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ABSTRACT

Let Rt[θ] be the ring generated over R by cos θ and sin θ, and Rt(θ) be

its quotient field. In this paper we study the ways in which an element

p of Rt[θ] can be decomposed into a composition of functions of the form

p = R ◦ q, where R ∈ R(x) and q ∈ Rt(θ). In particular, we describe

all possible solutions of the functional equation R1 ◦ q1 = R2 ◦ q2, where

R1, R2 ∈ R[x] and q1, q2 ∈ Rt[θ].

1. Introduction

Let P be a polynomial with complex coefficients. Any representation of P in

the form P = P1 ◦ W1, where P1 and W1 are polynomials of degree greater

than one and the symbol ◦ denotes the superposition of functions, is called a

decomposition of P. The problem of description of all possible decompositions

of a polynomial naturally leads to the functional equation

(1) P1 ◦W1 = P2 ◦W2,

where P1,W1, P2,W2 are polynomials, for the first time studied by Ritt in the

paper [16]. In particular, the results of [16] imply that in a certain sense all

polynomial solutions of (1) reduce either to the solutions

zn ◦ zrR(zn) = zrRn(z) ◦ zn,
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where R is a polynomial, and r ≥ 0, n ≥ 1, or to the solutions

(2) Tn ◦ Tm = Tm ◦ Tn,
where Tn, Tm are Chebyshev polynomials.

Functional equation (1) is closely related to the so-called “polynomial mo-

ment problem” which asks to describe complex polynomials P,Q such that the

equalities

(3)

∫ 1

0

P idQ = 0, i ≥ 0,

hold. Indeed, it is easy to see using the change z → W (z) that (3) is satisfied

whenever there exist polynomials P̃ , Q̃, and W such that

(4) P = P̃ ◦W, Q = Q̃ ◦W, W (0) =W (1).

Furthermore, it was shown in [14] that if polynomials P, Q satisfy (3), then

there exist polynomials Qj such that Q =
∑

j Qj and the equalities

(5) P = P̃j ◦Wj , Qj = Q̃j ◦Wj , Wj(0) =Wj(1)

hold for some polynomials P̃j , Q̃j ,Wj . Thus, the most interesting solutions

of the polynomial moment problem arise from polynomials having “multiple”

decompositions

(6) P = P̃1 ◦W1 = P̃2 ◦W2 = · · · = P̃s ◦Ws.

Polynomial solutions of (6) were described in the paper [11], where the correspon-

ding generalization of the result of Ritt about solutions of (1) was obtained.

The polynomial moment problem naturally appears in the study of the center

problem for the Abel differential equation with polynomial coefficients, which is

a simplified analog of the center problem for the Abel differential equation whose

coefficients are trigonometric polynomials over R (see e.g. the recent papers [3],

[2] and the bibliography therein). In its turn, the last problem is closely related

to the classical center-focus problem of Poincaré ([4]). In the same way as

the center problem for the Abel equation with polynomial coefficients leads

to the polynomial moment problem, the center problem for the Abel equation

with trigonometric coefficients leads to the following “trigonometric moment

problem”. Let

p = p(cos θ, sin θ), q = q(cos θ, sin θ)



Vol. 217, 2017 DECOMPOSITIONS OF TRIG. POLYNOMIALS 339

be trigonometric polynomials over R, that is elements of the ring Rt[θ] generated

over R by the functions cos θ, sin θ. What are the conditions implying that the

equalities

(7)

∫ 2π

0

pidq = 0, i ≥ 0,

hold? As in the case of the polynomial moment problem one can consider a

complex version of this problem (see [12], [15], [1]). However, examples con-

structed in [15], [1] suggest that in the trigonometric case the complex version

of the problem may be much more complicated than the real one.

Again, a natural sufficient condition for (7) to be satisfied is related to com-

positional properties of p and q. Namely, it is easy to see that if there exist

P,Q ∈ R[x] and w ∈ Rt[θ] such that

(8) p = P ◦ w, q = Q ◦ w,
then (7) holds. Furthermore, if for given p there exist several such q (with

different w), then (7) obviously holds for their sum. Thus, the trigonometric

moment problem leads to the problem of the description of solutions of the

equation

(9) P1 ◦ w1 = P2 ◦ w2,

where w1, w2 ∈ Rt[θ] and P1, P2 ∈ R[x], and the main goal of this paper is to

provide such a description. Notice that, besides its relation with the trigonomet-

ric moment problem, functional equation (9) seems to be of interest by itself.

In particular, it contains among its solutions the most known trigonometric

identity

(10) sin2 θ = 1− cos 2θ.

Besides, the problem of the description of solutions of (9) absorbs the problem

of the description of polynomial solutions of (1) over R, since for any polynomial

solution of (1) and any w ∈ Rt[θ] we obtain a solution of (9) setting

w1 =W1 ◦ w, w2 =W2 ◦ w.
Observe that if P1, P2, w1, w2 is a solution of (9), then for any k ∈ N and

b ∈ R we obtain another solution P1, P2, w̃1, w̃2 setting

w̃1(θ) = w1(kθ + b), w̃2(θ) = w2(kθ + b).
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Further, if P1, P2, w1, w2 is a solution of (9), then for any U ∈ R[t] we obtain

another solution P̃1, P̃2, w1, w2 setting

P̃1 = U ◦ P1, P̃2 = U ◦ P2.

Let p be an element of Rt[θ] or R[x], and p = P1 ◦ w1 and p = P̃1 ◦ w̃1

be two decompositions of p, such that P1, P̃1 ∈ R[x] and w1, w̃1 ∈ Rt[θ] or

w1, w̃1 ∈ R[x]. We will call these decompositions equivalent, and use the

notation P1 ◦ w1 ∼ P̃1 ◦ w̃1, if there exists μ ∈ R[x] of degree one such that

P̃1 = P1 ◦ μ, w̃1 = μ−1 ◦ w1.

With the above notation our main result about solutions of (9) may be for-

mulated as follows.

Theorem 1.1: Assume that P1, P2 ∈ R[x] \ R and w1, w2 ∈ Rt[θ] \ R satisfy

the equality

P1 ◦ w1 = P2 ◦ w2.

Then, up to a possible replacement of P1 by P2 and w1 by w2, one of the

following conditions holds:

1. There exist U, P̃1, P̃2,W1,W2 ∈ R[x] and w̃ ∈ Rt[θ] such that

P1 = U ◦ P̃1, P2 = U ◦ P̃2, w1 =W1 ◦ w̃, w2 =W2 ◦ w̃, P̃1 ◦W1 = P̃2 ◦W2,

and either

a) P̃1 ◦W1 ∼ zn ◦ zrR(zn), P̃2 ◦W2 ∼ zrRn(z) ◦ zn,
where R ∈ R[x], r ≥ 0, n ≥ 1, and GCD(n, r) = 1, or

b) P̃1 ◦W1 ∼ Tn ◦ Tm, P̃2 ◦W2 ∼ Tm ◦ Tn,
where Tn and Tm are Chebyshev polynomials, m,n ≥ 1, and

GCD(n,m) = 1.

2. There exist U, P̃1, P̃2 ∈ R[x], w̃1, w̃2 ∈ Rt[θ], and a polynomial

W (θ) = kθ + b, where k ∈ N, b ∈ R, such that

P1 = U ◦ P̃1, P2 = U ◦ P̃2, w1 = w̃1 ◦W, w2 = w̃2 ◦W, P̃1 ◦ w̃1 = P̃2 ◦ w̃2,

and either

a) P̃1 ◦ w̃1 ∼ z2 ◦ cos θ S(sin θ), P̃2 ◦ w̃2 ∼ (1 − z2)S2(z) ◦ sin θ,
where S ∈ R[x], or
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b) P̃1 ◦ w̃1 ∼ −Tnl ◦ cos
(
(2s+ 1)π

nl
+mθ

)
, P̃2 ◦ w̃2 ∼ Tml ◦ cos (nθ),

where Tnl and Tml are Chebyshev polynomials, m,n ≥ 1, l > 1, 0 ≤ s < nl,

and GCD(n,m) = 1.

Notice that solutions of types 1, a) and 1, b) reduce to polynomial solutions

of (1), while solutions of type 2, a) generalize identity (10). Further, solutions

of type 2, b) can be considered as a generalization of the identity

Tn ◦ cosmθ = Tm ◦ cosnθ,

although this identity itself is an example of a solution of type 1, b) since

cosmθ = Tm ◦ cos θ, cosnθ = Tn ◦ cos θ.

Our approach to functional equation (9) relies on the isomorphism

ϕ : cos θ →
(
z + 1/z

2

)
, sin θ →

(
z − 1/z

2i

)
,

between the ring Rt[θ] and a subring of the ring C[z, 1/z] of complex Laurent

polynomials. Clearly, any decomposition p = P ◦w of p ∈ Rt[θ], where P ∈ R[x]

and w ∈ Rt[θ], or more generally where P ∈ R(x) and w is contained in the

quotient field Rt(θ) of Rt[θ], descends to a decomposition ϕ(p) = P ◦ ϕ(w) of

ϕ(p), making it possible to use results of [9] about decompositions of Laurent

polynomials into compositions of rational functions for the study of decompo-

sitions of trigonometric polynomials.

The paper is organized as follows. In the second section we recall some basic

facts about decompositions of Laurent polynomials and prove their analogues

for decompositions in Rt[θ]. We also show (Corollary 2.1) that for p ∈ Rt[θ] any

equivalence class of decompositions of ϕ(p) ∈ C[z, 1/z] into a composition of

rational functions overC contains a representative which lifts to a decomposition

p = P ◦ w, where P ∈ R(x) and w ∈ Rt(θ). This result shows that the

decomposition theory for Rt[θ] is “isomorphic” to the decomposition theory

for a certain subclass of complex Laurent polynomials, and permits to deduce

results about decompositions in Rt[θ] from the ones in C[z, 1/z]. In the third

section, based on the results of the second section and results of [9] about

decompositions of Laurent polynomials, we prove Theorem 1.1.
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2. Decompositions in Rt[θ] and in C[z, 1/z]

It is well known that Rt[θ] is isomorphic to a subring of the field R(x), where

the isomorphism ψ : Rt[θ] → R(x) is defined by the formulas

(11) ψ(sin θ) =
2x

1 + x2
, ψ(cos θ) =

1− x2

1 + x2
.

Furthermore, the isomorphism ψ extends to an isomorphism between Rt(θ) and

R(x) which maps the generator tan(θ/2) of Rt(θ) to the generator x of C(x),

x = ψ

(
sin θ

1 + cos θ

)
= ψ (tan(θ/2)) .

In particular, this implies by the Lüroth theorem that any subfield k of Rt(θ)

has the form k = R(b) for some b ∈ Rt(θ). In this paper, however, instead of

the isomorphism ψ we will use the isomorphism ϕ between the ring Rt[θ] and

a subring of the ring C[z, 1/z] of complex Laurent polynomials, defined by the

formulas

(12) ϕ(cos θ) =
z + 1/z

2
, ϕ(sin θ) =

z − 1/z

2i
,

which seems to be more useful for the study of compositional properties of Rt[θ].

For brevity, we will denote the ring C[z, 1/z] by L[z] and the image of Rt[θ]

in L[z] under the isomorphism ϕ by LR[z]. It is easy to see that LR[z] con-

sists of Laurent polynomials L such that L̄(1/z) = L(z), where L̄ denotes the

Laurent polynomial obtained from L by the complex conjugation of all its coef-

ficients. Clearly, the isomorphism ϕ extends to an isomorphism between Rt(θ)

and LR(z), where LR(z) consists of rational functions R satisfying the equality

R̄(1/z) = R(z).

Any decomposition p = P ◦ w, where p ∈ Rt[θ], P ∈ R(x), and w ∈ Rt(θ),

obviously descends to a decomposition ϕ(p) = P ◦ ϕ(w), where ϕ(p) ∈ LR[z]

and ϕ(w) ∈ LR(z). However, it is clear that L = ϕ(p) may have decompositions

L = A◦B, where A,B ∈ C(z), such that the coefficients of A are not real and B

is not contained in LR(z). In this context the following simple lemma is useful.

Lemma 2.1: Let L ∈ LR(z) \R and let L = A ◦B be a decomposition of L into

a composition of rational functions A,B ∈ C(z). Then the inclusion B ∈ LR(z)

implies the inclusion A ∈ R(x).

Proof. Indeed, since L,B ∈ LR(z), we have A ◦ B = Ā ◦ B̄ ◦ 1/z = Ā ◦ B,

implying that Ā = A.
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We will call a Laurent polynomial L proper if L is neither a polynomial in z,

nor a polynomial in 1/z, or in other words if L has exactly two poles. The lemma

below is a starting point of the decomposition theory of Laurent polynomials

(see [9]).

Lemma 2.2: Let L = P ◦W be a decomposition of L ∈ L[z] \C into a compo-

sition of rational functions P,W ∈ C(z). Then there exists μ ∈ C(z) of degree

one such that either P ◦μ is a polynomial and μ−1 ◦W is a Laurent polynomial,

or P ◦ μ is a Laurent polynomial and μ−1 ◦W = zd, d ≥ 1.

Proof. Indeed, it follows easily from

L−1{∞} =W−1{P−1{∞}} ⊆ {0,∞}

that either P−1{∞} consists of a single point a ∈ CP1 and W−1{a} ⊆ {0,∞},
or P−1{∞} consists of two points a, b ∈ CP1 and W−1{a, b} = {0,∞}. In the

first case there exists a rational function μ ∈ C(z) of degree one such that P ◦μ
is a polynomial and μ−1 ◦W is a Laurent polynomial (which is proper if and

only if L is proper). In the second case there exists μ ∈ C(z) of degree one such

that P ◦ μ is a proper Laurent polynomial and μ−1 ◦W = zd, d ≥ 1.

The following statement is a “trigonometric” analogue of Lemma 2.2 and is

equivalent to Proposition 21 of [7] and to Theorem 5 of [5]. Notice however

that the proofs given in [7], [5] are much more complicated than the proof given

below. The idea to relate decompositions in Rt[θ] with decompositions in L[z]
was proposed in the paper [13], and the proof given below essentially coincides

with the proof of Lemma 2.2 in [13].

Lemma 2.3: Let p = P ◦w be a decomposition of p ∈ Rt[θ]\R into a composition

of P ∈ R(x) and w ∈ Rt(θ). Then there exists a rational function μ ∈ R(x) of

degree one such that either P ◦ μ ∈ R[x] and μ−1 ◦ w ∈ Rt[θ], or P ◦ μ ∈ R(x)

and μ−1 ◦ w = tan(dθ/2), d ≥ 1.

Proof. Setting

L = ϕ(p), W = ϕ(w)

and considering the equality L = P ◦W , we conclude as above that either

(13) P−1{∞} = {a} and W−1{a} = {0,∞}
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for some a ∈ CP1, or

(14) P−1{∞} = {a, b} and W−1{a, b} = {0,∞}
for some a, b ∈ CP1.

Assume that (13) holds. Since P ∈ R(x), it follows from P−1{∞} = {a} that

either a ∈ R, or a = ∞ and P ∈ R[x], W ∈ LR[z]. In the second case, since

ϕ is an isomorphism between Rt[θ] and LR[z], we conclude that w ∈ Rt[θ]. On

the other hand, if a ∈ R, then setting μ = a+1/z we see that P ◦ μ ∈ R[x] and

μ−1 ◦W ∈ L[z]. Furthermore, since W ∈ LR(z) and μ has real coefficients, the

function μ−1 ◦W is contained in LR[z] implying that μ−1 ◦ w ∈ Rt[θ].

If (14) holds, then we can modify μ ∈ C(z) from Lemma 2.2 so that

(15) μ−1 ◦W =
1

i

zd − 1

zd + 1
=

1

i

(
zd/2 − z−d/2

zd/2 + z−d/2

)
= ϕ(tan(dθ/2)), d ≥ 1.

Furthermore, since the functions ϕ(tan(dθ/2)) and W are contained in LR(z),

it follows from Lemma 2.1 that μ−1 ∈ R(x). Therefore, P ◦ μ ∈ R(x). Finally,

clearly, μ−1 ◦w = tan(dθ/2).

Notice that if p = P ◦ w is a decomposition of p ∈ Rt[θ] such that P ∈ R(x)

and w = tan(dθ/2), d ≥ 1, then P has the form

P =
A

(x2 + 1)k
, k ≥ 1,

where A ∈ R[x], and degA ≤ 2k, since (15) implies that the function μ−1 ◦ W

sends 0 and ∞ to i and −i. Alternatively, we can observe that tan(dθ/2) con-

sidered as a function of complex variables takes all the values in CP1 distinct

from ±i. Therefore, the function P may have poles only at points ±i, since
otherwise the composition p = P ◦ w would not be an entire function.

Two different types of decompositions of Laurent polynomials appearing in

Lemma 2.2 correspond to two different types of imprimitivity systems in their

monodromy groups (for more details concerning decompositions of rational

functions with two poles we refer the reader to [8]). Namely, if L is a Laurent

polynomial of degree n we may assume that its monodromy group G contains

the permutation

h = (1 2 . . . n1)(n1 + 1n1 + 2 . . . n1 + n2),

where 1 ≤ n1 ≤ n, 0 ≤ n2 < n, n1 + n2 = n. Furthermore, the equalities

n1 = n, n2 = 0 hold if and only if L is not proper.
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Let E be an imprimitivity system of G. Denote by W 1
i,d (resp. by W 2

i,d) a

union of numbers from the segment [1, n1] (resp. [n1 + 1, n1 + n2]) equal to i

by modulo d. Since h permutes blocks of E, it is easy to see that either there

exists a number d|n such that any block of E is equal to W 1
i1,d

∪W 2
i2,d

for some

i1, i2, 1 ≤ i1, i2 ≤ d, or there exist numbers d1|n, d2|n such that any block of

E is equal either to W 1
i1,d1

for some i1, 1 ≤ i1 ≤ d1, or to W 2
i2,d2

for some i2,

1 ≤ i2 ≤ d2. Furthermore, since blocks have the same cardinality, in the second

case

(16) n1/d1 = n2/d2.

The imprimitivity systems of the first type correspond to decompositions L =

A ◦B, where A is a polynomial and B is a Laurent polynomial, while imprim-

itivity systems of the second type correspond to decompositions L = A ◦ B,
where A is a proper Laurent polynomial and B = zd.

The following result coincides with Lemma 6.3 of [9]. For the reader’s conve-

nience we provide below a self-contained proof.

Lemma 2.4: Let A,B ∈ C[z] \ C and L1, L2 ∈ L[z] \ C satisfy

(17) A ◦ L1 = B ◦ L2.

Assume additionally that degA = degB. Then either there exists a polynomial

w ∈ C[z] of degree one such that

(18) B = A ◦ w−1, L2 = w ◦ L1,

or there exist polynomials w1, w2 ∈ C[z] of degree one such that

(19) w1 ◦ L1 =

(
zr +

1

zr

)
◦ (az), w2 ◦ L2 =

(
zr +

1

zr

)
◦ (aνz)

for some r ∈ N, a ∈ C, and a root of unity ν.

Proof. Let G be the monodromy group of a Laurent polynomial L defined by

any of the parts of equality (17). Then G has two imprimitivity systems of

the first type E1 and E2, corresponding to the decompositions in (17). Further-

more, since degA = degB, the blocks of E1 and E2 have the same cardinality

l = degL/degA.

If these systems coincide, then equalities (18) hold for some rational function

w ∈ C(z) of degree one which obviously is a polynomial. On the other hand, if

they are different, then it is easy to see that the imprimitivity system E1 ∩ E2
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belongs to the second type, and has blocks consisting of r elements, where

2r = l. In particular, L and L1, L2 are proper, and the equalities

(20) L1 = L̃1 ◦W, L2 = L̃2 ◦W

hold for some rational functions L̃1, L̃2,W , where deg L̃1 = deg L̃2 = 2. Apply-

ing now Lemma 2.2 to equalities (20) we conclude that

L1 =
(
α0 + α1z +

α2

z

)
◦ zr, L2 =

(
β0 + β1z +

β2
z

)
◦ zr,

for some α0, β0 ∈ C, and α1, α2, β1, β2 ∈ C \ {0}. Furthermore, equality (17)

implies that

L1 =
(
α0 + α1z +

α2

z

)
◦ zr, L2 =

(
β0 + α1ν1z +

α2ν2
z

)
◦ zr,

for some roots of unity ν1, ν2. The lemma follows now from the equalities

α0 + α1z
r +

α2

zr
=
(
α0 +

α1z

ar

)
◦
(
zr +

1

zr

)
◦ (az),

β0 + α1ν1z
r +

α2ν2
zr

=
(
β0 +

α1ν1z

arνr

)
◦
(
zr +

1

zr

)
◦ (aνz),

where a and ν are complex numbers satisfying a2r = α1/α2 and

ν2r = ν1/ν2.

Lemma 2.5: Let L = A ◦ L1 be a decomposition of L ∈ LR[z] \ R into a

composition of A ∈ C[z] and L1 =
∑n

−n ciz
i ∈ L[z]. Assume additionally that

c−n = 1/cn. Then the leading coefficient of A is real and |cn| = |c−n| = 1.

Proof. Let α be the leading coefficient of A and d = degA. Since L ∈ LR[z], we

have ᾱc̄dn = αcd−n implying that

(21) ᾱc̄dn = α/cdn.

Multiplying this equality by its conjugate we obtain the equality (c̄ncn)
2d = 1.

Since c̄ncn = |cn|2 is a real positive number, we conclude that cnc̄n = 1 or

equivalently that |cn| = 1. Now (21) implies that ᾱ = α.

Theorem 2.1: Let L = A ◦ L1 be a decomposition of L ∈ LR[z] \ R into a

composition of A ∈ C[z] and L1 ∈ L[z]. Then there exists a polynomial v ∈ C[z]

of degree one such that A ◦ v−1 ∈ R[x] and v ◦ L1 ∈ LR[z].
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Proof. Since L belongs to ∈ LR[z], the equality

A ◦ L1 = Ā ◦ L̄1 ◦ 1/z
holds. Applying Lemma 2.4 to this equality we conclude that there exists a

polynomial w ∈ C[z] of degree one such that either

(22) w ◦ L1 = czr +
1

czr

for some c ∈ C, or

(23) w ◦ L1 = L̄1 ◦ 1/z.
In the first case, it follows from the equalities

(24) L = (A ◦ w−1) ◦ (w ◦ L1)

and (22) by Lemma 2.5 that |c| = 1 implying that w ◦L1 ∈ LR[z]. Now equality

(24) implies by Lemma 2.1 that A ◦ w−1 ∈ R[z]. Thus, we can set v = w.

Consider the second case. Let w = az + b, a, b ∈ C, and L1 =
∑n

−n ciz
i,

ci ∈ C. Then (23) implies the equalities

c̄−i = aci, 0 < |i| ≤ n,

and therefore the equalities

c−i = aci = āac−i.

Taking c−i �= 0, we conclude that aā = 1 or equivalently that |a| = 1. Setting

now v = λz + μ, where λ satisfies λ2 = a and μ = λc0, one can see easily that

v ◦L1 ∈ LR[z]. Indeed, the free term of v ◦L1 is λc0 +λc0 and therefore is real.

For other terms, taking into account that λλ̄ = 1, we have

λc−i = λ̄aci = λ̄λ2ci = λci, 0 < |i| ≤ n.

Finally, Lemma 2.1 implies as above that A ◦ v−1 ∈ R[z].

Corollary 2.1: Let L = P ◦W be a decomposition of L ∈ LR[z] \ R into a

composition of P,W ∈ C(z). Then there exists a rational function v ∈ C(z) of

degree one such that P ◦ v−1 ∈ R(x) and v ◦W ∈ LR(z).

Proof. Arguing as in the proofs of Lemma 2.2 and Lemma 2.3 we see that there

exists a rational function μ ∈ C(z) of degree one such that either equality (15)

holds or P ◦ μ is a polynomial and μ−1 ◦W is a Laurent polynomial. In the

first case, since μ−1 ◦W is contained in LR(z), it follows from Lemma 2.1 that
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P ◦ μ ∈ R(x), so we can set v = μ. In the second case the statement follows

from Theorem 2.1.

3. Double decompositions in Rt[θ] and in C[z, 1/z]

For a rational function P ∈ C(z), two decompositions P = A◦B and P = Ã◦B̃,

where A,B, Ã, B̃ ∈ C(z), are called equivalent if there exists a function μ ∈ C(z)

of degree one such that

(25) Ã = A ◦ μ, B̃ = μ−1 ◦B.
Notice that if both Ã and A (or B̃ and B) are polynomials, then μ also is a

polynomial. In particular, this is the case for most of the equivalences considered

below. If the considered rational functions are defined over an arbitrary field,

the definition above is modified in an obvious way (below we are only interested

in the cases where the ground field is C or R). Abusing notation, we will use

for equivalent decompositions of rational functions the same symbol ∼ as for

equivalent decompositions of trigonometric polynomials or polynomials.

We start by recalling some basic facts about polynomial solutions of the

equation

(26) A ◦ C = B ◦D.
The proposition below reduces a description of solutions of (26) to the case

where degrees of A and B as well as of C and D are coprime ([6]).

Proposition 3.1: Suppose A,B,C,D ∈ C[z]\C satisfy (26). Then there exist

U, V, Ã, C̃, B̃, D̃ ∈ C[z], where

degU = GCD(degA, degB), deg V = GCD(degC, degD),

such that

A = U ◦ Ã, B = U ◦ B̃, C = C̃ ◦ V, D = D̃ ◦ V,
and

Ã ◦ C̃ = B̃ ◦ D̃.
In fact, under an appropriate restriction, Proposition 3.1 remains true if we

assume that coefficients of polynomials A,B,C,D as well as of U, V, Ã, C̃, B̃, D̃

belong to an arbitrary field (see [17], Chapter 1, Theorem 5). In particular,

Proposition 3.1 remains true if the ground field is R.
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The following result obtained by Ritt [16] describes solutions of (26) in the

case where the equalities

(27) GCD(degA, degB) = 1, GCD(degC, degD) = 1

hold, and is known as “the second Ritt theorem”.

Theorem 3.1: Suppose A,B,C,D ∈ C[z]\C satisfy (26) and (27). Then there

exist U, Ã, B̃, C̃, D̃,W ∈ C[z], where degU = degW = 1, such that

A = U ◦ Ã, B = U ◦ B̃, C = C̃ ◦W, D = D̃ ◦W, Ã ◦ C̃ = B̃ ◦ D̃
and, up to a possible replacement of A by B and C by D, one of the following

conditions holds:

1) Ã ◦ C̃ ∼ zn ◦ zrR(zn), B̃ ◦ D̃ ∼ zrRn(z) ◦ zn,
where R ∈ C[z], r ≥ 0, n ≥ 1, and GCD(n, r) = 1;

2) Ã ◦ C̃ ∼ Tn ◦ Tm, B̃ ◦ D̃ ∼ Tm ◦ Tn,
where Tn, Tm are Chebyshev polynomials, m,n ≥ 1, and GCD(n,m) = 1.

Again, this theorem remains true if we assume that coefficients of all polyno-

mials involved are real and, under an appropriate modification, even belong to

an arbitrary field (see [18] and [17], Chapter 1, Theorem 8).

Recall now the main result of the decomposition theory of Laurent polyno-

mials (see [9]) concerning solutions of the equation

(28) P1 ◦W1 = P2 ◦W2,

where P1, P2 ∈ C[z] andW1, W2 ∈ C[z, 1/z], using the notation of [10] (Theorem

3.1). Notice that the main result of [10] (Theorem A) also may be used for a

proof of Theorem 1.1. However, the approach based on the results of Section

2 is more general and may be used for a solution of other problems related to

decompositions of trigonometric polynomials.

Set

Un =
1

2

(
zn +

1

zn

)
, Vn =

1

2i

(
zn − 1

zn

)
.

It is easy to see that the equalities

cosnθ = Tn(cos θ), sinnθ =
1

n
T ′
n(cos θ) sin θ
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and

Tn ◦ 1

2

(
x+

1

x

)
=

1

2

(
xn +

1

xn

)
imply that

Un = ϕ(cosnθ), Vn = ϕ(sinnθ).

Furthermore, if c = cos a+ i sina, where a ∈ R, then the equalities

cos (θ + a) = cos θcos a− sin θ sin a, sin(θ + a) = sin θcos a+ cos θ sin a

imply that

(29) Un ◦ (cz) = ϕ(cos (n(θ + a))), Vn ◦ (cz) = ϕ(sin(n(θ + a))).

Theorem 3.2: Let P1, P2 ∈ C[z] \ C and W1, W2 ∈ C[z, 1/z] \ C satisfy (28).

Then there exist F, P̃1, P̃2 ∈ C[z] and W, W̃1, W̃2 ∈ C[z, 1/z] such that

P1 = F ◦P̃1, P2 = F ◦P̃2, W1 = W̃1◦W, W2 = W̃2◦W, P̃1◦W̃1 = P̃2◦W̃2

and, up to a possible replacement of P1 by P2 andW1 byW2, one of the following

conditions holds:

1) P̃1 ◦ W̃1 ∼ zn ◦ zrR(zn), P̃2 ◦ W̃2 ∼ zrRn(z) ◦ zn,
where R ∈ C[z], r ≥ 0, n ≥ 1, and GCD(n, r) = 1;

2) P̃1 ◦ W̃1 ∼ Tn ◦ Tm, P̃2 ◦ W̃2 ∼ Tm ◦ Tn,
where Tn, Tm are Chebyshev polynomials, m,n ≥ 1, and GCD(n,m) = 1;

3) P̃1 ◦ W̃1 ∼ z2 ◦ U1S(V1), P̃2 ◦ W̃2 ∼ (1 − z2)S2 ◦ V1,
where S ∈ C[z];

4) P̃1 ◦ W̃1 ∼ −Tnl ◦ Um(εz), P̃2 ◦ W̃2 ∼ Tml ◦ Un,

where Tnl, Tml are Chebyshev polynomials, m,n ≥ 1, l > 1, εnlm = −1, and

GCD(n,m) = 1;

5) P̃1 ◦ W̃1 ∼ (z2 − 1)3 ◦
(

i√
3
V2 +

2
√
2√
3
U1

)
,

P̃2 ◦ W̃2 ∼ (3z4 − 4z3) ◦
(

i

3
√
2
V3 + U2 +

i√
2
V1 +

2

3

)
.
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Notice that if W1,W2 are polynomials, then W also is a polynomial and either

1) or 2) holds, in correspondence with Proposition 3.1 and Theorem 3.1.

Proof of Theorem 1.1. Let P1, P2 ∈ R[x] and w1, w2 ∈ Rt[θ] satisfy equation

(9). Assume first that there exist w ∈ Rt[θ] and Ŵ1, Ŵ2 ∈ R[x] such that the

equalities

(30) w1 = Ŵ1 ◦ w, w2 = Ŵ2 ◦ w
hold. Then equality (9) implies the equality

P1 ◦ Ŵ1 = P1 ◦ Ŵ1,

and it is easy to see using the real versions of Proposition 3.1 and Theorem 3.1

that either the case 1, a) or case 1, b) of Theorem 1.1 holds.

Assume now that such w and Ŵ1, Ŵ2 do not exist. Set

p = P1 ◦ w1 = P2 ◦ w2, L = ϕ(p), W1 = ϕ(w1), W2 = ϕ(w2),

and apply Theorem 3.2 to equality (28). Observe that our assumption implies

that neither the first nor the second case provided by Theorem 3.2 holds. Indeed,

since L is a proper Laurent polynomial, if one of these cases holds, then the

function W also is a proper Laurent polynomial. Therefore, applying Theorem

2.1 to the equality W1 = W̃1 ◦W , we conclude that there exists a polynomial

v ∈ C[z] of degree one such that W̃1◦v−1 ∈ R[x] and v◦W ∈ LR[z]. Furthermore,

applying Lemma 2.1 to the equality

W2 = (W̃2 ◦ v−1) ◦ (v ◦W ),

we conclude that W̃2 ◦ v−1 ∈ R[x] implying that (30) holds for

Ŵ1 = W̃1 ◦ v−1, Ŵ2 = W̃2 ◦ v−1, w = ϕ−1(v ◦W ).

Consider now, one by one, all the other cases possible by Theorem 3.2. If 3)

holds, then there exist μ1, μ2 ∈ C[z] of degree one and S ∈ C[z] such that

(31) P1 = F ◦ z2 ◦ μ1, W1 = μ−1
1 ◦ U1S(V1) ◦W,

and

(32) P2 = F ◦ (1 − z2)S2 ◦ μ2, W2 = μ−1
2 ◦ V1 ◦W,

for some F ∈ C[z] and W ∈ L[z]. Furthermore, it follows from Lemma 2.2 that

W necessarily has the form W = czk, c ∈ C \ {0}.
Let α be the leading coefficient of the polynomial F , and d = degF. Setting

μ1 = α1z + β1, where α1, β1 ∈ C, we see that the coefficients of z2d and z2d−1
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of the polynomial P1 are c2d = αα2d
1 and c2d−1 = αα2d−1

1 β12d. Therefore, since

P1 ∈ R[x], the number
β1
α1

=
c2d−1

2dc2d−1

is real and hence μ1 = α1μ̃, where μ̃ = z + (β1/α1) ∈ R[z]. Thus, changing μ1

to μ̃, F to F ◦ (α2
1z), and S to S/α1, without loss of generality we may assume

that μ1 ∈ R[x]. Since P̄1 = P1, this implies that F ∈ R[x].

Further, if μ−1
2 = α2z + β2, where α2, β2 ∈ C, then, since W2 is contained

in LR[z], the second equality in (32) implies that β2 ∈ R and, by Lemma 2.5,

that α2 ∈ R and c̄ = 1/c. Therefore, μ2 ∈ R[x]. Furthermore, since c̄ = 1/c

and μ1 ∈ R[x], it follows from W1 ∈ LR[z] that S ∈ R[x]. Finally, since |c| = 1,

there exists a ∈ R such that c = cos a+ i sina, implying by (29) that

w1 = μ1 ◦ cos (kθ + b)S(sin(kθ + b)), w2 = μ2 ◦ sin(kθ + b),

where b = ka. Thus, equalities (31) and (32) lead to the case 2, a).

Consider now case 4). In this case there exist μ1, μ2 ∈ C[z] of degree one and

F ∈ C[z] such that

(33) P1 = F ◦ −Tnl ◦ μ1, W1 = μ−1
1 ◦ Um(εz) ◦W,

and

(34) P2 = F ◦ Tml ◦ μ2, W2 = μ−1
2 ◦ Un ◦W,

where εnlm = −1 and W = czk, c ∈ C \ {0}. As above, the second equality in

(34) implies that c̄ = 1/c and μ2 ∈ R[x]. Then, using μ2 ∈ R[x] we see that the

first equality in (34) implies that F ∈ R[x], and using c̄ = 1/c we see that the

second equality in (33) implies that μ1 ∈ R[x]. Therefore, taking into account

formulas (29), we conclude that equalities (33) and (34) lead to the case 2, b).

Let us show finally that the case 5) cannot hold. Assume the inverse. Then

W1 = μ ◦
(

i√
3
V2 +

2
√
2√
3
U1

)
◦ (czk)

= μ ◦
(

1

2
√
3

(
z2 − 1

z2

)
+

√
2√
3

(
z +

1

z

))
◦ (czk),

where μ = αz + β, α, β, c ∈ C, and α �= 0, c �= 0. Since W1 ∈ LR[z], this implies

that

ᾱc̄2 = −α/c2, ᾱc̄ = α/c,
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and dividing the first equality by the second one we obtain the equality c̄c = −1,

which is impossible.

References
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