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Abstract Using dynamical methods we give a new proof of the theorem saying that
if A, B, X are rational functions of complex variable z of degree at least two such that
A ◦ X = X ◦ B and C(B, X) = C(z), then the Galois closure of the field extension
C(z)/C(X) has genus zero or one.

Keywords Semiconjugate rational functions · Poincaré functions · Invariant curves ·
Galois closure · Orbifolds

1 Introduction

Let A and B be rational functions of degree at least two on the Riemann sphere. The
function B is said to be semiconjugate to the function A if there exists a non-constant
rational function X such that

A ◦ X = X ◦ B. (1)

Notice that for deg X = 1 condition (1) reduces to the usual conjugacy condition
while for B = A it reduces to the commutativity condition

A ◦ X = X ◦ A.
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60 F. Pakovich

A solution of Eq. (1) is called primitive if the functions X and B generate the
whole field of rational functions C(z). Up to a certain degree, the description of
solutions of (1) reduces to the description of primitive solutions. Indeed, by the Lüroth
theorem, the field C(X, B) is generated by some rational function W . Therefore, if
C(X, B) �= C(z), then there exists a rational function W of degree greater than one
such that

B = ˜B ◦ W, X = ˜X ◦ W (2)

for some rational functions ˜X and ˜B. Substituting now (2) in (1) we see that the triple
A, ˜X ,W ◦ ˜B is another solution of (1). This new solution is not necessary primitive,
however deg ˜X < deg X . Therefore, after a finite number of similar transformations
we will arrive to a primitive solution.

Semiconjugate rational functions were investigated at length in the series of papers
(Pakovich 2016a, b, 2017b, 2018b). In particular, it was shown in Pakovich (2016a)
that all primitive solutions of (1) are related to discrete automorphism groups ofC and
CP

1, implying that corresponding functions X have a very restricted form. Recall that
for a rational function X its normalization ˜X is defined as a holomorphic function of
the lowest possible degree between compact Riemann surfaces ˜X : ˜SX → CP

1 such
that ˜X is a Galois covering and

˜X = X ◦ H

for some holomorphic map H : ˜SX → CP
1. From the algebraic point of view the

passage from X to ˜X corresponds to the passage from the field extensionC(z)/C(X) to
its Galois closure. In these terms, the main result of Pakovich (2016a) about primitive
solutions of (1) may be formulated as follows.

Theorem 1.1 Let A, B, X be rational functions of degree at least two such that
A ◦ X = X ◦ B and C(B, X) = C(z). Then the Galois closure of the field exten-
sion C(z)/C(X) has genus zero or one.

Observe a similarity between this result and the Ritt theorem (Ritt 1923) saying that
if two rational functions A and X commute and have no iterate in common, then A
and X either are Lattès maps, or are conjugate to powers or Chebyshev polynomials.
Indeed, powers and Chebyshev polynomials are the simplest examples of rational
functions such that g(˜SX ) = 0. On the other hand, Lattès maps are examples of
rational functions with g(˜SX ) = 1. Rational functions X with g(˜SX ) = 0 can be listed
explicitly, while functions with g(˜SX ) = 1 admit a simple geometric description (see
Pakovich 2018a). Notice that rational functions with g(˜SX ) ≤ 1 can be described
through their ramification, implying that Theorem 1.1 is equivalent to Theorem 6.1 of
Pakovich (2016a) (see Sect. 5 below).

The problem of describing commuting and semiconjugate rational functions natu-
rally belongs to dynamics (see e.g. the papers Buff and Epstein 2007; Eremenko 2012,
1989; Fatou 1923; Julia 1922; Medvedev and Scanlon 2014; Pakovich 2017a). In par-
ticular, in the papers of Fatou (1923) and Julia (1922) commuting rational functions
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Semiconjugate Rational Functions 61

were investigated by dynamical methods, requiring however an assumption that the
Julia sets of considered functions do not coincide with the whole Riemann sphere. On
the other hand, the Ritt theorem about commuting rational functions cited above was
proved by non-dynamical methods. In his paper, Ritt remarked that “it would be inter-
esting to know whether a proof can also be effected by the use of Poncaré functions
employed by Julia”. Sixty-six years later such a proof was given by Eremenko (1989).
Notice that the Ritt theorem also follows from the results of Pakovich (2016b) about
solutions of Eq. (1) with fixed B.

Similarly to the paper Ritt (1923), the paper Pakovich (2016a) does not use any
dynamical methods, but relies on a study of maps between two-dimensional orbifolds
associated with rational functions. At the same time, it is interesting to find approaches
to Eq. (1) involving ideas from dynamics, and the goal of this paper is to provide a
“dynamical” proof of Theorem 1.1. In fact, we give two such proofs. The first one
exploits a link between Eq. (1) and Poincaré functions. The second one is based on
the interpretation of ˜SX as an invariant curve for the dynamical system

(x1, x2, . . . , xn) → (A(x1), A(x2), . . . , A(xn)) (3)

on (CP1)n . The last proof is inspired by the recent paper Medvedev and Scanlon
(2014) describing invariant varieties for dynamical systems of the form

(x1, x2, . . . , xn) → (C1(x1),C2(x2), . . . ,Cn(xn)),

where C1,C2, . . . ,Cn are polynomials, and relating such varieties with polynomial
solutions of (1). The analysis of Eq. (1) in the paper Medvedev and Scanlon (2014),
based on the Ritt theory of polynomial decompositions (Ritt 1922), does not extend
to arbitrary rational functions. Nevertheless, the relation between the semiconjugacy
condition and invariant varieties established inMedvedev and Scanlon (2014) suggests
that there should be some interpretation of the results of Pakovich (2016a) in terms of
dynamical systems of form (3), and we show that this is indeed the case.

The paper is organized as follows. In the second section we recall the description
of ˜SX in terms of algebraic equations, and give a criterion for a rational function X
to satisfy the condition g(˜SX ) ≤ 1. In the third and the fourth sections we provide
two proofs of Theorem 1.1 using two approaches described above. Finally, in the fifth
section we show that Theorem 1.1 is equivalent to Theorem 6.1 of Pakovich (2016a)
which describes primitive solutions of (1) in terms of orbifolds.

2 Meromorphic Parametrizations and Normalizations

Let C be an irreducible algebraic curve inCn . Recall that a meromorphic parametriza-
tion of C on C is a collection of functions ψ1, ψ2, . . . , ψn such that

• ψ1, ψ2, . . . , ψn are non-constant and meromorphic on C,

• (ψ1(z), ψ2(z), . . . , ψn(z)) ∈ C whenever ψi (z) �= ∞, 1 ≤ i ≤ n,

• with finitely many exceptions, every point of C is of the form
(ψ1(z), ψ2(z), . . . , ψn(z)) for some z ∈ C.
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Notice that the last condition in fact is a corollary of the first two.
By the classical theorem of Picard (1887), a plane algebraic curve C which can be

parametrized by functions meromorphic onC has genus zero or one (see e.g. Beardon
and Ng 2006). We will use the following slightly more general version of this theorem
which can proved in the same way.

Theorem 2.1 If an irreducible algebraic curve C in Cn has a meromorphic paramet-
rization on C, then C has genus zero or one. �	

Let X : CP
1 → CP

1 be a rational function of degree d. The normalization
˜X : ˜SX → CP

1 can be described by the following construction (see Fried 1995,
§I.G). Consider the fiber product of the cover X : CP1 → CP

1 with itself d times,
that is a subset L of (CP1)d consisting of d-tuples with a common image under X .
Clearly,L is an algebraic variety of dimension one defined by the algebraic equations

X (zi ) − X (z j ) = 0, 1 ≤ i, j ≤ d, i �= j. (4)

Let L0 be a variety obtained from L by removing the components where two or

more coordinates coincide, N an irreducible component of L0, and N′ π ′−→ N the
desingularization map. In this notation the following statement holds.

Theorem 2.2 The map ψ : N′ → CP
1 given by the composition

N′ π ′−→ N
πi−→ CP

1 X−→ CP
1, (5)

whereN is any irreducible component ofL0 and πi is the projection to any coordinate,
is the normalization of X. �	

Combining Theorems 2.1 and 2.2 we obtain the following characterization of ratio-
nal functions X with g(˜SX ) ≤ 1.

Theorem 2.3 Let X be a rational function of degree d. Then g(˜SX ) ≤ 1 if and only
if there exist d distinct functions ψ1, ψ2, . . . , ψd meromorphic on C such that

X (ψi ) − X (ψ j ) = 0, 1 ≤ i, j ≤ d, i �= j. (6)

Proof Equalities (6) imply that some irreducible component N of L0 admits a mero-
morphic parametrization. Since N′ = ˜SX by Theorem 2.2, it follows from Theorem
2.1 that g(˜SX ) ≤ 1.

In the other direction, if g(˜SX ) ≤ 1, then taking different coordinate projections in
(5) we obtain d distinct functions

θi = πi ◦ π ′, 1 ≤ i ≤ d,

from ˜SX to CP1 such that

X (θi ) − X (θ j ) = 0, 1 ≤ i, j ≤ d, i �= j.
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Semiconjugate Rational Functions 63

If g(˜SX ) = 0, these functions are rational and therefore meromorphic on C. On the
other hand, if g(˜SX ) = 1, we obtain meromorphic functions satisfying (6) setting

ψi = θi ◦ τ, 1 ≤ i ≤ d,

where τ : C → ˜SX is the universal covering of ˜SX . �	

3 Semiconjugate Functions and Poincaré Functions

Let A be a rational function and z0 its repelling fixed point. Recall that the
Poincaré function PA,z0 associated with z0 is a function meromorphic on C such that
PA,z0(0) = z0, P′

A,z0
(0) = 1, and the diagram

C
λz−−−−→ C

⏐

⏐

�
PA,z0

⏐

⏐

�
PA,z0

CP
1 A−−−−→ CP

1

commutes. The Poincaré function always exists and is unique (see e.g. Milnor 2006).

Lemma 3.1 Let X and B be rational functions such that C(X, B) = C(z). Then for
all but finitely many z0 ∈ C the set B(X−1{z0}) contains deg X distinct points.

Proof Since C(X, B) = C(z), there exist U, V ∈ C[x, y] such that

z = U (X, B)

V (X, B)
.

This implies that for z1 �= z2 such that X (z1) = X (z2) the inequality B(z1) �= B(z2)
holds, unless z1 or z2 is a zero of the polynomial V (X, B). Therefore, if z0 is neither a
critical value of X nor an X -image of a zero of V (X, B), the set B(X−1{z0}) contains
deg X distinct points, since X−1{z0} contains deg X distinct points and their B-images
are distinct. �	

Combining the uniqueness of the Poincaré function with Theorem 2.3 we can prove
Theorem 1.1 as follows. Let A, B, and X be rational functions of degree at least two
such that the diagram

CP
1 B−−−−→ CP

1

⏐

⏐

�X

⏐

⏐

�X

CP
1 A−−−−→ CP

1

(7)

commutes andC(X, B) = C(z). Since the number of repelling periodic points of A is
infinite, it follows from Lemma 3.1 that we can find a repelling periodic point z0 ∈ C
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such that for any point z in the forward A-orbit of z0 the set B(X−1{z}) contains deg X
distinct points. Since (7) implies that

B(X−1{z0}) ⊆ X−1{A(z0)},

this yields that

B(X−1{z0}) = X−1{A(z0)},

and, inductively, that

B◦k(X−1{z0}) = X−1{A◦k(z0)}, k ≥ 1.

In particular, for k equal to the period of z0 we have:

B◦k(X−1{z0}) = X−1{z0}.

Therefore, the restriction of the rational function B◦k on the set X−1{z0} is a permu-
tation of its elements, and hence for certain l ≥ 1 all the points of X−1{z0} are fixed
points of B◦kl . Thus, considering instead of A and B their iterates we can assume that
z0 is a fixed point of A and the set X−1{z0} consists of d = deg X distinct fixed points
z1, z2, . . . , zd of B.

Since the points z1, z2, . . . , zd are not critical points of X , the map X is invertible
near each of them implying that the multipliers of B at z1, z2, . . . , zd are all equal
to the multiplier λ of A at z0, so that z1, z2, . . . , zd are repelling fixed points of B.
Clearly, for each i, 1 ≤ i ≤ d, we can complete commutative diagram (7) to the
commutative diagram

C
λz−−−−→ C

⏐

⏐

�
PB,zi

⏐

⏐

�
PB,zi

CP
1 B−−−−→ CP

1

⏐

⏐

�X

⏐

⏐

�X

CP
1 A−−−−→ CP

1 ,

where PB,zi , 1 ≤ i ≤ d, is the corresponding Poincaré function for B. Since the
functions X ◦PB,zi , 1 ≤ i ≤ d, are meromorphic, it follows now from the uniqueness
of the Poincaré function that there exist α1, α2, . . . αd ∈ C\{0} such that

PA,z0(z) = X ◦ PB,z1(α1z) = X ◦ PB,z2(α2z) = · · · = X ◦ PB,zd (αd z). (8)

Moreover, the functions PB,zi (αi z), 1 ≤ i ≤ d, are distinct since the points

zi = PB,zi (0), 1 ≤ i ≤ d,
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Semiconjugate Rational Functions 65

are distinct. Applying now Theorem 2.3 to equality (8), we see that g(˜SX ) ≤ 1.

4 Semiconjugate Functions and Invariant Curves

Let R1, R2, . . . , Rd be rational functions, and let R : (CP1)d → (CP1)d be the map

(x1, x2, . . . , xd) → (R1(x1), R2(x2), . . . , Rd(xd)).

Say that an algebraic curve C in (CP1)d is R-invariant if R(C) = C. Invariant curves
possess the following property (cf. Medvedev and Scanlon 2014, Proposition 2.34).

Theorem 4.1 Let R1, R2, . . . , Rd be rational functions of degree at least two and C

an irreducible R-invariant curve in (CP1)d . Then g(C) ≤ 1.

Proof Since C is R-invariant, the map R lifts to a holomorphic map

R′ : C′ → C′,

where C′ is a desingularization of C. Applying now the Riemann-Hurwitz formula

2g(C′) − 2 = (2g(C′) − 2)degR′ +
∑

P∈C′
(ep − 1),

we see that g(C′) ≤ 1, unless degR′ = 1.
Furthermore, if degR′ = 1 the inequality g(C′) ≤ 1 still holds. Indeed, since

the automorphism group of a Riemann surface of genus greater than one is finite, if
g(C′) ≥ 2, then for some k ≥ 1 the map (R′)◦k is the identical automorphism of C′,
implying that the maps

(z1, z2, . . . , zd) → R◦k
i (zi ), 1 ≤ i ≤ d,

are identical on C. However, since each Ri , 1 ≤ i ≤ d, has degree at least two, in this
case for every point of C its i th coordinate belongs to a finite subset ofCP1 consisting
of fixed point of R◦k

i , implying that C is a finite set. �	

Using Theorems 4.1 and 2.2 we obtain a proof of Theorem 1.1 as follows. Define
the maps A, B, and X from (CP1)d to (CP1)d by the formulas

A : (x1, x2, . . . , xd) → (A(x1), A(x2), . . . , A(xd)),

B : (x1, x2, . . . , xd) → (B(x1), B(x2), . . . , B(xd)),

X : (x1, x2, . . . , xd) → (X (x1), X (x2), . . . , X (xd)).
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Clearly, equality (1) implies that the diagram

(CP1)d
B−−−−→ (CP1)d

⏐

⏐

�X

⏐

⏐

�X

(CP1)d
A−−−−→ (CP1)d

(9)

commutes. By construction, the variety L defined by Eq. (4) is the preimage of the
diagonal � in (CP1)d under the map X : (CP1)d → (CP1)d . Therefore, since
A(�) = �, it follows from (9) that B(L) ⊆ L. Moreover, Lemma 3.1 implies that
B(L0) ⊆ L0. Since L0 has a finite number of irreducible components, this implies
that there exists an irreducible componentN0 ofL0 such thatB◦k(N0) = N0 for some
k ≥ 1. Since by Theorem 2.2 the equality g(N0) = g(˜SX ) holds, it follows now from
Theorem 4.1 that g(˜SX ) ≤ 1.

5 Semicoconjugate Functions and Orbifolds

Recall that an orbifold O on CP1 is a ramification function ν : CP1 → N which takes
the value ν(z) = 1 except at finite number of points. The Euler characteristic of an
orbifold O is defined by the formula

χ(O) = 2 +
∑

z∈CP1

(

1

ν(z)
− 1

)

.

A rational function f is called a covering map f : O1 → O2 between orbifolds O1
and O2 if for any z ∈ CP

1 the equality

ν2( f (z)) = ν1(z)deg z f (10)

holds, where deg z f denotes the local degree of f at the point z. If f : O1 → O2 is a
covering map, then the Riemann-Hurwitz formula implies that

χ(O1) = deg f · χ(O2). (11)

In case if a weaker than (10) condition

ν2( f (z)) = ν1(z)GCD(deg z f, ν2( f (z))

holds, f is called a minimal holomorphic map between orbifolds O1 and O2.
With each rational function f one can associate in a natural way two orbifolds O f

1

and O f
2 , setting ν

f
2 (z) equal to the least common multiple of the local degrees of f at

the points of the preimage f −1{z}, and

ν
f
1 (z) = ν

f
2 ( f (z))/deg z f.
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By construction, O f
1 → O

f
2 is a covering map between orbifolds. The following

statement expresses the condition g(˜S f ) ≤ 1 in terms of the Euler characteristic of

O
f
2 (see Pakovich 2018a, Lemma 2.1).

Lemma 5.1 Let f be a rational function. Then g(˜S f ) = 0 if and only if χ(O
f
2 ) > 0,

and g(˜S f ) = 1 if and only if χ(O
f
2 ) = 0. �	

Using Lemma 5.1 one can show that Theorem 1.1 is equivalent to the following
statement proved in the paper Pakovich (2016a, Theorem 6.1).

Theorem 5.1 Let A, B, X be rational functions of degree at least two such that
A ◦ X = X ◦ B and C(B, X) = C(z). Then χ(OX

1 ) ≥ 0, χ(OX
2 ) ≥ 0, and the

commutative diagram

OX
1

B−−−−→ OX
1

⏐

⏐

�X

⏐

⏐

�X

OX
2

A−−−−→ OX
2

consists of minimal holomorphic maps between orbifolds.

Indeed, a direct calculation shows that if A, B, X is a primitive solution of (1), then
A : OX

1 → OX
1 and B : OX

2 → OX
2 are minimal holomorphic maps between orbifolds

(see Pakovich 2016a, Theorem 4.2). If Theorem 1.1 is true, then Lemma 5.1 implies
that χ(OX

2 ) ≥ 0. Furthermore, χ(OX
1 ) ≥ 0, by (11). In turn, Theorem 5.1 implies

Theorem 1.1, since χ(OX
2 ) ≥ 0 implies g(˜SX ) ≤ 1.
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