, orbifolds, and Galois coverings

A pairO = (R, ν) consisting of a Riemann surface R and a ramification function ν : R → N

which takes the value ν(z) = 1 except at isolated points is called a Riemann surface orbifold
(see e.g. [14, Appendix E]). The Euler characteristic of an orbifold O = (R, ν) is defined by
the formula

χ(O) = χ(R) +
∑
z∈R

(
1

ν(z)
− 1

)
, (13)

where χ(R) is the Euler characteristic of R. If R1, R2 are Riemann surfaces provided with
ramification functions ν1, ν2, and f : R1 → R2 is a holomorphic branched covering map,
then f is called a covering map f : O1 → O2 between orbifolds O1 = (R1, ν1) and
O2 = (R2, ν2) if for any z ∈ R1 the equality

ν2( f (z)) = ν1(z) degz f (14)

holds, where degz f denotes the local degree of f at the point z. If for any z ∈ R1 instead of
equality (14) a weaker condition

ν2( f (z)) | ν1(z) degz f (15)

holds, then f is called a holomorphic map f : O1 → O2 between orbifolds. O1 and O2.

A universal covering of an orbifold O is a covering map between orbifolds
θO : Õ → O such that R̃ is simply connected and ν̃(z) ≡ 1. If θO is such a map, then there
exists a group ΓO of conformal automorphisms of R̃ such that the equality θO(z1) = θO(z2)
holds for z1, z2 ∈ R̃ if and only if z1 = σ(z2) for some σ ∈ ΓO. A universal covering
exists and is unique up to a conformal isomorphism of R̃, unless O is the Riemann sphere
with one ramified point, or O is the Riemann sphere with two ramified points z1, z2 such
that ν(z1) 	= ν(z2). Furthermore, R̃ = D if and only if χ(O) < 0, R̃ = C if and only
if χ(O) = 0, and R̃ = CP

1 if and only if χ(O) > 0 (see [14, Appendix E] and [6, Sec-
tion IV.9.12]). Abusing notation we will use the symbol Õ both for the orbifold and for the
Riemann surface R̃.
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On algebraic curves A(x) − B(y) = 0 of genus zero 303

Covering maps between orbifolds lift to isomorphisms between their universal coverings.
More generally, the following proposition holds (see [20, Proposition 3.1]).

Proposition 1 Let f : O1 → O2 be a holomorphic map between orbifolds. Then for any
choice of θO1 and θO2 there exist a holomorphic map F : Õ1 → Õ2 and a homomorphism
φ : ΓO1 → ΓO2 such that the diagram

Õ1
F−−−−→ Õ2⏐⏐�θO1

⏐⏐�θO2

O1
f−−−−→ O2

(16)

is commutative and for any σ ∈ ΓO1 the equality

F ◦ σ = φ(σ) ◦ F (17)

holds. The map F is defined by θO1 , θO2 , and f uniquely up to a transformation F → g ◦ F,

where g ∈ ΓO2 . In the other direction, for any holomorphic map F : Õ1 → Õ2 which
satisfies (17) for some homomorphism φ : ΓO1 → ΓO2 there exists a uniquely defined
holomorphic map between orbifolds f : O1 → O2 such that diagram (16) is commutative.
The holomorphic map F is an isomorphism if and only if f is a covering map between
orbifolds. 
�

If f : O1 → O2 is a covering map between orbifolds with compact support, then the
Riemann-Hurwitz formula implies that

χ(O1) = dχ(O2), (18)

where d = deg f . For holomorphicmaps the following statement is true (see [20, Proposition
3.2]).

Proposition 2 Let f : O1 → O2 be a holomorphic map between orbifolds with compact
support. Then

χ(O1) ≤ χ(O2) deg f (19)

and the equality holds if and only if f : O1 → O2 is a covering map between orbifolds. 
�
Let R1, R2 beRiemann surfaces, and f : R1 → R2 a holomorphic branched coveringmap.

Assume that R2 is provided with ramification function ν2. In order to define a ramification
function ν1 on R1 so that f would be a holomorphic map between orbifolds O1 = (R1, ν1)

and O2 = (R2, ν2) we must satisfy condition (15), and it is easy to see that for any z ∈ R1 a
minimal possible value for ν1(z) is defined by the equality

ν2( f (z)) = ν1(z)gcd(degz f, ν2( f (z)). (20)

In case if (20) is satisfied for any z ∈ R1 we say that f is aminimal holomorphicmap between
orbifolds O1 = (R1, ν1) and O2 = (R2, ν2). Notice that any covering map obviously is a
minimal holomorphic map.

With any holomorphic function f : R1 → R2 between compact Riemann surfaces one
can associate in a natural way two orbifolds O f

1 = (R1, ν
f
1 ) and O

f
2 = (R2, ν

f
2 ), setting

ν
f
2 (z) equal to the least common multiple of local degrees of f at the points of the preimage
f −1{z}, and

ν
f
1 (z) = ν

f
2 ( f (z))/ degz f.
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304 F. Pakovich

By construction, f is a covering map between orbifolds f : O
f
1 → O

f
2 . Furthermore, since

the composition f ◦ θ
O

f
1

: Õ f
1 → O

f
2 is a covering map between orbifolds, it follows from

the uniqueness of the universal covering that

θ
O

f
2

= f ◦ θ
O

f
1
. (21)

For rational functions A and B irreducible components of EA,B correspond to irreducible
components of the fiber product of A and B. In particular, if EA,B is an irreducible curve and
ẼA,B is its desingularization, then there exist holomorphic functions p, q : ẼA,B → CP

1

such that

A ◦ p = B ◦ q, (22)

and

deg A = deg q, deg B = deg p (23)

(see [17, Theorem 2.2 and Proposition 2.4]). Furthermore, the functions A, B, p, q pos-
sess “good” properties with respect to the associated orbifolds defined above. Namely, the
following statement holds (see [20, Theorem 4.2 and Lemma 2.1]).

Theorem 3 Let A, B be rational functions such that the curve EA,B is irreducible, and
p, q : ẼA,B → CP

1 holomorphic functions such that equalities (22) and (23) hold. Then the
commutative diagram

O
q
1

p−−−−→ OA
1⏐⏐�q

⏐⏐�A

O
q
2

B−−−−→ OA
2

consists of minimal holomorphic maps between orbifolds. 
�

Of course, vertical arrows in the above diagram are covering maps and hence minimal
holomorphicmaps simply by definition. Themeaning of the theorem is that the branching ofq
and A to a certain extent defines the branching of p and B. For example, Theorem 3 applied
to functional Eq. (12) where A, X, B are rational functions such that EA,X is irreducible,
implies that χ(OX

2 ) ≥ 0 (see [20]).
For a rational function A the condition χ(OA

2 ) ≥ 0 is very restrictive, and is equivalent to
the condition that the normalization of A has genus at most one.

Lemma 1 Let A be a rational function. Then g(S̃A) = 0 if and only if χ(OA
2 ) > 0, and

g(S̃A) = 1 if and only if χ(OA
2 ) = 0.

Proof Let f : S → CP
1 be an arbitrary Galois covering of CP1. Then f is a quotient map

f : S → S/Γ for some subgroup Γ of Aut (S), and for any branch point zi , 1 ≤ i ≤ r, of
f there exists a number di such that f −1{zi } consists of |G|/di points, at each of which the
multiplicity of f equals di . Applying the Riemann-Hurwitz formula, we see that

2g(S) − 2 = −2|Γ | +
r∑

i=1

|Γ |
di

(di − 1) ,
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On algebraic curves A(x) − B(y) = 0 of genus zero 305

implying that

χ(O
f
2 ) = 2 +

r∑
i=1

(
1

di
− 1

)
= 2 − 2g(S)

|Γ | . (24)

Thus, if f : S → CP
1 is a Galois covering, then g(S) = 0 if and only if χ(O

f
2 ) > 0, while

g(S) = 1 if and only if χ(O
f
2 ) = 0.

Let now A : CP
1 → CP

1 be an arbitrary rational function. Since the normalization
Ã : S̃A → CP

1 of A can be described as any irreducible component of the m-fold fiber
product of A distinct from the diagonal components where two or more coordinates are
equal (see [11, §I.G],), it follows from the construction of the fiber product (see e.g. [17,
Section 2 and 3]) that

OA
2 = O Ã

2 . (25)

Thus, g(S̃A) = 0 if and only if χ(OA
2 ) > 0, and g(S̃A) = 1 if and only if χ(OA

2 ) = 0. 
�
If O = (CP1, ν) is an orbifold such that χ(O) = 0, then (13) implies that the collection

of ramification indices of O is either (2, 2, 2, 2), or one of the following triples (3, 3, 3),
(2, 4, 4), (2, 3, 6). For all such orbifolds Õ = C. Furthermore, the group ΓO is generated
by translations of C by elements of some lattice L ⊂ C of rank two and the transformation
z → εz, where ε is nth root of unity with n equal to 2,3,4, or 6, such that εL = L . For the
collection of ramification indices (2, 2, 2, 2) the complex structure of C/L may be arbitrary
and the function θO is the corresponding Weierstrass function ℘(z). On the other hand, for
the collections (2, 4, 4), (2, 3, 6), (3, 3, 3) this structure is rigid and arises from the tiling of
C by squares, equilateral triangles, or alternately colored equilateral triangles, respectively.
Accordingly, the functions θO may be written in terms of the corresponding Weierstrass
functions as ℘2(z), ℘′2(z) and ℘′(z) (see [6,15, Section IV.9.12]).

Similarly, if χ(O) > 0, then the collection of ramification indices of O is either (n, n)

for some n ≥ 2, or (2, 2, n) for some n ≥ 2, or one of the following triples (2, 3, 3),
(2, 3, 4), (2, 3, 5). In fact, formula (13) also allows O to be a non-ramified sphere or one of
two orbifolds without universal covering. However, if O = OA

2 for some rational function
A, then these cases are impossible since for any rational function A both orbifolds OA

1 , O
A
2

have a universal covering (see [20, Lemma 4.2]), and OA
2 cannot be non-ramified. Further,

Õ = CP
1, and the group ΓO is a finite subgroup of the automorphism group ofCP1. Namely,

to orbifolds with the collections of ramification indices (n, n), (2, 2, n), (2, 3, 3), (2, 3, 4),
and (2, 3, 5) correspond the groups Cn, D2n, A4, S4, and A5. The corresponding functions
θO are Galois coverings of CP1 by CP

1 and have degrees n, 2n, 12, 24, and 60 (see [12]).

3 Proof of Theorem 2

First of all, observe that if f : R → CP
1 is a holomorphic function of degree n on a Riemann

surface R of genus g, then

χ(O
f
2 ) > 4 − 2g − 2n. (26)

Indeed, it follows from the definition that

χ(O
f
2 ) > 2 − c( f ),
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where c( f ) denotes the number of branch points of f. On the other hand, since the number
c( f ) is less than or equal to the number of points z ∈ R where degz f > 1, the Riemann-
Hurwitz formula

χ(R) = χ(CP1)n −
∑
z∈R

(degz f − 1)

implies that

c( f ) ≤ χ(CP1)n − χ(R).

Thus,

χ(O
f
2 ) > 2 + χ(R) − χ(CP1)n,

implying (26).
Let now p, q : ẼA,B → CP

1 be holomorphic functions such that (22) and (23) hold.
Since B : O

q
2 → OA

2 is a minimal holomorphic map between orbifolds by Theorem 3, it
follows from Proposition 2 that

χ(O
q
2) ≤ mχ(OA

2 ). (27)

On the other hand, (13) implies that if χ(O) < 0, then in fact

χ(O) ≤ − 1

42
(28)

(where the equality is attained for the collection of ramification indices (2, 3, 7)). Therefore,
if χ(OA

2 ) < 0, then (28) and (26) imply the inequality

4 − 2g − 2n < − m

42

which in turn implies (11). 
�

4 Proof of Theorem 1

It follows from Theorem 2 and Lemma 1 that we only need to show that if χ(OA
2 ) ≥ 0, then A

is a basis of series. Assume first that χ(OA
2 ) = 0. Then the universal covering ofOA

2 isC, and
the group ΓOA

2
is generated by translations ofC by elements of some lattice L =< ω1, ω2 >

and the transformation z → εz, where ε is an nth root of unity with n equal to 2,3,4, or 6,
such that εL = L . This implies that for any integer m ≥ 2 the map F : z → mz satisfies
condition (17) for the homomorphism φ : ΓOA

2
→ ΓOA

2
defined on the generators of ΓOA

2
by

the equalities

φ(z + ω1) = z + mω1, φ(z + ω1) = z + mω1, φ(εz) = εz. (29)

Therefore, by Proposition 1, there exists a rational functions Rm such that

θOA
2
(mz) = Rm ◦ θOA

2
,

and it is easy to see that deg Rm = m2. Furthermore, it follows from (18) that χ(OA
1 ) = 0,

implying that the group ΓOA
1
is generated by translations by elements of some sublattice L̃

123



On algebraic curves A(x) − B(y) = 0 of genus zero 307

of L and the transformation z → εl z for some l ≥ 1. Thus, homomorphism (29) satisfies
the condition

φ(ΓOA
1
) ⊆ ΓOA

1
, (30)

implying that there exists a rational function Sm of degree m2 such that

θOA
1
(mz) = Sm ◦ θOA

1
.

Since

θOA
2

= A ◦ θOA
1

, (31)

it follows now from the equalities

θOA
2
(mz) = Rm ◦ θOA

2
= Rm ◦ A ◦ θOA

1

and

θOA
2
(mz) = A ◦ θOA

1
(mz) = A ◦ Sm ◦ θOA

1
,

that

A ◦ Sm = Rm ◦ A.

Thus, whenever the curve A(x) − Rm(y) = 0 is irreducible, it has genus zero. Since EA,B

is irreducible whenever the degrees of A and B are coprime (see e.g. [17, Proposition 3.1]),
taking any sequencemi → ∞whose elements are coprime with deg A, we obtain a sequence
A(x) − Rmi (y) = 0 of irreducible curves of genus zero.

In the case χ(OA
2 ) > 0 the proof is similar with appropriate modifications. First observe

that in order to prove the theorem it is enough to show that for any A with χ(OA
2 ) > 0 there

exists a single pair of rational functions S and R such that

A ◦ S = R ◦ A (32)

and

gcd(deg R, deg A) = 1. (33)

Indeed, (32) implies that

A ◦ S◦l = R◦l ◦ A.

Therefore, since equality (33) implies the equality gcd(deg R◦l , deg A) = 1, the sequence
A(x) − R◦l(y) = 0 consists of irreducible curves of genus zero. Further, since by Lemma 1
the group ΓOA

2
belongs to the listCn, D2n, A4, S4, A5, in order to show the existence of such

a pairs for any A with χ(OA
2 ) > 0 it is enough to show that for any group Γ from the above

list there exists a rational function F of degree corpime with |Γ |which is Γ -equivariant, that
is satisfies the equality

F ◦ σ = σ ◦ F (34)

for any σ ∈ Γ . Indeed, condition (34) means that the corresponding homomorphism in (17)
satisfies φ(σ) = σ for any σ ∈ Γ, implying that φ(Γ̃ ) = Γ̃ for any subgroup Γ̃ of Γ, and
we conclude as above that

θOA
2

◦ F = R ◦ θOA
2
, θOA

1
◦ F = S ◦ θOA

1
(35)
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308 F. Pakovich

for some rational functions S and R such that (32) holds. Moreover, since deg θOA
2

= |ΓOA
2
|

and deg R = deg F , it follows from (31) that equality (33) holds.
If ΓOA

2
= Cn , then up to the change A → μ1 ◦ A ◦ μ2, where μ1, μ2 are Möbius

transformations, A = zn , and hence (3) already provides a necessary series of irreducible
curves of genus zero. Similarly, if ΓOA

2
= Dn , then without loss of generality wemay assume

that either A = Tn or

A = 1

2

(
zn + 1

zn

)

(see e.g. Appendix of [16]), and hence the statement of the lemma follows from equalities
(4) and (8). Finally, since A4 ⊂ S4 ⊂ A5, in order to finish the proof it is enough to find a
single A5-equivariant function whose order is coprime with 60, and as such a function we
can take for example the function

F = z11 + 66z6 − 11z

−11z10 − 66z5 + 1
(36)

of degree 11, constructed in the paper [4].

5 Example

Consider the rational function A = 3z4 − 4z3 appearing in (7). The critical values of this
function are 0,−1,∞. The preimage of 0 consists of a critical point 0, whose multiplicity is
3, and the point 4/3. The preimage of −1 consists of a critical point 1, whose multiplicity is

2, and the points − 1
3 ± i

√
3
2 . Finally, the preimage of ∞ consists of a single point ∞, whose

multiplicity is 4. Thus,

νA
2 (−1) = 2, νA

2 (0) = 3, νA
2 (∞) = 4,

and the value of νA
2 at any other point equals 1. Correspondingly,

νA
1

(
−1

3
+ i

√
3

2

)
= νA

1

(
−1

3
− i

√
3

2

)
= 2, νA

1

(
4

3

)
= 3.

Finally,

χ(OA
2 ) = 1

12
, χ(OA

1 ) = 1

3
,

and ΓOA
2

= S4.
Fix the generators of S4 as

z → i z, z → z + i

z − i
.

Then

θOA
2

= − (z8 + 14z4 + 1)3

108z4(z4 − 1)4
.
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The critical values of θOA
2
normalized in such a way are 0,−1,∞, and θOA

2
= A ◦ θOA

1
,

where

θOA
1

=
( 1
6 (1 + i)z2 − i

3 z + 1
6 (1 − i)

) (
z4 + 2 z3 + 2 z2 − 2 z + 1

)
(
z2 + 1

)
(z + 1) (z − 1) z

.

As an S4-invariant function of degree corpime with deg A = 4 we can take function (36).
However, we also can take the function of lesser degree

F = −z5 + 5z

5z4 − 1

obtained from the invariant form

x5y − xy5

by the method of [4]. For such F the functions R and S from equalities (35) are

R = z2
(
z3 − 240 z2 + 19200 z − 512000

)
1048576 + 625 z4 + 16000 z3 + 153600 z2 + 655360 z

and

S = − z2
(
3 z3 − 10 z2 + 20 z − 40

)
32 − 20 z3 + 15 z4

.

Thus, we obtain a family of irreducible curves of genus zero

(3x4 − 4x3) −
(

y2
(
y3 − 240 y2 + 19200 y − 512000

)
1048576 + 625 y4 + 16000 y3 + 153600 y2 + 655360 y

)◦k
= 0,

having the parametrizations

x =
(

− t2
(
3 t3 − 10 t2 + 20 t − 40

)
32 − 20 t3 + 15 t4

)◦k
, y = 3t4 − 4t3.
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