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ON POLYNOMIALS SHARING PREIMAGES OF
COMPACT SETS, AND RELATED QUESTIONS

Fedor Pakovich

Abstract. In this paper we give a solution of the following problem: un-
der what conditions on infinite compact sets K1, K2 ⊂ C and polynomials
f1, f2 do the preimages f−1

1 {K1} and f−1
2 {K2} coincide. Besides, we in-

vestigate some related questions. In particular, we show that polynomials
sharing an invariant compact set distinct from a point have equal Julia
sets.

1 Introduction

Let f1(z), f2(z) be complex polynomials and K1,K2 ⊂ C be finite or in-
finite compact sets. In this paper we investigate the following problem.
Under what conditions on the collection f1(z), f2(z),K1,K2 do the preim-
ages f−1

1 {K1} and f−1
2 {K2} coincide, that is

f−1
1 {K1} = f−1

2 {K2} = K (1)
for some compact set K ⊂ C? Let us mention several particular cases
where the answer is known.

The following problem was posed in [Y]: Does the equality f−1
1 {−1, 1} =

f−1
2 {−1, 1} for polynomials of the same degree f1(z), f2(z) imply that

f1(z) = ±f2(z)? This problem was solved in [P], [OPZ]. It was shown that,
actually for any compact set K ⊂ C containing at least 2 points and poly-
nomials of the same degree f1(z), f2(z), the equality f−1

1 {K} = f−1
2 {K} im-

plies that f1(z) = σ(f2(z)) for some linear function σ(z) = az + b, a, b ∈ C,
such that σ{K} = K.

For polynomials of arbitrary degrees, solutions of the equation f−1
1 {K}=

f−1
2 {K}, for a compact set K ⊂ C of the positive logarithmic capacity,
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were described in [D1]. Recently, in [D2], this result was extended to an
arbitrary infinite compact set K. It was shown that if K is distinct from a
union of circles or a segment and deg f2(z) ≥ deg f1(z), then there exists a
polynomial g(z) such that f2(z) = g(f1(z)) and g−1{K} = K.

Furthermore, the problem of the description of pairs of polynomials
f1(z), f2(z) sharing the Julia set, studied in [BE], [Fe], [Be1,2], [ScS], [AH],
[A], is also a particular case of problem (1). Here the answer ([ScS], [AH])
says that, whenever the common Julia set J is distinct from a circle or
a segment, there exists a polynomial p(z) such that J is the Julia set of
p(z) and, up to a symmetry of J , the polynomials f1(z) and f2(z) are the
iterations of p(z).

Finally, notice that problem (1) absorbs the classical problem of the
description of commuting polynomials ([J], [F], [R2], [E]) since commuting
polynomials are known to have equal Julia sets.

In this paper, we provide a surprisingly simple description of solutions
of equation (1) which, in particular, permits us to treat and reprove all the
results mentioned above in a uniform way. Namely, we relate equation (1)
to the functional equation

g1

(
f1(z)

)
= g2

(
f2(z)

)
, (2)

where f1(z), f2(z), g1(z), g2(z) are polynomials. It is easy to see that, for
any polynomial solution of (2) and any compact set K3 ⊂ C, we obtain a
solution of (1) setting

K1 = g−1
1 {K3} , K2 = g−1

2 {K3} . (3)
In particular, for any “decomposable” polynomial f2(z) = g1(f1(z)) and
any compact set S ⊂ C we have

f−1
2 {S} = f−1

1 {T} ,

where T = g−1
1 {S}.

The main result of this paper states that, under a very mild condition
on the cardinality of K, all solutions of (1) can be obtained in this way.
Moreover, using the Ritt theory of factorisation of polynomials, we describe
these solutions in a very explicit way.
Theorem 1. Let f1(z), f2(z) be polynomials, deg f1 = d1, deg f2 = d2,
d1 ≤ d2, and K1,K2,K ⊂ C be compact sets such that (1) holds. Sup-
pose that card{K} ≥ LCM(d1,d2). Then, if d1 divides d2, there exists a
polynomial g1(z) such that f2(z) = g1(f1(z)) and K1 = g−1

1 {K2}. On the
other hand, if d1 does not divide d2, then there exist polynomials g1(z),
g2(z), deg g1 = d2/d, deg g2 = d1/d, where d = GCD(d1, d2), and a com-
pact set K3 ⊂ C such that (2),(3) hold. Furthermore, in this case, there
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exist polynomials f̃1(z), f̃2(z), W (z), deg W (z) = d, such that

f1(z) = f̃1(W (z)) , f2(z) = f̃2(W (z)) (4)

and there exist linear functions σ1(z), σ2(z) such that either

g1(z) = zcRd1/d(z) ◦ σ−1
1 , f̃1(z) = σ1 ◦ zd1/d,

g2(z) = zd1/d ◦ σ−1
2 , f̃2(z) = σ2 ◦ zcR(zd1/d) ,

(5)

for some polynomial R(z) and c equal to the remainder after division of
d2/d by d1/d, or

g1(z) = Td2/d(z) ◦ σ−1
1 , f̃1(z) = σ1 ◦ Td1/d(z) ,

g2(z) = Td1/d(z) ◦ σ−1
2 , f̃2(z) = σ2 ◦ Td2/d(z) ,

(6)

for the Chebyshev polynomials Td1/d(z), Td2/d(z).

As a corollary of Theorem 1 we obtain the following simple description
of the solutions of (1) with d1 = d2 (cf. [OPZ], [P]). In particular, this
description implies the results of [Fe], [Be1] concerning polynomials of the
same degree sharing the Julia set.

Corollary 1. If equality (1) holds for polynomials f1(z), f2(z) such that
d1 = d2 and at least one of the sets K1,K2 contains more than one point,
then there exists a linear function σ(z) such that f2(z) = σ(f1(z)) and
K2 = σ{K1}.

As another corollary of Theorem 1, we describe the situations when the
preimage of a compact set under a polynomial mapping may have symme-
tries. This result generalizes the corresponding results of [BE], [Be2] proved
under assumption that K is the Julia set of f(z).

Denote by ΣT the group of linear functions which transform the set
T ⊂ C into itself.

Corollary 2. Let f(z) be a polynomial and K,K1 ⊂ C be compact sets
such that K = f−1{K1}. Then ΣK is a group of rotations. Furthermore,
either K is a union of circles and f(z) = σ2◦zd1◦σ1 for some linear functions
σ1(z), σ2(z), or ΣK is finite and f(z) = σ2 ◦ zaR(zb) ◦ σ1 for some linear
functions σ1(z), σ2(z) and a polynomial R(z), where b equals the order of
ΣK and a < b.

In the case when K1 = K2 in (1) the totality of solutions of the corre-
sponding equation

f−1
1 {T} = f−1

2 {T} = K (7)
becomes much smaller in comparison with the general case. Namely, under
the notation introduced above the the following result holds.
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Theorem 2. Let f1(z), f2(z) be polynomials such that (7) holds for some
infinite compact sets T,K ⊂ C. Then, if d1 divides d2, there exists a
polynomial g1(z) such that f2(z) = g1(f1(z)) and g−1

1 {T} = T . On the
other hand, if d1 does not divide d2, then there exist polynomials f̃1(z),
f̃2(z), W (z), deg W (z) = d, satisfying (4). Furthermore, in this case one
of the following conditions holds:

1. T is a union of circles with the common center and

f̃1(z) = σ ◦ zd1/d, f̃2(z) = σ ◦ γzd2/d (8)
for some linear function σ(z) and γ ∈ C.

2. T is a segment and

f̃1(z) = σ ◦ ±Td1/d(z) , f̃2(z) = σ ◦ ±Td2/d(z) , (9)
for some linear function σ(z) and the Chebyshev polynomials
Td1/d(z), Td2/d(z).

This result was also obtained in [D1,2]. However, our method is com-
pletely different from the method used in these papers. In particular, in
our proof we do not use the classification of commuting polynomials that
eventually allows us to obtain a new proof of this classification.

Furthermore, we describe the polynomials sharing an invariant compact
set that is solutions of the equation

f−1
1 {T} = f−1

2 {T} = T . (10)
where f1(z), f2(z) are polynomials and T ⊂ C is any compact set.

Theorem 3 below generalizes results of [ScS], [AH] proved under the
assumption that T is the Julia set of f1(z), f2(z).
Theorem 3. Let f1(z), f2(z) be polynomials and T ⊂ C be a compact set
such that (10) holds. Then one of the following conditions holds:

1. T is a union of circles and

f1(z) = σ ◦ zd1 ◦ σ−1, f2(z) = σ ◦ γzd2 ◦ σ−1 (11)
for some linear function σ(z) and γ ∈ C, where |γ| = 1 whenever T
is distinct from a point.

2. T is a segment and

f1(z) = σ ◦ ±Td1 ◦ σ−1, f2(z) = σ ◦ ±Td2 ◦ σ−1 (12)
for some linear function σ(z) and the Chebyshev polynomials
Td1(z), Td2(z).

3. The group ΣT is finite and there exist a polynomial p(z) and integers
s1, s2 such that p−1{T} = T and

f1(z) = µ1 ◦ p◦s1, f2(z) = µ2 ◦ p◦s2 (13)
for some linear functions µ1(z), µ2(z) ∈ ΣT .
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It was shown in [BE], [Be2] that polynomials sharing the Julia set are
closely related to the functional equation

f1

(
f2(z)

)
= µ

(
f2(f1(z))

)
, (14)

where µ(z) is a linear function. It turns out that the same is true for equa-
tion (10). Furthermore, Theorem 4 below states that actually polynomials
sharing an invariant compact set have the same Julia sets and that any
of these properties is equivalent to equation (14) for an appropriate linear
function µ(z). Note that together with Theorem 3 this implies in particular
the classification of commuting polynomials (cf. [J], [F], [R2], [E]).

Theorem 4. The following conditions are equivalent:

1) Equality (10) holds for some compact set T ⊂ C distinct from a point;

2) Polynomials f1(z), f2(z) have the same Julia sets;

3) There exist compact sets T1, T2 ⊂ C such that f−1
1 {T1} = T1, f−1

2 {T2}
= T2 and equation (14) holds for some µ(z) ∈ ΣT1 ∩ ΣT2 .

The approach of this paper is similar to the one introduced by the author
for solving the Yang problem cited above. It consists in using a relation
between a polynomial f(z) and the n-th polynomial of least deviation pn(z)
on the preimage f−1{K} of a compact set K ⊂ C (see section 2 below).
This relation together with the uniqueness theorem for the n-th polynomial
of least deviation and the Ritt theorem permits us to reduce equation (1)
to equation (2).

The paper is organized as follows. In the second section we recall some
classical results about polynomial approximations and prove Theorem 2.3
which generalizes the previous results of papers [FiP], [KB], [OPZ], [P].
Although essentially we need only the weaker result from [KB], we give the
proof of Theorem 2.3 because we believe that this result is interesting by
itself.

In the third section we recall two theorems about polynomial solu-
tions of equation (2) which we use subsequently. In the fourth section,
using the approach described above, we give the proofs of Theorem 1 and
Corollaries 1,2.

In the fifth section we prove Theorem 2. Here, the idea of the proof is
to examine the infinite chain of compact sets and polynomials obtained by
repeated use of Theorem 1.

Finally, in the sixth section, using the results obtained as well as some
constructions from the papers on Julia sets cited above we prove Theo-
rems 3, 4.
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2 Polynomial Approximations

Denote by Pn the vector space consisting of polynomials of degrees ≤ n. It
is known (see, e.g. [L]) that for any compact set R ⊂ C and any complex-
valued function ϕ(z) continuous on R there exists a polynomial pn,ϕ(z) ∈ Pn

such that
‖ϕ − pn,ϕ‖ = min

p∈Pn

‖ϕ − p‖ , (15)

where the symbol ‖g‖ denotes the uniform norm of the function g on R:
‖g‖ = max

x∈R
|g(z)| .

Such a polynomial is called the n-th polynomial of least deviation from
ϕ on R. The n-th polynomial of least deviation from ϕ is known to be
unique whenever R contains at least n+1 points (see, e.g. [L]). In the case
when ϕ(z) = zn, the polynomial zn − pn−1,ϕ(z) is called the n-th monic
polynomial of least deviation from zero on R.

It turns out that for an arbitrary compact set R any polynomial P (z)
is the polynomial of least deviation on the set P−1{R} whenever R is
“centered” at the origin. More precisely, the following theorem holds.
Theorem 2.1. Suppose that R ⊂ C is a compact set such that the disk
of the smallest radius which contains R is centered at the origin. Then any
monic polynomial P (z) of degree n is the n-th monic polynomial of least
deviation from zero on the set P−1{R}.

This theorem was proved in [OPZ] where it was applied to the descrip-
tion of solutions of (7) with d1 = d2.

Note that Theorem 2.1 implies the following well-known result: the n-th
normalized Chebyshev polynomial Tn(z) is the n-th monic polynomial of
least deviation from zero on [−1, 1]. Indeed, it is enough to observe that
the formula Tn(cos z) = cos nz implies that T−1

n [−1, 1] = [−1, 1]. Similarly,
one can deduce that the polynomial zn is the n-th monic polynomial of
least deviation from zero on any union of circles centered at the origin.

A more general result than Theorem 2.1 was proved by a different
method (actually, earlier) in [KB] in connection with the description of
polynomials of least deviation on Julia sets.
Theorem 2.2. Let R ⊂ C be a compact set and T (z) be the m-th monic
polynomial of least deviation from zero on R. Then for any polynomial P (z)
of degree n with leading coefficient cn the polynomial T (P (z))/cm

n is the
mn-th monic polynomial of least deviation from zero on the set P−1{R}.

Finally, some more general result – Theorem 2.3 below – was proved
in [FiP]. Nevertheless, the proof was given only under the additional
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assumption that the so called extremal signature (see, e.g. [L]) for
ϕ(z) − pm,ϕ(z) on R contains no critical values of P (z). Below, we give
the proof in the general case generalizing the method of [OPZ].
Theorem 2.3. Let R ⊂ C be a compact set, ϕ(z) be a continuous
function on R, and pm,ϕ(z) be the m-th polynomial of least deviation from
ϕ(z) on R. Then for any polynomial P (z) of degree n the polynomial
pm,ϕ(P (z)) is the mn+n−1-th polynomial of least deviation from ϕ(P (z))
on the set P−1{R}.
Proof of Theorem 2.3. For any polynomial Q(z) set

QP (z) = 1
n

∑

y∈C,
P (y)=P (z)

Q(y) ,

where the root y of multiplicity k of P (y) − P (z) = 0 is repeated k times.
Clearly,

max
z∈P−1{R}

∣
∣ϕ(P (z)) − QP (z)

∣
∣ ≤ max

z∈P−1{R}

∑

y∈C,
P (y)=P (z)

|ϕ(P (y)) − Q(y)|
n

.

On the other hand, since P−1{R} together with a point z contains all the
points y such that P (y) = P (z), we have

max
z∈P−1{R}

∑

y∈C,
P (y)=P (z)

|ϕ(P (y)) − Q(y)|
n

≤ max
z∈P−1{R}

∣∣ϕ(P (z)) − Q(z)
∣∣ .

Therefore, for any Q(z) the inequality
max

z∈P−1{R}
∣
∣ϕ(P (z)) − QP (z)

∣
∣ ≤ max

z∈P−1{R}
∣
∣ϕ(P (z)) − Q(z)

∣
∣ (16)

holds.
Furthermore, observe that for any polynomial R(z) of degree < n the

function RP (z) is constant. Indeed, for R(z) = zj, 0 ≤ j ≤ n − 1, this
follows from the Newton formulas which express RP (z) via the symmetric
functions Sj, 0 ≤ j ≤ n− 1, of roots yi, 1 ≤ i ≤ n, of P (y) − P (z) = 0 and
in the general case by linearity.

Let now Q(z) be a polynomial of an arbitrary degree q and let

Q(z) =
[q/n]∑

i=0

ai(z)P i(z)

be its P -adic decomposition. Then

QP (z) =
[q/n]∑

i=1

aiP
i(z) ,
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where ai = aiP (z)/n are constants. Therefore,

max
z∈P−1{R}

∣
∣∣ϕ(P (z)) −

∑
QP (z)

∣
∣∣ = max

z∈R

∣∣
∣∣ϕ(z) −

[q/n]∑

i=1

aiz
i

∣∣
∣∣ . (17)

Suppose now that q < mn + n. Then

max
z∈R

∣
∣
∣∣ϕ(z) −

[q/n]∑

i=1

aiz
i

∣
∣
∣∣ ≥ max

z∈R

∣
∣ϕ(z) − pm,ϕ(z)

∣
∣

= max
z∈P−1{R}

∣
∣ϕ(P (z)) − pm,ϕ(P (z))

∣
∣ . (18)

It follows now from (16),(17) and (18) that
max

z∈P−1{R}

∣
∣ϕ(P (z)) − Q(z)

∣
∣ ≥ max

z∈P−1{R}

∣
∣ϕ(P (z)) − pm,ϕ(P (z))

∣
∣ .

Proof of Theorem 2.2. Theorem 2.2 follows from Theorem 2.3. Indeed,
for h(z) ∈ Pm we have

min
p∈Pm

∥
∥(ϕ + h) − p

∥
∥ = min

p∈Pm

∥
∥(ϕ + h) − (p + h)

∥
∥ = min

p∈Pm

‖ϕ − p‖
and pm,ϕ+h(z) = pm,ϕ(z) + h(z). Similarly, for β ∈ C we have

min
p∈Pm

‖βϕ − p‖ = min
p∈Pm

‖βϕ − βp‖ = β min
p∈Pm

‖ϕ − p‖
and pm,βϕ(z) = βpm,ϕ(z).

Therefore,

pmn−1,zmn(z) =
pmn−1,cm

n zmn(z)
cm
n

=
pmn−1,P m+cm

n zmn−P m(z)
cm
n

=
pmn−1,P m(z)

cm
n

+ zmn − Pm(z)
cm
n

=
pm−1,zm(P (z))

cm
n

+ zmn − Pm(z)
cm
n

.

Hence,

zmn − pmn−1,zmn(z) =
(zm − pm−1,zm(z))

cm
n

◦ P (z) =
T (P (z))

cm
n

.

Proof of Theorem 2.1. Theorem 2.1 is a particular case of Theorem 2.2
since its condition is equivalent to the condition that the first monic poly-
nomial of least deviation from zero on R is z.

3 Solutions of A(B(z)) = C(D(z))

In this section we recall two theorems about polynomial solutions of the
equation

A(B(z)) = C(D(z)) , (19)
proved in [En], [R1] (see also [S, Ths. 5& 8]).
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Theorem 3.1. Let A(z), B(z), C(z),D(z) be polynomials such that (19)
holds. Then there exist polynomials V (z), B̂(z), D̂(z), such that

B(z) = B̂(V (z)) , D(z) = D̂(V (z)) ,

deg V (z) = GCD
(
deg B(z),deg D(z)

)
,

and there exist polynomials U(z), Â(z), Ĉ(z) such that

A(z) = U(Â(z)) , C(z) = U(Ĉ(z)) ,

deg U(z) = GCD
(
deg A(z),deg C(z)

)
.

Theorem 3.1 reduces the problem of finding the solutions of (19) to the
one when deg A(z) = deg D(z) and deg B(z) = deg C(z) are coprime. The
answer to the last question is given by the following “second Ritt theorem”.

Theorem 3.2. Let A(z), B(z), C(z),D(z) be non-linear polynomials satis-
fying (19) such that a = deg A(z) = deg D(z) and b = deg B(z) = deg C(z)
are coprime and a > b. Then there exist linear functions σ1(z), σ2(z), µ(z),
ν(z) such that either

A(z) = ν ◦ zcRb(z) ◦ σ−1
1 , B(z) = σ1 ◦ zb ◦ µ ,

C(z) = ν ◦ zb ◦ σ−1
2 , D(z) = σ2 ◦ zcR(zb) ◦ µ , (20)

for some polynomial R(z) and c equal to the remainder after division of a
by b, or

A(z) = ν ◦ Ta(z) ◦ σ−1
1 , B(z) = σ1 ◦ Tb(z) ◦ µ ,

C(z) = ν ◦ Tb(z) ◦ σ−1
2 , D(z) = σ2 ◦ Ta(z) ◦ µ , (21)

for the Chebyshev polynomials Ta(z), Tb(z).

4 Solutions of f−1
1 {K1} = f−1

2 {K2} = K

Proof of Theorem 1. Let p1(z) be the d2/d-th monic polynomial of least
deviation from zero on K1 and p2(z) be the d1/d-th monic polynomial
of least deviation from zero on K2. Then by Theorem 2.2 the polynomial
p1(f1(z))/ad2/d

1 , where a1 is the leading coefficient of f1(z), is the d1d2/d-th
monic polynomial of least deviation from zero on K. Similarly, the poly-
nomial p2(f2(z))/ad1/d

2 , where a2 is the leading coefficient of f1(z), is the
d1d2/d-th monic polynomial of least deviation from zero on K. Since

card{K} ≥ LCM(d1,d2) = d1d2/d ,

it follows from the uniqueness of the polynomial of least deviation that

ĝ1

(
f1(z)

)
= ĝ2

(
f2(z)

)
, (22)
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where ĝ1(z) = p1(z)/ad2/d
1 , ĝ2(z) = p2(z)/ad1/d

2 . Hence, by Theorem 3.1
there exist polynomials f̃1(z), f̃2(z), V (z) such that

f1(z) = f̃1(V (z)) , f2(z) = f̃2(V (z)) ,

where deg V (z) = d.
If d1 divides d2 then the polynomial f̃1(z) is linear and, setting g1(z) =

f̃2 ◦ f̃−1
1 , we see that f2(z) = g1(f1(z)). Moreover, since for any polynomial

f(z) and sets T1, T2 ⊂ C the equality f−1{T1} = f−1{T2} implies that
T1 = T2, it follows from the equality

f−1
2 {K2} = f−1

1

{
g−1
1 {K2}

}
= f−1

1 {K1} = K

that K1 = g−1
1 {K2}.

Furthermore, if d1 does not divide d2 then both f̃1(z), f̃2(z) are non-
linear and therefore ĝ1(z), ĝ2(z) are also non-linear. Since equality (22)
implies the equality

ĝ1

(
f̃1(z)

)
= ĝ2

(
f̃2(z)

)
, (23)

where deg ĝ1(z) = deg f̃2(z) and deg ĝ2(z) = deg f̃1(z) are coprime, apply-
ing Theorem 3.2 to (23) and setting

g1(z) = ν−1 ◦ ĝ1(z) , g2(z) = ν−1 ◦ ĝ2(z) , W (z) = µ ◦ V ,

we see that (2) and (4) hold with f̃1(z), f̃2(z), g1(z), g2(z) satisfying either
(5) or (6).

Observe now that
g1{K1} = g1

{
f1{K}} = g2

{
f2{K}} = g2{K2} .

Set K3 = g1{K1} = g2{K2} and show that the equalities
g−1
1 {K3} = K1 , g−1

2 {K3} = K2

hold. Notice that it is enough to prove only one of these equalities. Indeed,
(2) implies that

f−1
1

{
g−1
1 {K3}

}
= f−1

2

{
g−1
2 {K3}

}
. (24)

Therefore, if say g−1
1 {K3} = K1 then (1) and (24) imply that

K = f−1
2

{
g−1
2 {K3}

}
.

Since K = f−1
2 {K2} it follows that g−1

2 {K3} = K2.
Show first that if (5) holds then

g−1
2 {K3} = K2 . (25)

Clearly, equality (25) is equivalent to the equality
σ−1

2 {K2} = (zd1/d)−1{K3} .

On the other hand, the last equality is equivalent to the statement that
the set σ−1

2 {K2} together with a point x contains any point of the form εx,
where ε is a d1/d-th root of unity.



Vol. 18, 2008 POLYNOMIALS SHARING PREIMAGES OF COMPACT SETS 173

In order to prove the last statement first observe that in view of (1) and
(4) we have

W−1
{
f̃−1
1 {K1}

}
= W−1

{
f̃−1
2 {K2}

}
.

Hence
f̃−1
1 {K1} = f̃−1

2 {K2} = W{K}
or equivalently

(zd1/d)−1
{
σ−1

1 {K1}
}

=
(
zcR(zd1/d)

)−1{
σ−1

2 {K2}
}

= W{K} . (26)
Suppose now that x ∈ σ−1

2 {K2} and let y be a point of W{K} such that
ycR(yd1/d) = x. Then equality (26) implies that any point of the form εy,
where ε is a d1/d-th root of unity, also belongs to W{K}. Since

σ−1
2 {K2} = zcR(zd1/d){W{K}} ,

it follows that σ−1
2 {K2} together with a point x contains any point of the

form εcycR(yd1/d) = εcx. To finish the proof it is enough to observe that
the equality GCD(d1/d, d2/d) = 1 implies the equality GCD(c, d1/d) = 1.
Therefore, if ε runs all d1/d-th roots of unity then εc also runs all d1/d-th
roots of unity.

In the case when (6) holds the proof of the equality
σ−1

2 {K2} = (Td1/d)
−1{K3}

which in this case is equivalent to equality (25) is similar. We must show
that for any point x ∈ σ−1

2 {K2} all the points y such that Td1/d(y) =
Td1/d(x) also belong to σ−1

2 {K2}. Equivalently, we must show that if
cos α = x ∈ σ−1

2 {K2} for some α ∈ C then for any k = 1, 2, . . . , (d1/d) − 1
the number cos

(
α + 2πd

d1
k
)

also belongs to σ−1
2 {K2}.

As above observe that
(Td1/d)

−1
{
σ−1

1 {K1}
}

= (Td2/d)
−1

{
σ−1

2 {K2}
}

= W{K} . (27)
Suppose now that cos α = x ∈ σ−1

2 {K2} and set t = cos (αd/d2). Then
Td2/d(t) = x and hence t ∈ W{K}. Therefore, (27) implies that all the
points of the form

cos
(

αd

d2
+

2πd

d1
j

)
, j = 1, 2, . . . ,

d1

d
− 1 ,

belong to W{K}. It follows now from the equality
σ−1

2 {K2} = Td2/d{W{K}}
that all the points of the form

cos
(

α +
2πd2

d1
j

)
, j = 1, 2, . . . ,

d1

d
− 1 ,

belong to σ−1
2 {K2}. Since the numbers d2/d and d1/d are coprime this

implies that for any k = 1, 2, . . . ,
(

d1
d

)−1 the number cos
(
α+ 2πd

d1
k
)

belongs
to σ−1

2 {K2}.
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Remark. Instead of the condition
card{K} ≥ LCM{d1, d2} (28)

in the formulation of the theorem one can require that
card{K1} ≥ d2/d + 1 or card{K2} ≥ d1/d + 1 . (29)

Indeed, for any polynomial f(z) and any finite set K ⊂ C we have
card

{
f−1{K}} ≥ deg f(z) card{K} − deg f ′(z)

= deg f(z)
(
card{K} − 1

)
+ 1 . (30)

Therefore, any of inequalities (29) implies inequality (28).

Proof of Corollary 1. It is enough to observe that if card{K1} ≥ 2 then
(30) implies that

card{K1} ≥ deg f1(z) + 1 = LCM(d1, d2) + 1 .

Proof of Corollary 2. Let C be the circle of the smallest radius containing
the set K, and c be its center. Observe that any µ(z) ∈ ΣK transforms
C into itself. Therefore, ΣK is a subgroup of the group S1. Since K is
a compact set, it follows that if ΣK is infinite then K contains, with a
point x, all the circle with center c containing x and hence is a union of
circles. Moreover, setting

f̃(z) = zd1 ◦ σ1 , K̃1 = f̃{K}
where σ1(z) = z − c, we see that then

f̃−1{K̃1} = f−1{K1} = K .

It follows now from Corollary 1 that f(z) = σ2◦f̃(z) for some linear function
σ2(z) and hence f(z) = σ2 ◦ zd1 ◦ σ1.

Suppose now that the group ΣK is finite. Without loss of generality we
can suppose that c = 0. Then ΣK is generated by εb = exp (2πi/b). Since

f−1{K1} = (f ◦ εbz)−1{K1} = K ,

it follows from Corollary 1 that
f(εbz) = µ ◦ f(z) (31)

for some µ(z) ∈ ΣK1. If µ(z) = αz + β, α, β ∈ C, then α = εa
b , where a is

the remainder after division of deg f(z) by b. This implies, in particular,
the equality f(0) = (f(0) − β)/εa

b . Now consider the rational function
g(z) = (f(z) − f(0))/za. Since

g(εbz) =
f(εbz) − f(0)

εa
bz

a
=

f(z) − (f(0) − β)/εa
b

za
= g(z) ,

it is easy to see that g(z) has the form R(zb) for some polynomial R(z) and
hence f(z) = σ ◦ zaR(zb), where σ(z) = z + f(0).
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5 Solutions of f−1
1 {T} = f−1

2 {T} = K

Proof of Theorem 2. If d1 is a divisor of d2, then the theorem follows from
Theorem 1, so we may concentrate on the case when d1 is not a divisor
of d2. Let us suppose additionally that d1/d > 2; the case when d1/d = 2
will be considered separately.

Since d1 is not a divisor of d2, Theorem 1 implies that there exist non-
linear polynomials f̃1(z), f̃2(z), g1(z), g2(z), deg g1(z) = d2/d, deg g2(z) =
d1/d, and a polynomial W (z), deg W (z) = d, satisfying (2), (4). Since in
the course of the proof of the theorem we will repeatedly use Theorem 1 to
uniform the notation set,

L1 = T , A1(z) = f̃1(z) , B1(z) = f̃2(z) .

It follows from (2), (4) that
A−1

1 {L1} = B−1
1 {L1} = W{K} .

Furthermore, by Theorem 1 there exists a compact subset of C, which
we denote by L2, such that

g−1
1 {L2} = g−1

2 {L2} = L1 (32)
and there exist linear functions σ1(z), σ2(z) such that either

A1(z) = σ1 ◦ zd1/d, B1(z) = σ2 ◦ zcR(zd1/d) , (33)
or

A1(z) = σ1 ◦ Td1/d , B1(z) = σ2 ◦ Td2/d (34)
holds.

Set now
A2(z) = g2

(
f̃1(z)

)
, B2(z) = g1

(
f̃2(z)

)
. (35)

Then the conditions of the theorem imply that
A−1

2 {L2} = B−1
2 {L2} = W{K} , (36)

where deg A1(z) = (d1/d)2, deg B2(z) = (d2/d)2. Furthermore, apply-
ing Theorem 1 to equality (32) we conclude that there exist polynomials
h1(z), h2(z), deg h1(z) = d1/d, deg h2(z) = d2/d. such that

h1

(
g1(z)

)
= h2

(
g2(z)

)

and
h−1

1 {L3} = h−1
2 {L3} = L2

for some compact set L3 ⊂ C. Then for polynomials
A3(z) = h1 ◦ g2 ◦ f1 , B3(z) = h2 ◦ g1 ◦ f2

we have
A−1

3 {L3} = B−1
3 {L3} = W{K} ,

where deg A3(z) = (d1/d)3, deg B3(z) = (d2/d)3.
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Continuing in the same way we conclude that for any r ≥ 0 there
exist a compact set Lr and polynomials Ar(z), Br(z), deg Ar(z) = (d1/d)r ,
deg B2(z) = (d2/d)r , such that

A−1
r {Lr} = B−1

r {Lr} = W{K} , (37)
where for polynomials A1(z), B1(z) either (33) or (34) holds. Furthermore,
applying Theorem 1 to equality (37) for r ≥ 2 we see that there exist linear
functions σr,1(z), σr,2(z), ωr(z) such that either

Ar(z) = σr,1 ◦ z(d1/d)r ◦ ωr , Br(z) = σr,2 ◦ zcrRr(z(d1/d)r
) ◦ ωr , (38)

for some Rr(z) and cr, or
Ar(z) = σr,1 ◦ T(d1/d)r ◦ ωr , Br(z) = σr,2 ◦ T(d2/d)r ◦ ωr . (39)

Show that if (33) (resp. (34)) holds then (38) (resp. (39)) holds for all
r ≥ 2. Consider first the case when (34) holds and show that equality
(38) cannot be realized. Indeed, observe that the formula Tn(cos x) =
cos (nx) implies that T ′

n(z) = 0 if and only if z = cos (πk/n), where
k = 1, 2, . . . , n − 1. In particular, since d1/d > 2, the polynomial Td1/d(z)
has at least two critical points. It follows now from the chain rule that
the polynomial Ar(z), which is by construction a polynomial in Td1/d(z),
also has at least two critical points. On the other hand, the polynomial
σ1,r ◦ z(d1/d)r ◦ ωr has only one critical point.

Similarly, if formula (33) holds then (39) can not be realized since Ar(z)
is a polynomial in zd1/d and therefore has at least one critical point of the
multiplicity > 2 while the multiplicity of any critical point of the polynomial
σ1,r ◦ T(d1/d)r ◦ ωr is 2.

Consider now the cases when (38) or (39) holds separately. Suppose
first that (39) holds. Show at the beginning that for any r ≥ 2 the equality

ωr(z) = ±z (40)
holds. Indeed, we have

Ar(z) = (σr,1 ◦ T(d1/d)r−1) ◦ (Td1/d ◦ ωr) .

Therefore, setting
Ur = (σr,1 ◦ T(d1/d)r−1)−1{Lr} ,

we see that
(Td1/d ◦ ωr)−1{Ur} = (σ1 ◦ Td1/d)

−1{L1} .

By Corollary 1, this implies that
Td1/d ◦ ωr = δ ◦ σ1 ◦ Td1/d

for some linear function δ(z). Since both parts of this equality should have
the same critical points it follows easily that (40) holds.
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Furthermore, since Tn(±z) = ±Tn(z) equality (40) implies that
Ar(z) = σ̃r,1 ◦ T(d1/d)r , Br(z) = σ̃r,2 ◦ T(d2/d)r ,

for linear functions σ̃r,1 = ±σr,1, σ̃r,2 = ±σr,2. In particular, setting M1 =
σ−1

1 {L1} and Mr = σ̃−1
r,1{Lr} for r ≥ 2, we see that for any r ≥ 1 the

equality
(T(d1/d)r )−1{Mr} = W{K} (41)

holds.
The equality (41) implies that the compact set W{K} together with a

point u contains all the points v such that
T(d1/d)r(v) = T(d1/d)r (u) (42)

for some r ≥ 1. Choose α ∈ C such that u = cos α. Then condition (42) is
equivalent to the condition that W{K} contains all the points of the form

cos
(
α + 2π

(
d
d1

)r
j
)

, j = 1, 2, . . . ,
(

d1
d

)r − 1 ,

where r ≥ 1. Since W{K} is a compact set it follows that W{K} contains
all the set Eα = cos (α + s), 0 ≤ s ≤ 2π. It is easy to see that Eα is an
ellipse which in the coordinates x = �z, y = 	z is defined by the equation

x2

a2
+

y2

b2
= 1 , a =

1
2

(
|eiα| + 1

|eiα|
)

, b =
1
2

(
|eiα| − 1

|eiα|
)

.

Therefore, we can represent W{K} as a union of ellipses

W{K} =
⋃

t∈U

Et

for some compact subset U of the segment [0, i∞). Furthermore, since
Tn{Et} = Etn, we have

T = σ1

{
Td1/d{W{K}}} =

⋃

t∈U

σ1{Etd1/d} . (43)

On the other hand,
T = σ2

{
Td2/d{W{K}}} =

⋃

t∈U

σ2{Etd2/d} . (44)

Denote by t1 the point of U with the maximal modulus. Then formulas
(43), (44) imply that the ellipses σ1{Et1d1/d} and σ2{Et1d2/d} coincide. In
particular they have the same focuses. Since focuses of all ellipses Eα,
α ∈ C, are ±1, we conclude that σ2 ◦ σ−1

1 = ±z and hence (9) holds.
Furthermore, the equality

σ1{Et1d1/d} = σ1{±Et1d2/d}
implies that

1
2

(
|eit1 |d1/d +

1
|eit1 |d1/d

)
=

1
2

(
|eit1 |d2/d +

1
|eit1 |d2/d

)
.
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Since d2 �= d1, it follows that t1 = 0. Therefore, W{K} = [−1, 1] and hence
T = σ1

{
Td1/d{[−1, 1]}} = σ1

{
[−1, 1]

}

is a segment.
Consider now the case when (38) holds. Since

Ar(z) = (σr,1 ◦ z(d1/d)r−1
) ◦ (zd1/d ◦ ωr) ,

setting
Ur = (σr,1 ◦ z(d1/d)r−1

)−1{Lr} ,

we see that
(zd1/d ◦ ωr)−1{Ur} = (σ1 ◦ zd1/d)−1{L1} .

By Corollary 1, this implies that
zd1/d ◦ ωr = δ ◦ σ1 ◦ zd1/d

for some linear function δ(z). Comparing critical points of the both sides
of this equality we conclude that ωr(z) = γrz for some γr ∈ C.

Therefore, for r ≥ 2, we have
Ar(z) = σ̃r,1 ◦ z(d1/d)r

, Br(z) = σ̃r,2 ◦ zcrR̃r(z(d1/d)r
)

for some linear functions σ̃r,1, σ̃r,2 and a polynomial R̃r(z). In particular,
setting M1 = σ−1

1 {L1} and Mr = σ̃−1
r,1{Lr} for r ≥ 2 we see that for any

r ≥ 1 the equality
(z(d1/d)r

)−1{Mr} = W{K} (45)
holds.

Equality (45) implies that W{K} together with a point u contains all
the points of the form εu, where ε(d1/d)r

= 1 for some r ≥ 0 and therefore
all the circle x2 + y2 = |u|. It follows that W{K} is a union of such circles
and hence by Corollary 2 the function f̃2(z) actually has the form σ2 ◦zd2/d

for some linear function σ2(z). Furthermore, equality
T = f̃1(W{K}) = f̃2(W{K}) (46)

implies that σ2(z) = σ1 ◦ γz for some γ ∈ C and hence (8) holds.
To finish the proof we need only consider the case when deg f̃1(z) = 2.

Define A2(z), B2(z) by formula (35). Since deg A2(z) = 4 > 2 equality (36)
implies that L2 is either a union of circles or a segment and, respectively,
W{K} is either a union of circles centered at the origin or a segment [−1, 1].
If W{K} is a union of circles then by Corollary 2 we have

f̃1(z) = σ1 ◦ zd1/d, f̃2(z) = σ2 ◦ zd2/d,

and, as above, equality (46) implies that (8) holds.
On the other hand, if W{K} is a segment [−1, 1] then the equality

f̃−1
1 {T} = T−1

2

{
[−1, 1]

}
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holds and applying Corollary 1 we conclude that there exists a linear func-
tion σ1 such that

T = σ1

{
[−1, 1]

}
, f̃1(z) = σ1 ◦ T2 .

Hence, T is a segment. Similarly,
f̃−1
2 {T} = T−1

d2/d

{
[−1, 1]

}

and
T = σ2

{
[−1, 1]

}
, f̃2(z) = σ2 ◦ Td2/d .

It follows now from σ1{[−1, 1]} = σ2{[−1, 1]} that σ−1
1 ◦σ2 = ±z and hence

(9) holds.

6 Solutions of f−1
1 {T} = f−1

2 {T} = T

Proof of Theorem 3. First of all consider the case when T is finite. In this
case inequality (30) implies that T is a point, T = t ∈ C. Let a1 be the
leading coefficient of f1(z). Set σ(z) = α(z − t), where αd1−1 = a1. Then
the polynomial f(z) = σ ◦f1 ◦σ−1 has the leading coefficient 1 and satisfies
f−1{0} = 0. It follows that σ ◦ f1 ◦σ−1 = zd1 . Similarly, σ ◦ f2 ◦σ−1 = γzd2

for some γ ∈ C.
Now assume that T is infinite. Consider from the beginning the case

when the set T is either a union of circles with the common center or a
segment. Suppose first that T is a union of circles with a common center c.
Without loss of generality we can assume that c = 0. Then it follows from
Corollary 2 that

f1(z) = γ1z
d1 , f2(z) = γ2z

d2 (47)
for some γ1, γ2 ∈ C. Therefore, for σ(z) = αz, where α satisfies αd1−1 = γ1,
the equalities (11) hold with γ = γ2α

−d2+1. Furthermore, if r = maxz∈T |z|
then (47) and (10) imply that γ1r

d1−1 = γ2r
d2−1. Therefore, since r > 0,

the equality
γd2−1
1 = γd1−1

2 (48)
holds. and hence

|γ| = |γ2||α−d2+1| = |γ2||γ−d2−1/d1−1
1 | = 1 . (49)

Similarly, if T is a segment then setting
p1(z) = σ ◦ Td1 ◦ σ−1, p2(z) = σ ◦ Td2 ◦ σ−1,

where σ(z) is a linear function such that T = σ{[−1, 1]} we see that
p−1
1 {T} = p−1

2 {T} = T .

By the Corollary 1 this implies that that
f1(z) = δ1 ◦ p1(z) , f2(z) = δ2 ◦ p2(z) ,
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for some linear function δ1(z), δ2(z) such that δ1{T} = δ2{T} = T . Since
any linear function which transforms T to itself has the form

δ(z) = σ ◦ ±z ◦ σ−1

it follows that (12) holds.
Now consider the case when T is distinct from a union of circles or a

segment. Let p(z), s = deg p(z), be a non-linear polynomial of the minimal
degree satisfying

f−1{T} = {T} . (50)
Show that then for any polynomial q(z), t = deg q(z), satisfying (50) the
equality t = sk holds for some k ≥ 1. Indeed, suppose that sk < t < sk+1

for some k ≥ 1. Since
(
p◦k(z)

)−1{T} = q−1{T} = T ,

it follows from Theorem 2 that there exists a polynomial r(z) such that
q(z) = r(p(z)) , r−1{T} = T .

Since 1 < deg r(z) < s this contradicts to the assumption about p(z).
Therefore, deg f1(z) = sk1, deg f2(z) = sk2 for some k1, k2 ≥ 1. Since

(
p◦k1(z)

)−1{T} = f−1
1 {T} ,

(
p◦k2(z)

)−1{T} = f−1
2 {T} ,

it follows now from Corollary 1 that equalities (13) hold. Furthermore,
since T is distinct from a union of circles, Corollary 2 implies that ΣT is
finite.

Proof of Theorem 4. Prove at first the equivalence of conditions 1 and 2.
Clearly, it is enough to show that any of the conclusions 1),2),3) in the
formulation of Theorem 3 implies that polynomials f1(z), f2(z) have the
same Julia sets. In the cases 1),2) this is obvious, so suppose that the
case 3) holds. Denote by Jf1 and Jf2 the Julia sets of the polynomials
f1(z), f2(z) and by Kf1 and Kf2 their filled-in Julia sets. Since for any
polynomial f(z) the equality Jf = ∂Kf holds in order to prove the equality
Jf1 = Jf2 it is enough to prove that Kf1 = Kf2 .

Without loss of generality we can assume that the center of the disk of
the smallest radius containing T is zero. Then

f1(z) = η1p
◦s1, f2(z) = θ2p

◦s2 (51)
for some b-th roots of unity η1, θ1. Furthermore, applying formula (31)
to the polynomial p(z), and taking into account that µ(z) = αz for some
α ∈ C, we see that p(z) = zaR(zb) for some polynomial R(z). This implies
that, for any j ≥ 1, we have

f◦j
1 (z) = ηjp

◦s1j , f◦j
2 (z) = θjp

◦s2j
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for some b-th roots of unity ηj , θj. Therefore, the equalities

|f◦j
1 (z)| = |p◦s1j | , ∣

∣f◦j
2 (z)

∣
∣ = |p◦s2j|

hold. This follows that Kf1 = Kf2 = Kp and hence Jf1 = Jf2 = Jp.
Now prove the equivalence of conditions 2 and 3. Suppose first that 2

holds and set J = Jf1 = Jf2 . Then we have
(f1 ◦ f2)−1{J} = (f2 ◦ f1)−1{J} .

It follows now from Corollary 1 that (14) holds with µ ∈ ΣJ = Jf1 ∩ Jf2 .
Furthermore, if (14) holds and µ(z) = z, in other words if f1(z), f2(z)

commute, then the equality J = Jf1 = Jf2 was already established by Julia
[J] (for any rational functions) and can be proved easily as follows ([A]).
Suppose that z ∈ Kf1 . Since (14) implies that

f1

(
f◦k
2 (z)

)
= f◦k

2

(
f1(z)

)
,

we conclude that f1{Kf2} ⊂ {Kf2} for any k ≥ 1. Hence, f◦j
1 {Kf2} ⊂ {Kf2}

for any j ≥ 1 and therefore Kf2 ⊂ Kf1. By symmetry, also Kf1 ⊂ Kf2 and
hence Kf1 = Kf2, Jf1 = Jf2 .

Now consider the case when µ(z) �= z. If µ◦j(z) �= z for any j then
both ΣT1 and ΣT2 are infinite and by Corollary 2, taking into account that
ΣT1 ∩ ΣT2 �= ∅, we conclude that ΣT1 and ΣT2 are unions of circles with
a common center c. Furthermore, since (14) implies that for any linear
function ν(z) the equality

f̃1

(
f̃2(z)

)
= µ̃

(
f̃2(f̃1(z))

)

holds with
f̃1 = ν ◦ f1 ◦ ν−1, f̃2 = ν ◦ f2 ◦ ν−1, µ̃ = ν ◦ µ ◦ ν−1,

without loss of generality, we can assume that c = 0. In this case Corollary 2
implies there exist γ1, γ2 ∈ C such that equalities (47) hold. Therefore, set-
ting σ(z) = αz, where αd1−1 = γ1, we see that equalities (11) hold with
γ = γ2α

−d2+1. Moreover, equality (14) implies equality (48) and therefore
equality (49). Hence, Jf1 = Jf2 .

Suppose now that µ(z) is a rotation of finite order d around a point c.
As above, we may assume that c = 0. Then µ(z) = εdz for some primitive
d-th root of unity εd. Show that

f1(z) = za1R1(zd) , f2(z) = za2R2(zd) (52)
for some polynomials R1(z), R2(z) and integers a1, a2. Indeed, if both ΣT1

and ΣT2 are finite then, taking into account the equality c = 0, we conclude
as above that there exist polynomials R̃1(z), R̃2(z) and integers ã1, ã2 such
that

f1(z) = zã1R̃1(zd1) , f2(z) = zã2R̃2(zd2) ,
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where di is the order of ΣTi , i = 1, 2. Since d|d1, d|d2 this implies that (52)
holds. On the other hand, if one of (or both) groups ΣT1, ΣT2 is infinite
then it follows from (47) that (52) holds.

Following [BE] define the polynomials
f̃1(z) = za1Rd

1(z) , f̃2(z) = za2Rd
2(z) ,

and show that they commute. Indeed, clearly
f̃i ◦ zd = zd ◦ fi , i = 1, 2 . (53)

Therefore, we have
f̃1 ◦ f̃2 ◦ zd = f̃1 ◦ zd ◦ f2 = zd ◦ f1 ◦ f2 = zd ◦ µ ◦ f2 ◦ f1

= zd ◦ f2 ◦ f1 = f̃2 ◦ zd ◦ f1 = f̃2 ◦ f̃1 ◦ zd.

Hence, f̃1 ◦ f̃2 = f̃2 ◦ f̃1.
Furthermore, since f̃1(z) and f̃2(z) commute we have Kf̃1

= Kf̃2
. On

the other hand, (53) implies that
f̃◦j

i ◦ zd = zd ◦ f◦j
i , i = 1, 2 ,

for any j ≥ 1. This follows that
Kfi

= (zd)−1{K̃fi
} , i = 1, 2 .

Hence, Kf1 = Kf2 and Jf1 = Jf2 .
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