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In this paper, we study pairs of polynomials with a given factorization pattern and such
that the degree of their difference attains its minimum. We call such pairs of polynomi-
als Davenport–Zannier pairs (DZ-pairs). The paper is devoted to the study of DZ-pairs
with rational coefficients. In our earlier paper [F. Pakovich and A. K. Zvonkin, Min-
imum degree of the difference of two polynomials over Q, and weighted plane trees,
Selecta Math., (N.S.) 20(4) (2014) 1003–1065], in the framework of the theory of dessins
d’enfants, we established a correspondence between DZ-pairs and weighted bicolored
plane trees. These are bicolored plane trees whose edges are endowed with positive inte-
gral weights. When such a tree is uniquely determined by the set of black and white
degrees of its vertices, it is called unitree, and the corresponding DZ-pair is defined
over Q. In our cited paper above, we classified all unitrees. In this paper, we compute
all the corresponding polynomials. We also present some additional material concerning
the Galois theory of DZ-pairs and weighted trees.
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1. Introduction

Let α, β � n be two partitions of an integer n,

α = (α1, . . . , αp), β = (β1, . . . , βq),
p∑

i=1

αi =
q∑

j=1

βj = n,

and let P and Q be two coprime polynomials of degree n having the following
factorization patterns:

P (x) =
p∏

i=1

(x − ai)αi , Q(x) =
q∏

j=1

(x − bj)βj . (1.1)

In these expressions, we consider the multiplicities αi and βj , i = 1, 2, . . . , p, j =
1, 2, . . . , q as being given, while the roots ai and bj are not fixed, though they must
all be distinct. In this paper we study polynomials satisfying (1.1) and such that
the degree of their difference R = P − Q attains its minimum. Numerous papers,
mainly in number theory, were devoted to the study of such polynomials.

Assumption 1.1 (Conditions on α and β). Throughout the paper, we always
assume that

• the greatest common divisor of the numbers α1, . . . , αp, β1, . . . , βq is 1;
• p + q ≤ n + 1.

The case of partitions α, β not satisfying the above conditions can easily be
reduced to this case (see [19]).

In 1995, Zannier [24] proved that under the above conditions the following state-
ments hold:

(1) deg R ≥ (n + 1) − (p + q).
(2) This bound is always attained, whatever are α and β.

Definition 1.2 (DZ-pair and its passport). A pair of polynomials (P, Q) such
that P and Q are of the form (1.1) and deg (P − Q) = (n + 1) − (p + q) is called
Davenport–Zannier pair (DZ-pair). The pair of partitions (α, β) is called the pass-
port of the DZ-pair.

Obviously, if (P, Q) is a DZ-pair with a passport (α, β), and if we take P̃ =
c · P (ax + b), Q̃ = c · Q(ax + b) where ac �= 0, then (P̃ , Q̃) is also a DZ-pair with
the same passport. We call such DZ-pairs equivalent.

Definition 1.3 (Defined over Q). We say that a DZ-pair (P, Q) is defined over
Q if P, Q ∈ Q[x]. We say that an equivalence class of DZ-pairs is defined over Q if
there exists a representative of this class which is defined over Q.
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By abuse of language, in what follows, we will use the shorter term “DZ-pair”
to denote also an equivalence class of DZ-pairs.

In our previous paper [19], using the theory of dessins d’enfants (see, for exam-
ple, [13, 15, 16]), we established a correspondence between DZ-pairs and weighted
bicolored plane trees. These are bicolored plane trees whose edges are endowed with
positive integral weights. The degree of a vertex is defined as the sum of the weights
of the edges incident to this vertex. Obviously, the sum of the degrees of black ver-
tices and the sum of the degrees of white vertices are both equal to the total weight
of the tree. Let α = (α1, α2, . . . , αp) and β = (β1, β2, . . . , βq) be two partitions of the
total weight n which represent the degrees of black and white vertices, respectively.
The pair (α, β) is called the passport of the tree in question.

Proposition 1.4 (DZ-pairs and weighted trees). There is a bijection between
DZ-pairs with a passport (α, β) on one hand, and weighted bicolored plane trees with
the same passport on the other hand.

Definition 1.5 (Unitree). A weighted bicolored plane tree such that there is no
other tree with the same passport is called unitree.

All DZ-pairs corresponding to unitrees are defined over Q, and basing on our
experience, we claim that this class represents a vast majority of DZ-pairs defined
over Q. The other examples may roughly be subdivided into two categories. The
members of the first one are constructed as compositions of DZ-pairs corresponding
to unitrees. The second category is, in a way, a collection of exceptions. Still, the
latter category is not less interesting since it involves some subtle combinatorial
and group-theoretic invariants of the Galois action on DZ-pairs and on weighted
trees.

The main result of [19] is the classification of all unitrees. The main result of the
present paper is a complete list of the corresponding polynomials. The final part of
[19] is devoted to the study of Galois invariants of weighed trees. In the final part
of the present paper we compute the corresponding polynomials.

The class of unitrees comprises 10 infinite series, denoted from A to J , and 10
sporadic trees, denoted from K to T . The pictures of these trees are given below
in the text. DZ-pairs corresponding to the series from A to J are presented in
Secs. 3–8; those corresponding to the sporadic trees from K to T , in Sec. 9. The
Galois action is treated in Secs. 10–12.

For individual DZ-pairs, a computation may turn out to be difficult, sometimes
even extremely difficult, but the verification of the result is completely trivial. As to
the infinite series, the difficulties grow as a snowball. The “computational” part now
consists in finding an analytic expression of the polynomials in question, depending
on one or several parameters, while the “verification” part consists in a proof, which
may be rather elaborate. See a more detailed discussion below.
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2. Preliminaries

2.1. A brief history of the question

In 1965, Birch, Chowla, Hall and Schinzel [5] asked a question which soon became
famous:

Let A and B be two coprime polynomials with complex coefficients; what
is the possible minimum degree of the difference R = A3 − B2?

In order for the question to be meaningful we should take A3 and B2 of the same
degree and with the same leading coefficient. Denote deg A = 2k, deg B = 3k, so
that deg A3 = deg B2 = 6k. Let us start with an example.

Example 2.1. In this example, k = 4, so that both polynomials P and Q are of
degree 6k = 24. As to their difference R = P −Q, all its coefficients of degrees from
24 down to 6 vanish, so that R becomes a polynomial of degree 5.

P = (x8 + 84x6 + 176x5 + 2366x4 + 13 536x3 + 26 884x2

+ 218 864x + 268 777)3, (2.1)

Q = (x12 + 126x10 + 264x9 + 6195x8 + 31 392x7 + 163 956x6

+ 1 260 528x5 + 3 531 639x4 + 19 770 400x3

+ 62 912 622x2 + 94 024 776x + 291 742 453)2, (2.2)

R = −238 · 33 (x5 + 62x3 + 148x2 + 1001x + 8852). (2.3)

The following two conjectures were proposed in [5]:

(1) For deg A = 2k, deg B = 3k, one always has deg(A3 − B2) ≥ k + 1.
(2) This bound is sharp: that is, it is attained for infinitely many values of k.

The first conjecture was proved the same year by Davenport [9]. The second
one turned out to be much more difficult and remained open for 16 years: in 1981
Stothers [22] showed that the bound is in fact attained not only for infinitely many
values of k but for all of them.

A far-reaching generalization of the above result was proved in 1995 by Zan-
nier [24]. Let α = (α1, . . . , αp) and β = (β1, . . . , βq) be two partitions of an integer n

satisfying the conditions of Assumption 1.1, and let P and Q be two polynomials
of degree n having the factorization pattern (1.1). Then

(1) deg(P − Q) ≥ (n + 1) − (p + q).
(2) This bound is always attained, whatever are α and β.

For the case of cubes and squares considered above we have n = 6k,

α = (3, 3, . . . , 3︸ ︷︷ ︸
2k

) = 32k, β = (2, 2, . . . , 2︸ ︷︷ ︸
3k

) = 23k,
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so that p = 2k and q = 3k, whence

(n + 1) − (p + q) = (6k + 1) − (2k + 3k) = k + 1.

A result equivalent to that of Zannier was, in fact, proved, in a very implicit
way, by Boccara in 1982 [6] (see also [11, p. 775]). The result of [6] was purely
combinatorial, and relations between combinatorics and polynomials were at the
time largely overlooked.

Recall that a pair of polynomials (P, Q) satisfying (1.1) and such that the degree
of P − Q is equal to the minimum value (n + 1) − (p + q) are called DZ-pairs
(Definition 1.2). The theory of dessins d’enfants implies that DZ-pairs are always
defined over the field Q of algebraic numbers. However, the most interesting case
is, without doubt, the one of pairs defined over Q. In 2010, Beukers and Stewart [4]
undertook a study of DZ-pairs of the special type P = As, Q = Bt, defined over Q.
In our paper, we study DZ-pairs of a general form (1.1) defined over Q.

2.2. Dessins d ’enfants

As we have already said, the framework of our paper is the theory of dessins
d’enfants (see, for example, [13, 15, 16]). The main notion of this theory is that
of Belyi function. For a rational function f : C → C : x �→ y, where C = C∪{∞} is
the Riemann complex sphere, let us call y ∈ C a critical value of f if the equation
f(x) = y has multiple roots. The definition of a Belyi function restricted to the
planar case is as follows:

Definition 2.2 (Belyi function). A rational function f : C → C is a Belyi
function if f has at most three critical values, namely, 0, 1 and ∞.

Theorem 2.3 (Belyi functions and maps). If f : C → C : x �→ y is a Belyi
function then:

(1) The preimage M = f−1([0, 1]) is a plane map, that is, a connected graph, which
is embedded into the sphere in such a way that its edges do not intersect.

(2) The map M has a natural bipartite structure: its vertices may be colored in black
and white in such a way that each edge would connect vertices of opposite colors.
Namely, black vertices of M are the points x ∈ f−1(0), and white vertices of
M are the points x ∈ f−1(1), the vertex degrees being equal to the multiplicities
of the corresponding preimages.

(3) Inside each face, there is a unique pole of f whose multiplicity is equal to the
degree of the face. Here the degree of a face is defined as a half of the number
of surrounding edges. We call this pole the center of the face in question.

In the opposite direction, if M is a bicolored plane map then:

(4) There exists a Belyi function f such that M can be realized as a preimage
M = f−1([0, 1]).
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(5) This function f is unique, up to an affine change of the variable x.
(6) There is a uniquely defined number field K corresponding to M which is called

the field of moduli of M. The function f can be realized over a number field
L ⊇ K.

Statements (4) and (5) represent a particular case of Riemann’s existence the-
orem. Statement (6) follows from the rigidity of the ramified covering f : C → C

and from some general facts of the Galois theory.
The above theorem, being applied to the DZ-pairs, gives the following statement

(see more details in [19]).

Proposition 2.4 (DZ-pairs and Belyi functions). A pair of complex polyno-
mials (P, Q) is a DZ-pair with a passport (α, β) if and only if the rational function
f = P/R, where R = P − Q, is a Belyi function for a bicolored plane map M with
the following characteristics :

(1) The map M has n = deg P = deg Q edges, p black vertices with the degree
distribution α, and q white vertices with the degree distribution β. The Euler
formula then implies that the number of faces is (n + 2) − (p + q).

(2) All faces of M except the outer one are of degree 1.
(3) The number of the faces of M of degree 1 is equal to r = deg R. In other words,

the degree distribution of the faces is equal to (n−r, 1r) where r = (n+1)−(p+q).

Furthermore, if K ⊂ Q is the moduli field of M, then it is possible to find a corre-
sponding DZ-pair such that P, Q ∈ K[x]. In other words, in this case the realization
field L (see the last statement of Theorem 2.3) coincides with the field of moduli K.
In particular, an equivalence class of the pair (P, Q) is defined over Q if and only
if the field of moduli of the map M is K = Q.

The characteristic which distinguishes the maps corresponding to DZ-pairs from
other maps is property (2) of the above theorem.

2.3. Weighted trees

We will call the faces other than the outer one inner faces. The maps whose all
inner faces are of degree 1 can be easily represented in the form of weighted trees:
just merge every sheaf of parallel edges into one edge and indicate the number of
edges merged together as the weight of the corresponding edge of the weighted tree:
see Fig. 1. Weighted trees are easier to work with than maps.

Definition 2.5 (Weighted tree). A weighted bicolored plane tree, or a weighted
tree, or just a tree for short, is a bicolored plane tree whose edges are endowed with
positive integral weights. The sum of the weights of the edges of a tree is called the
total weight or the degree of the tree.

The degree of a vertex is the sum of the weights of the edges incident to this
vertex. Obviously, the sum of the degrees of black vertices, as well as the sum of the
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5

3

2

2

Fig. 1. The passage from a map with all its inner faces being of degree 1, to a weighted tree. The
weights which are not explicitly indicated are equal to 1; the edges of the weight greater than 1
are drawn thick.

degrees of white vertices, is equal to the total weight n of the tree. Let the tree have
p black vertices, of degrees α1, . . . , αp, and q white vertices, of degrees β1, . . . , βq,
respectively. Then the pair of partitions (α, β) of the total weight n of the tree is
called its passport.

Forgetting the weights and considering only the underlying plane tree, we speak
of a topological tree. Weighted trees, all of whose edges are of weight 1, will be
called ordinary trees. Belyi functions for ordinary trees are polynomials (with the
only pole at infinity); they are usually called Shabat polynomials.

We call a leaf a vertex which has only one edge incident to it, whatever is the
weight of this edge. By abuse of language, we will also call this edge itself a leaf.

The adjective plane in the above definition means that the cyclic order of
branches around each vertex of the tree is fixed, and changing this order will in
general produce a different plane tree (though the tree considered as a mere graph,
without “planar” structure, remains the same). All trees considered in this paper
will be endowed with the planar structure; therefore, the adjective “plane” will often
be omitted.

The field of moduli of a unitree is Q, see, e.g. [19]. Therefore, the second part of
Theorem 2.4 implies the following statement.

Proposition 2.6 (Unitree implies Q). If a weighted bicolored plane tree is a
unitree, then the corresponding equivalence class of DZ-pairs is defined over Q.

Example 2.7 (Example 2.1 revisited). Let us consider the tree shown in Fig. 2.
It has eight black vertices of degree 3 and 12 white vertices of degree 2, so that its
total weight (or degree) is 24. Accordingly, n = 24, and α and β are the following
two partitions of 24:

α = (3, 3, 3, 3, 3, 3, 3, 3) = 38, β = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) = 212.

In the corresponding DZ-pair, the polynomial P must have eight roots of mul-
tiplicity 3, the polynomial Q must have 12 roots of multiplicity 2. In other words,
P = A3 with deg A = 8, and Q = B2 with deg B = 12. The difference R = P − Q

must be of degree (24 + 1) − (8 + 12) = 5.
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2

2

2

2

2

T

Fig. 2. One of the sporadic trees of our classification of unitrees we will speak about further. It is
denoted as tree T .

The general results formulated up to now, being applied to this particular tree,
imply the following statements:

• The mere existence of such a tree implies the existence of polynomials with needed
properties.

• The fact that there exist polynomials P and Q with rational coefficients is a
consequence of the fact that there exists a unique tree with the passport (38, 212).

All this can be affirmed without any computations, just by looking at the picture.
As to the polynomials themselves, they are given in Example 2.1.

2.4. Reciprocal polynomials

It turns out that technically it is often much more convenient to work not with the
polynomials appearing in DZ-pairs but with their reciprocals.

Definition 2.8 (Reciprocal polynomial). For a polynomial P of degree n, its
reciprocal is P ∗(x) = xn · P (1/x).

In many examples, the reciprocals of polynomials forming a DZ-pair take the
form of initial segments of power series of some special functions. After hav-
ing observed this phenomenon we learned that it was (re)discovered many times,
notably in [8, 2, 4].

Assume that polynomials P and Q form a DZ-pair, so that

deg(P − Q) = (n + 1) − (p + q) = n − (p + q − 1), (2.4)

and denote by m the number of edges of the corresponding topological tree. This
tree has p + q vertices, therefore it has m = p + q − 1 edges. Considering P and Q

as power series we may write condition (2.4) as

P − Q = O(xn−m) when x → ∞. (2.5)
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For the reciprocal polynomials condition (2.4) is transformed into the following one:

P ∗ − Q∗ = xm · S, (2.6)

where S is a polynomial, or, equivalently, to the condition

P ∗ − Q∗ = O(xm) when x → 0. (2.7)

For instance, in Example 2.1 the polynomials reciprocal to (2.1) and (2.2) and to
their difference look as follows:

P ∗ = (1 + 84x2 + 176x3 + 2366x4 + 13 536x5 + 26 884x6

+ 218 864x7 + 268 777x8)3,

Q∗ = (1 + 126x2 + 264x3 + 6195x4 + 31 392x5 + 163 956x6

+ 1 260 528x7 + 3 531 639x8 + 19 770 400x9

+ 62 912 622x10 + 94 024 776x11 + 291 742 453x12)2,

P ∗ − Q∗ = x19 × −238 · 33 (1 + 62x2 + 148x3 + 1001x4 + 8852x5).

2.5. Remarks about computation

The computation of Belyi functions has recently become a vast domain of research.
A remarkable overview of this activity may be found in [21], a paper of 57 pp., with
a bibliography of 176 titles. Beside a direct approach, involving the solution of a
system of polynomial equations, the authors of [21] also discuss complex analytic
methods, modular forms methods, and p-adic methods.

In order to get an idea of the level of difficulty of such a computation let us return
once again to Example 2.1. A naive approach would be to write down polynomials
A =

∑8
i=0 uix

i and B =
∑12

j=0 vjx
j with indeterminate coefficients ui and vj ,

and then equate to zero the coefficients of degrees from 6 to 24 of the difference
R = A3 − B2. In this way we get a system of 24 − 5 = 19 algebraic equations
for 9 + 13 = 22 unknowns. Then we may set, for example, u8 = 1, u7 = 0, and
v12 = 1. The system thus obtained (19 equations with 19 unknowns) will be of
degree 25 509 168! Obviously, this is not a clever way to proceed.

By the way, the solution we are looking for is unique; all the other solutions of
this enormous system are “parasitic” ones. For example, the system does not give
us any guarantee that the polynomials A and B obtained as its solution will be
coprime. This condition should be added to the system, but this addition will make
our situation even worse.

Notice, however, that, once the result is obtained, its verification is trivial.
Taking into account the above considerations, we would like to underline one

aspect of our work: though we do compute Belyi functions for certain individual
dessins, the most interesting part of the paper is the computation of Belyi functions
for infinite series of dessins which depend on one or several parameters. For infinite
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series the situation is significantly more complicated than for individual dessins.
Usually, the first thing to do is to compute quite a few particular cases, sometimes
dozens of them (or to use other heuristics whenever possible). Then, we need to
guess a general pattern of corresponding Belyi functions. And, finally, instead of a
trivial verification step which was applicable to individual dessins, we should provide
a proof, which may turn out to be rather laborious.

In the present paper, we obviously do not expose the first step of the above
procedure. What we do is presenting the final results, that is, the general form of
Belyi functions in question, and then we give the proofs whenever they are necessary.

∗ ∗ ∗

As it was already said, the unitrees comprise 10 infinite series, from A to J ,
and 10 sporadic trees, from K to T . In the subsequent sections we do not strictly
follow the “alphabetic” order of trees since we prefer to underline the structural
properties of Belyi functions in question. Certain Belyi functions are expressed in
terms of Jacobi polynomials; there are others which lead to interesting differential
relations; we will also encounter compositions, Padé approximants, an application
to the Hall conjecture, etc.

3. Stars and Binomial Series

Our first series, called “series A” in [19], is composed of stars-trees, see Fig. 3. All
edges except maybe one are of the same weight. This is a three-parametric series.

Denote the number of leaves of weight s by k; then the total weight of the tree is
n = ks+ t. Clearly, we may put the only black vertex at x = 0, put the white vertex
of degree t at x = 1, and assume that both P and Q are monic. Then P (x) = xn

and

Q(x) = (x − 1)t · A(x)s, (3.1)

where A is a monic polynomial of degree k whose roots are the white vertices of
degree s. Now, condition (2.5) takes the form

xn − (x − 1)t · As =
x→∞O(xn−(k+1)). (3.2)

The only thing we need to know is the polynomial A.

s
s

s

s

s
s

s
s

t
0 1

Fig. 3. Star-trees. There are k edges of weight s and one edge of weight t, and gcd(s, t) = 1.
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Proposition 3.1. The polynomial A∗ reciprocal to A is the initial segment of the
binomial series for (1 − x)−t/s up to the degree k:

(1 − x)−t/s =
x→0

A∗ + O(xk+1). (3.3)

Proof. Let us pass to reciprocals in (3.2): we need to obtain A∗ such that

1 − (1 − x)t · (A∗)s =
x→0

O(xk+1).

Let us verify that the polynomial A∗ defined in (3.3) satisfies the latter equality.
We have:

A∗ = (1 − x)−t/s + h · xk+1, (3.4)

where

h =
x→0

O(1).

Therefore,

A∗(1 − x)t/s = 1 + h · xk+1(1 − x)t/s,

and

(A∗)s(1 − x)t = [1 + h · xk+1(1 − x)t/s]s =
x→0

1 + O(xk+1)

which concludes the proof.

Some particular cases of formula (3.3) were previously found by Adrianov
(unpublished).

4. Forks and Hall’s Conjecture

The two-parametric series of trees shown in Fig. 4 was called “series D” in [19].

4.1. Calculation of DZ-pairs

This is the only infinite series of unitrees for which we were able to find the cor-
responding DZ-pairs by a direct computation. Let us introduce the following three

s

s

t s s+t

D

Fig. 4. Fork-trees. There are exactly two leaves of weight s and exactly one leaf of weigh s + t. As
usual, gcd(s, t) = 1.
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quadratic polynomials:

A — the roots of A are two black vertices of degree 2s + t;

B — the roots of B are two white vertices of degree s + t;

C — the roots of C are two white vertices of degree s.

Proposition 4.1. We have P = A2s+t and Q = Bs+t · Cs, where

A = x2 − (3s + t)(3s + 2t); (4.1)

B = x2 − 6s · x + (3s − 2t)(3s + t); (4.2)

C = x2 + 6(s + t) · x + (3s + 2t)(3s + 5t). (4.3)

Proof. By (2.7), we must prove that

(A∗)2s+t − (B∗)s+t · (C∗)s = O(x5). (4.4)

Clearly, we may assume that the sum of the roots of A equals zero. Write

A∗ = 1 − ax2, B∗ = 1 − bx + cx2, C∗ = 1 + dx + ex2,

and calculate, with the help of Maple, the first five coefficients of the Taylor series
in the left-hand side of (4.4). Equate now the expressions thus obtained to zero
and solve the corresponding system in the unknowns a, b, c, d, e. Maple returns two
solutions:

a = −e, b = 0, c = e, d = 0, e = e,

and

a =
b2(9 s2 + 9 ts + 2 t2)

36s2
, b = b, c =

b2(9 s2 − 3 ts − 2 t2)
36s2

,

d =
(t + s)b

s
, e =

b2(9 s2 + 10 t2 + 21 ts)
36s2

.

Rejecting the first solution, for which the roots of A, B and C coincide, and making
an additional normalization by setting the b = 6s, we obtain formulas (4.1), (4.2)
and (4.3).

4.2. An application : Danilov ’s theorem

In 1971, Hall, Jr. [14] suggested the following two conjectures.

(1) There exists a constant c such that for all positive integers a, b, a3 �= b2, the
following inequality holds:

|a3 − b2| > c · a1/2.
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(2) The exponent 1/2 in the above inequality cannot be improved. Namely, for
every ε > 0 there exists a constant C(ε) such that there are infinitely many
pairs of integers (a, b) satisfying the inequality

|a3 − b2| ≤ C(ε) · a1/2+ε.

The first conjecture is neither proved nor disproved. However, a general belief is
that in order to be true it should be modified as follows: for each ε > 0 there exists
a constant c(ε) such that for all positive integers a, b, a3 �= b2, the inequality

|a3 − b2| > c(ε) · a1/2−ε

holds. In this form the conjecture is a corollary of the famous abc-conjecture (see,
e. g., [17, 4] for further details).

As to the second conjecture, in 1982 Danilov [7] proved its stronger version.
His result is interesting for us since in his proof he used, in a slightly different
normalization, the above polynomials A, B, C, see (4.1)–(4.3), with the parameters
s = t = 1.

Proposition 4.2 (Danilov’s theorem). There exists a constant C such that there
are infinitely many pairs of integers (a, b) satisfying the inequality

|a3 − b2| ≤ C · a1/2. (4.5)

Proof. Specializing (4.1)–(4.3) for s = t = 1 and computing the difference P − Q

we get

(x2 − 20)3 − (x2 − 6x + 4)2(x2 + 12x + 40) = 1728x− 8640.

Substituting x = 2z and dividing both parts by 8, we get

(2z2 − 10)3 − (2z2 − 6z + 2)2(2z2 − 12z + 20) = 432z − 1080. (4.6)

Let us now consider the factor 2z2 − 12z + 20 = 2(z − 3)2 + 2 and try to make it a
perfect square; then (4.6) will give us a relatively “small” difference between a cube
and a square. To do that we have to solve the diophantine equation

u2 − 2v2 = 2, (4.7)

where v = z − 3.
The last equation is a Pell-like equation, that is an equation of the form

u2 − Dv2 = m,

where D > 0 is a square-free integer and m ∈ Z. For m = 1 this equation is a usual
Pell equation, and it is well known that any Pell equation has infinitely many integer
solutions. Pell-like equations not necessarily have integer solutions. However, if at
least one such solution (u0, v0) exists, then we can obtain infinitely many solutions
(un, vn) using the following recursion:

un + vn

√
D = (un−1 + vn−1

√
D)(k + l

√
D),
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where (k, l) is the minimum solution of the equation k2 − Dl2 = 1. In our case,
(k, l) = (3, 2).

Equation (4.7) does have an integer solution (u0, v0) = (2, 1). Returning to (4.6),
it is easy to verify that for all z ≥ 3 one has

432z − 1080 < 216
√

2 · (2z2 − 10)1/2,

which proves the theorem: there are infinitely many pairs of integers (a, b) satisfying
(4.5), with the constant C = 216

√
2.

The same polynomials A, B with the parameters s = t = 1 were used by
Dujella [10] for constructing an infinite series of pairs of polynomials P, Q with
the following properties: (a) deg P = 2k, deg Q = 3k; (b) P and Q are not coprime;
(c) deg(P 3−Q2) = k+5, so that the minimum degree k+1 is not attained, though
the discrepancy remains bounded; (d) in return, P and Q are defined over Q.

Using other DZ-pairs, Danilov [8] and Beukers and Stewart [4] obtained results
similar to Proposition 4.2 for the differences between integer powers an and bm.

5. Jacobi Polynomials

5.1. Trees of this section

DZ pairs for the series of trees considered in this section are expressed in terms of
Jacobi polynomials. The trees in question are constructed as follows. First, we take
chain-trees with alternating edge weights s, t, s, t, . . ., see Fig. 5. We must distinguish
chains of odd and even length since in one case both ends are of the same color
while in the other case they are of different colors.

Then, we have a right to attach to the end-points an arbitrary number of leaves
of the weight s + t. In this way we obtain “odd” series E1, E3 and “even” series
E2, E4, see Figs. 6 and 7. We call these series “double brushes”. Note that any of
the parameters k, l, and also both of them, may be equal to zero. Thus, B1 and E1

are particular cases of E3, and B2 and E2 are particular cases of E4.
There are two exceptions from the above construction. The first is when the

chain part consists of a single edge, so that there is no alternance of weights. We
thus obtain the series C, see Fig. 8. In contrast to the general case, now the weight
of leaves may be smaller than the weight of the edge between the leaves.

The second exception is when the chain part consists of two edges. In this case
it is possible to attach exactly one leaf of weight s+ t to one of the ends and exactly

t s ts

s t s t s

B

B1

2

Fig. 5. Series B1 and B2: Chain-trees.
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k l

s+t
s t s t s

s+t
s+t s+t

s+t

E3

ls t s t s s+t
s+t

E1

−1

−1 1

s+t

s+t s+t

1

Fig. 6. Series E1 and E3: Odd double brushes.

k l

E4

s+t
s t s t s t s+t

s+t
s+t

s+t

s t s t s t s+t
s+t

l

E2

−1

−1

s+t s+t

s+t
1

1

Fig. 7. Series E2 and E4: Even double brushes.

s
s

s

s

s

s

s

lk
t

C

−1 1

Fig. 8. Series C: Trees of diameter 3.

two leaves of weight s (or t, to ensure the weight alternance) to the other end. In
this way, we get the series of forks D already studied in Sec. 4.

5.2. Jacobi polynomials: Preliminaries

Let us recall some general facts concerning Jacobi polynomials; for more advanced
and detailed treatment see, for example, [23] or [1].

The classical Jacobi polynomials Jn(a, b, x), deg Jn = n, are defined for the
parameters a, b ∈ R, a, b > −1, as orthogonal polynomials with respect to the
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measure on the segment [−1, 1], given by the density (1−x)a(1+x)b. The restriction
a, b > −1 is necessary in order to ensure the integrability. The polynomial Jn(a, b, x)
can also be defined as a unique polynomial solution of the differential equation

(1 − x2)y′′ + [b − a − (a + b + 2)x]y′ + n(n + a + b + 1)y = 0, (5.1)

satisfying the condition Jn(a, b, 1) =
(
n+a

n

)
, or by the explicit formula

Jn(a, b, x) =
n∑

k=0

(
n + a + b + k

k

) (
n + a

n − k

) (
x − 1

2

)k

. (5.2)

Notice that Eq. (5.1) can be written in the form

(1 − x2)Y ′′ + [a − b + (a + b − 2)x]Y ′ + (n + 1)(n + a + b)Y = 0, (5.3)

where Y = (1 − x)a(1 + x)b · y, implying that the function

(1 − x)a(1 + x)b · Jn(a, b, x) (5.4)

satisfies (5.3).
It follows from (5.2) that Jn(a, b, x) are also polynomials in parameters a and b.

Therefore, their definition can be extended to arbitrary (even complex) values of
these parameters. These generalized Jacobi polynomials still satisfy (5.1), although
they are no longer orthogonal with respect to a measure on the segment [−1, 1].
Similarly, since the function (5.4) may be represented as a power series in x whose
coefficients are polynomials in a, b, this function satisfies Eq. (5.3) for arbitrary a

and b.
The following key observation will be used in subsequent proofs. If, in the differ-

ential operator (5.1), we replace n with n+a+ b, replace a with −a, and b with −b,
we get exactly the differential operator (5.3). Therefore, Jn+a+b(−a,−b, x) along
with (5.4) satisfies (5.3). The last statement, however, should be taken with caution:
the subscript n + a + b must be a non-negative integer since it is the degree of a
polynomial.

Notice that if a and b do not satisfy the inequalities a, b > −1, then the degree
in x of the polynomial Jn(a, b, x) defined by (5.2) may drop down below n. Indeed,
(5.2) implies that the leading coefficient of Jn(a, b, x) is equal to

1
2n

(
2n + a + b

n

)
=

1
2n · n!

2n∏
i=n+1

(a + b + i). (5.5)

Hence, in order to obtain a polynomial of degree n we must require that the sum
a + b does not take values −(n+ 1), −(n +2), . . . ,−2n. In particular, this is always
true if a and b are real and n ≥ −(a + b) or, equivalently, n + a + b ≥ 0.

Along with the density (1− x)a(1 + x)b, which is defined on [−1, 1], we will use
the multivalued complex function (z−1)a(z+1)b (note the change of the sign of the
term in the first parentheses). Clearly, this function has three ramification points
−1, 1,∞. Further, observe that if a+b ∈ Z, then any germ of (z−1)a(z+1)b defined
near a non-singular point z0 extends to a function µ(z) which is single-valued in
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any domain U obtained from CP1 by removing a simple curve connecting −1 and 1.
Indeed, in such U the function µ(z) may have a ramification only at infinity. On the
other hand, since the analytic continuation of µ(z) along a loop around infinity is
e2π(a+b)iµ(z), we see that ∞ is not a ramification point since a+b ∈ Z. In particular,
µ(z) can be expanded into a Laurent series at infinity,

µ(z) = ca+bz
a+b + ca+b−1z

a+b−1 + · · · .

Finally, if a and b are rational numbers, say

a =
n1

m
, b =

n2

m
, n1, n2, m ∈ Z, (5.6)

then any µ(z) as above satisfies the condition

µ(z)m = (z − 1)n1(z + 1)n2 ,

implying that µ(z) is defined up to a multiplication by an mth root of unity, and
that for a certain choice of this root the equality ca+b = 1 holds. By abuse of
notation, below we will always use the expression (z − 1)a(z + 1)b to denote the
function µ(z) which satisfies the equality ca+b = 1.

Lemma 5.1. Assume that a and b are rational numbers which satisfy the condition
a + b ∈ Z. Then for any n ≥ −(a + b) the equality(

z − 1
2

)a (
z + 1

2

)b

Jn(a, b, z)− Jn+a+b(−a,−b, z) =
z→∞O(z−(n+1)) (5.7)

holds.

Proof. As it was mentioned above, the function (5.4) satisfies the differential equa-
tion (5.3), where the function ν(x) = (1 − x)a(1 + x)b is assumed to be defined on
[−1, 1]. However, since this function is analytic near the origin, we can consider its
analytic continuation ν(z), and the function ν(z)Jn(a, b, z) will satisfy (5.3) in the
domain U as above. Furthermore, if (5.6) holds, then

ν(z)m = (−1)n1((z − 1)a(z + 1)b)m,

implying that the function (z − 1)a(z + 1)bJn(a, b, z) also satisfies (5.3) in U .
Since the polynomial Jn(a, b, x) satisfies the differential equation (5.1), we con-

clude that the functions

Y1 =
(

z − 1
2

)a (
z + 1

2

)b

Jn(a, b, z) and Y2 = Jn+a+b(−a,−b, z)

both satisfy the differential equation

La,b
n (Y ) = 0, (5.8)

where

La,b
n = (1 − z2)

d2

dz2
+ [a − b + (a + b − 2)z]

d

dz
+ (n + 1)(n + a + b).
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This implies that the function Y0 = Y1 − Y2 also satisfies this equation. On the
other hand, it is easy to see that if Y (z) is a function whose Laurent expansion at
infinity is

Y = Cdz
d + Cd−1z

d−1 + · · · ,

then

La,b
n (Y ) = C̃dz

d + C̃d−1z
d−1 + · · ·

where

C̃d = −d(d − 1) + d(a + b − 2) + (n + 1)(n + a + b)

= (n + a + b − d)(d + n + 1).

Therefore, if Y satisfies (5.8) and Cd �= 0 while C̃d = 0, we should have either
d = n + a + b or d = −(n + 1). Finally, (5.2) implies that the leading terms of both
Y1 and Y2 are equal to

1
2n+a+b

(
2n + a + b

n

)
zn+a+b.

Therefore, the degree of the leading term of their difference Y0 = Y1 − Y2 is less
than n + a + b, hence the only possible case is d = −(n + 1), implying (5.7).

5.3. Double brushes of even length

Let T be a weighted tree from the series E4 or of its two particular cases E2 or B2,
see Figs. 7 and 5. Denote by r the number of white vertices of T which are not
leaves. Then the total weight of T is equal to (s+ t)(k+ l+ r) and the total number
of edges is equal to k + l + 2r. Clearly,

P = (x − 1)l(s+t)+t(x + 1)k(s+t)+s · As+t, (5.9)

Q = Bs+t (5.10)

for some polynomials A and B with deg A = r− 1, deg B = k + l + r. Furthermore,
by (2.5), we must have:

P − Q =
x→∞O(xm),

where

m = (s + t)(k + l + r) − (k + l + 2r) = (k + l + r)(s + t − 1) − r. (5.11)

Proposition 5.2. The polynomials P and Q may be represented as follows :

P (x) =
(

x − 1
2

)l(s+t)+t

·
(

x + 1
2

)k(s+t)+s

· Jr−1(a, b, x)s+t, (5.12)

where Jr−1(a, b, x) is the Jacobi polynomial with parameters

a =
l(s + t) + t

s + t
and b =

k(s + t) + s

s + t
, (5.13)
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and

Q(x) = Jk+l+r(−a,−b, x)s+t. (5.14)

Proof. Since the polynomials A and B in (5.9), (5.10) are defined in a unique way
up to a multiplication by a scalar factor, it is enough to show that(

x − 1
2

)l(s+t)+t (
x + 1

2

)k(s+t)+s

× Jr−1(a, b, x)s+t − Jk+l+r(−a,−b, x)s+t =
x→∞O(xm), (5.15)

where a and b are given by (5.13), and m, by (5.11).
Represent the left side of (5.15) as a product of two factors using the formula

us+t − vs+t = (u − v)(us+t−1 + us+t−2v + · · · + vs+t−1), (5.16)

where

u =
(

x − 1
2

)a (
x + 1

2

)b

Jr−1(a, b, x), v = Jk+l+r(−a,−b, x),

It is easy to see that both u and v are O(xk+l+r) near infinity. Let us consider the
difference u − v. Clearly,

k + l + r = r − 1 + a + b.

Furthermore, since k, l, r ≥ 0 the inequality

r − 1 ≥ −(a + b) = −(k + l + 1)

holds. Therefore, by Lemma 5.1, we have:

u − v =
x→∞O(x−r).

On the other hand,

us+t−1 + us+t−2v + · · · + vs+t−1 =
x→∞O(x(k+l+r)(s+t−1)).

Thus,

us+t − vs+t =
x→∞O(xm)

as required.

Remark 5.3. Belyi functions for the series E2 and E4 with the parameters s =
t = 1 were first calculated in the thesis of Nicolas Magot in 1997 [18]. A different
proof, proposed by Don Zagier, was given in [16, Chap. 2]. We used Zagier’s proof
as a model for the above construction.

5.4. Series E1 and E3: Double brushes of odd length

Let now T be a weighted tree of the series E3 or of its two particular cases E1

and B1, see Figs. 6 and 5. As above, denote by r the number of white vertices of T
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which are not leaves, so that the total weight of T is (s + t)(k + l + r) + s and the
total number of edges is k + l + 2r + 1. Now we must find polynomials P and Q

such that

P = (x + 1)k(s+t)+s · As+t, (5.17)

Q = (x − 1)l(s+t)+s · Bs+t (5.18)

for some polynomials A and B with deg A = l + r and deg B = k + r, and

P − Q =
x→∞O(xm),

where

m = (s + t)(k + l + r) + s − (k + l + 2r + 1)

= (k + l + r)(s + t − 1) + s − r − 1. (5.19)

Proposition 5.4. The polynomials P and Q may be represented as follows :

P (x) =
(

x + 1
2

)k(s+t)+s

· Jl+r(a, b, x)s+t, (5.20)

where Jl+r(a, b, x) is the Jacobi polynomial with the parameters

a = − l(s + t) + s

s + t
and b =

k(s + t) + s

s + t
, (5.21)

and

Q(x) =
(

x − 1
2

)l(s+t)+s

· Jk+r(−a,−b, x)s+t. (5.22)

Proof. We must show that(
x + 1

2

)k(s+t)+s

Jl+r(a, b, x)s+t

−
(

x − 1
2

)l(s+t)+s

Jk+r(−a,−b, x)s+t =
x→∞O(xm), (5.23)

where

a = − l(s + t) + s

s + t
, b =

k(s + t) + s

s + t
,

and m is defined by (5.19).
Equality (5.23) is equivalent to the equality(

x − 1
2

)−(l(s+t)+s) (
x + 1

2

)k(s+t)+s

× Jl+r(a, b, x)s+t − Jk+r(−a,−b, x)s+t = O(xp), (5.24)
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where

p = m − (l(s + t) + s) = (k + r)(s + t − 1) − (l + r + 1).

On the other hand, since

k + r = (l + r) + a + b

and

l + r ≥ −(a + b) = l − k,

it follows from Lemma 5.1 that(
x − 1

2

)a (
x + 1

2

)b

Jl+r(a, b, x) − Jk+r(−a,−b, x) = O(x−(l+r+1),

implying in the same way as in Proposition 5.2 that (5.24) holds.

5.5. Series C and B

The series C is a particular case of the series E of odd length corresponding to the
case of r equal to zero. In order to adjust the notation (which is slightly different for
the series E and C) we must set r = 0 and change s to t and t to s− t in formulas
(5.20)–(5.22). Thus,

P (x) =
(

x + 1
2

)ks+t

· Jl(a, b, x)s, (5.25)

where Jl(a, b, x) is the Jacobi polynomial of degree l with parameters

a = − ls + t

s
and b =

ks + t

s
, (5.26)

while

Q(x) =
(

x − 1
2

)ls+t

· Jk(−a,−b, x)s. (5.27)

Finally, it is clear that the series B1 and B2 (chains of odd and even length) are
particular cases of the series E3 and E4, so that the DZ pairs for B1 and B2 are
obtained from those for E3 and E4 by setting k = l = 0.

5.6. Padé approximants

The above results can be interpreted in terms of Padé approximants for the function
(1 − x)a(1 + x)b. Recall that if

f(x) =
∞∑

k=0

ckxk

is a formal power series, then its Padé approximant of order [n/m] at zero is a
rational function pn(x)/qm(x), where pn(x) is a polynomial of degree ≤ n and
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qm(x) is a polynomial of degree ≤ m, such that

f(x) − pn(x)
qm(x)

=
x→0

O(xn+m+1). (5.28)

Defined in this way, Padé approximants do not necessarily exist. However, if an
approximant of a given order exists, it is unique.

Linearizing the problem by requiring that

qm(x)f(x) − pn(x) =
x→0

O(xn+m+1) (5.29)

we arrive to the notion of a Padé form (pn, qm) of order [n/m]. Being defined by
linear equations, Padé forms always exist (in general, (5.29) does not imply (5.28)
since qm(x) may vanish at zero), and the Padé form of a given order is defined in a
unique way up to a multiplication by a constant.

Keeping the notation of Sec. 5.3 we may now reformulate the condition for P

and Q to be a DZ pair for the series E of even length as follows (a similar result is
also true for the series E of odd length).

Proposition 5.5 (Padé forms, even case). Let polynomials A and B be like in
formulas (5.9) and (5.10). Then the pair of their reciprocals (A∗, B∗) is the Padé
form of order [r − 1/k + l + r] for the function (1 − x)a(1 + x)b with parameters

a =
l(s + t) + t

s + t
and b =

k(s + t) + s

s + t
. (5.30)

Proof. Since the pairs (P, Q) and (A, B) are both defined up to a multiplication
by a constant, it is enough to show that

(x − 1)l(s+t)+t(x + 1)k(s+t)+s · As+t − Bs+t =
x→∞O(xp), (5.31)

where

p = (k + l + r)(s + t − 1) − r.

By definition of Padé forms we have:

(1 − x)a(1 + x)bA∗ − B∗ =
x→0

O(xk+l+2r),

implying that

(1 − x)l(s+t)+t(1 + x)k(s+t)+s · (A∗)s+t − (B∗)s+t =
x→0

O(xk+l+2r), (5.32)

(here we use formula (5.16) again though now the factors involved are series in
non-negative powers of x). Finally, substituting 1/x in place of x in (5.32) and
multiplying both sides by

x(k+l+r)(s+t)

we obtain (5.31).
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The proof of the following proposition is similar to the previous one:

Proposition 5.6 (Padé forms, odd case). Let polynomials A and B be like in
formulas (5.17) and (5.18). Then the pair of their reciprocals (A∗, B∗) is the Padé
form of order [l + r/k + r] for the function (1 − x)a(1 + x)b with parameters

a = − l(s + t) + t

s + t
and b =

k(s + t) + s

s + t
. (5.33)

Remark 5.7 (On Padé approximants). From the computational point of view,
a great advantage of Padé approximants is due to the fact that the equations describ-
ing them are linear. This observation remains true even in the case like ours when
the polynomials in question are known explicitly. One has to use some astute tricks
in order to make Maple work with Jacobi polynomials whose parameters do not
satisfy the condition a, b > −1. At the same time, the computation of Padé approx-
imants is instantaneous.

A vast literature is devoted to the study of Padé approximants for some par-
ticular functions. This is the case, for example, for the exponential function. To
our surprise, we did not find any research concerning Padé approximants for the
function (1 − x)a(1 + x)b. By the way, our Lemma 5.1 can also be reformulated as
a result about Padé forms for this function.

6. Series F and G: Trees of Diameter 4

Below we find DZ-pairs for the series F and G, see Figs. 10 and 9, using their rela-
tions to differential equations. For the series F , which consists of ordinary trees, the
corresponding formulas are particular cases of the formulas for Shabat polynomials
for trees of diameter four, first calculated by Adrianov [3].

Since any tree of the series F is ordinary, the degree of R = P −Q is zero, that is
R = c for some c ∈ C. Therefore, in order to describe the corresponding DZ-pair it
is enough to find P and c. This is equivalent to the finding of the Shabat polynomial
corresponding to the tree. Similarly, for trees from the series G the degree of R is
one, and it is technically easier to provide explicit formulas for P and R rather than
for P and Q.

We start with the series G.

6.1. Series G

The polynomial P for the series G takes the form

P = A(x)m, (6.1)

where A is a polynomial of degree k − 1 whose roots are the black vertices (all of
them are of degree m). Notice that the number of these vertices does not coincide
with the degree of the central vertex since we have one “double” edge, that is, an
edge of weight 2. Recall that there is a face of degree one hidden “inside” this edge;
it is the only inner face of the underlying map.
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2

m
m

m

m

m

k m

G

Fig. 9. Series G. The degree of the central vertex is k, the number of branches (and the number
of black vertices) is k − 1.

We choose the normalization of P , Q and R = P − Q in the following way:

• P = Am where A is monic, deg A = k − 1;
• the central vertex is placed at x = 0, so that Q = xk · B where B is monic,

deg B = n − k; the roots of B are the white vertices distinct from zero;
• R = c(x − 1); this means that the pole inside the only face of degree 1 is placed

at x = 1.

Thus, we get

Am − c(x − 1) = xk · B. (6.2)

Proposition 6.1. The polynomial A satisfies the differential equation

mA′ · (x − 1) − A = (m(k − 1) − 1)xk−1. (6.3)

Consequently, coefficients a0, . . . , ak−1 of A(x) =
∑k−1

i=0 aix
i may be found by the

following backward recurrence:

ak−1 = 1, ai =
m(i + 1)
mi − 1

· ai+1 for 0 ≤ i ≤ k − 2. (6.4)

Finally, c = −am
0 .

Proof. Taking the derivative of the both sides of equality (6.2) we obtain the
equality

mAm−1A′ − c = xk−1(kB + xB′),

implying the equality

mAmA′ − cA = xk−1A(kB + xB′).

Substituting in the last equality the value of Am from (6.2), we obtain

mA′[c(x − 1) + xkB] − cA = xk−1A(kB + xB′)
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and

mA′ · c(x − 1) − cA = xk−1[kAB + xAB′ − xmA′B].

We now observe that the degree of the left-hand side of the latter equality is
k − 1, while its right-hand side is proportional to xk−1. Therefore, the expression
in the square brackets on the right is some constant K, and both parts are equal
to K · xk−1. The constant K can be easily found as the leading coefficient of the
left-hand side: it is equal to mc(k − 1) − c. Finally, we get the equality

mcA′ − cA = (mc(k − 1) − c)xk−1,

which implies (6.3).
Substituting A(x) =

∑k−1
i=0 aix

i in (6.3) we obtain (6.4). Finally, substituting
x = 0 in (6.2) we obtain c = −am

0 .

Example 6.2. Let us take k = 6, so that deg A = k−1 = 5. Then the corresponding
polynomial looks as follows:

A = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0, (6.5)

where

a5 = 1,

a4 =
5m

4m − 1
,

a3 =
5m · 4m

(4m − 1)(3m − 1)
,

a2 =
5m · 4m · 3m

(4m − 1)(3m − 1)(2m − 1)
,

a1 =
5m · 4m · 3m · 2m

(4m − 1)(3m − 1)(2m − 1)(m − 1)
,

a0 =
5m · 4m · 3m · 2m · m

(4m − 1)(3m − 1)(2m − 1)(m − 1)(−1)

Remark 6.3 (Hypergeometric equation). Polynomial A also satisfies the
hypergeometric differential equation

x(1 − x)
d2y

dx2
+ [c − (a + b + 1)x]

dy

dx
− ab · y = 0. (6.6)

Indeed, applying the differential operator x d
dx + (1 − k) to both parts of equality

(6.3) we obtain

x[mA′ · (x − 1) − A]′ + (1 − k)[mA′ · (x − 1) − A] = 0,
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implying

x(x − 1)A′′ +
[(

1 − 1
m

+ (1 − k)
)

x − (1 − k)
]

A′ − (1 − k)
m

A = 0.

Therefore, A is a solution of the differential equation

x(1 − x)
d2y

dx2
+

[
(1 − k) −

(
(1 − k) − 1

m
+ 1

)
x

]
dy

dx
+

(1 − k)
m

y = 0

which is a particular case of (6.6) with

a = 1 − k, b = − 1
m

, c = 1 − k.

6.2. Series F

For this series we may assume that

P = (x − 1)lA(x)m, Q = xkB(x). (6.7)

Here A is monic and deg A = k − 1; namely, A is a polynomial whose roots are
the black vertices of degree m. Now, B is a polynomial whose roots are the white
vertices distinct from zero, deg B = n − k. The polynomials P and Q must satisfy
the condition

(x − 1)lA(x)m − xkB(x) = c, (6.8)

where c ∈ C is a nonzero constant.

Proposition 6.4. The polynomial A satisfies the differential equation

mA′ · (x − 1) + lA = [m(k − 1) + l]xk−1. (6.9)

m
m

m

m

m

k l

F

Fig. 10. Series F .
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Consequently, coefficients a0, . . . , ak−1 of A(x) =
∑k−1

i=0 aix
i may be found by the

following backward recurrence:

ak−1 = 1, ai =
m(i + 1)
mi + l

· ai+1 for 0 ≤ i ≤ k − 2. (6.10)

Finally, the value of c in (6.8) is equal to (−1)lam
0 .

Proof. As above, let us take the derivative of both sides of Eq. (6.8). Then we get

(x − 1)l−1Am−1[lA + m(x − 1)A′] = xk−1(kB + xB′).

We observe that the polynomial xk−1 is coprime with the factor (x− 1)l−1Am−1 in
the left-hand side, and therefore it must be proportional to the factor lA+m (x−1)A′

which is itself a polynomial of degree k − 1. Therefore, both of them are equal to
K · xk−1 where the constant K can be found as the leading coefficient of lA +
m (x−1)A′; namely, it is equal to m(k−1)+ l. Thus, (6.9) holds. Now, substituting
A(x) =

∑k−1
i=0 aix

i in (6.9) we obtain the recurrence (6.10), and substituting x = 0
in (6.8) we obtain the value of c.

Here, like in the case of the series G, the polynomial A also satisfies the hyperge-
ometric differential equation, and therefore it may be represented through a hyper-
geometric function.

Example 6.5. Let us take k = 6, so that deg A = k−1 = 5. Then the corresponding
polynomial looks as follows:

A = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0,

where

a5 = 1,

a4 =
5m

l + 4m
,

a3 =
5m · 4m

(l + 4m)(l + 3m)
,

a2 =
5m · 4m · 3m

(l + 4m)(l + 3m)(l + 2m)
,

a1 =
5m · 4m · 3m · 2m

(l + 4m)(l + 3m)(l + 2m)(l + m)
,

a0 =
5m · 4m · 3m · 2m · m

(l + 4m)(l + 3m)(l + 2m)(l + m)l
.
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6.3. Differential relations

The above method may be applied to DZ-pairs which do not necessarily correspond
to trees of diameter four or to unitrees. However, in general, it leads to differential
relations between P and Q. Let us clarify what we mean by considering the problem
of the difference between cubes and squares of polynomials, which was at the origin
of the whole activity concerning DZ-pairs, see [5, 9].

Let A, B and R be polynomials such that

A3 − B2 = R (6.11)

and

deg A = 2k, deg B = 3k, deg R = k + 1.

Taking the derivative of both parts of (6.11) we obtain

3A2A′ − 2BB′ = R′.

Multiplying now the last equality by A and substituting A3 from (6.11) we obtain
the equality

3A′(B2 + R) − 2BB′A = R′A,

implying in its turn the equality

B(3A′B − 2AB′) = R′A − 3A′R.

Since the degree of the right-hand side is

deg(R′A − 3A′R) ≤ 3k

while deg B = 3k, the above equality implies that

3A′B − 2AB′ = c (6.12)

for some nonzero constant c ∈ C.
The last expression is a differential equation of the first order with respect to A

as well as with respect to B. Unfortunately, both A and B are unknown. Thus,
it does not give us any immediate information about A and B. Still, algebraic
equations for coefficients of A and B obtained from (6.12) are (mostly) of degree 2
while the equations obtained from (6.11) are (mostly) of degree 3.

Differentiating (6.12) and writing the expression thus obtained as a differential
equation with respect to A we get:

A′′ +
B′

3B
· A′ − 2B′′

3B
· A = 0. (6.13)

This differential equation is a particular case of the differential equation

d2S

dz2
+

 m∑
j=1

γj

z − aj

 dS

dz
+

V (z)
m∏

j=1

(z − aj)

S = 0, (6.14)
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where V is a polynomial of degree at most m − 2. Polynomial solutions of the last
equation are called Stieltjes polynomials. The polynomials V for which (6.14) has
a polynomial solution are called Van Vleck polynomials. Thus, B is a Van Vleck
polynomial, and A is the corresponding Stieltjes polynomial.

Writing now (6.13) in the form

B′′ − A′

2A
· B′ − 3A′′

2A
· B = 0

we obtain that A is a Van Vleck polynomial and B is the corresponding Stieltjes
polynomial.

The above observations show that the relations between DZ-pairs and differ-
ential equations may be deeper than it seems at first glance and deserve further
investigation.

7. Series H and I: Decomposable Ordinary Trees

In this section, we consider series H (Fig. 11) and I (Fig. 13). In both cases the
corresponding DZ-pairs are obtained with the help of the operation of composition.
Notice that the trees in question are ordinary (the weights of all edges are equal
to 1). As it was mentioned in Definition 2.5, Belyi functions for ordinary trees are
called Shabat polynomials.

7.1. Series H

The trees of the series H are compositions of trees from the series C with the
parameters s = t = 1 (see Fig. 12) and chains of length 2.

The expressions of the Shabat polynomials for the trees from the series C in
terms of Jacobi polynomials are given in Sec. 5.5. Using the fact that s = t = 1
we can also compute them directly. Indeed, the trees in question have exactly two
vertices of degree greater than 1. Putting them into the points x = 0 and x = 1 and
taking into account that the degree of the corresponding Shabat polynomial S(x)

H

k l

Fig. 11. Series H: Ordinary trees of diameter 6 which are decomposable.
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k l

Fig. 12. Replace every edge of this tree with a two-edge chain, and you get the tree H.

is k + l − 1, we conclude that the derivative of S is proportional to xk−1(1 − x)l−1.
Therefore, the polynomial S(x) itself can be written as

S(x) = K ·
∫ x

0

tk−1(1 − t)l−1dt. (7.1)

Then we automatically have S(0) = 0, while in order to get S(1) = 1 we must take

K =
1

B(k, l)
=

(k + l − 1)!
(k − 1)!(l − 1)!

, (7.2)

where

B(k, l) =
∫ 1

0

tk−1(1 − t)l−1dt (7.3)

is the Euler beta function.
Then, taking the Shabat polynomial for the chain with two edges and with two

black vertices put to 0 and 1, which is equal to

U(y) = 4y(1 − y), (7.4)

we obtain the following

Proposition 7.1. The polynomial P for the tree H is equal to

P (x) = U(S(x)) (7.5)

where U is as in (7.4) and S is as in (7.1) and (7.2).

The proof is obvious.

7.2. Series I

Below are given Shabat polynomials P (z) for the trees of the series I (see Fig. 13).
These trees are compositions of trees from the series C with s = t = 1 and k = l

(see Fig. 14), and the stars with three edges. Thus, P (x) = U(S(x)), where S is a
Shabat polynomial corresponding to a tree from the series C, and U is a Shabat
polynomial corresponding to the star with three edges. However, in order to achieve
the rationality of the coefficients of P we still must find an appropriate normalization
of S.

For this purpose, contrary to all traditions, let us put the vertices of degree k

of the tree from the series C into the points x = ±
√
−3. Then the derivative of the
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I

kk

Fig. 13. Series I.

k k

Fig. 14. Replace every edge with a three-edge star, and you get the tree I.

corresponding Shabat polynomials S(x) must be equal to

S′(x) = a(x +
√
−3)k−1(x −

√
−3)k−1 = a(x2 + 3)k−1, a ∈ C. (7.6)

Therefore,

S(x) = a

∫
(x2 + 3)k−1dx + b = a

[
k−1∑
i=0

(
k − 1

i

)
x2i+1

2i + 1
3k−1−i

]
+ b (7.7)

for some b ∈ C. Substituting into S(x) the critical points x = ±
√
−3, we obtain the

critical values b ± c
√
−3, where

c = a · 3k−1
k−1∑
i=0

(
k − 1

i

)
(−1)i

2i + 1
. (7.8)

Setting

b = −1
2

(7.9)

and choosing a in such a way that

c =
1
2
, (7.10)

we obtain a polynomial S ∈ Q[x] with two critical values

y1,2 =
−1 ±

√
−3

2
. (7.11)

Taking now

U(y) = 1 − y3 (7.12)
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(we must take 1 − y3 instead of y3 in order to get the colors of the vertices which
would correspond to Fig. 13), we obtain the following:

Proposition 7.2. The polynomial P (x) for the tree I is equal to

P (x) = U(S(x)), (7.13)

where U is as in (7.12) and S is as in (7.7) with a and b defined by conditions
(7.8)–(7.10).

Once again, the proof is obvious.

8. Series J

This is the last infinite series of unitrees (see Fig. 15). The degree of this tree, or
its total weight, is 2k + 6.

Let us normalize the polynomial P so that

P = (x + 1)4 · (x2 + a)2k+1. (8.1)

This means that the black vertex of degree 4 is put at x = −1, while two black
vertices of degree 2k + 1 are put at the points ±

√
−a for certain a ∈ Q, a > 0.

All the white vertices are of degree 2; therefore, the polynomial Q has the form

Q(x) = A(x)2

for some polynomial A, deg A = 2k + 3. Further, condition (2.5) gives us

(x + 1)4 · (x2 + a)2k+1 − A(x)2 =
x→∞O(x2k+1);

here 2k+1 is the “overweight” of the tree (that is, its total weight minus the number
of edges of the topological tree). For the reciprocal polynomials this gives (see (2.4))

P ∗ − Q∗ = (1 + x)4 · (1 + ax2)2k+1 − A∗(x)2 =
x→0

O(x2k+5); (8.2)

here 2k + 5 is the number of edges of the topological tree.

Proposition 8.1. The reciprocal polynomials P ∗ and Q∗ may be represented as
follows :

P ∗ = (1 + x)4 · (1 + (2k + 4)x2)2k+1, Q∗(x) = A∗(x)2, (8.3)

22
2

2
2

2
2

2
2J

k k

Fig. 15. Series J .
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where A∗ is the initial segment of the series (P ∗)1/2 up to the degree 2k + 3:

(1 + x)2(1 + (2k + 4)x2)(2k+1)/2 =
x→0

A∗ + O(x2k+4). (8.4)

Proof. Let us take A∗ of the form

A∗ = (1 + x)2 · (1 + ax2)(2k+1)/2 + x2k+4 · h (8.5)

where

h =
x→0

O(1).

Computing (A∗)2 we get

(A∗)2 = P ∗ + 2x2k+4 · h · (1 + x)2 · (1 + ax2)(2k+1)/2 + x4k+8 · h2

= P ∗ + x2k+4[2h · (1 + x)2 · (1 + ax2)(2k+1)/2 + x2k+4 · h2]. (8.6)

Thus, for any value of the parameter a we have

P ∗ − A∗(x)2 =
x→0

O(x2x+4),

and therefore, in order to obtain (8.2), we only have to show that for a = 2k+4 the
constant term of h is equal to zero, or, equivalently, the coefficient in front of x2k+4

in the series

(P ∗)1/2 = (1 + x)2 · (1 + ax2)(2k+1)/2

vanishes.
Let us write the second factor of the latter expression explicitly:

(1 + ax2)(2k+1)/2 = 1 +
2k + 1

2
ax2 +

1
2!

· (2k + 1)(2k − 1)
4

a2x4

+
1
3!

· (2k + 1)(2k − 1)(2k − 3)
8

a3x6

+ · · · + 1
(k + 2)!

(2k + 1)(2k − 1) · · · (−1)
2k+2

ak+2x2k+4 + · · · .

(8.7)

Notice that this series involves only even powers. Multiplying it by

(1 + x)2 = 1 + 2x + x2

we see that the coefficient in front of x2k+4 in (P ∗)1/2 is the sum of the coefficients
in front of x2k+4 and x2k+2 in (8.7). Therefore, we must ensure that

1
(k + 1)!

· (2k + 1)(2k − 1) . . . · 1
2k+1

· ak+1

+
1

(k + 2)!
· (2k + 1)(2k − 1) . . . · (−1)

2k+2
· ak+2 = 0. (8.8)
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Collecting similar terms we get

1
(k + 1)!

· (2k + 1)(2k − 1) . . . · 1
2k+1

· ak+1

(
1 +

1
k + 2

· (−1)
2

· a
)

= 0, (8.9)

which gives a = 2k + 4.

Example 8.2. Let us take k = 3. Then we have:

P ∗ = (1 + x)4(1 + 10x2)7.

Further,

(P ∗)1/2 = (1 + x)2(1 + 10 x2)7/2

= 1 + 2 x + 36 x2 + 70 x3 +
945
2

x4 + 875 x5 + 2625 x6 + 4375 x7

+
39 375

8
x8 +

21 875
4

x9 − 21 875
4

x11 +
65 625

16
x12 + · · · .

Notice that the term with x10 is missing. Finally,

A∗ = 1 + 2 x + 36 x2 + 70 x3 +
945
2

x4 + 875 x5 + 2625 x6 + 4375 x7

+
39 375

8
x8 +

21 875
4

x9. (8.10)

9. Sporadic Trees

As it was explained previously, in Sec. 2.5, the verification of the results given below
is trivial. Therefore, we present nothing else but the polynomials themselves.

9.1. Tree K (Fig. 16)

P = (x2 − 5x + 1)3(x2 − 13x + 49),

Q = (x4 − 14x3 + 63x2 − 70x − 7)2,

R = −1728x.

2

K

Fig. 16. Tree K.
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9.2. Tree L (Fig. 17)

P = (x3 − 16x2 + 160x− 384)3,

Q = x (x4 − 24x3 + 336x2 − 2240x + 8064)2,

R = −214 · 33 (x2 − 13x + 128).

9.3. Tree M (Fig. 18)

P = x (x3 − 36x2 + 540x− 2592)3,

Q = (x5 − 54x4 + 1296x3 − 15 552x2 + 87 480x + 104 976)2,

R = −26 · 312 (x2 − 28x + 324).

9.4. Tree N (Fig. 19)

P = x3 (x3 − 8)3,

Q = (x6 − 12x3 + 24)2,

R = 64 (x3 − 9).

This tree is symmetric, with the symmetry of order 3. Therefore, P , Q, R are
polynomials in x3.

2

2
L

Fig. 17. Tree L.

2

2
M

Fig. 18. Tree M .
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2

N

2

2

Fig. 19. Tree N .

2 2

2

2

2

2 2

O

Fig. 20. Tree O.

9.5. Tree O (Fig. 20)

P = (x4 + 6x2 + 64x − 55)5,

Q = (x10 + 15x8 + 160x7 − 70x6 + 1440x5 + 6510x4

− 11 040x3 + 26 805x2 + 40 160x− 226 797)2,

R = 220 (5x7 + 59x5 + 690x4 − 485x3 + 3820x2 + 20 165x− 49 534).

This triple was found in Beukers and Stewart [4] (only the polynomial P is given
in their paper, but it uniquely determines two other polynomials).

9.6. Tree P (Fig. 21)

P = (x3 + 9x + 9)5,

Q = (x5 + 15x3 + 15x2 + 45x + 90)3,

R = −27 (15x8 + 395x6 + 423x5 + 3330x4 + 7290x3

+ 11 880x2 + 29 565x + 24 813).

Once again, the answer is taken from [4], with a slight renormalization.
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22

3

33 11

P

Fig. 21. Tree P .

Q

Fig. 22. Tree Q.

9.7. Tree Q (Fig. 22)

P = (x3 + 15x + 16)3(x5 + 39x3 + 64x2 + 384x + 1872),

Q = (x7 + 42x5 + 56x4 + 525x3 + 1680x2 + 1792x + 6456)2,

R = −26 · 312.

This tree is the only sporadic tree from the Adrianov’s list of ordinary unitrees.
Correspondingly, P is a Shabat polynomial: the polynomial R is a constant.

Note that the positions of certain black vertices are rational:

x3 + 15x + 16 = (x + 1)(x2 − x + 16),

x5 + 39x3 + 64x2 + 384x + 1872 = (x + 3)(x4 − 3x3 + 48x2 − 80x + 624).

9.8. Tree R (Fig. 23)

The tree R is the “square” of the tree L: it is symmetric, with the symmetry of
order 2, and one of its “halves” is equal to L. Therefore, we may take the polynomials
for the tree L and insert x2 instead of x.

P = (x6 − 16x4 + 160x2 − 384)3,

Q = x2 (x8 − 24x6 + 336x4 − 2240x2 + 8064)2,

R = −214 · 33 (x4 − 13x2 + 128).
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R
2

2

2

2

Fig. 23. Tree R.

2

2

2S

Fig. 24. Tree S.

9.9. Tree S (Fig. 24)

P = x2 (x4 + 24x3 + 176x2 − 2816)3,

Q = (x7 + 36x6 + 480x5 + 2304x4 − 3840x3,

− 55 296x2 − 14 336x + 221 184)2

R = 222 · 33 (x3 + 17x2 + 56x − 432).

Notice that the second factor in P , the one which is “cubed”, does not contain the
term with x: this is not a misprint.

9.10. Tree T

The picture of this tree is given in Example 2.7, and the corresponding polynomials
are given in Example 2.1.

10. Trees Defined Over Q by Virtue of Galois Theory

Recall that the passport of a (bicolored weighted plane) tree is a pair of partitions
α, β � n, where n is the degree (or the total weight) of the tree, α represents the
set of degrees of its black vertices, and β represents the set of degrees of its white
vertices.
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Definition 10.1 (Combinatorial orbit). The set of weighted trees with the same
passport is called combinatorial orbit.

Unitrees represent, in fact, combinatorial orbits consisting of a unique tree.
Usually, a DZ-pair corresponding to a tree is defined over a number field whose

degree is equal to the size of the combinatorial orbit to which this tree belongs.
This is why unitrees are always defined over Q. There exist, however, other Galois
invariants which may split a combinatorial orbit into several distinct Galois orbits.
In this way we may obtain certain trees which are not unitrees but which are
still defined over Q. In [19] we gave several such examples. Here we present the
corresponding DZ-pairs.

10.1. A tree with the monodromy group PGL2(7)

A bicolored map may be characterized by a pair of permutations acting on the set of
its edges: one permutation represents the cyclic order (in the positive direction) of
the edges around black vertices, the other one, the cyclic order (also in the positive
direction) around white vertices. The group generated by these two permutations is
called monodromy group of the map. The monodromy group is a Galois invariant.

For example, the map shown in Fig. 25, is represented by the pair of permuta-
tions

a = (1, 7, 6, 5, 4, 8, 3), b = (1, 2)(3, 8)(6, 7).

It turns out that the permutation group G = 〈a, b〉 is equal to PGL2(7). Since this
tree is the only one in its combinatorial orbit whose monodromy group is PGL2(7),
it is defined over Q. The corresponding polynomials are

P = x7(x − 6),

Q = (x3 − 6x2 + 12x − 36)2(x2 + 6x + 12),

R = −24 · 33 (7x2 − 6x + 36).

The combinatorial orbit to which this tree belongs, that is, the set of trees with
the passport (7111, 2312), contains six trees. The five remaining trees constitute a

2

2

2

6
7

1

3
8

5

4

Fig. 25. The monodromy group of this tree is PGL2(7). Numbers written on the edges of the tree
on the left are their weights; numbers written on the edges of the map on the right are not weights:

they are edge labels from 1 to 8.
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3

Fig. 26. This tree also has monodromy group PGL2(7).

single Galois orbit; the corresponding DZ-pairs (or, we may say, the trees them-
selves) are defined over the splitting field of the polynomial

a5 + 22a4 + 209a3 + 1040a2 + 2624a + 2560.

10.2. Another tree with the monodromy group PGL2(7)

The combinatorial orbit corresponding to the passport (6112, 3212), consists of five
trees. One of them, shown in Fig. 26, has the monodromy group PGL2(7). Therefore,
it is defined over Q. Its DZ-pair is given below.

P = x6(x2 − 9x + 21),

Q = (x2 − 3x − 3)3(x2 + 3),

R = 27 (7x2 + 9x + 3).

One of the trees in this combinatorial orbit is symmetric (see Fig. 27) and is
therefore also defined over Q. The corresponding polynomials are

P = x6(x2 − 2),

Q = (x2 − 1)3(x2 + 1),

R = −2x2 + 1.

The three remaining trees constitute a single Galois orbit and are defined over
the splitting field of the polynomial

a3 − 6a + 16.

22

Fig. 27. The symmetric tree with the passport (6112, 3212).
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10.3. A series in which one of the trees is self-dual

The duality for the bicolored maps is defined as follows:

• a map and its dual share their white vertices;
• black vertices of each map correspond to the faces of the dual map;
• edges of the dual map connect the centers of the faces of the initial map to the

white vertices which lie on the border of these faces.

See details and examples in [19]. While considering the duality, we will include in
the passport the third partition γ which represents the set of face degrees.

A map is self-dual if it is isomorphic to its dual. The self-duality is a Galois
invariant. The maps corresponding to weighted trees may well be self-dual.

Let p, q be two positive integers, and p < q. We consider the trees with the black
partition α = (p + q, 1p+q−2) and the white partition β = (2p − 1, 2q − 1). The
partition representing the face degrees is γ = (p+ q, 1p+q−2). We notice that γ = α;
therefore, the corresponding combinatorial orbit may contain self-dual trees. It is
easy to verify that this combinatorial orbit consists of 2p − 1 trees, and that only
one of them is self-dual, namely, the tree shown in Fig. 28. Therefore, this tree is
defined over Q.

Put the white vertices at the points x = −1 and x = 1 so that

Q(x) = (x + 1)2p−1(x − 1)2q−1

(notice that both powers are odd). Observe now that this polynomial is “antipalin-
dromic”: if we write it as

Q(x) = anxn + an−1x
n−1 + · · · + a1x + a0,

then an = −a0, an−1 = −a1, . . . . This fact trivially follows from the equality
xn ·Q(1/x) = −Q(x). Because of this, the coefficient in front of the “middle” degree
n/2 = p + q − 1 is zero. Therefore, if we take the higher degrees from 2p + 2q − 2
to p + q, what will remain is a polynomial of degree p + q − 2. In other words,

Q(x) = xp+q · A(x) − R(x),

where deg A = deg R = p + q − 2. Setting now

P (x) = xp+q · A(x),

we see that (P, Q) is a DZ-pair with required properties. Notice that the polynomial
R(x) is reciprocal to A(x). Geometrically, this means that if x1, x2, . . . , xm are the

p q
q−1p−1

Fig. 28. Self-dual tree.
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positions of the black vertices of degree 1 (here m = p + q − 2), then the centers
of the faces of degree 1 are 1/x1, 1/x2, . . . , 1/xm. Together with the fact that the
position of the black vertex of degree p + q is x = 0 while the center of the face of
degree p + q is ∞, this shows that the map in question is indeed self-dual.

Example 10.2. Let us take, for example, p = 2, q = 5. Then

Q(x) = (x + 1)3(x − 1)9 = x12 − 6x11 + 12x10 − 2x9 − 27x8 + 36x7

− (1 − 6x + 12x2 − 2x3 − 27x4 + 36x5)

= x7 · A(x) − R(x) = P (x) − R(x),

where deg A = deg R = 5 and R = A∗.

10.4. A “historical” sporadic example

The combinatorial orbit corresponding to the passport α = 310, β = 215 is shown in
Fig. 29. It consists of four trees (recall that the invisible white vertices are middle
points of the edges) and splits into three Galois orbits.

The tree a is the only one which is symmetric with the symmetry of order 3.
Therefore, it is defined over Q. The corresponding polynomials were computed by
Birch in 1965 [5]. They look as follows (notice that they are polynomials in x3):

Pa(x) = x3(x9 + 12x6 + 60x3 + 96)3,

Qa(x) = (x15 + 18x12 + 144x9 + 576x6 + 1080x3 + 432)2,

Ra(x) = −1728(3x6 + 28x3 + 108).

ba

d
c

Fig. 29. Four trees with the passport (310, 215). The trees a and d are defined over Q.
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The trees b and c are symmetric with the symmetry of order 2 with respect to
an (invisible) white vertex. They are also mirror symmetric to each other; therefore,
the complex conjugation sends one of the trees to the other. Thus, we may conclude
that this couple of trees constitutes a separate Galois orbit, and this orbit is defined
over an imaginary quadratic field. The corresponding polynomials were computed
in 2005 by Shioda [20] and, indeed, they are defined over the field Q(

√
−3). We do

not present these polynomials here.
The tree d does not have any particular combinatorial properties. (It is known

that the mirror symmetry of a dessin is not a Galois invariant.) But it remains
alone, that is, it constitutes a Galois orbit containing a single element. Therefore, it
is defined over Q. The corresponding polynomials were computed in 2000 by Elkies
[12]. They look as follows:

Pd(x) = (x10 − 2x9 + 33x8 − 12x7 + 378x6 + 336x5 + 2862x4

+ 2652x3 + 14 397x2 + 9922x + 18 553)3,

Qd(x) = (x15 − 3x14 + 51x13 − 67x12 + 969x11 + 33x10 + 10 963x9

+ 9729x8 + 96 507x7 + 108 631x6 + 580 785x5 + 700 503x4

+ 2 102 099x3 + 1 877 667x2 + 3 904 161x + 1 164 691)2,

Rd(x) = 26 315(5x6 − 6x5 + 111x4 + 64x3 + 795x2 + 1254x + 5477).

By the way, a naive approach mentioned in Sec. 2.5, namely, taking polynomials
A and B of degrees 10 and 15 respectively with indeterminate coefficients and
equating to zero the coefficients of degrees from 7 to 30 of A3 − B2, would, this
time, lead us to a system of polynomial equations of degree 6 198 727 824. It took
40 years (from 1965 to 2005) to compute all the four DZ-pairs of this example, but
the fact that there are exactly four non-equivalent solutions and that two of them
are defined over Q while the other two are defined over an imaginary quadratic
field, can be immediately seen from the picture without any computation.

11. Some Sporadic Examples of Beukers and Stewart

All the polynomials in this section which correspond to the asymmetric trees are
taken from the paper [4]. The normalization sometimes is changed. The goal of
this section is to show the combinatorial reasons of appearance of these sporadic
examples.

11.1. Passport (73, 37)

The passport shows that we are treating here the problem of the minimum degree
of the difference A7 − B3 where deg A = 3, deg B = 7. The combinatorial orbit
consists of two trees, see Fig. 30. One of them is symmetric, the other one is not;
therefore, both are defined over Q.
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1
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3

1
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3

Fig. 30. Two trees corresponding to the passport (73, 37); one of them is symmetric, the other one
is not. Therefore, both are defined over Q.

The polynomials corresponding to the asymmetric tree are as follows:

P = (x3 + 18x + 18)7,

Q = (x7 + 42x5 + 42x4 + 504x3 + 1008x2 + 1512x + 3024)3

R = 24 33(77x12 + 5922x10 + 6237x9 + 172 368x8 + 366 606x7 + 2 451 330x6

+ 7 314 300x5 + 19 105 632x4 + 53 867 268x3 + 82 260 360x2

+ 86 097 816x+ 62 594 856).

The polynomials corresponding to the symmetric tree may be computed as follows:

(1) Compute the polynomials corresponding to a branch of this three-branch tree,
that is, to a tree of the series A (see Sec. 3) with the parameters s = 3, t = 1,
k = 2.

(2) Make the change of variables x → 1 − x in order to put the white vertex of
degree 1 to the point x = 0; thus, the polynomial P (x), instead of being x7,
becomes (1 − x)7; it is convenient to change its sign and to get (x − 1)7.

(3) Insert x3 instead of x.

By pure convenience we add to the above operations one more: instead of taking
P (x) = (x − 1)7 we take P (x) = (x − 3)7. This permits us to avoid fractional
coefficients. The resulting polynomials are

P = (x3 − 3)7,

Q = x3(x6 − 7x3 + 14)3,

R = −14x12 + 189x9 − 987x6 + 2359x3 − 2187.

11.2. Passport (83, 38)

The passport corresponds to the problem of the minimum degree of the difference
A8 −B3 where deg A = 3, deg B = 8. The combinatorial orbit consists of two trees,
see Fig. 31. One of them is symmetric, the other one is not; therefore, both are
defined over Q.
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3

3 3

3
3

3

3 3

3
2 1 1 2

33

3
2 1 1 2

Fig. 31. Two trees corresponding to the passport (83, 38).

The polynomials corresponding to the asymmetric tree look as follows:

P = (x3 + 27x + 81)8,

Q = (x8 + 72x6 + 216x5 + 1620x4 + 9720x3 + 24 300x2 + 87 480)3,

R = −310 (52x14 + 6942x12 + 21 816x11 + 366 444x10 + 2 319 840x9

+ 13 129 047x8 + 90 716 760x7 + 406 062 720x6 + 1 812 830 544x5

+ 7 862 190 642x4 + 23 694 237 936x3 + 67 352 942 772x2

+ 173 534 618 376x+ 204 401 597 391).

The polynomials corresponding to the symmetric tree may be computed as follows:

(1) Compute the polynomials corresponding to the series E4 (see Sec. 5.3) with
s = 1, t = 2, k = 1, l = 2.

(2) Make the change of variables x → x+1 in order to move the (left) black vertex
of degree 4 from −1 to 0.

(3) Insert x2 instead of x.

We omit the resulting polynomials.

11.3. Passport (103, 310)

This time we deal with the problem min deg(A10 − B3), deg A = 3, deg B = 10.
The combinatorial orbit corresponding to this passport contains three trees, see
Fig. 32. These trees have three different symmetry types, hence all of them are
defined over Q.
The polynomials for the asymmetric tree look as follows:

P = (x3 + 54x + 162)10,

Q = (x10 + 180x8 + 540x7 + 11 340x6 + 68 040x5 + 374 220x4

+ 2 449 440x3 + 8 573 040x2 + 22 044 960x + 57 316 896)3,

R = −24 311 (595x18 + 201 960x16 + 629 748x15 + 28 669 140x14

+ 179 596 440x13 + 2 460 946 860x12 + 20 601 540 000x11
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Fig. 32. Three trees corresponding to the passport (103, 310).

+ 158 558 654 736x10 + 1 257 674 415 840x9 + 7 823 104 403 040x8

+ 46 607 404 043 520x7 + 253 091 029 021 200x6 + 1 120 772 437 834 752x5

+ 4 520 664 857 839 680x4 + 15 435 507 254 345 280x3

+ 37 331 470 988 020 800x2 + 62 014 139 393 904 000x

+ 62 042 237 538 382 656).

The polynomials for the tree with the symmetry of order 2 is computed in the
same way as in Sec. 11.2. The parameters of the tree of the type E4 are s = 2,
t = 1, k = 1, l = 3; then we must replace x with x + 1, and insert x2 instead of x.

The polynomials for the tree with the symmetry of order 3 is computed in the
same way as in Sec. 11.1. The parameters of the tree of the type A are s = 3, t = 1,
k = 3; then we must replace x with 1 − x, and insert x3 instead of x.

11.4. Passport (95, 59)

We finish this section with an example which shows that the combinatorial methods,
while being very powerful, are, however, not all-powerful. There are 11 trees with
the passport (95, 59), and one of them, shown in Fig. 33, is defined over Q without
any apparent reason. All known combinatorial and group-theoretic Galois invariants
fail to explain this phenomenon. All we can say is that the corresponding system
has rational solutions “by chance”.
The polynomials P and Q for the tree of Fig. 33 are as follows:

P = (x5 + 50x3 + 500x + 500)9,

Q = (x9 + 90x7 + 2700x5 + 900x4 + 30 000x3 + 36 000x2

+ 90 000x + 180 000)5.

The polynomial R here is of degree 32, and it is too cumbersome, so we do not write
it explicitly.
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Fig. 33. This tree, corresponding to the passport (95, 59), is defined over Q. All known combina-
torial invariants of Galois action fail to explain this phenomenon.

12. Yet More Examples

12.1. An infinite series of splitting combinatorial orbits

We have already seen two examples (see Secs. 11.1 and 11.2) of combinatorial orbits
of size 2 which, instead of being defined over a quadratic field, split in two orbits
defined over Q because the trees in question have different orders of symmetry.
Here we present an infinite series of such examples. The trees in question have the
passport (k2, 4112k−4) for k ≥ 3, see Fig. 34. Belyi function for the symmetric tree
looks as follows:

f1(x) =
(−1)k+1

kk
· (x2 − k)k

x2 − 1
.

Belyi function for the asymmetric tree looks as follows:

f2(x) =
(−1)k

(6k)k−1(k − 2)k−2(2k − 1)2k−1

· (x2 − 6k(2k − 1)x − 6k(k − 2)(2k − 1)2)k

x2 + 6k(k − 2)x + 6k(k − 2)2(2k − 1)
.

In both cases, the white vertex of degree 4 lies at x = 0. The expressions for Belyi
functions give us the polynomials P (the numerator) and R (the denominator).

In order to prove the correctness of the above expressions we need to verify two
things: for both f1 and f2, we have (a) f(0) = 1; (b) first three derivatives of f(x)
at x = 0 vanish.

We leave the proof to the reader.

1 3

k k

2 2

k k

Fig. 34. Two trees with the passport (k2, 4112k−4). One of them is symmetric, the other one is
not.
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12.2. Trees with a relaxed minimum degree condition

Let us return to the problem of the minimum degree of the difference A3 −B2, the
question from which this whole line of research started (see [5]). We have seen that
when deg A = 2k, deg B = 3k, we have min deg(A3 − B2) = k + 1. For k ≥ 6, the
computation becomes exceedingly difficult, and there is practically no hope to find
solutions defined over Q. However, if we are not so demanding and accept a solution
with the degree of A3 −B2 slightly greater than k + 1, then sometimes we can find
a nice solution.

Example 12.1. Let us take a polynomial A with one double root, so that A3

would have one root of multiplicity 6 and all the other roots of multiplicity 3. The
corresponding map would have one vertex less and therefore one face more.

The tree in Fig. 35 corresponds to k = 7. It is the “cube” of the tree S, see
Sec. 9.9. Therefore, all we have to do is to insert x3 instead of x in the formulas of

0

Fig. 35. The map on the left represents two polynomials A and B, of degrees 2k = 14 and 3k = 21
respectively, such that deg (A3 − B2) = 9. Thus, the degree of the difference does not attain its
minimum value k + 1 = 8, but in return both A and B are defined over Q.

Fig. 36. This map represents two polynomials A and B, of degrees 2k = 12 and 3k = 18 respectively,
such that deg (A3 −B2) = 9. Thus, the degree of the difference does not attain its minimum value
k + 1 = 7, but in return both A and B are defined over Q.
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Sec. 9.9:

P = x6 (x12 + 24x9 + 176x6 − 2816)3,

Q = (x21 + 36x18 + 480x15 + 2304x12 − 3840x9 − 55 296x6

− 14 336x3 + 221 184)2,

R = 222 · 33 (x9 + 17x6 + 56x3 − 432).

Example 12.2. When all the roots of A and B are distinct, the polynomial R has
k + 1 distinct roots. Let us accept R with a multiple root (thus, its degree will be
greater that k + 1). The tree in Fig. 36 gives such an example. It corresponds to
k = 6, and deg R = 9. The polynomials for this tree look as follows:

P = (x3 + 3)3(x9 + 9x6 + 27x3 + 3)3,

Q = (x18 + 18x15 + 135x12 + 504x9 + 891x6 + 486x3 − 27)2,

R = 1728x3 (x6 + 9x3 + 27).
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