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ON THE EQUATION P(f ) = Q(g), WHERE
P, Q ARE POLYNOMIALS AND f , g ARE ENTIRE FUNCTIONS

By F. PAKOVICH

Abstract. In 1922 Ritt described polynomial solutions of the functional equation P( f ) = Q(g). In
this paper we describe solutions of the equation above in the case when P, Q are polynomials while
f , g are allowed to be arbitrary entire functions. In fact, we describe solutions of the more general
functional equation s = P( f ) = Q(g), where s, f , g are entire functions and P, Q are arbitrary rational
functions. As an application we solve the problem of description of “strong uniqueness polynomials”
for entire functions.

1. Introduction. In this paper we describe all possible solutions of the
functional equation

P ◦ f = Q ◦ g,(1)

where P, Q are polynomials, f , g are entire functions, and the symbol ◦ denotes
the superposition of functions, f1 ◦ f2 = f1( f2). In fact we describe solutions of
the more general functional equation

s = P ◦ f = Q ◦ g,(2)

where s, f , g are entire functions and P, Q are arbitrary rational functions.
Let us give several examples of solutions of (1). First of all observe that

for any polynomial P and any entire function f one can obtain a solution of (1)
setting

Q = P ◦ α, g = α−1 ◦ f ,(3)

where α is a linear Möbius transformation. Observe also that if P, Q, f , g is a
solution of (1), then for any entire function h and any polynomial U the collection

P̂ = U ◦ P, Q̂ = U ◦ Q, f̂ = f ◦ h, ĝ = g ◦ h

also is a solution of (1).
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In order to lighten the notation, in case if rational functions P, Q and entire
functions s, f , g such that (2) holds satisfy (3) for some Möbius transformation α,
we will say that that the decomposition P◦f of s is equivalent to the decomposition
Q ◦ g. For equivalent decompositions we will use the notation P ◦ f ∼ Q ◦ g.

The simplest examples of solutions of (1) for which the decompositions P◦ f
and Q ◦ g are not equivalent are provided by polynomials. For example, we have
zn ◦ zm = zm ◦ zn. More generally, for any polynomial R and r ≥ 0, n ≥ 1 the
equality

zn ◦ zrR(zn) = zrRn(z) ◦ zn(4)

holds. Another examples of polynomial solutions of (1) are provided by the
Chebyshev polynomials Tn defined by the equality

Tn( cos z) = cos nz.(5)

Indeed, it follows from (5) that for any m, n ≥ 1 we have:

Tn ◦ Tm = Tm ◦ Tn.(6)

The theory of functional decompositions of polynomials developed by Ritt
[27] yields that actually any polynomial solution of (1) in a sense reduces either
to (4) or to (6). Namely, the following statement is true: if polynomials P, Q, f , g
satisfy (1) then there exist polynomials U, P̃, Q̃, f̃ , g̃, h such that

P = U ◦ P̃, Q = U ◦ Q̃, f = f̃ ◦ h, g = g̃ ◦ h, P̃ ◦ f̃ = Q̃ ◦ g̃(7)

and up to a possible replacement of P̃ by Q̃ and f̃ by g̃ either

P̃ ◦ f̃ ∼ zn ◦ zrR(zn), Q̃ ◦ g̃ ∼ zrRn(z) ◦ zn,(8)

where R is a polynomial, r ≥ 0, n ≥ 1, and GCD (n, r) = 1, or

P̃ ◦ f̃ ∼ Tn ◦ Tm, Q̃ ◦ g̃ ∼ Tm ◦ Tn,(9)

where Tn, Tm are the corresponding Chebyshev polynomials with n, m ≥ 1, and
GCD (n, m) = 1.

The simplest example of a solution of (1) with transcendental f , g is provided
by the equality

cos2 z = 1− sin2 z.
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More generally, for any polynomial S we have:

z2 ◦ cos z S( sin z) = (1− z2)S2(z) ◦ sin z.(10)

The equality

Tn ◦ cos mz = Tm ◦ cos nz(11)

also is an example of a solution of (1). Nevertheless, in a sense this equality is
a corollary of equality (6) since

cos mz = Tm ◦ cos z, cos nz = Tn ◦ cos z.

On the other hand, for example the equality

−T2 ◦ cos
(
π

2
+ z
)

= T2 ◦ cos z

already can not be reduced in a similar way to (4), (6), or (10). More generally,
for any m, n ≥ 1, l > 1, and 0 ≤ k < nl we have:

− Tnl ◦ cos
(

(2k + 1)π
nl

+ mz
)

= Tml ◦ cos (nz).(12)

Our first result states that up to one “sporadic” exception any solution of (1)
can be reduced to (4), (6), (10) or (12).

THEOREM A. Suppose that polynomials P, Q and entire functions f , g satisfy the
equation

P ◦ f = Q ◦ g.

Then there exist polynomials F, P̃, Q̃ and entire functions f̃ , g̃, t such that

P = F ◦ P̃, Q = F ◦ Q̃, f = f̃ ◦ t, g = g̃ ◦ t, P̃ ◦ f̃ = Q̃ ◦ g̃

and, up to a possible replacement of P by Q and f by g, one of the following
conditions holds:

P̃ ◦ f̃ ∼ zn ◦ zrR(zn), Q̃ ◦ g̃ ∼ zrRn(z) ◦ zn,1)

where R is a polynomial, r ≥ 0, n ≥ 1, and GCD (n, r) = 1;

P̃ ◦ f̃ ∼ Tn ◦ Tm, Q̃ ◦ g̃ ∼ Tm ◦ Tn,2)
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where Tn, Tm are the corresponding Chebyshev polynomials with m, n ≥ 1, and
GCD (n, m) = 1;

P̃ ◦ f̃ ∼ z2 ◦ cos z S( sin z), Q̃ ◦ g̃ ∼ (1− z2) S2(z) ◦ sin z,3)

where S is a polynomial;

P̃ ◦ f̃ ∼ −Tnl ◦ cos
(

(2k + 1)π
nl

+ mz
)

, Q̃ ◦ g̃ ∼ Tml ◦ cos (nz),4)

where Tnl, Tml are the corresponding Chebyshev polynomials with m, n ≥ 1,
GCD (n, m) = 1, l > 1, and 0 ≤ k < nl;

P̃ ◦ f̃ ∼ (z2 − 1)3 ◦
(

i sin 2x + 2
√

2 cos x√
3

)
,5)

Q̃ ◦ g̃ ∼ (3z4 − 4z3) ◦
(

i sin 3x

3
√

2
+ cos 2x +

i sin x√
2

+
2
3

)
.

Since a composition P ◦ f of a polynomial P and an entire function f is an
entire function, the problem of description of solutions of equation (1) is a partic-
ular case of the problem of description of all possible “double decompositions”
(2) of an entire function. Notice that different aspects of the theory of decompo-
sitions of entire functions were studied in many recent papers (see e.g. [8], [17],
[19], [20], [21], [22]). However, this theory is still far from its completion. In
particular, there exist no results about double decompositions of entire functions
similar to the results of Ritt.

Our next result describes solutions of equation (2) in case where the functions
P, Q are rational and at least one of them is not a polynomial. Together with
Theorem A this provides a complete description of solutions of equation (2) with
rational P, Q and entire s, f , g.

THEOREM B. Suppose that rational functions P, Q and entire functions s, f , g
satisfy the equation

s = P ◦ f = Q ◦ g.

Furthermore, suppose that at least one of the functions P, Q is not a polynomial.
Then there exist rational functions F, P̃, Q̃ and entire functions f̃ , g̃, t such that

P = F ◦ P̃, Q = F ◦ Q̃, f = f̃ ◦ t, g = g̃ ◦ t, P̃ ◦ f̃ = Q̃ ◦ g̃

and, up to a possible replacement of P by Q and f by g, one of the following
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conditions holds:

P̃ ◦ f̃ ∼ zn ◦ erzL(enz), Q̃ ◦ g̃ ∼ zrLn(z) ◦ enz,1)

where L is a Laurent polynomial, r ≥ 0, n ≥ 1, and GCD (n, r) = 1;

P̃ ◦ f̃ ∼ Tn ◦ cos (mz), Q̃ ◦ g̃ ∼ 1
2

(
zm +

1
zm

)
◦ einz,2)

where Tn is the Chebyshev polynomial, m, n ≥ 1, and GCD (n, m) = 1.

Yet another problem related to equation (1) is the problem of description of
“strong uniqueness polynomials” for entire functions. Recall that a polynomial P
is called a strong uniqueness polynomial for entire functions if the equality

P ◦ f = cP ◦ g,(13)

where f , g are entire functions and c ∈ C, implies that c = 1 and f ≡ g. Such
polynomials are closely related to the “uniqueness range sets” for entire functions
and were studied in the recent papers [6], [12], [14], [28], [30] (see also the
papers [1], [2], [13], [15], [16], [24] where the similar question was studied for
meromorphic functions).

Usually, the problem of description of strong uniqueness polynomials for en-
tire functions is studied under additional conditions of “generic position” imposed
on the polynomial P. Our last result based on Theorem A provides a complete
solution of this problem in the general case.

THEOREM C. A polynomial P is not a strong uniqueness polynomial for entire
functions if and only if there exists a Möbius transformation α such that either

P = zrR(zn) ◦ α,1)

where R is a polynomial and r ≥ 0, n > 1, or

P = F ◦ Tl ◦ α,2)

where F is a polynomial, Tl is the Chebyshev polynomial, and l > 1.

The paper is organized as follows: In the second section, using a result about
parametrizations of algebraic curves by entire functions obtained in [4], [11], [20]
we relate the classification of solutions of equation (2) with the classification
of double decompositions of Laurent polynomials into compositions of rational
functions. In the third section we review the papers [5], [23], [25], [31] where such
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a classification was obtained. Finally, in the fourth section we prove Theorems
A, B, and C.

2. Reduction. Let E: u(x, y) = 0 be an affine algebraic curve. Recall, that
a pair f , g of functions meromorphic on a simply connected domain D of CP1 is
called a meromorphic parametrization of E on D if for any point z ∈ D which is
not a pole of f or g the equality u( f (z), g(z)) = 0 holds and with finitely many
exceptions any point of E is of the form ( f (z), g(z)) for some z ∈ D. If D = C and
functions f , g are entire then the corresponding parametrization is called entire.

Denote by Ê the desingularization of the curve E. The general structure of
meromorphic parametrizations of E on D is described by the following theorem
(see [4]).

THEOREM 2.1. Let f , g be a meromorphic parametrization of E on D. Then there
exist a holomorphic function h: D→ Ê, meromorphic functions U, V: Ê → CP

1,
and a finite set S ⊂ Ê such that f = U ◦ h, g = V ◦ h and the mapping (U, V): Ê →
CP

1 × CP1 is injective on Ê \ S.

The class of curves having a meromorphic parametrization on C is quite
restrictive in view of the following classical Picard theorem [26].

THEOREM 2.2. If E has a meromorphic parametrization onC then Ê has genus
zero or one.

Furthermore, for curves having an entire parametrization the following much
more precise result holds (see [11], [4]).

THEOREM 2.3. Let f , g be an entire parametrization of E. Then Ê = CP1 and
there exist an entire function h, rational functions U, V, and a finite set S ⊂ CP1

such that f = U ◦ h, g = V ◦ h and the mapping (U, V): CP1 → CP
1 × CP1 is

injective on CP1 \ S.

Theorem 2.3 permits to relate the description of solutions of (2) with the
description of solutions of the equation

L = P ◦ U = Q ◦ V ,(14)

where L is a Laurent polynomial and P, Q, U, V are rational functions.

THEOREM 2.4. Suppose that rational functions P, Q and entire functions s, f , g
satisfy equation (2). Then there exist an entire function h, a Laurent polynomial L,
and rational functions U, V such that

s = L ◦ h, f = U ◦ h, g = V ◦ h, L = P ◦ U = Q ◦ V .(15)
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Proof. If (2) holds, then f , g is an entire parametrization of a factor of the
algebraic curve

P1(x)Q2(y)− P2(x)Q1(y) = 0,

where P1, P2 and Q1, Q2 are pairs polynomials without common roots such that

P = P1/P2, Q = Q1/Q2,

and hence by Theorem 2.3 there exist an entire function h and rational functions
U, V such that

f = U ◦ h, g = V ◦ h.(16)

Furthermore, it follows from P ◦ f = Q ◦ g that P ◦ U = Q ◦ V . Besides, clearly
s = L ◦ h, where L = P ◦ U = Q ◦ V .

Since s is an entire function, the equality s = L ◦ h implies that h does not
take any value in C which is a pole of L. On the other hand, by the Picard Little
theorem an entire function may omit at most one value a in C. Therefore, L is
either a polynomial or has at most one pole in C and in the last case this pole
necessarily coincides with a. Therefore, replacing if necessary h by h − a and
L by L ◦ (z + a), without loss of generality we may assume that L is a Laurent
polynomial.

3. Decompositions of Laurent polynomials. In this section we review re-
sults concerning double decompositions of polynomials and Laurent polynomials.
In accordance with the notation introduced above, if P, Q, U, V are rational func-
tions such that (14) holds for some rational function L and

P = Q ◦ α, U = α−1 ◦ V

for some Möbius transformation α, then we will say that the decomposition
P ◦ U of L is equivalent to the decomposition Q ◦ V and will use for equivalent
decompositions the notation P ◦ U ∼ Q ◦ V .

The decomposition theory of polynomials was constructed by Ritt in the
paper [27]. In particular, Ritt proved that if P̃, Q̃, f̃ , g̃ are polynomials satisfying

P̃ ◦ f̃ = Q̃ ◦ g̃

and such that

GCD ( deg P̃, deg Q̃) = 1, GCD ( deg f̃ , deg g̃) = 1,(17)

then up to a possible replacement of P̃ by Q̃ and f̃ by g̃ either (8) or (9) holds.



1598 F. PAKOVICH

On the other hand, it was proved in [7], [29] (see also [18]) that if P, Q, f , g are
arbitrary polynomials satisfying (1), then there exist polynomials U, P̃, Q̃, f̃ , g̃, h
such that

deg U = GCD ( deg P, deg Q), deg h = GCD ( deg f , deg g)(18)

and equalities (7) hold. Clearly, this result and the Ritt theorem taken together
provide a full description of polynomial solutions of (1).

It is easy to see that the problem of description of polynomial solutions of
equation (1) essentially is equivalent to the problem of description of algebraic
curves of the form

P(x)− Q(y) = 0(19)

having a factor of genus zero with one point at infinity. Indeed, if (19) is such a
curve, then the corresponding factor can be parametrized by some polynomials
f , g implying (1), and vice versa if P, Q, f , g is a polynomial solution of (1), then
(19) has a factor of genus zero with one point at infinity. A more general problem
of description of curves (19) having a factor of genus 0 with at most two points
at infinity is closely related to the number theory and was studied in the papers
[10], [5]. In particular, in [5] an explicit list of such curves, defined over any
field k of characteristic zero, was obtained.

It was observed by the author several years ago that the problem of description
of solutions of equation (14), where L is a Laurent polynomial and P, Q, U, V are
rational functions, mostly reduces to the above mentioned problem of description
of curves (19) having a factor of genus 0 with at most two points at infinity.
Indeed, since a Laurent polynomial L has at most two poles, it is easy to see that
any decomposition of L into a composition of two rational functions is equivalent
either to a decomposition A ◦ L1, where A is a polynomial and L1 is a Laurent
polynomial, or to a decomposition L2 ◦ B, where L2 is a Laurent polynomial and
B = czd, c ∈ C, d ≥ 1. Therefore, a description of solutions of (14) reduces to a
description of solutions of the following three equations:

A ◦ L1 = B ◦ L2,(20)

where A, B are polynomials and L1, L2 are Laurent polynomials,

A ◦ L1 = L2 ◦ zd,(21)

where A is a polynomial and L1, L2 are Laurent polynomials, and

L1 ◦ zd1 = L2 ◦ zd2 ,(22)

where L1, L2 are Laurent polynomials.
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Equation (22) is very simple. Equation (21) is more complicated but still
can be analysed quite easily in view of the presence of symmetries. Finally, if
A, B, L1, L2 is a solution of equation (20), then the curve

A(x)− B(y) = 0(23)

has a factor of genus 0 with at most two points at infinity and vice versa for
any such a curve its factor of genus 0 may be parametrized by some Laurent
polynomials.

A comprehensive self-contained theory of decompositions of Laurent poly-
nomials was constructed in [25] where the equation

A ◦ C = B ◦ D

was studied in a more general setting involving holomorphic functions on compact
Riemann surfaces. In particular, in [25] were proposed new proofs of the Ritt
theorem and the classification of curves (19) having a factor of genus zero with
at most two points at infinity. Another approach to the problem may be found in
[31] where solutions of (20) and (21) are deduced from results of [5] and [3].

Below we collect necessary results from [25]. In order to lighten the notation
set

Un(z) =
1
2

(
zn +

1
zn

)
, Vn(z) =

1
2i

(
zn − 1

zn

)
.

We start from the description of solutions of equation (20).

THEOREM 3.1. Suppose that polynomials A, B and Laurent polynomials L1, L2

satisfy the equation

A ◦ L1 = B ◦ L2.

Then there exist polynomials E, Ã, B̃ and Laurent polynomials W, L̃1, L̃2 such that

A = E ◦ Ã, B = E ◦ B̃, L1 = L̃1 ◦W, L2 = L̃2 ◦W, Ã ◦ L̃1 = B̃ ◦ L̃2

and, up to a possible replacement of A by B and L1 by L2, one of the following
conditions holds:

Ã ◦ L̃1 ∼ zn ◦ zrR(zn), B̃ ◦ L̃2 ∼ zrRn(z) ◦ zn,1)

where R is a polynomial, r ≥ 0, n ≥ 1, and GCD (n, r) = 1;

Ã ◦ L̃1 ∼ Tn ◦ Tm, B̃ ◦ L̃2 ∼ Tm ◦ Tn,2)
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where Tn, Tm are the corresponding Chebyshev polynomials with m, n ≥ 1, and
GCD (n, m) = 1;

Ã ◦ L̃1 ∼ z2 ◦ U1S(V1), B̃ ◦ L̃2 ∼ (1− z2) S2 ◦ V1,3)

where S is a polynomial;

Ã ◦ L̃1 ∼ −Tnl ◦ Um(εz), B̃ ◦ L̃2 ∼ Tml ◦ Un,4)

where Tnl, Tml are the corresponding Chebyshev polynomials with m, n ≥ 1, l > 1,
εnlm = −1, and GCD (n, m) = 1;

Ã ◦ L̃1 ∼ (z2 − 1)3 ◦
(

i√
3

V2 +
2
√

2√
3

U1

)
,5)

B̃ ◦ L̃2 ∼ (3z4 − 4z3) ◦
(

i

3
√

2
V3 + U2 +

i√
2

V1 +
2
3

)
.

The expressions for A and B given in Theorem 3.1 coincide with the ones
given in [5], Theorem 9.3 (for k = C) and [25], Theorem 1.1 (see also Theorem
7.2 and Theorem 8.1 of [25]). The expressions for L1, L2 coincide with the ones
given in [25] in 1), 2), 4) and slightly differ in 3) and 5). Say, in [25] in 3) we
used for the curve

x2 − (1− y2)S(y) = 0

the parametrization

L1 =
z2 − 1
z2 + 1

S
(

2z
z2 + 1

)
, L2 =

2z
z2 + 1

,

while now the parametrization

L1 = U1S(V1), L2 = V1.

A similar change is made in 5). Since the rational functions in the new para-
metrizations have the same degrees as the corresponding functions in the old
parametrizations, the new parametrizations can be obtained from the old ones by
composing them with Möbius transformations, and therefore such a change of
parametrizations does not affect the conclusion of the theorem.

The solutions of equation (21) (in the case where this equation does not
reduce to (20)) are described by the following theorem (see [25], Theorem 6.4).
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THEOREM 3.2. Suppose that polynomials A, B and Laurent polynomials L1, L2

(which are not polynomials) satisfy the equation

A ◦ L1 = L2 ◦ B.

Then there exist polynomials E, Ã, B̃, W and Laurent polynomials L̃1, L̃2 such that

A = E ◦ Ã, L2 = E ◦ L̃2, L1 = L̃1 ◦W, B = B̃ ◦W, Ã ◦ L̃1 = L̃2 ◦ B̃

and either

Ã ◦ L̃1 ∼ zn ◦ zrL(zn), L̃2 ◦ B̃ ∼ zrLn(z) ◦ zn,(24)

where L is a Laurent polynomial, r ≥ 0, n ≥ 1, and GCD (r, n) = 1, or

Ã ◦ L̃1 ∼ Tn ◦ Um, L̃2 ◦ B̃ ∼ Um ◦ zn,(25)

where Tn is the Chebyshev polynomial, n ≥ 1, m ≥ 1, and GCD (m, n) = 1.

Finally, solutions of equation (22) are described as follows (see e.g. [25],
Lemma 6.1).

LEMMA 3.1. Let L1, L2 be Laurent polynomials such that (22) holds for some
d1, d2 ≥ 1. Then there exists a Laurent polynomial N such that

L1 = N ◦ zD/d1 , L2 = N ◦ zD/d2 ,(26)

where D = LCM(d1, d2).

4. Proofs of Theorems A, B, and C.

Proof of Theorem A. Suppose that (1) holds for some entire functions f , g
and polynomials P, Q and let s be an entire function defined by equality (2).
By Theorem 2.4 there exist an entire function h, a Laurent polynomial L, and
rational functions U, V such that equalities (15) hold. Furthermore, since P, Q are
polynomials, the functions U, V are Laurent polynomials. Therefore, setting

A = P, B = Q, L1 = U, L2 = V

we obtain (20) and may apply Theorem 3.1.
Observe that without loss of generality we may assume that the Laurent

polynomial W in Theorem 3.1 equals z. Indeed, if W is a polynomial, then the
function W ◦ h is clearly entire, and we may simply replace h by W ◦ h. On the
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other hand, if W is not a polynomial, then L is not a polynomial either, and it
follows from

s = L ◦ h(27)

that h omits the value 0. Therefore, in this case the function W ◦ h is also entire
and we may replace h by W ◦ h as above.

If for the functions A, B, L1, L2 either conclusion 1) or conclusion 2) of The-
orem 3.1 holds, then setting

F = E, P̃ = Ã, f̃ = L̃1, Q̃ = B̃, g̃ = L̃2, t = h

we see that for P, Q, f , g accordingly either conclusion 1) or conclusion 2) of
Theorem A holds.

On the other hand, if for the functions A, B, L1, L2 one of conclusions 3), 4),
5) holds, then L is not a polynomial. Therefore, h omits the value 0 and hence
there exists an entire function w such that

h = eiz ◦ w.(28)

If 3) holds, then it follows from (28) taking into account the equalities

Un ◦ eiz = cos (nz), Vn ◦ eiz = sin (nz),(29)

that

L̃1 ◦ h = cos zS( sin z) ◦ w, L̃2 ◦ h = sin z ◦ w.

Therefore, setting

F = E, P̃ = Ã, f̃ = L̃1 ◦ eiz, Q̃ = B̃, g̃ = L̃1 ◦ eiz, t = w

we conclude that conclusion 3) of Theorem A holds. Similarly, it follows from
(28), (29) that if for A, B, L1, L2 conclusion 5) of Theorem 3.1 holds, then for
P, Q, f , g conclusion 5) of Theorem A holds.

Finally, in order to prove that if for A, B, L1, L2 conclusion 4) of Theorem
3.1 holds, then for P, Q, f , g conclusion 4) of Theorem A holds, observe that the
equality εnlm = −1 implies that ε = eiγ , where

γ =
π

nlm
(2r + 1)
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for some r, 0 ≤ r < nlm, and hence

Um ◦ εz ◦ eiz = Um ◦ ei(z+γ) = cos
(

(2k + 1)π
nl

+ mz
)

,

for some k, 0 ≤ k < nl.

Proof of Theorem B. It follows from Theorem 2.4 that if (2) holds for some
entire functions s, f , g and rational functions P, Q, then there exist an entire func-
tion h, a Laurent polynomial L, and rational functions U, V such that equalities
(15) hold. Furthermore, clearly either

P ◦ U ∼ A ◦ L1, Q ◦ V ∼ L2 ◦ zd,(30)

where A is a polynomial and L1, L2 are Laurent polynomials satisfying (21), or

P ◦ U ∼ L1 ◦ zd1 , Q ◦ V ∼ L2 ◦ zd2 ,(31)

where L1, L2 are Laurent polynomials satisfying (22).
If (30) holds, then it follows from Theorem 3.2 that there exist rational

functions E, P̂, Q̂, Û, V̂ , W such that

P = E ◦ P̂, Q = E ◦ Q̂, U = Û ◦W, V = V̂ ◦W, P̂ ◦ Û = Q̂ ◦ V̂(32)

and either

P̂ ◦ Û ∼ zn ◦ zrL(zn), Q̂ ◦ V̂ ∼ zrLn(z) ◦ zn,(33)

where L is a Laurent polynomial, r ≥ 0, n ≥ 1, and GCD (r, n) = 1, or

P̂ ◦ Û ∼ Tn ◦ Um, Q̂ ◦ V̂ ∼ Um ◦ zn,(34)

where Tn is the Chebyshev polynomial, n ≥ 1, m ≥ 1, and GCD (m, n) = 1.
Observe that since in both cases the function P̂ ◦ Û is a Laurent polynomial

which is not a polynomial, it follows from

L = E ◦ P̂ ◦ Û ◦W

and L−1{∞} = {0,∞} that E is a polynomial and W = cz±d, where c ∈ C∗,
d ≥ 1. Since (27) implies that h omits the value 0, replacing h by W ◦ h we may
assume that W = z.
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Setting now accordingly to possibilities (33), (34) either

F = E, P̃ = P̂, f̃ = Û ◦ ez, Q̃ = Q̂, g̃ = V̂ ◦ ez, t = iw

or

F = E, P̃ = P̂, f̃ = Û ◦ eiz, Q̃ = Q̂, g̃ = V̂ ◦ eiz, t = w,

where w is an entire function such (28) holds, we see that one of conclusions of
Theorem B holds.

Similarly, if (31) holds, then it is not hard to prove using Lemma 3.1 that
there exist rational functions P̂, Q̂, Û, V̂ , a Laurent polynomial E, and a Laurent
polynomial W of the form W = cz±d, d = GCD (d1, d2), c ∈ C∗ such that (32)
holds and

P̂ ◦ Û ∼ zD/d1 ◦ z(d1/d)z, Q̂ ◦ V̂ ∼ zD/d2 ◦ z(d2/d)z.

Furthermore, without loss of generality we may assume that W = z and setting

F = E, P̃ = P̂, f̃ = Û ◦ ez, Q̃ = Q̂, g̃ = V̂ ◦ ez, t = iw,

where w is an entire function such (28) holds, we see that conclusion 1) of
Theorem B holds with L ≡ 1, n = d2/d, and r = d1/d.

Proof of Theorem C. Suppose that P is a polynomial and c is a complex
number such that

P ◦ f = cP ◦ g(35)

for some entire functions f and g. Then for P, f , g, and Q = cP one of conclusions
of Theorem A holds. Furthermore, since deg P = deg cP we have:

deg P̃ = deg Q̃.(36)

If 1) holds, then equality (36) together with the conditions GCD (r, n) = 1,
r ≥ 0, n ≥ 1 imply that

P ◦ f ∼ cP ◦ g.(37)

The same is true if 2) holds.
Further, it follows from (36) that 5) is impossible, while 4) may hold only if

m = n = 1. Finally, if 3) holds, then necessarily deg S = 0, and it is easy to see
that in this case 3) reduces to 4) with l = 2, m = n = 1, and k = 1. Summing up
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we see that equality (35) implies that either P ◦ f is equivalent to cP ◦ g or

P = F ◦ Tl ◦ α(38)

for some polynomial F, Möbius transformation α, and l ≥ 2.
If (37) holds, then there exist a, b ∈ C such that

cP = P ◦ (az + b).(39)

Set P̂ = P ◦ (z− b/(a− 1)). Then

cP̂ = P̂ ◦ az(40)

and the comparision of coefficients of polynomials in both parts of (40) implies
that there exists an nth root of unity ε such that a = ε, c = εr, and

P̂ = zrR(zn)(41)

for some polynomial R and r ≥ 0, n > 1. Therefore, (37) implies that

P = zrR(zn) ◦ α

for some Möbius transformation α. Furthermore, any polynomial of such a from
is not a uniqueness polynomial for entire functions since for any nth root of unity
ε distinct from 1 and any entire function f we have:

P ◦ (α−1 ◦ f ) = (εn−rP) ◦ (α−1 ◦ εf ).

Finally, it is easy to see that any polynomial of form (38) also is not a strong
uniqueness polynomial for entire functions since for example for the functions

α−1 ◦ cos
(

2π
l

+ z
)

, g = α−1 ◦ cos z

the equality

P ◦ f = P ◦ g

holds.
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