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FINITENESS THEOREMS FOR COMMUTING
AND SEMICONJUGATE RATIONAL FUNCTIONS

FEDOR PAKOVICH

ABSTRACT. Let B be a fixed rational function of one complex variable of degree
at least two. In this paper, we study solutions of the functional equation
Ao X = X o B in rational functions A and X. Our main result states that,
unless B is a Lattes map or is conjugate to z£% or +T};, the set of solutions is
finite, up to some natural transformations. In more detail, we show that there
exist finitely many rational functions Ay, Aa,..., A, and X1, Xo,..., X, such
that the equality Ao X = X o B holds if and only if there exists a Mobius
transformation p such that A= poAjop~! and X = po X o B°F for some
4, 1 <7 <r and kK > 1. We also show that the number r and the degrees
deg X;, 1 < j < r, can be bounded from above in terms of the degree of B
only. As an application, we prove an effective version of the classical theorem
of Ritt about commuting rational functions.

1. INTRODUCTION

Commuting rational functions of one complex variable, that is, rational solutions
of the functional equation

(1) BoX=XoB

were investigated already at the dawn of complex dynamics in the papers of Fatou,
Julia, and Ritt [6], [8], [23]. The most general result was obtained by Ritt. Roughly
speaking, it states that solutions of equation () having no iterate in common reduce
either to powers, or to Chebyshev polynomials, or to Lattes maps. More precisely,
in its modern formulation due to Eremenko ([3]), the Ritt theorem asserts that if
X and B are commuting rational functions of degree at least two having no iterate
in common, then there exists an orbifold O of zero Euler characteristic defined on
CP', C, or C* such that A: O — O and B : O — O are covering maps between
orbifolds. Notice that the Ritt theorem provides no information about commuting
rational functions such that

(2) Xol _ Bok

for some [,k > 1, and a characterization of pairs X and B (commuting or not)
satisfying (2)) is known only in the polynomial case ([22], [23]). Simple examples of
commuting rational functions X and B satisfying ([2)) can be obtained setting

X=pmoR", B=pyoR",
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where R is an arbitrary rational function and py, ps are Mdbius transformations
commuting with R and between themselves. However, it was shown already by Ritt
([23]) that other examples also exist.

Functional equation (Il is a particular case of the functional equation

(3) AoX =XoB,

where A, B, and X are rational functions, playing along with equation () an
important role in complex and arithmetic dynamics (see e.g. [1, [B], [@], [7], [1],
[17], [21]). We always will assume that A and B in (3] have degree at least two, while
X has degree at least one. In case if [ is satisfied for some X with deg X > 2, the
function B is called semiconjugate to the function A, and the function X is called a
semiconjugacy from B to A. The case deg X = 1 corresponds to the usual conjugacy.
In terms of dynamical systems, the conjugacy condition means that the dynamical
systems B°%, k > 1, and A°* k > 1, are equivalent, while the semiconjugacy
condition means that the system A°% k > 1, is a factor of the system B°*, k > 1.

Semiconjugate rational functions were investigated at length in the recent papers
[14], [19], [20]. In particular, it was shown in [I4] that if a solution A, B, X of
equation @) is primitive, that is, satisfying the condition C(X,B) = C(z), then
there exist orbifolds O; and Qs of non-negative Euler characteristic defined on CP!
such that A: 01 — 01, B: O3 — O, and X : Oy — Oy are minimal holomorphic
maps between orbifolds. This condition generalizes the condition provided by the
Ritt theorem, and implies strong restrictions on the possible form of A, B and X.
In particular, it implies that the Galois closure of the field extension C(z)/C(X)
has genus zero or one.

Any solution of (B reduces to a primitive one by a simple iterative process.
Indeed, if C(X, B) # C(z), then by the Liiroth theorem C(X, B) = C(U) for some
rational function Uy of degree greater than one, and hence

X=X,0U;, B=Viol;

for some rational functions X; and V;. Substituting these expressions in ([B]) we see
that the triple A, X7,U; o V; is another solution of (B]). This new solution is not
necessary primitive. Nevertheless, deg X7 < deg X. Therefore, after a finite number
of similar transformations we will arrive at a primitive solution.

In this paper, we study the totality of solutions of (B]) in rational functions A and
X for a fized rational function B. We show that, unless B has a very special form,
the number of solutions of (B]), considered up to some natural transformations, is
finite. Moreover, this number can be bounded from above in terms of the degree
of B only. Notice that the results of [14], [19], [20] do not immediately imply any
results of this kind, since a priori the number of steps in the reduction to a primitive
solution as well as the number of primitive solutions for a fixed function B can be
arbitrarily large.

In more details, let A, X be a solution of ([@]). It is clear that A is defined by X
in a unique way. However, for a given rational function A there might be several
X satistying @). In particular, for any k£ > 1 we may replace X by X = X o B,
More generally, if A, X is a solution of (3], then for any Md&bius transformation p
and k > 1 we obtain another solution setting

(4) A=poAou™t, X =poXoB%,
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We say that a rational function B is special if it is either a Latteés map, or it is
conjugate to 2™ or £7),. In these terms, the main result of the paper is following.

Theorem 1.1. Let B be a non-special rational function of degree at least two. Then
there exist rational functions Ay, Ao, ..., A, and X1, Xa, ..., X, such that rational
functions A and X satisfy @) if and only if

AZMOAjou_l, X:MoonBok

for some 5, 1 < j < r, Mdbius transformation p, and k > 0. Furthermore, there
exist (computable) functions 1, ¢ : N = N such that for any non-special B of degree
d the number r and the degrees deg X;, 1 < j < r, are bounded from above by 1(d)
and @(d), correspondingly.

Notice that Theorem [[LT]bounds both the number of conjugacy classes of rational
functions A such that ([B) holds for some X, and, up to the second transformation
in (@), the number of rational functions X such that (@) holds for a fixed rational
function A. In particular, for equation () considered as a particular case of equation
@) Theorem [l implies the following result.

Theorem 1.2. Let B be a non-special rational function of degree at least two.

Then there exist rational functions X1, Xo, ..., Xs commuting with B such that a
rational function X commutes with B if and only if
(5) X — Xj ¢] BOk

for some j, 1 < j < s, and k > 0. Furthermore, there exist (computable) functions
6,v : N — N such that for any non-special B of degree d the number s and the degrees
deg X;, 1 < j <r, are bounded from above by §(d) and v(d), correspondingly.

Notice that Theorem immediately implies the Ritt theorem about commut-
ing rational functions in its part concerning non-special functions. Indeed, if X
commutes with B, then any iterate X° does. Thus, it follows from Theorem
by the Dirichlet box principle that there exist distinct l1, lo < d(d) + 1 such that

Xol1 _ Xj ° Bokl, XOZQ — Xj OBok2
for the same j and some k1, ko > 0. Assuming that I3 > [y, this yields
X0l2 — X0l1 OBO(k‘gfkl)

implying that equality (@) holds for | = lo — Iy and k = ky — kq, since X and B
commute. Moreover, [ satisfies the inequality I < §(d). Thus, Theorem [ 2limproves
the Ritt theorem, which provides neither existence of finitely many functions such
that any function X commuting with B has form (@), nor boundedness of [ in terms
of deg B.

The paper is organized as follows. In the second section, we fix the notation
and recall main definitions and results related to Riemann surface orbifolds. We
also collect some technical results, mostly from the papers [14], [20], used in the
following. In the third section, we study the systems of functional equations

UioVi=Vig10Uiyr, 1<i<s—1,

where U;, V;, 1 < i < s, are rational functions of degree at least two, which we will
call chains. Such chains correspond to chains

B— B —-+By—---— B
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of rational functions
B:V10U17 Bi:UiO‘/i, 1§/L§S7

relating an arbitrary solution of (B]) with a primitive one, and the main result of
the third section asserts that under certain restrictions the length s of such a chain
can be effectively bounded in terms of the degree of B.

In the fourth section, we define an extended symmetry group of a rational function
F' as the group of Mobius transformations o such that

Foo=voF

for some Mobius transformations v. We show that, unless F' = p3 o 2™ o s for
some Mobius transformations pq, ps2, this group is finite, and using this fact prove
Theorem [[T] for primitive solutions of ([3). In the fifth section, we prove a “compo-
sitional” counterpart of Theorem [[.I] which asserts that if B is non-special, then
any X such that (@) holds for some A can be decomposed into a composition of
rational functions
X=X0oUoB%, k>1,

such that the Galois closure of C(z)/C(X’) has genus zero or one, and U is a
“compositional right factor” of some iterate B°' with [ bounded in terms of deg B.
We also prove Theorem [[.T] and Theorem Finally, we prove an effective version
of the Ritt theorem.

2. FUNCTIONAL DECOMPOSITIONS AND ORBIFOLDS

2.1. Orbifolds and maps between orbifolds. In this section we fix the notation
and recall main definitions and results related to Riemann surface orbifolds (see [13],
Appendix E). We also collect some technical results, from the papers [14], [15], [I§],
[20], used in the following.

A pair O = (R, v) consisting of a Riemann surface R and a ramification function
v : R — N which takes the value v(z) = 1 except at isolated points is called an
orbifold. For an orbifold O the Fuler characteristic of O is the number

(©) O =xm+ ¥ (555-1).

zeCP?

the set of singular points of O is the set
c(0) = {z1,20,...,25,...} = {2z € CP! | v(2) > 1},
and the signature of O is the set

v(0) ={v(z1),v(z2),...,v(2s),... }
If Ry, Ry are Riemann surfaces provided with ramification functions 1y, vo, and
f: R1 — Ry is a holomorphic branched covering map, then f is called a covering
map f : 01 = Oy between orbifolds O; = (Ry,v1) and Oy = (Ra,ve) if for any
z € Ry the equality
(7) vo(f(2)) = v1(z) deg, f

holds, where deg, f stands for the local degree of f at the point z. If for any z € R;
instead of equality (@) the weaker condition

(8) va(f(2)) [ n1(2) deg, f
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holds, then the map f is called a holomorphic map f: O1 — O3 between orbifolds
Ol = (Rl,Vl) and OQ = (RQ,VQ).

A universal covering of an orbifold O = (R, v) is a covering map between orbifolds
0o : O — O such that R is simply connected and 7(z) = 1. If f¢ is such a map, then
there exists a group I'9 of conformal automorphisms of R such that the equality
0o (21) = 0o (22) holds for z1, 2, € R if and only if 21 = o(2;) for some o € T'g. A
universal covering exists and is unique up to a conformal isomorphism of ]A%, unless
O is the Riemann sphere with one ramified point, or the Riemann sphere with two
ramified points z1, z2 such that v(z1) # v(z2) (see [B], Section IV.9.12). Abusing
notation we will denote by O both the orbifold and the Riemann surface R.

Covering maps between orbifolds lift to isomorphisms between their universal
coverings. More generally, for holomorphic maps between orbifolds the following
proposition holds (see [I4], Proposition 3.1]).

Proposition 2.1. Let f: O; — Os be a holomorphic map between E)Ibifolflj, Then
for any choice of 0o, and 0o, there exist a holomorphic map F : O; — Oz and a
homomorphism ¢ : I'o, = I'e, such that the diagram

0, -2 0,

(9) leol leoz

0, —— 0,
is commutative and for any o € I'g, the equality
(10) Foo=y(o)oF
holds. The map F is defined by 0o,, Oo,, and f uniquely up to a transformation

F — goF, where g € T'g,. In the other direction, for any holomorphic map
F: Oy — Oy which satisfies Q) for some homomorphism ¢ : T, — Lo, there
exists a uniquely defined holomorphic map between orbifolds f : O1 — Og such that
diagram (@) is commutative. The holomorphic map F is an isomorphism if and
only if f is a covering map between orbifolds. O

If f: O — Og is a covering map between orbifolds O; and Qs with compact
supports R; and Ry, then the Riemann-Hurwitz formula implies that

(11) x(01) = dx(02),

where d = deg f (see [13]). For holomorphic maps the following statement is true
(see [14] Proposition 3.2]).

Proposition 2.2. Let f: O; — Oy be a holomorphic map between orbifolds with
compact supports. Then

(12) x(01) < x(0O2) deg f,
and the equality holds if and only if f : O — Os is a covering map between
orbifolds. |

Let Ry, R2 be Riemann surfaces and f : R; — Ry a holomorphic branched
covering map. Assume that R is provided with ramification function 5. In order
to define a ramification function v; on R; so that f would be a holomorphic map
between orbifolds O; = (R1,v1) and O = (Ra,v,) we must satisfy condition (§)),
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and it is easy to see that for any z € R; a minimum possible value for v4(z) is
defined by the equality

(13) va(f(2)) = v1(2) GCD(deg, f,va(f(2))-

In case if ([3) is satisfied for any z € Ry we say that f is a minimal holomorphic
map between orbifolds O; = (Ry,v1) and Os = (Rg, v2).

It follows from the definition that for any orbifold O = (R, v) and a holomor-
phic branched covering map f : R’ — R there exists a unique orbifold structure
O’ = (R',v') such that f : O’ — O is a minimal holomorphic map between orbifolds.
We will denote the corresponding orbifold by f*O. Notice that any covering map
between orbifolds f : O; — O3 is a minimal holomorphic map. In particular, this
implies that for any covering map f : O; — Os the equality O; = f*Oy holds.
Minimal holomorphic maps between orbifolds possess the following fundamental
property with respect to the operation of composition (see [14, Theorem 4.1]).

Theorem 2.3. Let f: R’ — R andg: R’ — R be holomorphic branched covering
maps, and O = (R,v) an orbifold. Then

(g0 f)"0 = f"(g70). 0

Theorem 23] implies in particular the following corollaries (see [14, Corollary 4.1
and Corollary 4.2]).

Corollary 2.4. Let f: O1 — O and g : O' — O3 be minimal holomorphic maps
(resp. covering maps) between orbifolds. Then go f : O; — Oz is a minimal
holomorphic map (resp. covering map). |

Corollary 2.5. Let f : Ry — R’ and g : R' — Ry be holomorphic branched covering
maps, and O1 = (Ry,v1) and O = (Ra, v2) orbifolds. Assume that go f: O3 — Og
is a minimal holomorphic map (resp. a covering map). Then g : g*Os — Oy and
f: 01 = g*Os are minimal holomorphic maps (resp. covering maps). ([l

In this paper, essentially all considered orbifolds will be defined on CP'. So,
we will omit the Riemann surface R in the definition of O = (R, v) meaning that
R = CP!. “Most” orbifolds on CP' have negative Euler characteristic. Orbifolds O
with x(0) > 0 and corresponding I'g and 8¢ can be described explicitly as follows.
The equality x(O) = 0 holds if and only if the signature of O belongs to the list

(14) {2,2,2,2} {3,3,3}, {2,4,4}, {2,3,6},

while x(0) > 0 if and only if either O is the non-ramified sphere or the signature
of O belongs to the list

(15) {n,n}, n>2, {2,2,n}, n>2, {2,3,3}, {2,3,4}, {2,3,5}.

Groups I'o € Aut(C) corresponding to orbifolds O with signatures (I4)) are
generated by translations of C by elements of some lattice L C C of rank two and
the rotation z — ez, where € is an nth root of unity with n equal to 2,3,4, or 6,
such that e = L. Accordingly, the functions #¢9 may be written in terms of the
corresponding Weierstrass functions as p(z), ¢'(2), p*(2), and p(2) (see [12], or
[5 Section 1V.9.5]). Groups 'y C Aut(CP!) corresponding to orbifolds O with
signatures (IB]) are the well-known five finite subgroups C,,, Da,, A4, S4, A5 of
Aut(CP'), and the functions fg are Galois coverings of CP* by CP! of degrees n,
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2n, 12, 24, 60, calculated for the first time by Klein in [9]. In particular, for C,
and Dy, the corresponding functions 0y are z" and

1/, 1

2.2. Orbifolds 0%, 94, and Of'. With each rational function A one can associate
in a natural way two orbifolds Of and 0% setting v4'(z) equal to the least common
multiple of local degrees of f at the points of the preimage A~1{z}, and

A A
vi'(2) = v3 (A(2))/ deg, A.
By construction, A : O — 04! is a covering map between orbifolds. Furthermore,

since the composition A o 00,14 : O — 04 is a covering map between orbifolds by
Corollary 2.4 it follows from the uniqueness of the universal covering that

(16) Oos = Aolga.

We recall that a Lattés map can be defined as a rational function A of degree at
least two such that A : O — O is a covering map for some orbifold O (see [12], [20]).
Such an orbifold is defined in a unique way and necessarily satisfies the condition
x(0) = 0 in view of equality ([I]). Following [20], we say that a rational function A
of degree at least two is a generalized Lattés map if there exists an orbifold O distinct
from the non-ramified sphere such that A: O — O is a minimal holomorphic map
between orbifolds. Notice that, similarly to usual Lattes maps, generalized Lattes
maps can be described in terms of group actions and semiconjugacies (see [20]).

In general, there might be more than one orbifold O such that A : O — O
is a minimal holomorphic map between orbifolds, and even infinitely many such
orbifolds. Namely, the power z*% : O — O is a minimal holomorphic map for any
O defined by the conditions

V(O) = I/(OO) =n, n Z 27 GCD(d, n) — 17

and the Chebyshev polynomial +7,; : O — O of degree d is a minimal holomorphic
map for any O defined by the conditions

v(-1)=v(1)=2, v(w)=n, n>1, GCD(,n)=1.

Nevertheless, if A is not conjugate to z*" or +T),, there exists a “maximal” orbifold
O, denoted by O, such that A: O — O is a minimal holomorphic map.

In more details, for orbifolds O; and Oy we write ©O; = Oy if for any z € CP' the
condition v (z) | v2(z) holds. In this notation, the following statement holds (see
[20, Theorem 1.2]).

Theorem 2.6. Let A be a rational function of degree at least two not conjugate
to 2% or +T,. Then there exists an orbifold OF such that A : OFf — OF is
a minimal holomorphic map between orbifolds, and for any orbifold O such that
A O — O is a minimal holomorphic map between orbifolds the relation O < (964

holds. Furthermore, (964“ = Of for anyl>1.

Clearly, generalized Lattes maps are exactly rational functions for which the
orbifold 064 is distinct from the non-ramified sphere, completed by the functions
z*4 or £T, for which the orbifold Of' is not defined. Furthermore, a rational
function A is a Lattes map if and only if x(9F') = 0 (see [20, Lemma 6.4]).
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2.3. Functions A with x(04) > 0. Rational functions A for which the orbifold
04 has non-negative Euler characteristic play a special role in the description of
solutions of ([B]). Below we list some properties of such functions used below.

Let F and G be rational functions. We will call G a compositional left factor of F
if F = G o H for some rational function H. Compositional right factors are defined
in a similar way. We will say that rational functions A; and A, are p-equivalent,
and write

Al ~ A27
n
if A; and As satisfy the equality
Ay = py 0 Az o g,

for some Mobius transformations p; and ps.

We recall that for a rational function X its normalization X is defined as a holo-
morphic function of the lowest possible degree between compact Riemann surfaces
X: §X — CP" such that X is a Galois covering and

X=XoH

for some holomorphic map H : Sx — CP'. From the algebraic point of view the
passage from X to X corresponds to the passage from the field extension C(z)/C(X)
to its Galois closure.

In the above terms, rational functions A for which x(94') > 0 can be character-
ized as follows (see [18, Lemma 2.1]).

Lemma 2.7. Let A be a rational function. Then g(gA) = 0 if and only if
x(03) >0, and g(Sa) = 1 if and only if x(04) = 0. O

Since, by Lemma 7 rational functions A with x(O04') > 0 are compositional
left factors of rational Galois coverings of CP! by CP!, these functions can be listed
explicitly (see Theorem 1.1 in [I8]). Below we will need only the following corollary
of this classification.

Lemma 2.8. Let A be a rational function of degree at least two such that
x(03)) > 0. Then either deg A belongs to the set

E; ={4,5,6,8,10,12, 15,20, 24, 30,60},
or A is p-equivalent to one of the functions z", T,,, Z,, where n > 2. O

Notice that

22~ Ty~ 7.
M Iz

However, for n > 2 the functions 2", T;,, and Z,,/» are pairwise not p-equivalent.

Consider now rational functions A with y(03') = 0. Since 4 : 97 — 04 is a
covering map, and x(O0f)) = 0 by (), any such a map is a covering map between
orbifolds of zero Euler characteristic. In the other direction, it can be shown that if
A : Q7 — Og is a covering map between orbifolds of zero Euler characteristic, then
with a few exceptions the equalities

Ot =0, 04 =0,

hold (see [I8, Theorem 5.2]). Again, we will need only the following corollary of
this result.
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Lemma 2.9. Let A be a rational function of degree at least two, and let O1, Oy be
orbifolds such that A : O1 — Oy is a covering map between orbifolds and x(01) = 0,
X(03) = 0. Then either deg A belongs to the set

E; ={2,3,4,6,8,12},
or the equalities Oy = 0‘24, 0, = 0114 hold. |

Finally, we will use the following well-known statement concerning decomposi-
tions of the functions 2", T,,, Z, into a composition of two rational functions (see
e.g. [18| Sections 4.1-4.2]).

Lemma 2.10.
(a) Any decomposition of 2™, n > 2, has the form

2= (2" "o p)o (ut o 2%,

where d|n and p is a Mébius transformation.
(b) Any decomposition of Z,, n > 2, either has the form

Zn - (Zn/d O:U’) o (:uil © Zd) ’

where din and p is a Mobius transformation, or has the form
Zn = (EnTn/d © /1’) © (/fl’_l 0Zgo (52)> )

where d|n, e*™ =1, and p is a Mobius transformation.
(¢) Any decomposition of T,,, n > 2, has the form

Tn = (Tn/d o M) o (/J’_l o Td)u
where d|n and p is a Mobius transformation. (Il

2.4. Equivalence ~ and special functions. Let B be a rational function. For
any decomposition B =V o U, where U and V are rational functions, the rational
function B = U oV is called an elementary transformation of B. We say that
rational functions B and A are equivalent and write A ~ B if there exists a chain
of elementary transformations between B and A (this equivalence relation should
not be confused with the equivalence relation from Section 2.3 where the subscript
w is used). For a rational function B we will denote its equivalence class by [B].
Since for any Mdobius transformation W the equality

B=(BoW)oW™!

holds, each equivalence class [B] is a union of conjugacy classes.
Equivalent functions provide examples of semiconjugate functions. Indeed, since
for B and B as above the equalities

BoU=UoB, BoV=VoB

hold, B is semiconjugate to E, and B is semiconjugate to B, implying inductively
that if A ~ B, then A is semiconjugate to B, and B is semiconjugate to A.

A rational function B of degree at least two is called special if it is either a Lattes
map, or it is conjugate to z*" or +7},. Special functions can be characterized as
finite quotients of affine maps in the following sense: a rational function B is special
if and only if there is a lattice of rank one or two A C C, an affine map L = at +b
from C/A to C/A, and a finite-to-one holomorphic map 6 : C/A — CP!\ €5, where
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& stands for the set of exceptional values of B, which satisfy the semiconjugacy
relation

c/A  —E5  c/A

o Lo
CP'\ &5 —2— CP'\ &5
(see [12]).

Equivalently, special functions can be described as rational functions B that are
covering maps B : O — O between orbifolds for some O = (R, v) with R = CP!\ &p.
It follows from (II) that for such an orbifold O the equality x(O) = 0 holds, and
([6) implies easily that, if g # @, then either €p contains two points and v = 1, or
& p contains one point and v(0) = {2,2}. Correspondingly, the map z*%: O — O
is a covering map for the non-ramified orbifold with B = CP! \ {0,000}, while
+T;: O — O is a covering map for the orbifold defined on R = CP! \ {co} by the
condition v(1) = 2, v(—1) = 2. The corresponding functions 6 are ¢* and cos z.

Below we collect several facts about special functions that we will need in the
following.

Lemma 2.11. Let F' be a special rational function and F ~F. Then I is special.

Proof. Assume that F is conjugate to z*". Then, by Lemma 10, any elementary
transformation of F' is conjugate to z*", implying inductively that any F~Fis
conjugate to z*". If F is conjugate to +7},, the proof is similar. Finally, if F is a
Lattes, then F is a Lattes map (see [20, Corollary 4.4]). O

The next statement follows from Corollary 4.7 and Lemma 6.3 in the paper [20].

Lemma 2.12. Let A be a rational function of degree d > 2 such that some iterate
A° 1> 2 s special. Then A is special. O

Finally, we will need the following result (see [12], Corollary 4.3]).

Lemma 2.13. Let A and B be rational functions such that A is semiconjugate to
B. Then A is special if and only if B is special. O

2.5. Good solutions of Ao (C = Do B. We say that a solution A, C, D, B of the
functional equation

(17) AoC=DoB
in rational functions is good if the algebraic curve
(18) Eap:Alx)—D(y) =0

is irreducible and C(C,B) = C(z). This definition is a particular case of the
definition of good solutions of (7)) in holomorphic functions defined on compact
Riemann surfaces (see [14, Section 2]). In particular, Theorem 2.1 in [I4] implies
the following.

Lemma 2.14. If a solution A,C, D, B of ([ is good, then degC = deg D. |

Furthermore, the following statement holds (see [14, Lemma 2.1]).
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Lemma 2.15. A solution A,C,D,B of (1)) is good whenever any two of the
following three conditions are satisfied:

o the curve €4 p is irreducible,
o the equality C(C, B) = C(z) holds,
e the equality deg C' = deg D holds. (]

The property of a solution A, C, D, B of ({IT) to be good imposes strong restric-
tions on the ramification collections of the functions A, C, D, B, which are described
by the following theorem (see [14] Theorem 4.2]).

Theorem 2.16. Let A,C, D, B be a good solution of (). Then the commutative
diagram

B
of —— o7

el

A
0f —— 07

consists of minimal holomorphic maps between orbifolds. O

Since an irreducible algebraic curve € 4, p has genus zero if and only if it can be
parametrized by some rational functions C' and B with C(C, B) = C(z), describing
good solutions of (I7]) mostly reduces to describing irreducible algebraic curves (18]
of genus zero. The following general result is proved in [I5].

Theorem 2.17. Let A be a rational function of degree n such that x(03") < 0. Then
for any rational function D of degree m such that the curve € 5 p is irreducible the
inequality
Eap)> m — 84n + 168
9(€ap 168

holds. O

The practical meaning of Theorem [2.17] is that whenever A,C, D, B is a good

solution of () with
deg D > 84(deg A — 2),

the function A necessarily satisfies the restrictive condition y(04') > 0 discussed in
Section 2.3

The next result we will need states that “gluing together” two commutative
diagrams corresponding to good solutions of (I7) we obtain again a good solution
of ([I7) (see the diagram below)

cp! 2 cpr Y, cp?

e |» [v
cpt —— cpt —Z cp!

Theorem 2.18. Assume that A,C, D, B and U, D,V,W are good solutions of ().
Then Uo A, C, V, W o B is also a good solution of ().

Proof. The theorem is a particular case of Theorem 2.10 in [2I]. For the reader
convenience we provide a short independent proof.
Since Lemma [2.14] implies the equalities

(19) degC =degV, deg(WoB)=deg(AoU),
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it follows from Lemma that it is enough to prove that the curve
(20) (UoA)(x)-=V(y) =0
is irreducible. Assume the inverse. Then
t— (C(t), (Wo B)(t))
is a parametrization of some proper irreducible component F(z,y) = 0 of (20),
implying that
(21) C=XoR, WoB=YoR,
for some rational functions X,Y and R such that
(22) deg X =deg, F, degY =deg, F.

Moreover, deg R > 1 since otherwise equalities (I9), [2I)), and (22) imply that the
curve F(z,y) = 0 coincides with (20)).
Since U, D, V, W is a good solution of (1), it follows from the equality

(UoA)oX =Uo(AoX)=VoY
that there exists a rational function 7" such that
AoX =DoT, Y =WoT.

Similarly, the first of these equalities implies that there exists a rational function S
such that
X=CoS, T=BoS.
Thus,
X=CoS, Y=WoBof,

implying by (ZI) that deg R = 1. The contradiction obtained shows that ([20) is
irreducible. U

2.6. Primitive solutions of Ao X = X o B. We recall that a solution A, X, B
of equation (B]) is called primitive it C(X, B) = C(z). By Lemma a solution
A, X, B of @) is primitive if and only if the corresponding solution

A=A C=X, D=X, B=B
of (I is good. Primitive solutions are described as follows (see [14, Theorem 6.1]).

Theorem 2.19. Let A, B, X be rational functions of degree at least two such that
AoX = XoB and C(B,X) = C(2). Then x(0%) > 0, x(0F) > 0, and the
commutative diagram

o —2 oF
I
X A X
05 ——— O3
consists of minimal holomorphic maps between orbifolds. ([l

The following statement (see [14, Theorem 5.1]) is a more precise version of
Proposition 2] for minimal holomorphic maps A : O — O with x(0) > 0.
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Theorem 2.20. Let A and F be rational functions of degree at least two and O
an orbifold with x(0) > 0 such that A : O — O is a holomorphic map between
orbifolds and the diagram
0o L0
(23) leo lé’o
0o—250
commutes. Then the following conditions are equivalent.
(1) The holomorphic map A : O — O is a minimal holomorphic map.
(2) The homomorphism ¢ : T'e — g defined by the equality
Foo=¢(o)oF, o€ly,

is an automorphism of I'e.
(3) The triple F, A, 69 is a good solution of the equation

AOQOIQOOF. (Il

Primitive solution of (B such that X belongs to the series X = 2", X = T,
or Z, can be described explicitly (see [20, Section 5]). Below we will need only
the following corollary of this description (see [20, Corollary 5.2, Corollary 5.5, and
Corollary 5.8]).

Corollary 2.21. Let A, X, B be a primitive solution of [B) such that X = 2™, where
n > 2. Then deg A > n, unless B = cz*™, A = ¢"2*™. Similarly, if X = T,,, where

n > 2, then deg A > n+ 1, unless B = +T,,, A = (£1)"T,,,. Finally, if X = Z,,
where n > 2, then deg A > n+1, unless B = ez, where €>* =1, and A = £"T,,.

3. GOOD CHAINS

We define a chain € = C(s, d) of length s > 2 as a sequence of s — 1 equalities
(24) UioVi=Viy10Ui41, 1<i<s—1,

where U;, V;, 1 < i < s, are rational functions of degree at least two. Clearly, any
such a chain corresponds to a sequence of s elementary transformations

(25) F—F — - — Fg,
where
F=Viol,, F;=UoV, 1<i<s.

The function F = Vj o U is called the basis of €, and the common degree d of the
functions in ([28]) is called the degree of C.
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Any chain (24]) gives rise to the following commutative diagram:

cpt %, cpr Y, cp? CP?

[w v v |w

cpt L, cpr 2, cpt P, Cp!

|w [ve [va

Uz

cpt — CP'
In particular, setting
Vij=VioVigio---oV;, Ujj=UjoUjq0---0U;, 1<i<j<s,
we see that for any i, j1,72, 1 <1i < j; <s,1<i<jy <s, the equality
(26) Ui © Visja = VistLgitia—it1 © Uppt1jitja—it1
holds. Furthermore, the following statement is true (see [20, Lemma 3.1]).
Lemma 3.1. Let C be a chain given by 24) and @5). Then

‘/l,s o Ul,s = F087 Ul,s o Vl,s = Fe. O

S

Let € = C(s,d) be a chain. We define its dual chain € by the formulas
Uy =Viproiy, Vi=Usgay, 1<i<s.
For a natural number k such that
Iy =[s/k] > 2
we define C, = C(lg, d*) as a chain corresponding to the sequence of Ij, — 1 equalities
Uik o Vig = Vig1,2k © Uy 2k,

Uk+1,2k © Vier1,26 = Vart1,3% © Uakt1,3k,
Uz+1,3k © Vart1,3c = Vakt1,4k © Uskt1 4k,

Uty —2)k+1,0—1)k © Vit—2)k+1, 0=k = Vl=1k+1,0ek © Ull—1)k+1,15k-
A chain € = €(s,d) is called good if all solutions of ([I7) provided by equalities
[24) are good. For a good chain € set

dy =degU; =degUs = --- = deg U,
and

dy =degV; =deg Vo =--- =degVs.
These numbers are well defined by Lemma [ZT4] and obviously satisfy the equality
didy = d. For good chains we will use the notation € = €(s,d;,dy) instead of

the notation € = €(s, d). Clearly, Theorem 2.I§] implies inductively the following
statement.
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Lemma 3.2. Let C = C(s,d1,d2) be a good chain. Then any solution of [IT) of
the form [26)) is good. O

In this section we prove one of the main results of the paper: the finiteness of
any good chain whose basis is non-special. More precisely, we prove the following.

Theorem 3.3. Let C be a good chain of length s and degree d with non-special
basis. Then s < 12log, d + 11.

Notice that good chains of length ~ log, d with non-special bases F' of degree d
exist and are easy to construct (see [14], p. 1241]). On the other hand, for special
F' the theorem is not true. Indeed, taking any commuting pair A, B of powers,
Chebyshev polynomials, or Lattés maps such that C(A, B) = C(z), and setting
U;=A,V;, =B, 1>1, we obviously obtain an infinite good chain.

Before proving Theorem [B.3] we will prove the following two lemmas.

Lemma 3.4. Let A,C,D, B be a good solution of (') such that either C' ~ T,
I
and D ~ Zy 3, or C ~ Z, /5 and D ~ 2". Then n < 2.
H 1% H

Proof. Assume that C' ~ T,, and D ~ Z,, /5. By Theorem 216, B : 0f — 0P is
I I

a minimal holomorphic map between orbifolds. On the other hand, if n > 2, then
v(0¢) = {2, 2}, while the orbifold v(O¥) is non-ramified. Since for such v(0f') and
v(OP) condition obviously ([3) is not satisfied at points z where voc(z) = 2, we

conclude that n < 2 (in which case O is non-ramified).
Assume now that C' ~ Z,, /5 and D ~ 2". In this case C' and D are the universal
w 7

coverings of the orbifolds O and 0P so that loe = Dy and I'gp = Y. Since
A: 0§ — OF is a minimal holomorphic map between orbifolds by Theorem 16|
it follows from Proposition 2]l that there exists a homomorphism ¢ : T'ge — I'gp
such that
Boo=y(0)oB, o €lye.

Moreover, if n > 2, then Ker (¢) # e, since |D,| = |Cy,| but the groups D,, and
C,, are not isomorphic. On the other hand, Ker (¢), as any other subgroup of
Log, has the form I'g/ for some orbifold ©’. Clearly, the both functions C' and B
are invariant with respect to I'¢/, implying that they are rational functions in 6.
Therefore, since I'gs # e implies that deg 6o, > 1, the quadruple A, C, D, B is not
a good solution of ([I7)). This contradiction shows that n < 2. O

We recall that the sets E; and E5 are defined in Lemma 2.8 and Lemma [2.9]

Lemma 3.5. Let A be a rational function such that x(04) =0, and U,V rational
functions of degree at least two such that A=U oV and degU,degV & FEs. Then

(27) of =0y, 0y =0, 05=0f, x(y)=0.
Proof. Since A : O — 04 is a covering map between orbifolds, the maps
(28) V.ot U0, U:U* 08 — 0F

are covering maps by Corollary In particular, applying ([II]) to the second map
in (28)), we conclude that

X(U* 03) = 0.
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It follows now from Lemma applied to covering maps (28] that

of =0y, U005 =0y,
and

U0y =0f, 05 =07,
implying that

0y = oY.

Finally, since 4 : O — 04 is a covering map, x(0#!) = 0 by (). Thus, the
first equality in (27) implies that x (O} ) = 0, and applying (1)) again we see that
x(0Y) = 0. O
Proof of Theorem B3l Assume first that d; > do and, in addition, that d; is not
contained in the set Fy from Lemma We show that in this case
(29) s < logy, 84(d} —2) + 3,

unless the basis F' of C is a special function.
Let us consider the equality

(30) UizoVis—3=Vis0Us_25.
Since
degUr 3 =dj, degVi,_3=d5 >,
if
s > logy, 84(d} — 2) + 3,
then

degViog = d3 ° > 84(d] — 2) = 84(deg Uy 3 — 2).
Thus, since the solution of (I) provided by equality (B0Q) is good by Lemma [B3:2]

it follows from Theorem 217 that X(O;fm) > 0.

Assume first that X(OQUm) > 0. Since d; € F implies that d; # 2, and d; # 2

implies that d is not contained in the set F;, Lemma [Z8 implies that U; 3 is p-
. . a3 . . . a3
equivalent either to z%1, or Tys, or Zgs o In case if Uy 3 is p-equivalent to 2“1,
Lemma 210 applied to the decompositions
Ui3=Uz3oU;, Uiz3=Us0Uss
implies that
Us 2 — d? -1 _ dy
23=p202Movy, Uy =wv102%o0puy,
Us =pg oz oyt U1,2:V202d%0/h,
for some Mobius transformations py, ps, v1, vo. Clearly, di > do implies that
d? > dy. Furthermore, the solution of (7)) provided by the equality

(31) ULQ o V1 = Vg o U273
is good by Lemma [3.21 Therefore, since
Uip ~ Zdi Us3 ~ Zdi
I I
we can apply Corollary 22T to (31)), concluding that
V, = M;1 o cxEd2 o z/fl, Vs =m0 o1 yEd2 Ougl,
for some ¢ € C. Thus,

Fy =U;oV; = vy ochigtdid ouf1
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is conjugate to z¥%1% Since F) ~ F, this implies by Lemma 11l that F is special.

Similarly, if Uy 3 is p-equivalent to Tdi’ we conclude that F' is conjugate to £74, 4, .
Finally, the assumption that Uy 3 is p-equivalent to Zgs /5 leads to a contradiction.

Indeed, in this case applying Lemma inductively to the decomposition

Uiz =UszoUzolUi,

we conclude that either

d d
U3NZd1/25 UQNZIa UlNzla
W © ©
or
Us ~Ty, Us~Ty, Ui~ Zg s,
w w w
or

d
Us ~Tgy, Usr~Zg 2, Up~2z".
m m W

Since the solution of ([IT) provided by the equality

(32) VaolUs =Uz o Vs

is good, in the first case applying the second part of LemmaB4lto (32) we obtain a
contradiction with dy # 2. Similarly, in the second case, we obtain a contradiction
applying the first part of Lemma [3.4] to the equality

(33) V20U2:U10V1.

Lastly, in the third case we obtain a contradiction applying Lemma [3.4] to either of

equalities (32), B3).
Assume now that X(Ogl’g) = 0. Since d; € E5 implies d? ¢ Es, it follows from
Lemma .5 applied to the decomposition Uy 3 = Us o Uy o that
U
(34) X(03"%) =0.

Applying now Lemma to the decomposition Uy = U, o U, we obtain the
equalities

(35) 05" =0,
(36) 0,1 = 057,
(37) X(05) = 0.
Clearly, (34) and (B8] imply that

(38) x(03?) = 0.

Further, since Theorem applied to (B3] implies that V5 : (.‘)2U2 — 02U lis a
minimal holomorphic map between orbifolds, it follows from equalities ([B7) and
[B8)) by Proposition that V5 : OgQ — (‘)g1 is a covering map between orbifolds.
Since Us : 0?2 — 02U 2 also is a covering map, it follows now from Corollary 2.4
that
Fy=VaoUy: 0% — o

is a covering map too. Therefore, in view of equality (BHl), the function Fj is a
Latteés map, implying by Lemma 2.T1] that the function F' is special.

We proved that under the assumptions d; > dy and di € Fy equality (29)
holds, unless F' is a special function. Let us explain now how to get rid of these
assumptions and obtain the inequality from the formulation of the theorem. First,
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if dy is contained in the set Fs, we can consider instead of the chain € = C(s, d;, d2)
the chain C4 = €([£],d{,d3), which is also good by Lemma Since for any
number d; > 2 the number d‘l1 does not belong to Es, the above argument shows
that

(39) E} < loggs 84(d}? — 2) + 3,

unless the basis F of C4 is a special function. On the other hand, since
ﬁ = V174 ] U174 = FO4

by Lemma [3.]] it follows from Lemma 2.12] that if Fisa special function, then F
also is a special function.
Furthermore, since

d 12
dy >2%,  di® < <5> :

and (B9) implies that
Z < logys 84(d}? — 2) + 4,

we conclude that inequality (B9)) yields the inequality

d 12
5 < 4loggs 84(d}* — 2) + 16 < log, 84 <(§> - 2) + 16

J\ 12
< log, 84 + log, (5) +16 < 12logy, d + 11

from the formulation of the theorem. Thus, if the inequality

(40) s < 12log, d + 11

does not hold, inequality ([B9)) does not hold either, implying that F' is special.
Finally, if d; < d3, we can consider instead of the chain C = C(s,d;,ds) its dual

chain € = C(s,da,d;). By the above argument, inequality (@0) holds, unless the

basis F' of € is a special function. On the other hand, since

F=U,oV,~F,

if the basis F of C is a special function, then the basis F' of C is also a special
function by Lemma 2111 O

4. GROUP G(B) AND PRIMITIVE SOLUTIONS

For a rational function B, we denote by £(B) the set of rational functions X
of degree at least two such that (3)) holds for some rational function A, and by
&o(B) the subset of &(B) consisting of functions X such that C(X, B) = C(z). In
addition, we denote by &y(B) the quotient set of £y(B) by the equivalence relation
which identifies X3, X2 € E(B) if there exists a Mdbius transformation p such
that

X1:/,(,OX2.

In this section, we prove the finiteness of the set £¢(B) for non-special B. Abusing
the notation we will denote by X both an element of €3(B) and its equivalence
class in €q(B).
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We recall that the symmetry group of a rational function F' is defined as the
group of all Mobius transformations g commuting with F'. Since such transforma-
tions map periodic points of F' of any given period to themselves and any Mobius
transformation is defined by its values at any three points, the symmetry group of
any rational function is finite. We define the extended symmetry group G(F) of F
as the group of Mobius transformations o such that

(41) Foo=v,oF

for some Mobius transformations v,. It is easy to see that G(F') is indeed a group
with respect to the composition operation and that the map

YF 0 — Vs

is a homomorphism from G(F) to the group Aut(CP?!).

We denote by D the subgroup of Aut(CP!) consisting of the transformations
o = czt! c € C\{0}. Notice that D can be described as the subgroup of Aut(CP!)
consisting of all M6bius transformations ¢ such that 0{0, 00} = {0, 00}, or equiva-
lently such that 0=1{0,00} = {0, 00}.

Lemma 4.1. For F = z*? the group G(F) is D.

Proof. Tt is clear that D C G(F). On the other hand, if equality (1)) holds, then
v; 10,00} = {0,00}, since otherwise the preimage (v, o F)~1{0,00} and hence
the preimage (F o 0)~1{0,00} contains more than two points. Therefore, for any

o € G(F) the transformation v, belongs to D. Now (Il) implies that o also belongs
to D. O

Theorem 4.2. Let F be a rational function of degree d > 2 such that F A z%.
n
Then the group G(F) is isomorphic to one of the five finite rotation groups of the

sphere Ay, S4, As, Cpn, Dayn, and the order of any element of G(F') does not exceed
d. In particular, |G(F)| < max{60,2d}.

Proof. Any non-identical element of the group Aut(CP') = PSLy(C) is conjugate
either to z — z+ 1 or to z — Az for some A € C\ {0, 1}. Thus, making the change
F—moFopuy, o—py'ooous, ve—pmoveopu'

for convenient i1, py € Aut(CP!), without loss of generality we may assume that
o and v, in ({I)) have one of the two forms above.
We observe first that the equalities

(42) F(z+1)=MF(z), XeC\{0,1},
and
(43) F(z+1)=F(2)+1

are impossible. Indeed, if F' has a finite pole, then any of these equalities implies
that F' has infinitely many poles. On the other hand, if F' is a polynomial of degree
d > 2, then we obtain a contradiction comparing the coefficients of z¢ in the left
and the right sides of ([@Z), and the coefficients of 27~ ! in left and the right sides
of @3J), correspondingly.

Furthermore, comparing the free terms in the Laurent series at infinity of the
left and the right sides of the equality

F(A2)=F(z)+1, XxeC\{0,1},
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we conclude that this equality is impossible either. Thus,
(44) F(/\lz) = )\QF(Z), /\17 X eC \ {O, 1}.

Comparing now coefficients in the left and the right sides of ([@4]) and taking into

account that F' o4 2%, we conclude that \; is a root of unity. Furthermore, the order
I
of the transformation z — A;z in the group G(F) does not exceed the maximum

number n such that F' can be represented in the form
(45) F =z"R(z"), ReC(z).

In particular, the order of any element of G(F') does not exceed d. Indeed, since
F o 2%, the function R in (@5]) has a zero or a pole distinct from 0 and oo, implying

th;t d>n.

The above argument shows that any element of G(F') has finite order. In order
to prove the finiteness of G(F') we will use the Schur theorem, which states that if
any element of a finitely generated subgroup G of GLg(C) has finite order, then G
has finite order (see e.g. [2l (36.2)]). Specifically, assume that G(F) is infinite, and
let 01,09,...,0s,... be an infinite sequence of pairwise distinct elements of G(F).
Observe first that for any s > 1 the finitely generated group

I's=<o01,00,...,04 >
is finite. Indeed, if I'y is infinite, then its lifting
'y € SLy(C) C GL,(C)

is also infinite, implying by the Schur theorem that fs has an element of infinite
order. But in this case I'y also has an element of infinite order in contradiction with
the fact that any element of G(F) has finite order.

Since the elements o1, 09,...,0s,... are pairwise distinct, |I's| — oo. On the
other hand, since the groups I'y, s > 1, are finite subgroups of Aut(CP!), they
belong to the list Ay, Sy, A5, Cp, Day,. Therefore, for s big enough the group I'y is
either C,, or Ds,, where n satisfies the inequality n > d. However, since the both
groups C,, and Dy, have an element of order n, this contradicts to the fact that the
order of any element of G(F) does not exceed d. Thus, the group G(F) is finite.
Finally, if G(F') is Ay, S4, or As, then G(F') < 60, while if G(F) is C,, or Dy, then
n < d, since C,, and Dy, have an element of order n. O

Lemma 4.3. Let 6 be a Mébius transformation that does not belong to D. Then
the intersection of the groups D and 6~ o Do § is a finite group isomorphic to a
subgroup of the Klein four-group.

Proof. Let us denote the intersection of the groups D and 6! oD o § by R. We
show first that R consists of involutions. Assume in contrary that x4 € R is not an
involution, and let i’ be an element of D which makes the diagram

cPt —£ 5 cp?
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commutative. Since the diagram
#02
CP! —— CP!

(46) l& l&
#/02
CP! —— CP!
also is commutative, p’ is not an involution either. Therefore, since

/1'{07 OO} = {07 OO}, :u/{ov OQ} = {07 OO},
the set {0, 00} is the fixed point set of the transformations p°? and p/°2. It follows
now from (6) that 6{0, 00} = {0, 00}, in contradiction with § & D.

Since R consists of involutions, any p € R has either the form pu = +£z, or
the form p = ¢/z, ¢ € C\ {0}. Furthermore, if two transformations p; = ¢;1/z,
c1 € C\{0}, and p2 = c2/2, ca € C\ {0}, belong to R, then their composition £z
also belongs to R implying that co = 4¢;. Therefore, the group R contains at most
four elements: 4z, &< a

Theorem 4.4. Let B be a non-special rational function of degree d > 2. Then
for any X € Eu(B) the inequalities x(0F) > 0 and deg X < max{60,2d} hold.
Furthermore, the set Eo(B) is finite and its cardinality can be bounded from above
by a number depending on d only.

Proof. Let X be an element of £y(B) and A the corresponding function such that
@) holds. By Theorem [2.19] the diagram

B
of —— Of

(47) lx lx
0F —2— of
consists of minimal holomorphic maps between orbifolds, and x(0%) > 0. More-

over, in fact x(02') > 0. Indeed, if x(0) = 0, then x(0) = 0 by (). Therefore,
since

(48) B :0f = 0f

is a minimal holomorphic map, it follows from Proposition2Z2that [{g) is a covering
map, implying that B is a Latteés map, in contradiction with the assumption. Notice
that x (05 ) > 0 implies x(OF) > 0 by ().

Since B is non-special and (@8] is a minimal holomorphic map, it follows from
Theorem that the orbifold OF is defined and O < OF. Moreover, since B
is not a Latteés map, x(OF) > 0. We observe first that the number of orbifolds O
such that O < OF is finite and can be bounded by a number depending on d only.
Clearly, it is enough to show that if OF belongs to the series {n,n}, n > 2, or
{2,2,n}, n > 2, then n is bounded in terms of d. By Theorem 2:20] there exists a
rational function Fj such that the diagram

cp s CP!
(49) l9og l9og

B
0§ —— of
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commutes and the triple B, 9063’ Fjy is a primitive solution of equation (3]). By
condition, B is not special. Therefore, if 90(1)3 is p-equivalent to z" or to Z,,
applying Corollary 22T to [@9) we conclude that n < d.

Since the number of orbifolds O such that O < OF is finite, in order to prove the
finiteness of €y(B) it is enough to show that for any fixed orbifold O with x(0) > 0
there exist only finitely many X € &q(B) such that O = O. Assume first that O is
non-ramified. Then X = 0yx by (I6), and diagram (T7) reduces to diagram (23).
Furthermore, by Theorem 2.20} there exists an automorphism ¢ : T'gx — T'ox
such that for any o € Lox the equality

Boo=¢y(c)oB

holds. Therefore, I‘O£¢ belongs to the intersection

Go(B) = G(B) Nvs(G(B)),

and hence the number of classes X in €y(B) with non-ramified O does not exceed
the number of subgroups of Go(B). Since Go(B) C G(B) and

|G(B)| < max{60, 2d}

whenever B 7 2%, we conclude that for B ¢ 2% the number of subgroups of Go(B)
w JZ

and therefore the cardinality of £¢(B) is bounded from above by a number depend-
ing on d only. Moreover,

(50) deg X = degfox = [Pox| < |G(B)| < max{60, 2d}.

Assume now that B ~ 2% Without loss of generality we may assume that

“w
B = 60 2% where § is a M&bius transformation, so that G(B) = D by Lemma 1]
and
v8(G(B)) =60Dod 1.

By Lemma 3] either G¢(B) is a group of order at most four, or § € D. In
the first case, the number of classes X in £y(B) with non-ramified O does not
exceed four, and inequality (B0) still holds. On the other hand, in the second case
B = cz*? ¢ € C\ {0}, implying that B is conjugate to 2*¢ in contradiction with
the assumption.

The case where O = O5X is ramified reduces to the previous one. Indeed, since
(@]) is a minimal holomorphic map, it follows from Theorem that there exists
a rational function F such that for any X with O = O the diagram

cpl —£ 5 cpt

(51) of — 2 oX
| |
of —2- of
commutes, and the triple B, 9@{(, F is a primitive solution of equation (B]). Set

X/:Xoeo.lx
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Since X' = fyx by (IG), it follows from the commutativity of diagram (GII) by

Theorem B.I8 that any X € €¢(B) with O = O lifts to some X’ € Eu(F) with
non-ramified O{(/. Moreover, since B is not a special function, F' also is not a
special function, by Lemma I3l Since deg F' = deg B, this yields that the number
of classes X in €y(B) with OFf = O can be bounded from above by a number
depending on d only. Lastly, the inequality

deg X < max{60,2d}

still holds since
deg X < deg X' = deg fox .

5. DESCRIPTION OF &(B) FOR NON-SPECIAL B

In this section, we describe the structure of the set &(B) for non-special rational
functions B, and prove Theorem [[.1]l and Theorem We also prove an effective
version of the Ritt theorem.

Theorem 5.1. Let B be a non-special rational function of degree d > 2. Then any
X € &(B) can be represented in the form

X=X oUoB% k>0,
where X(ng') > 0 and U is a compositional right factor of some iterate B°, | > 0.
Furthermore,
deg X’ < max{60, 2d}
and
(52) I < (o9(d) —2)(121og, d + 11),
where oo(d) is the number of divisors function.

Proof. If C(X, B) = C(z), then the statements of the theorem holds for [ = 0 and
k = 0 by Theorem 4l So, assume that C(X, B) # C(x). Without loss of generality
we may assume that X is not a rational function in B°F, k > 1, since if X = X o B°*
is contained in &(B), then X also is contained in &(B).

We recall that any solution A, X, B of ([@) can be reduced to a primitive one
as follows. Let C(X,B) = C(Uy), where U; € C(z), and let X;,V; be rational
functions such that

(53) X:XloUl, B:%OUl,

and C(X1, Vi) = C(z). Substituting expressions (G3) in ([B]) we see that the diagram
cpt Z=MU, cpt
Ull J/Ul
cpt UM, cpt

x| [

cpt —2— CP!
commutes. Thus,
AI:A, X/:Xl, B/:Ulo‘/l
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is also a solution of (B]). This new solution is not necessary primitive. Nevertheless,
deg X7 < deg X. Therefore, after a finite number of similar transformations we will
arrive to a primitive solution.

In more detail, we can find rational functions X;, V;, U;, 1 < i <, such that

C(X;,UioV;) =C(Uit1), degUiy1 >1, 1<i<l-—1,

(54) Xi=Xip10Uiy1, UioV;=Viy10Ujpr, 1<0<1-1,
(55) C(X;,V;)=C(2), 1<i<l,
and

C(X;,U; 0 V) = C(2).

Setting
Bi=U;oV;=Vi410U;41, 1Zi<1-1,

and

U=Uo---olyoly,
we see that by construction

X =X;0U,

the diagram

cpl — 2 cp?

(56) cpl 2 cp!

commutes, and A, X;, B is a primitive solution of [B)). Thus, since U is a composi-
tional right factor of B° by Lemma 1l and the inequalities deg X; < max{60,2d}
and x(03") > 0 hold by Theorem E4l in order to prove the theorem we only must
show that ! satisfies inequality (G2]).

Since the first equality in (54]) implies that any compositional right factor of U, 11
is a compositional right factor of X;, it follows from (B5]) that

(57) C(%,Ui+1) = (C(Z), 1 § ) S {—1.
In turn, (B7)) yields that
(58) degU;11 < degU;, i>1.

Indeed, denote by I the imprimitivity system of the monodromy group of B; cor-
responding to the decomposition B; = V;yj o U;+1, and by J the imprimitivity
system corresponding to the decomposition B; = U; o V;. Since each block of I
contains deg U; ;1 elements, while the number of blocks of J is equal to degUs, if
degU;+1 > deg U, then there is a block of J containing at least two elements from
a block of I, implying that C(V;, U;41) # C(2).

By assumption, degU; > 2, 1 < ¢ < [. On the other hand, since X is not
a rational function in B the inequality degU; < d holds, implying by (E8) that
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degU; < d, 1 < ¢ <. Thus, the functions V;, U;, 1 < i < [, have degree at least
two and hence the sequence

UioVi=Viy10Uiy, 1<i<1-1,
is a chain. We denote this chain by €. Let
1<k <<k <1

be indices such that

(59) degU; = degUs = - -- = deg Uy, ,
deg Uy, +1 = deg Uk, 12 = - - - = deg U,,
deg Uk, 41 = deg Uy, 12 = -+ - = deg U],
and
(60) deg Ui > deg U;gl_;,_l > degUk2+1 > > degUkH_l.

Setting for convenience kg = 0, k,+1 = [, we see that in view of conditions (57]) and
[E9), for any j, 0 < j < r, the subchain

(61) UioVi=Viy10Uip1, kj+1<0< ki —1,

of the chain € is good by Lemma 2.I5l Therefore, by Theorem B3] its length
kj+1 — kj is less than or equal to 12log, d + 11, unless its basis is special. On the
other hand, since by construction

B—+DB) =+By—---— D

is a chain of elementary transformations, it follows from Lemma 2. 11] that the basis
of (1)) is special if and only if B is special. Thus, we conclude that
T
1= (kjp1—kj) < (r+1)(12logy d + 11),
j=0
unless B is special. Finally, since degU;, 1 < ¢ < [, is a proper divisor of d, it
follows from (B0) that that
r+1<oo(d) —2.
O

Proof of Theorem [l Assume that X is an element of £(B) such that X is not a
rational function in B°*, k > 1, and consider diagram (56)). Since decompositions of
a rational function R of degree n into a composition of rational functions R = Lo M,
considered up to the change

(62) L=Lov !, M=voM,

where v is a Mobius transformation, correspond to imprimitivity systems of the
monodromy group Mon(R) C S,, of R, there exists a function w : N — N such that,
up to the change (62)), any rational function of degree n has at most w(n) decom-
positions into a composition of rational functions. Thus, since U is a compositional
right factor of B°!, where [ satisfies (52)), there exist Wy, W, ..., W,, where s can
be bounded from above by a number depending on d only, such that U in (B8]
has the form U = v o W; for some j, 1 < j < s, and a Md&bius transformation v.
Besides, it is clear that

denggdegBolzdl, 1<j<s.
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Changing in diagram (56) the function X; to the function X; o v~ the function
U to the function v o U, and the function B; to the function v o U o v, for a
convenient Mobius transformation v, without loss of generality we may assume
that U = W, for some j, 1 < j <'s. The function B; is defined in a unique way by
U, and it follows from Theorem 4] that for each B;, up to the change X; — po X,
where p is a Mdbius transformation, there exist only finitely many functions X;
satisfying (BE). Moreover, the number of such functions and their degrees can be
bounded from above in terms of d only. Finally, it is clear that if to the function X;
corresponds the function A, then to the function o X; corresponds the conjugate
function po Ao pu~1. O

Remark 5.2. Since A ~ B implies that B is semiconjugate to A, Theorem [[Tlyields
in particular that if B is not special, then [B] contains only finitely many conjugacy
classes. This result also follows from the McMullen theorem [10] about isospectral
rational functions (see [I6]). However, the McMullen theorem is non-effective, while
Theorem [[T] asserts that the number of classes in [B] is bounded from above by a
number depending on deg B only.

Proof of Theorem [L.2l Assume that X commutes with B. Without loss of general-
ity we may assume that X is not a rational function in B°*, k > 1, since if

X =X oB
commutes with B, then X also commutes with B. By Theorem [[L1] there exist
X1, Xs,...,X, € E(B) such that X = po X; for some j, 1 < j <r, and a Mbius
transformation u. Therefore, in order to prove Theorem [[L.2] it is enough to show
that for any X € &(B) there exist only finitely many g such that po X commutes
with B.

Let us take arbitrary pg such pg o X commutes with B, and assume that po X
also commutes with B. We have:

Bo,uooX:,uOoXoB:(uoo‘ufl)o‘uoXoB:(uoo‘ufl)oBo,uoX,
Therefore,
Bopg=(op)oBop,

implying that v = po o p~" commutes with B. Since the number of Md&bius trans-
formation commuting with B is finite, this implies the required statement. O

1

In conclusion, we prove the following effective version of the Ritt theorem (cf.
23], [3]).

Theorem 5.3. Let B and X be commuting rational functions of degree at least
two. If B is not special, then X°' = B°F for some I,k > 1. Furthermore, there
exists a (computable) function § : N — N such that for any non-special B of degree
d the number 1 is bounded from above by 6(d). On the other hand, if B is special
and O is an orbifold such that B : O — O 14s a covering map between orbifolds, then
X : 0 = 0 is also a covering map between orbifolds.

Proof. The first part of the theorem follows from Theorem (see the introduc-
tion). So, assume that B is special, and let O = (CP! \ €p,v) be an orbifold such
that B : O — O is a covering map. We observe first that

(63) X&) = E&p.
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Indeed, since B~!(€p) = €, it follows from the commutativity of the diagram

cpl — 2 cpt

Jx Jx

cp' —Z— CP!

that
BUX Y (ER) = X1 (en).
Therefore, X 1(€g) C €p. Since the set X 1(€p) contains at least |€g| points,
this implies (G3).
Set R = CP! \ &5 and
F=BoX=XoB.

Since X : R - R and F : R — R are branched covering maps by (63, we can
define the orbifolds X*O and F*0O. By Theorem [Z3] we have:

F*0 = X*(B*0).
However, since B : O — O is a covering map, the equality B*O = O holds, implying
that F*O = X*O. Thus, F : X*O — O is a minimal holomorphic map between
orbifolds. It follows now from F' = X o B by Corollary that B : X*0 — X*0O
also is a minimal holomorphic map. In particular, x(X*O) > 0 by (IZ). On the

other hand, since X : X*O — O is a minimal holomorphic map, it follows from (I2])
that x(X*0O) < 0. Therefore,

(64) X(X*0) =0,

implying by Proposition that B: X*O0 — X*0 and X : X*O — O are covering
maps.

Since X : X*O — O is a covering map, if &g consists of two points, then (64
implies that the both orbifolds O and X*O are non-ramified, so that

(65) X0 =0.

Thus, X : O — O is a covering map, as required. On the other hand, if £p consists
of one point, then without loss of generality we may assume that v(—1) = v(1) = 2
and B = +T,, while (64]) implies that the orbifold X*O is defined by the equality
v(a) = U(b) = 2, where a and b are some points on CPL. It is not hard to see
however that +7; : X*O — X*O cannot be a covering map for such X*O unless
{a,b} = {—1,1}. Thus, in this case equality (G0 is also satisfied.

Finally, if Eg = (), then B is a Lattés map, and it is well-known that the orbifold
O such that B : O — O is a covering map is defined in a unique way by the dynamics
of B (see [12], or [20, Theorem 6.1]). Thus, equality (G2]) still holds. O
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