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Abstract A weighted bicolored plane tree (or just tree for short) is a bicolored plane
tree whose edges are endowed with positive integral weights. The degree of a vertex
is defined as the sum of the weights of the edges incident to this vertex. Using the
theory of dessins d’enfants, which studies the action of the absolute Galois group
on graphs embedded into Riemann surfaces, we show that a weighted plane tree
is a graphical representation of a pair of coprime polynomials P, Q ∈ C [x] such
that: (a) deg P = deg Q, and P and Q have the same leading coefficient; (b) the
multiplicities of the roots of P (respectively, of Q) are equal to the degrees of the
black (respectively, white) vertices of the corresponding tree; (c) the degree of the
difference P − Q attains the minimum which is possible for the given multiplicities
of the roots of P and Q. Moreover, if a tree in question is uniquely determined by
the set of its black and white vertex degrees (we call such trees unitrees), then the
corresponding polynomials are defined over Q. The pairs of polynomials P, Q such
that the degree of the difference P − Q attains the minimum, and especially those
defined over Q, are related to some important questions of number theory. Dozens of
papers, from 1965 (Birch et al. in Norske Vid Selsk Forh 38:65–69, 1965) to 2010
(Beukers and Stewart in J Number Theory 130:660–679, 2010), were dedicated to
their study. The main result of this paper is a complete classification of the unitrees,
which provides us with the most massive class of such pairs defined over Q. We
also study combinatorial invariants of the Galois action on trees, as well as on the
corresponding polynomial pairs, which permit us to find yet more examples defined
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over Q. In a subsequent paper, we compute the polynomials P, Q corresponding to
all the unitrees.
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1 Introduction

In 1965, Birch et al. [5] asked a question which soon became famous:

Let A and B be two coprime polynomials with complex coefficients;
what is the possible minimum degree of the difference R = A3 − B2 ?

It is reasonable to suppose that A3 and B2 have the same degree and the same leading
coefficients. Let us take deg A = 2k, deg B = 3k so that deg A3 = deg B2 = 6k.
Then the following was conjectured in [5]:

1. For R = A3 − B2 one always has deg R ≥ k + 1.
2. This bound is sharp: that is, it is attained for infinitely many values of k.

The first conjecture was proved the same year by Davenport [9]. The second one
turned out to be much more difficult and remained open for 16 years: in 1981, Stothers
[25] showed that the bound is in fact attained not only for infinitely many values of k,
but for all of them.

The above problem may be generalized in various ways. The following one was
considered in 1995 by Zannier [29]. Let α, β � n be two partitions of n,

α = (α1, . . . , αp), β = (β1, . . . , βq),

p∑

i=1

αi =
q∑

j=1

β j = n,

and let P and Q be two coprime polynomials of degree n having the following fac-
torization pattern:

P(x) =
p∏

i=1

(x − ai )
αi , Q(x) =

q∏

j=1

(x − b j )
β j . (1)

In these expressions, we consider the multiplicities αi and β j , i = 1, 2, . . . , p, j =
1, 2, . . . , q as being given, while the roots ai and b j are not fixed, though they must
all be distinct. The problem is to find the minimum possible degree of the difference
R = P − Q. In his paper, Zannier proved the following. Let d = gcd (α, β) denote
the greatest common divisor of the numbers α1, . . . , αp, β1, . . . , βq . If

p + q ≤ n

d
+ 1 (2)
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then

deg R ≥ (n + 1) − (p + q), (3)

and this bound is always attained. If, on the other hand, p + q >
n

d
+ 1, then a weaker

bound

deg R ≥ (d − 1) n

d
, (4)

is valid, and it is also attained.

Definition 1.1 (Davenport–Zannier triple) Let P, Q, R ∈ C [x] be coprime polyno-
mials with factorization pattern (1), deg P = deg Q = n, while the degree of the
polynomial R = P − Q equals (n + 1) − (p + q). Then the triple (P, Q, R) is called
a Davenport–Zannier triple, or, in a more concise way, a DZ-triple.

The main subject of this paper is a study of DZ-triples defined over Q, that is, the
triples P, Q, R ∈ Q [x].

The paper is organized as follows.
A preliminary work is carried out in Sect. 2. First, we show that bound (3) follows

from the Riemann–Hurwitz formula for the function f = P/R. Then we reduce the
problem about polynomials to a problem about weighted bicolored plane trees. A
weighted bicolored plane tree is a plane tree (“plane” means that the cyclic order of
branches around each vertex is fixed) whose vertices are colored in black and white
in such a way that the ends of each edge have opposite colors, and whose edges are
endowed with positive integral weights. The degree of a vertex is defined as the sum
of the weights of the edges incident to this vertex. The sum of the weights of all the
edges is called the total weight of the tree. We show that a DZ-triple with prescribed
factorization pattern (1) exists if and only if there exists a weighted bicolored plane tree
of the total weight n = deg P = deg Q having p black vertices of degrees α1, . . . , αp

and q white vertices of degrees β1, . . . , βq . As a corollary, we give a spectacularly
simple proof of Stothers’s 1981 result for the squares and cubes, namely, the attainabil-
ity of the lower bound deg(A3 − B2) ≥ k + 1 where deg A = 2k and deg B = 3k, see
Example 2.13. The results of Sect. 2 as well as the framework of the whole paper are
based on the theory of dessins d’enfants (see, e. g., Chapter 2 of [19], or a collection of
papers [23], or a recent book [12]). This theory establishes a correspondence between
simple combinatorial objects, graphs drawn on two-dimensional surfaces, and a vast
world of Riemann surfaces, algebraic curves, number fields, Galois theory, etc.

In Sect. 3, we prove the existence theorem for weighted bicolored plane trees.
Namely, we show that a necessary and sufficient condition for the existence of a
tree with the above characteristics is inequality (2). The attainability of bound (3) is
deduced from this result. In Sect. 4, we establish bound (4) and its attainability in
the case when inequality (2) is not satisfied. Although bounds (3) and (4) and their
attainability were proved by U. Zannier, we reprove these results here for the sake
of completeness, and also in order to show how the pictorial language clarifies and
simplifies the exposition.
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In Sects. 5 and 6, we study DZ-triples defined over Q. This case is the most inter-
esting one since by specializing x to a rational value, one may obtain an important
information concerning differences of integers with given factorization patterns. This
subject is actively studied in number-theoretic works: see, for example, a recent paper
by Beukers and Stewart [4] and the bibliography therein. Our approach here is based
on the following corollary of the theory of dessins d’enfants which gives a sufficient
(though not necessary) condition for a DZ-triple to be defined over Q: the triple is
defined over Q if there exists exactly one weighted bicolored plane tree with the
degrees of black vertices equal to α1, . . . , αp, and the degrees of white vertices equal
to β1, . . . , βq . We will call such trees unitrees.

In Sect. 5, we prove the main result of the paper, namely, a complete classification
of unitrees: see Theorem 5.4. The formulation of this theorem is rather long, so we do
not enunciate it in the Introduction. We mention only that the class of unitrees consists
of ten infinite series of trees and ten sporadic trees, which do not belong to the above
series.

While the results of Sect. 5 may be considered as conclusive, Sect. 6 represents only
first steps in a far-ranging programme of study of the Galois action on weighted plane
trees and of combinatorial invariants of this action. This approach permits to find yet
more DZ-triples defined over Q and also to study DZ-triples over other number fields.
Note that essentially all previously found examples of DZ-triples over Q correspond
either to unitrees or to the trees constructed in Sect. 6. We have also found quite a few
new examples of DZ-triples.

Finally, in Sect. 7, we mention some further possible developments of the subject.
This paper deals only with the combinatorial aspect of the whole construction. The

computation of the corresponding DZ-triples is postponed to a separate publication
(see [21]) since the techniques used for this purpose are very different form the ones
used in this paper. In particular, a great deal of symbolic computations as well as certain
polynomial identities are required. For an individual unitree, the computation of the
corresponding DZ-triple is a difficult task, but the verification of the result is easy.
Indeed, when polynomials P, Q, R (together with their appropriate factorizations)
are given, it is immediate to observe that their coefficients are rational, and the only
thing to verify is that R is indeed equal to P − Q. The situation becomes significantly
more complicated for infinite series of trees since in this case, the proof may become
rather elaborate.

2 From polynomials through Belyi functions to weighted trees

2.1 Function f = P/R and its critical values

Let α, β � n be two partitions of n, α = (α1, . . . , αp), β = (β1, . . . , βq),∑p
i=1 αi = ∑q

j=1 β j = n, and let P, Q ∈ C[x] be two polynomials of degree n
with the factorizations

P(x) =
p∏

i=1

(x − ai )
αi , Q(x) =

q∏

j=1

(x − b j )
β j . (5)
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We suppose all ai , b j , i = 1, . . . , p, j = 1, . . . , q to be distinct. Let the difference
R = P − Q have the following factorization:

R(x) =
r∏

k=1

(x − ck)
γk , deg R =

r∑

k=1

γk . (6)

Our goal is to minimize deg R; obviously,

deg R ≥ r. (7)

Consider the following rational function of degree n:

f = P

R
;

note that

f − 1 = Q

R
.

Definition 2.1 (Critical value) A point y ∈ C = C ∪ {∞} is called critical value of
a rational function f if the equation f (x) = y has multiple roots.

The expressions written above for the function f = P/Q provide us with at least
three critical values of f :

• y = 0, provided that not all αi are equal to 1;
• y = 1, provided that not all β j are equal to 1; and
• y = ∞, if only we do not consider the trivial case deg R = deg P − 1; if deg R <

deg P − 1, then f has a multiple pole at infinity.

Denote y1, . . . , ym the other critical values of f , if there are any, and let nl be the
number of preimages of yl , l = 1, . . . , m; by the definition of a critical value, nl < n.

Lemma 2.2 (Number of roots of R) The number r of distinct roots of the polynomial
R is

r = (n + 1) − (p + q) +
m∑

l=1

(n − nl). (8)

In fact, equality (8) is a particular case of the Riemann–Hurwitz formula, but for
the sake of completeness we give its proof here.

Proof Let us draw a star-tree with the center at 0 and with its rays going to the critical
values 1, y1, . . . , ym , see Fig. 1. Considered as a map on the sphere, this tree has m +2
vertices, m + 1 edges, and a single outer face with its “center” at ∞.

Now let us take the preimage of this tree under f . We will get a graph drawn on
the preimage sphere which has n (m + 1) edges since each edge is “repeated” n times
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Fig. 1 A star-tree whose
vertices are critical values of f

0 1

y

y2

1

...

ym

in the preimage. Its vertices are the preimages of the points 0, 1, y1, . . . , ym , so their
number is equal to p + q + ∑m

l=1 nl .
What occurs to the faces?
If we puncture at ∞ the single open face in the image sphere, we get a punctured

disk without any ramification points inside. The only possible unramified covering of
a punctured open disk is a disjoint collection of punctured disks; their number is equal
to the number of poles of f , namely, r + 1 (r roots of R and ∞). Inserting a point
into each puncture, we get r + 1 simply connected open faces in the preimage sphere.
The fact that they are simply connected implies that the graph drawn on the preimage
sphere is connected. Thus, the preimage of our star-tree is a plane map. What remains
is to apply Euler’s formula:

(
p + q +

m∑

l=1

nl

)
− n (m + 1) + (r + 1) = 2,

which leads to (8). �	
Notice that in order to prove Lemma 2.2, instead of the tree of Fig. 1, we could

take any other plane map with vertices at the critical values (see, e.g., the proof of
Proposition 4.2 below).

Corollary 2.3 (Lower bound) We have

deg R ≥ (n + 1) − (p + q) . (9)

The proof follows from (8) and (7).
Note that deg R cannot be negative; therefore, when p + q > n + 1, the latter

bound cannot be attained. In this case, one can attain the bound deg R ≥ 0, that is,
the polynomial R can be made equal to a constant. This situation is studied in more
detail in Sect. 4.

Equation (8) provides us with guidelines of how to get the minimum degree of R.

Proposition 2.4 (Bound (9) attainability) Bound (9) is attained if and only if the
following conditions are satisfied:

• p + q ≤ n + 1.
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• The number m of the critical values of f other than 0, 1,∞, is equal to zero so
that the sum

∑m
l=1 (n − nl) in the right-hand side of (8) is eliminated altogether.

The tree of Fig. 1 is then reduced to merely the segment [0, 1].
• All the roots of R are simple, that is, γ1 = . . . = γr = 1 so that deg R = r . Another

formulation of the same condition: the partition γ � n, γ = (γ0, γ1, γ2, . . . , γr ),
which corresponds to the multiplicities of the poles, has the form of a hook: γ =
(n − r, 1, 1, . . . , 1︸ ︷︷ ︸

r times

) = (n − r, 1r ).

The conditions which imply the existence of such a function f will be obtained in
Sect. 3.

2.2 Dessins d’enfants and Belyi functions

Considering rational functions with only three critical values brings us into the frame-
work of the theory of dessins d’enfants. Here we give a brief summary of this theory
(only in a planar setting); the missing details, proofs, and bibliography can be found,
for example, in [19], Chapter 2.

Definition 2.5 (Belyi function) A rational function f : C → C is called Belyi function
if it does not have critical values outside the set {0, 1,∞}.

For such a function, the tree considered in the proof of Lemma 2.2 is reduced to
the segment [0, 1]. Let us take this segment, color the point 0 in black and the point
1 in white, and consider the preimage D = f −1([0, 1]); we will call this preimage a
dessin.

Proposition 2.6 (Dessin) The dessin D = f −1([0, 1]) is a connected graph drawn
on the sphere, and its edges do not intersect outside the vertices. Therefore, D may
also be considered as a plane map. This map has a bipartite structure: black vertices
are preimages of 0, and white vertices are preimages of 1.

The degrees of the black vertices are equal to the multiplicities of the roots of the
equation f (x) = 0, and the degrees of the white ones are equal to the multiplicities
of the roots of the equation f (x) = 1. The sum of the degrees in both cases is equal
to n = deg f , which is also the number of edges.

The map D being bipartite, the number of edges surrounding each face is even. It
is convenient, in defining the face degrees, to divide this number by two.

Definition 2.7 (Face degree) We say that an edge is incident to a face if, while remain-
ing inside this face and making a circuit of it in the positive (trigonometric) direction,
we follow the edge from its black end toward the white one. Thus, only half of the
edges surrounding a face are incident to it. Moreover, each edge is incident to exactly
one face. The degree of a face is equal to the number of edges incident to it.

According to this definition and to the remarks preceding it, every edge is incident
to one black vertex, to one white vertex, and to one face. The sum of the face degrees
is equal to n = deg f .
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Proposition 2.8 (Faces and poles) Inside each face there is a single pole of f , and
the multiplicity of this pole is equal to the degree of the face.

Definition 2.9 (Passport of a dessin) The triple π = (α, β, γ ) of partitions α, β, γ �
n which correspond to the degrees of the black vertices, of the white vertices, and of
the faces of a dessin, is called a passport of the dessin.

Definition 2.10 (Combinatorial orbit) A set of the dessins having the same passport
is called a combinatorial orbit corresponding to this passport.

The construction which associates a map to a Belyi function works also in the oppo-
site direction. Two bicolored plane maps are isomorphic if there exists an orientation
preserving homeomorphism of the sphere which transforms one map into the other,
respecting the colors of the vertices. Let M be a bicolored map on the sphere. Then,
the sphere may be endowed with a complex structure, thus becoming the Riemann
complex sphere, and a representative of the isomorphism class of M can be drawn as
a dessin D obtained via a Belyi function. The following statement is a particular case
of the classical Riemann’s existence theorem:

Proposition 2.11 (Existence of Belyi functions) For every bicolored plane map M
there exists a dessin D isomorphic to M, that is, D = f −1([0, 1]) where f is a Belyi
function. The function f = f (x) is unique up to a linear fractional transformation of
the variable x.

Of course, when we draw a map, we do not respect the specific geometric form of
the corresponding dessin. We are content with the fact that such a dessin exists.

Now Proposition 2.4 may be reformulated in purely combinatorial terms:

Proposition 2.12 (Bound (9) attainability) The lower bound (9) is attained if and
only if there exists a bicolored plane map with the passport π = (α, β, γ ) in which
the partitions α = (α1, . . . , αp) and β = (β1, . . . , βq) are given, and γ has the form
γ = (n − r, 1r ) where 1 is repeated r = (n + 1) − (p + q) times.

In geometric terms, all the faces of our map except the outer one must be of degree 1.
Recall that the number of faces, which is equal to r+1, is prescribed by Euler’s formula.

Example 2.13 (Cubes and squares: a solution) Let us look once again at the problem
posed by Birch et al. in [5] (see page 2). In order to show that if deg A = 2k, deg B =
3k, and R = A3 − B2, then the lower bound deg R ≥ k + 1 is attained, we must
construct a map with the following properties: all its black vertices are of degree 3;
all its white vertices are of degree 2; and all its finite faces are of degree 1.

In order to simplify our pictures, we sometimes use the following convention.

Convention 2.14 (White vertices of degree 2) When all the white vertices are of degree
2, it is convenient, in order to simplify a graphical representation of such maps, to draw
only black vertices and to omit the white ones, considering them as being implicit. In
such a picture, a line connecting two black vertices contains an invisible white vertex
in its middle and is thus not an edge but a union of two edges.
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Fig. 2 This map solves the
problem which remained open
for 16 years: for any k ≥ 1 there
exist polynomials A and B such
that deg A = 2k, deg B = 3k
and deg (A3 − B2)

= k + 1

First stage Second stage

The construction of the maps we need to solve the above problem about
min deg(A3 − B2) is trivial: first we draw a tree with all internal nodes being of
degree 3 and then attach loops to its leaves: see Fig. 2.

We see in this example a remarkable efficiency of the pictorial representation of
problems concerning polynomials. If this representation was known in 1965, the proof
of the conjecture would have taken 16 minutes instead of 16 years.

2.3 Number fields

As it was told in Proposition 2.11, a Belyi function f (x) corresponding to a dessin is
defined up to a linear fractional transformation of x . In this family of equivalent Belyi
functions, it is always possible to find one whose coefficients are algebraic numbers.
If we act simultaneously on all the coefficients of such a function by an element of
the absolute Galois group Gal (Q|Q), that is, by an automorphism σ of the field Q

of algebraic numbers, or, in other words, if we replace all the coefficients ai of f by
their algebraically conjugate numbers σ(ai ), we obtain once again a Belyi function.
Furthermore, one can prove that in such a way the action of Gal (Q|Q) on Belyi
functions descends to an action on dessins. There exist many combinatorial invariants
of this action, the first and the simplest of them being the passport of the dessin. Thus,
a combinatorial orbit (see Definition 2.10) may constitute a single Galois orbit, or may
further split into a union of several Galois orbits. Every combinatorial orbit is finite,
and therefore, every Galois orbit is also finite.

One of the most important notions concerning the Galois action on dessins is that
of the field of moduli.

Construction 2.15 (Field of moduli) Let D be a dessin, and let �D ≤ Gal (Q|Q) be
its stabilizer. Since the orbit D is finite, the group �D is a subgroup of finite index in
Gal (Q|Q). Let H ≤ �D be the maximal normal subgroup of Gal (Q|Q) contained
in �D . According to the Galois correspondence between subgroups of Gal (Q|Q) and
algebraic extensions of Q, there exists a number field K corresponding to H . This
field is called the field of moduli of the dessin D. By construction, this field is unique:
a dessin cannot have two different fields of moduli.
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Below we list some properties of the fields of moduli. Let D = {D1, . . . , Dm} be
an orbit of the Galois action on dessins.

• The field of moduli K is the same for all the elements of the orbit.
• The degree of K as an extension of Q is equal to m = |D|.
• The coefficients of Belyi functions corresponding to the dessins D ∈ D, if they

are chosen as algebraic numbers, always belong to a finite extension L of K .
• The action of the group Gal (Q|Q) on the orbit D coincides with the action of

Gal (K |Q).
• The action of Gal (L|K ) on Belyi functions may change a position of a dessin

D ∈ D on the complex sphere but does not change its combinatorial structure; in
other words, as a map, the dessin in question remains the same.

In the absolute majority of cases, the situation is much simpler: the field of moduli
of an orbit is the smallest number field to which the coefficients of the corresponding
Belyi functions belong. However, in some specially constructed examples we need a
larger field L ⊃ K to be able to find Belyi functions. There exists a simple sufficient
condition which ensures that the coefficients do belong to K , see [8]: this condition
is the existence of a bachelor.

Definition 2.16 (Bachelor) A bachelor is a black vertex (a white vertex; a face) such
that there is no other black vertex (no other white vertex; no other face) of the same
degree.

Remark 2.17 (Positioning of bachelors) If a dessin contains several bachelors then up
to three of them can be placed at rational points, that is, at points in Q ∪ {∞}, and this
will not prevent the Belyi function for the dessin in question to be defined over the
field of moduli.

For the dessins we study in this paper, a bachelor always exists: it is the outer face
(since all the other faces are of degree 1). Recalling that the degree of K is equal to
the size of the orbit we may conclude the following:

If a combinatorial orbit consists of a single element,
then it is also a Galois orbit, and its moduli field is Q.

Summarizing what was stated above we may affirm the following:

Proposition 2.18 (Coefficients in Q) If for a given passport π = (α, β, γ ), where
the partition γ is of the form γ = (n − r, 1r ), there exists a unique bicolored plane
map, then there exists a corresponding Belyi function with rational coefficients, and
therefore, there also exists a DZ-triple with rational coefficients.

Note that Proposition 2.12, which concerns the existence, is of the “if and only if”
type, while Proposition 2.18, which concerns the definability over Q, provides only
an “if”-type condition.

2.4 How do the weighted trees come in

Though the weighted trees are, in our opinion, natural and interesting objects to be
studied for their own sake, in our paper they are used as a merely technical tool which
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Fig. 3 The passage from a map with all its finite faces being of degree 1, to a weighted tree. The weights
which are not explicitly indicated are equal to 1; the edges of the weight bigger than 1 are drawn thick

is easy to manipulate. In Fig. 3, left, it is shown how a typical bicolored map whose all
finite faces are of degree 1 looks like. (Recall that according to Definition 2.7 a face
of degree 1 is surrounded by two edges, but only one of these edges is incident to the
face.) It is convenient to symbolically represent such a map in a form of a tree (see
Fig. 3, right) by replacing several multiple edges which connect neighboring vertices,
by a single edge with a weight equal to the number of these multiple edges. In this
way, the operations of cutting and gluing subtrees, exchanging the weights between
edges, etc., become easier to implement and to understand.

Definition 2.19 (Weighted tree) A weighted bicolored plane tree, or a weighted tree, or
just a tree for short, is a bicolored plane tree whose edges are endowed with positive
integral weights. The sum of the weights of the edges of a tree is called the total
weight of the tree. The degree of a vertex is the sum of the weights of the edges
incident to this vertex. The weight distribution of a weighted tree is a partition μ � n,
μ = (μ1, μ2, . . . , μm) where m = p + q − 1 is the number of edges, and μi ,
i = 1, . . . , m are the weights of the edges. Leaving aside the weights and considering
only the underlying plane tree, we speak of a topological tree. Weighted trees whose
weight distribution is μ = 1n will be called ordinary trees. Ordinary trees correspond
to Shabat polynomials: these are particular cases of Belyi functions, with a single pole
at infinity.

We call a leaf a vertex which has only one edge incident to it, whatever is the weight
of this edge. By abuse of language, we will also call a leaf this edge itself.

The adjective plane in this definition means that our trees are considered not as
mere graphs but as plane maps. More precisely, this means that the cyclic order of
branches around each vertex of the tree is fixed, and changing this order will in general
give a different tree. All the trees considered in this paper will be endowed with the
“plane” structure; therefore, the adjective “plane” will often be omitted.

Definition 2.20 (Isomorphic trees) Two weighted trees are isomorphic if the underly-
ing bicolored plane maps are isomorphic. In other words, they are isomorphic if there
exists a color-preserving bijection between the vertices of the trees and a bijection
between the edges which respects the incidence of edges and vertices, the cyclic order
of the edges around each vertex, and which also respects the weights of the edges.
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3 2 3 2 3
1

41

1

Fig. 4 The weighted tree on the left and the “weighted map” on the right have the same set of black and
white vertex degrees, but their face degrees are different

Definition 2.21 (Passport of a tree) The pair (α, β) of partitions α, β � n of the total
weight n of a tree, corresponding to the degrees of the black vertices and of the white
vertices of a weighted tree, is called a passport of this tree.

Example 2.22 (Tree of Fig. 3) The total weight of the tree shown in Fig. 3 is n = 18;
its passport is (α, β) = (522312, 71614111); the face degree distribution is γ = 10118,
and the weight distribution is μ = 51312216.

Remark 2.23 (Weighted trees vs. “weighted maps”) We must not confuse weighted
trees with “weighted maps.” The weighted tree on the left, and the “weighted map”
on the right of Fig. 4 have the same set of black and white vertex degrees: (α, β) =
(513121, 52), but the face degree partitions of the underlying maps are different: γ =
4116 for the map represented by the tree, and γ = 312115 for the map on the right. In
particular, the corresponding dessins cannot belong to the same Galois orbit.

Through the whole paper, we speak exclusively about weighted trees.

Now Propositions 2.4 and 2.12 may be reformulated as follows:

Theorem 2.24 (Lower bound attainability) Let α, β � n be two partitions of n having
p and q parts, respectively. Then the lower bound (9) is attained if and only if there
exists a weighted tree with the passport (α, β).

3 Existence theorem

In this section, we study the following question: for a given pair of partitions α, β �
n, does there exist a weighted tree of the total weight n with the passport (α, β)?
Equivalently, does there exist a rational function with three critical values, and with the
multiplicities of the preimages of these critical values being, first, two given partitions
α, β � n, and then, the third partition being equal to γ = (n − r, 1r )?

This question is a particular case of a more general problem of realizability of
ramified coverings: does there exist a ramified covering of a given Riemann surface
with the given “local data” (that is, with given multiplicities of the preimages of
ramification points)? The problem goes back to the classical paper by Hurwitz [14].
Though many particular cases are well studied, the problem in its full generality
remains unsolved. Among numerous publications dedicated to the realizability we
would like to mention early works by Husemoller [15] and Thom [27]; an important
paper by Edmonds et al. [10]; and recent publications [7,22] and [20].

The main result of this section is the following theorem (recall that gcd(α, β)

denotes the greatest common divisor of the numbers α1, . . . , αp, β1, . . . , βq ):
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Fig. 5 Construction of a forest
in the case αi > β j . Here
s = β j and t = αi − β j

Theorem 3.1 (Realizability of a passport by a tree) Let α, β � n be two partitions of
n, α = (α1, . . . , αp), β = (β1, . . . , βq), and let gcd (α, β) = d. Then a weighted tree
with the passport (α, β) exists if and only if

p + q ≤ n

d
+ 1 . (10)

By Theorem 2.24, the attainability of the bound (3) (coinciding with (9)) follows
from this statement. The attainability of the bound (4) in the case when condition (10)
is not satisfied will be established in Sect. 4.

Theorem 3.1 and Theorem 4.1 below are equivalent to the main result (Theorem 1)
of Zannier [29]. In his paper, Zannier remarks that it would be interesting to apply the
theory of dessins d’enfants to this problem in a more direct way and mentions a remark
by G. Jones that such an approach might produce a simpler proof. This is indeed the
case, as we will see in this section. Beside that, this theory enables us to find a huge
class of DZ-triples over Q (in a way, “almost all” of them), see Sect. 5; and it also
gives us a more direct access to Galois theory, see Sect. 6. We have already had a first
glimpse of the power of the “dessin method” in Example 2.13.

3.1 Forests

A forest is a disjoint union of trees.

Proposition 3.2 (Realizability by a forest) Any pair (α, β) of partitions of n can be
realized as a passport of a forest of weighted trees.

Proof If there are two equal parts αi = β j in the partitions α and β, we make a separate
edge with the weight s = αi = β j and proceed with the new passport (α′, β ′), where
α′ and β ′ are obtained from α and β by eliminating their parts αi and β j , respectively.

If there are no equal parts, suppose, without loss of generality, that there are two
parts αi > β j . Then we do the following (see Fig. 5):

(a) make an edge with the weight s = β j ;
(b) consider the new passport (α′, β ′) where β ′ is obtained from β by eliminating the

part β j , and α′ is obtained from α by replacing αi with t = αi − β j ;
(c) construct inductively a forest F ′ of the total weight n − s corresponding to the

passport (α′, β ′); by definition, this forest must have a black vertex of degree t ;
(d) glue the edge of weight s to the forest F ′ by fusing two vertices, as is shown in

Fig. 5, and get a forest F corresponding to (α, β) (since s + t = αi ).

The proposition is proved. �	
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Fig. 6 Stitching two edges

Fig. 7 Stitching two trees

3.2 Stitching several trees to get one: the case gcd(α, β) = 1

Theorem 3.3 (Existence) Suppose that gcd (α, β) = 1. Then the passport (α, β) can
be realized by a weighted tree if and only if p + q ≤ n + 1.

Proof According to Proposition 3.2, we may suppose that we already have a forest
corresponding to the passport (α, β). Now suppose that there are two edges of weights
s and u, s < u, which belong to different trees. Then we may stitch them together by
the operation shown in Fig. 6. The degrees of the vertices in the new, connected figure
are the same as in the old, disconnected one. Figure 7 shows that the operation works
in the same way when there are subtrees attached to the ends of the adjoined edges.

We repeat this stitching operation until it becomes impossible to continue. The latter
may happen in two ways. Either we have got a connected tree, and then we are done, or
there are no more edges with different weights while the forest remains disconnected.
Then, taking into account that gcd (α, β) = 1, we conclude that the weights of all
edges are equal to 1, that is, we have got a forest consisting of l > 1 ordinary trees. In
this case, the number of vertices p + q equals n + l and therefore is strictly greater
than n + 1, which contradicts the condition of the theorem. �	

Note that the side edges in Figs. 6 and 7 have the same weight s. We will use this
property while performing the operation inverse to stitching, namely, the ripping of a
connected tree in two, in the proof of Proposition 5.14 (see Fig. 25).

3.3 Non-coprime weights

Now suppose that gcd (α, β) = d > 1.
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Lemma 3.4 (When all weights are multiples of d > 1) The degrees of all vertices of
a forest are divisible by d > 1 if and only if the weights of all edges are also divisible
by d.

Proof In one direction, this is evident: the degrees of the vertices are sums of weights,
and therefore, if all the weights are multiples of d, then the same is true for the degrees.

In the opposite direction, if all the vertex degrees are divisible by d, then it is true, in
particular, for the leaves. Cut any leaf off the tree to which it belongs, and the statement
is reduced to the same one for a smaller forest. �	

Thus, dividing by d all the vertex degrees, that is, all the elements of the partitions
α and β, we return to the situation of Theorem 3.3, with the same numbers p and q,
and with the total weight equal to n/d. This finishes the proof of Theorem 3.1. �	

We hope the reader will appreciate the simplicity of the above proof: number the-
orists have been approaching this result for 30 years (1965–1995). Once again, the
credit goes to the pictorial representation of polynomials with the desired properties.

4 Weak bound

When condition (10) of Theorem 3.1 is satisfied, then according to Theorem 2.24, the
main bound (3) is attained. If this condition is not satisfied, then the following holds:

Theorem 4.1 (Weak bound) Let gcd (α, β) = d, and let p + q >
n

d
+ 1. Then

deg R ≥ (d − 1) n

d
, (11)

and this bound is attained.

4.1 Polynomials and cacti

We will need the following proposition which was proved in 1965 by Thom [27], and
then reproved in many other publications. For the reader’s convenience we provide a
short proof based on “Dessins d’enfants” theory following [19], Corollary 1.6.9.

Proposition 4.2 (Realizability of polynomials) Let � = (λ1, λ2, . . . , λk) be a set of
k ≥ 1 partitions λi � n of number n. Denote by pi the number of parts of λi , i =
1, 2, . . . , k. Let y1, y2, . . . , yk ∈ C be arbitrary complex numbers. Then a necessary
and sufficient condition for the existence of a polynomial T ∈ C[x] of degree n, whose
all finite critical values are contained in the set {y1, y2, . . . , yk}, with the multiplicities
of the roots of the equations T (x) = yi corresponding to the partitions λi , i =
1, 2, . . . , k, is the following equality:

k∑

i=1

pi = (k − 1) n + 1, or, equivalently,
k∑

i=1

(n − pi ) = n − 1 . (12)
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Fig. 8 A cactus. In this
example, there are three finite
critical values y1, y2, y3;
therefore, J is a triangle.
A cactus is of degree 7, and
therefore, it contains seven
triangles. Vertices which are
preimages of y1, respectively, of
y2 and of y3, are labeled by 1,
respectively, by 2 and by 3. In
this example we have
� = (312112, 2213, 2115).
Namely, λ1 = 312112 shows
how many triangles are glued
together at vertices labeled by 1,
while partitions λ2 and λ3
correspond to labels 2 and 3

Proof For purely esthetic reasons, instead of taking a tree with the vertices
y1, y2, . . . , yk , as we did in the proof of Lemma 2.2, let us take a Jordan curve J
on the y-plane passing through the points y1, y2, . . . , yk , and let C be its preimage
C = T −1(J ). Then C is a tree-like map often called cactus: it does not contain any
cycles except n “copies” of J glued together at the vertices which are preimages of
yi ; the number of copies of J glued together at a vertex is equal to the multiplicity of
the corresponding root of the equation T (x) = yi ; see Fig. 8. Equation (12) may then
be interpreted as Euler’s formula for the cactus since the cactus has

∑k
i=1 pi vertices,

kn edges, and n + 1 faces (n copies of J and the outer face). We leave it to the reader
to verify that another proof of the necessity of formulas (12) can be deduced from the
fact that the sum

∑k
i=1(n − pi ) in the second equality in (12) represents the degree

of the derivative T ′(x).
These observations prove that conditions (12) are necessary. Notice that the partition

λ = 1n may be eliminated from � (if it belongs to it), and may also be added to it,
and this does not invalidate equalities (12).

The proof that (12) is also sufficient is divided into two parts. The first part is
purely combinatorial and consists in constructing a cactus (at least one) with the
vertex degrees corresponding to �. The second part is just a reference to Riemann’s
existence theorem which relates combinatorial data to the complex structure, as it was
already the case in Proposition 2.11.

The proof of the existence of a cactus in question is similar to that of Proposition 3.2;
namely, it consists in “cutting a leaf.” Here a leaf means a copy of J which is attached
to C at a single vertex (see Fig. 9). This cutting operation must be carried out not
with the cactus itself (since it is not yet constructed), but with its passport �: it is
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Fig. 9 Cutting off a leaf from a
cactus. A leaf exists since every
partition in �, except maybe
one, contains a part equal to 1:
this is a consequence of (12)

easy to verify that (12) implies that all partitions λi ∈ � except maybe one contain
a part equal to 1. We eliminate these parts and diminish by 1 a part in the remaining
partition. In this way, we obtain a valid passport �′ of degree n − 1; then we construct
inductively a smaller cactus; and then glue to it an nth copy of J . We leave details to
the reader. �	

Note that for rational functions, and even for Laurent polynomials, a similar state-
ment is not valid, see [20]: conditions based on the Euler formula remain necessary
but they are no longer sufficient. See also Example 4.6.

Another approach to the proof of Proposition 4.2 is to use an enumerative formula
due to Goulden and Jackson [13] which gives the number of cacti corresponding to
a given list of partitions �. Let us write a partition λ � n in the power notation:
λ = 1d1 2d2 . . . ndn where di is the number of parts of λ equal to i so that

∑n
i=1 di = p

(here p is the total number of parts in λ), and
∑n

i=1 idi = n. Denote

N (λ) = (p − 1)!
d1! d2! . . . dn ! .

Then the following is true:

Proposition 4.3 (Enumerative formula) For a given � = (λ1, λ2, . . . , λk) satisfying
conditions (12) we have

∑ 1

|Aut (C)| = nk−2
k∏

i=1

N (λi ) (13)

where the sum is taken over the cacti C with the passport �, and |Aut (C)| is the size
of the automorphism group of C.

Now in order to prove Proposition 4.2 it suffices to remark that the right-hand side
of formula (13) is always positive.
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Remark 4.4 (Enumeration of ordinary trees) Taking k = 2 in Proposition 4.2 we
may put the critical values y1 and y2 to 0 and 1, and replace the Jordan curve J
passing through these points by the segment [0, 1]. Then a cactus becomes an ordinary
bicolored plane tree with the passport � = (λ1, λ2). In this case the number of trees
(with the weights 1/|Aut (C)|) is also given by formula (13). This particular case of
the enumerative formula was already proved by Tutte [28] in 1964. It will be useful in
the future: in order to verify that a given ordinary tree is a unitree we can just compute
the number given by (13).

4.2 Proof of Theorem 4.1

Consider first the case d = gcd(α, β) = 1 so that p + q > n + 1. In this case, the
inequality (11) is trivial: it is reduced to deg R ≥ 0. Thus, we only need to prove that
this bound is attained.

We have n + 1 ≤ p + q ≤ 2n; therefore, 1 ≤ (2n + 1) − (p + q) ≤ n. Let us take
an arbitrary partition λ3 � n having (2n + 1) − (p + q) parts, and also take λ1 = α

and λ2 = β. Then for � = (λ1, λ2, λ3) conditions (12) are satisfied. Hence, there
exists a polynomial T (x) satisfying all the conditions of Proposition 4.2, with three
critical values y1, y2, y3 which may be chosen arbitrarily. Taking P(x) = T (x) − y1
and Q(x) = T (x)− y2 we obtain two polynomials which factorize as in (5) and whose
difference is

R(x) = P(x) − Q(x) = y2 − y1 = Const .

Thus, the obvious lower bound deg R ≥ 0 is indeed attained.
Let us now consider the case gcd (α, β) = d > 1. In this case, we must prove both

the bound (11) and its attainability.
We have P = f d and Q = gd . Therefore, R = f d − gd factors into d factors

f − ζg, where ζ runs over the d-th roots of unity. If one of the factors, which we may
without loss of generality assume to be f − g, has degree < n/d, then the leading
coefficients of f and g coincide. Hence, the leading coefficients of f and ζg for ζ 
= 1
do not coincide, and all the remaining d − 1 factors have the degree exactly equal to
n/d. This gives us the inequality

deg R = deg ( f − g) + (d − 1) · n

d
≥ (d − 1) n

d
.

According to the first part of this proof, the bound deg ( f − g) ≥ 0 is attained, and
therefore, the bound (11) is also attained.

This finishes the proof of Theorem 4.1. �	
Notice that the above reasoning may be used for deducing the attainabilty of the

bound (3) in the case when condition (10) is satisfied and d > 1, from the case d = 1.
Indeed, it follows from the case of coprime α and β that

min deg ( f − g) =
(n

d
+ 1

)
− (p + q) ,
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Fig. 10 This is the only plane
map having the passport
(4121, 23). We see that one of
the faces is of degree 2

and hence,

min deg ( f d − gd) =
[(n

d
+ 1

)
− (p + q)

]
+ (d − 1) · n

d
= (n + 1) − (p + q).

Example 4.5 (Weak bound) Let us take n = 6, α = 4121, and β = 23 so that p = 2,
q = 3, and d = 2. Then we have

(n + 1) − (p + q) = (6 + 1) − (2 + 3) = 2

but this bound cannot be attained. The correct answer is given by Theorem 4.1:

min deg R = (d − 1) · n

d
= (2 − 1) · 6

2
= 3 .

And, indeed, there is only one plane map with two black vertices of degrees 4 and 2,
respectively, and with three white vertices of degree 2, see Fig. 10. This map has two
finite faces, but one of them is not of degree 1. The sum of degrees of the finite faces
is 3.

Remark 4.6 (Non-realizable planar data) Let us take α and β such that gcd (α, β) =
d > 1 and

n

d
+ 1 < p + q ≤ n + 1. Let us also take r = (n + 1) − (p + q) and

γ = (n − r, 1r ). Then the passport π = (α, β, γ ) satisfies the Euler relation: there are
p + q vertices, n edges, and r + 1 faces so that

(p + q) − n + (r + 1) = (p + q) − n + [(n + 1) − (p + q) + 1] = 2.

However, a plane map with these data does not exist.
The principal vocation of this paper is to use combinatorics for the study of poly-

nomials. But here in this particular example we, essentially, deduce a non-trivial state-
ment about plane maps from a trivial property of polynomials. Namely, we deduce the
non-existence of certain maps from the fact that the degree of a polynomial cannot be
negative.

5 Classification of unitrees

This section contains the main results of the paper: here we give a complete classifi-
cation of the passports satisfying the following property: a weighted bicolored plane
tree having this passport is unique. As we have explained before, in Proposition 2.18,
Belyi functions corresponding to such trees are defined over Q.

Ordinary unitrees were classified by Adrianov in 1989 by ad hoc methods. His
initial proof was never published, while the result itself became a part of a folklore.
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Later on, Adrianov [1] proposed another proof, based on a careful analysis of Tutte’s
enumerative formula (13) for k = 2 and on the examination of the cases in which
this formula gives a number ≤1 (recall that (13) counts each tree C with the weight
1/|Aut(C)|).

Our situation is more difficult for two reasons. First, we deal with weighted trees
and second, we do not have an enumerative formula at our disposal. For these (and
many other) reasons, such a formula would be very welcome. To be more specific, we
need a formula which would give us, in an explicit way, the number of the weighted
bicolored plane trees corresponding to a given passport. An additional difficulty here
ensues from the fact that the same passport may correspond not only to trees, but also
to forests.

Assumption 5.1 (Passports from now on) In the remaining part of the paper we will
consider only the passports (α, β) such that gcd (α, β) = 1 and p + q ≤ n + 1.

According to Lemma 3.4, the case gcd (α, β) > 1 is reduced to this one. Indeed,
starting from a tree T with gcd (α, β) = d > 1 we can obtain a tree T̃ with
gcd (̃α, β̃) = 1 by dividing the weights of all edges of T by d, and it is easy to
see that T is a unitree if and only if T̃ is a unitree.

Recall that the face partition γ is determined by (α, β) and is always equal to
γ = (n − r, 1r ) where r = (n + 1) − (p + q).

Definition 5.2 (Unitree) A weighted bicolored plane tree such that there is no other
tree with the same passport is called a unitree.

5.1 Statement of the main result

Definition 5.3 (Diameter) The diameter of a tree is the length of the longest path in
this tree.

The classification of unitrees is summarized in the following theorem:

Theorem 5.4 (Complete list of unitrees) Up to an exchange of black and white and
to a multiplication of all the weights by d > 1, the complete list of unitrees consists
of the following 20 cases:

• Five infinite series A, B, C, D, E of trees shown in Figs. 11, 12, 13, 14, and 15,
involving two integral weight parameters s and t which are supposed to be coprime
(thus, either s 
= t , or s = t = 1). Note that

– for the diameter ≥ 5, only the trees of the types B and E exist;
– for the diameter 4, the trees of types B, D, and E exist;
– for the diameter 3, the trees of types B, C, and E exist.

• Five infinite series F, G, H, I, J shown in Figs. 16 and 17.
• Ten sporadic trees K, L, M, N, O, P, Q, R, S, T shown in Figs. 18, 19, 20, and 21.

Remark 5.5 (Non-disjoint) The above series are not disjoint. For example, the trees
of the series C with k = l = 1 also belong to the series B. If s > t , C becomes a part
of E3, up to a renaming of variables, etc.
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Fig. 11 Series A: stars. The
edge of the weight s is repeated
k ≥ 0 times

Fig. 12 Series B: periodic
chains of an arbitrary length. We
distinguish the chains of even
and odd length since they have
passports of different type

Fig. 13 Series C : brushes of
diameter 3. Here k, l ≥ 1

Fig. 14 Series D: brushes of
diameter 4. There are exactly
two leaves of weight s and
exactly one leaf of weight s + t

Remark 5.6 (Adrianov’s list) The list of ordinary unitrees compiled by Adrianov in
1989 consists of the following cases: the series A, B, and C with s = t = 1; the series
F , H , and I ; and the sporadic tree Q.

Remark 5.7 (White vertices of degree 2) Notice that quite a few of our trees have
all their white vertices being of degree 2, and thus, according to Convention 2.14,
we can make these vertices implicit and draw the pictures as usual plane maps. The
corresponding maps are shown in Fig. 22.

The strategy of the proof of Theorem 5.4 is as follows. We propose various trans-
formations of trees changing the trees themselves while preserving their passports:
this is a way to show that the combinatorial orbit of a given tree consists of more
that one element. The trees which survive such a surgery are (a) those to which the
transformation in question cannot be applied, and (b) those for which the transformed
tree turns out to be isomorphic to the initial one. In this way we gradually eliminate
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Fig. 15 Series E : brushes of an arbitrary length. If there is a leaf of weight s, it is “solitary” on one of the
ends of the brush; otherwise, all the leaves are of the weight s + t . The parameters k, l ≥ 1

all the trees which are not unitrees. Then, at the final stage, we show that all the trees
which have passed through all the sieves are indeed unitrees.

The proof ends on page 47.

Definition 5.8 (Rooted tree) A tree with a distinguished leaf edge is called rooted tree,
and the distinguished edge itself is called its root. Two rooted trees are isomorphic if
there exists an isomorphism which sends the root of one of the trees to the root of the
other one.

Definition 5.9 (Branch) Let a vertex v of a tree T be given. Then a branch of T
attached to v is a rooted tree which is a subtree of T containing a single edge incident
to v. This edge is the root of the branch.

The following characterization of unitrees eliminates a vast amount of possibilities.

Lemma 5.10 (Branches of a unitree) All branches going out of a vertex of a unitree,
except maybe one, are isomorphic as rooted trees. This property must be true for every
vertex of a unitree.
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Fig. 16 Two series of unitrees of diameter 4. In the trees of the series F all the edges are of weight 1; the
degrees of vertices (except the leaves) are indicated. In the trees of the series G, there is exactly one edge
of weight 2, all the other edges being of weight 1; note that this time the degrees of the black vertices are
all equal

Fig. 17 Three series of unitrees of diameter 6. In H and I , all edges are of weight 1. In H the black vertices
which are not leaves are of degrees k and l which may be non-equal; in I they are of the same degree k. In
H all white vertices are of degree 2; in I , they are all of degree 3. In J , the number k ≥ 0 of leaves of the
weight 2 on the left and on the right is the same

Fig. 18 A sporadic unitree of
diameter 5
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Fig. 19 Five sporadic unitrees of diameter 6

Fig. 20 Three sporadic unitrees
of diameter 8

Proof Let us call a vertex central if it is obtained by the following procedure. We cut
off all the leaves of the tree; then do the same with the remaining smaller tree, then
again, etc. In the end, what remains is either a single vertex, or an edge. In the first case,
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Fig. 21 A sporadic unitree of diameter 10

there is a single central vertex; in the second case, there are two of them, one black
and one white. Obviously, any isomorphism of trees sends a central vertex to a central
one, and if there are two central vertices, it sends the black central vertex to the black
one, and the white, to the white one. On the other hand, according to Definition 2.20,
any isomorphism which sends a vertex v to itself must preserve the cyclic order of the
branches attached to v. Thus, the property affirmed in this lemma, namely, that all the
branches except maybe one are isomorphic, is valid for a central vertex or vertices,
since otherwise an operation of exchanging of two non-isomorphic branches attached
to the central vertex would change the cyclic order of branches around this vertex.

Further, observe that the operation of exchanging of two non-isomorphic branches
attached to a vertex of a rooted tree always changes this tree unless all the branches
attached to this vertex, except maybe the branch containing the root, are isomorphic.
Indeed, the introduction of a root makes a cyclic order on branches around any vertex
into a linear order on the branches incident to it and not containing the root. The only
possibility to make this linear order invariant under the operation of exchanging the
branches is to make them all equal.

Now, if a vertex v of a tree T is not central, then it belongs to a branch V attached
to a central vertex. This branch itself is a rooted tree, and in case if the condition of
the lemma is not satisfied, the operation of exchanging of the branches changes V .
However, changing the branch V would mean changing a single branch of T attached
to its central vertex. This would make T not isomorphic to itself. Thus, in this case T
would not be a unitree. �	

5.2 Weight distribution

Sometimes, we can change not the topology of the tree, but the distribution of its
weights, while remaining in the same combinatorial orbit. Let us first formulate a
statement which is entirely obvious:
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Fig. 22 Unimaps. Small letters correspond to the capital letters by which we have previously denoted the
unitrees; for example, the series e here is a particular case of the series E (when s = t = 1). Note that a,
b, e′, f , and g are particular cases of e. Note also that the series h and j and the sporadic unimaps k, m, n,
o, q, r , s are not “particular cases” but just coincide with H , J , K , etc., respectively

Lemma 5.11 (Weight distribution) If a passport (α, β) corresponds to a unitree then
the corresponding weight distribution μ (see Definition 2.19) is determined by α and
β in a unique way.
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Fig. 23 Weight exchange. If s < u but u 
= s + t then exactly two parts of the weight distribution μ have
changed

Fig. 24 Two adjacent edges of
the same weight s; one of them
is not a leaf

Fig. 25 “Ripping” a tree: an operation inverse to that of the proof of Theorem 3.3

Lemma 5.12 (Condition on weights) Let s, t, u be the weights of three successive
edges of a unitree, as in Fig. 23, left. If s ≤ u, then either u = s, or u = s + t .
Similarly, if s ≥ u, then either u = s, or u = s − t .

Proof Rotating if necessary the tree under consideration, without loss of generality,
we may assume that s ≤ u. If s < u, then we can construct the tree shown in Fig. 23,
right, replacing the weight u with s + t , the weight t with u − s, and exchanging the
places of the subtrees B and D. We see that the vertex degrees of the new tree are
the same as in the initial one, while the weights of two edges have changed, unless
u = s+t . Thus, if s < u but u 
= s+t , then exactly two parts of the weight distribution
μ have changed, which contradicts Lemma 5.11. �	
Corollary 5.13 (Adjacent edges) If in a unitree there are two adjacent edges of the
same weight s, and at least one of them is not a leaf, then s = 1.

Proof An edge which is not a leaf must be the middle edge of a path of length 3, see
Fig. 24. According to Lemma 5.12 we have either x = s or x = 2s. If there is an
edge of weight y attached to the middle edge of the path, like in Fig. 24, then we have
either y = x or y = x + s, so the possible values for y are s, 2s, or 3s. Dealing in the
same way with the other edges of the tree we see that the weights of all of them are
multiples of s. According to Assumption 5.1 this means that s = 1. �	

Proposition 5.14 (Path s, t , s) Suppose that a unitree contains a path of three succes-
sive edges having the weights s, t , s. Then the only possible weights for all the edges
of this tree are s, t , or s + t .

Proof Let us make an operation inverse to the one used in the proof of Theorem 3.3,
that is, “rip” the tree along the edge of the weight t , as in Fig. 25.

Now suppose that in one of the subtrees A,B, C,D there exists an edge of a weight
x 
= s, t, s + t , and try to stitch the two trees together in a different way.
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Fig. 26 Suppose that the subtree D is not empty

1. Suppose that in one of the subtrees A or B there exists an edge of a weight x 
= s+t .
Stitch it to the edge of the weight s + t by the procedure explained in the proof of
Theorem 3.3.
(a) If x < s + t then the weights of the four edges participating in the operations

of ripping and stitching, instead of being s, t, s, x become s + t − x, x, x, s.
Removing from the two sets the coinciding elements s and x , we get, on the
one hand, s, t , and, on the other hand, s + t − x, x . These sets coincide only
when x = s or x = t .

(b) If x > s+t then, instead of s, t, s, x , we obtain x−s−t, s+t, s+t, s. These two
sets cannot coincide at all since x is greater than every term in the second set.

2. Suppose that in one of the subtrees C or D there exists an edge of a weight x 
= s.
Stitch it to the edge of the weight s by the same procedure as above.
(a) If x > s then, instead of s, t, s, x , we get x − s, s, s, s + t . Removing s, s from

both sets we get, on the one hand, t, x , and on the other hand, x − s, s + t .
These sets coincide only when x = s + t .

(b) If x < s then the new set of weights is s−x, x, x, s+t ; this set cannot coincide
with s, t, s, x since s + t is greater than every term in the second set.

Thus, the hypothesis that there exists an edge of a weight x 
= s, t, s + t leads to a
contradiction. The proposition is proved. �	
Remark 5.15 Notice that the operation of ripping and stitching introduced in the proof
of Proposition 5.14 often leads to another tree even in the case when the weights of
all the edges of the tree under consideration are s, t , or s + t . Below we will often use
this operation and call it sts-operation.

Proposition 5.16 (Path s, t , s + t , I) Suppose that a unitree contains a path of three
successive edges having the weights s, t , s + t , and suppose also that s 
= t . Then the
edge of the weight s + t is a leaf.

Proof Take the tree shown in Fig. 26, left, and exchange the subtrees B and D. Obvi-
ously, both trees in the figure have the same passport. Suppose that the edge of the
weight s + t is not a leaf so that the subtree D of the left tree is non-empty. According
to Lemma 5.10, the edges of D which are adjacent to the vertex q have the same
weight. Denote this weight by x . By Lemma 5.12, the possible values of x are either t
or s + 2t . In the first case, we get a sub-path containing three edges of the weights t ,
s + t , t , and, according to Proposition 5.14, the only possible edge weights in such a
tree could be t , s + t , and s + 2t . But this contradicts the supposition that we have
already an edge of the weight s with s 
= t .

If, on the other hand, x = s+2t , then there are at least three non-isomorphic subtrees
attached to the vertex p in the right tree, since there are edges of three different weight
s, t , and s + 2t incident to this vertex. This situation violates Lemma 5.10. �	
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Remark 5.17 (s = t) If s = t then both arguments in the above proof are no longer
valid, though it is still difficult to make left and right trees of Fig. 26 isomorphic.
(Recall that if s = t then s = t = 1, see Corollary 5.13.) However, it is possible
to construct unitrees having the paths of length 4 with the weights 1, 1, 2, 1 (see the
series G, Fig. 16), and the paths with the weights 1, 1, 2, 3 (see the tree P , Fig. 19).

Proposition 5.18 (Path s, t , s + t , II) Suppose that a unitree contains a path of three
successive edges having the weights s, t , s + t , and suppose also that the vertex
adjacent to the edges of weights s and t has the valency s + t . Then the edge of the
weight s + t is a leaf.

Proof Keeping notation of Fig. 26, it is enough to observe that if the subtree B is
empty, then the two trees cannot be isomorphic since the right one has more leafs than
the left one. This statement remains valid also for s = t . �	

5.3 Brushes

A brush is a chain with two bunches of leaves attached to its ends: see formal definition
below. Typical representatives of brushes are the trees shown in Fig. 15.

In this section, we classify all brush unitrees.

Definition 5.19 (Crossroad) A vertex of a tree is profound if, after having removed
all the leaves from the tree, this vertex does not become a leaf. A vertex of a tree is a
crossroad if it is profound and has at least three branches going out of it.

Definition 5.20 (Brush) A tree is called a brush if it does not contain crossroads.

Proposition 5.21 (Brush unitrees) A brush unitree belongs either to one of the series
A, B, C, D, E (Figs. 11, 12, 13, 14, 15), or to the series F with the degree of the
central vertex k = 2, or to the series G with the degree of the central vertex k = 3
(Fig. 16).

Proof In this part of the proof ,we only eliminate brush trees, which are not unitrees.
The uniqueness of the remaining brush trees will be proved later, in Sect. 5.7.

When all the edges of a tree are leaves, we get the series A consisting of stars
(Fig. 11). According Lemma 5.10, only one of the leaves may have a weight different
from the others.

For the trees of diameter three, Lemma 5.12 leads to two possible patterns. One
of them corresponds to the series C (Fig. 13); the other one is shown in Fig. 27, left.
We see that when k > 1 we can transform the left tree of Fig. 27 into the right one.
The new tree has the same passport but is not isomorphic to the initial one. Thus, the
pattern shown in Fig. 27, left, is not a unitree.

If k = 1 then this pattern is a particular case of the series E1, so it is a unitree.
Now let us consider first the trees of diameter ≥ 5, and after that return to the diam-

eter 4 case. Suppose that a tree contains two adjacent edges of weights s and t which
are not leaves. It follows from Lemma 5.12 and Proposition 5.18 that the weights s and
t alternate along all the path connecting vertices from which leafs grow. Furthermore,
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Fig. 27 If k > 1, the tree on the left can be reconstructed into the one on the right. The new tree is different
from the initial one since it has bigger diameter

Fig. 28 These trees have the same passport. They are not isomorphic since the right tree contains a
crossroad, while the left one does not. Therefore, if k ≥ 2 then the weight of the leaves must be s + t and
not s (or t)

Fig. 29 The bunch of leaves of weight 1 which is transplanted from left to right can be empty, if there is
only one leaf on the left

since this path contains at least three edges, it follows from Proposition 5.14 that the
only possible weight of a leaf which is not obtained by the further alternance of s and
t is s + t . Now look at Fig. 28, where an sts-operation is applied to a brush tree having
k ≥ 2 leaves of weight s on one of its ends. The tree thus obtained, shown on the
right, is distinct from the initial one since it contains a crossroad. A similar surgery
can be made if there are l ≥ 2 leaves of the weight s or t (depending on the parity of
the diameter) on the right end of the tree. Thus, for the diameters ≥ 5 only the types
B and E survive. Namely, if a bunch of leaves at an end of the tree contains two or
more leaves then the weight of these leaves is s + t .

The above argument fails for the brush trees of diameter 4: indeed, this time the
operation shown in Fig. 28 does not create a crossroad. Therefore, the diameter 4 case
needs a special consideration. Let us take a diameter of the tree, that is, a chain of
length 4 going from one of its ends to the other. By Lemma 5.12 the sequence of
the weights of its three first edges can be either s, t , s, or s, t , s + t , or s + t , t , s.
Consider first the case s, t , s + t so that the edge of the weight s + t is not a leaf. In
this case by Proposition 5.16 we necessarily have s = t = 1 and a tree either belongs
to the series G, where the degree of the central vertex is k = 3, or has the form shown
in Fig. 29 on the left. In the last case, however, the tree under consideration is not a
unitree, which can be seen by a transformation shown on the right.
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Fig. 30 The trees on the upper level have the same passport; they are different if s 
= t and at least one
of the parameters k, l is greater than 1. The trees on the lower level also have the same passport; they are
different if either k > 2, or l > 1, or both

Assume now that the sequence of weights starts with s, t , s. Using Lemma 5.12
again we see that it must be a part of one of the following three possible sequences:
either s, t, s, t , or s, t, s, s + t , or s, t, s, t − s. For the latter one, taking s′ = t − s,
t ′ = s, we find the already considered above case s′, t ′, s′ + t ′ read from right to left.
Two other forms are shown in Fig. 30 on the left.

The first of these forms (above, left) can be transformed in a way shown on the
right. The new tree is not equal to the initial one, unless either it belongs to the type B
(that is, k = l = 1), or s = t = 1, which is a particular case of the series F , where the
degree of the central vertex is k = 2. For the second form (below, left), the operation
shown on the right cannot be applied when k = 1, that is, when the tree belongs to the
series E1; and it does not change the tree when k = 2 and l = 1, which corresponds
to the series D.

Finally, if the sequence of weights of edges of a diameter starts as s + t , s, t , then
either a tree belongs to the series E4 (or E2), or the sequence of weights of the edges
of a diameter is s + t , s, t , s − t . In the latter case, however, Proposition 5.16 yields
that s − t = t = 1, implying that a tree is the one shown in Fig. 29 on the left. �	

5.4 Trees with repeating branches of height 2

From now on, we will assume that the trees we consider are not brushes, that is, they
contain at least one crossroad. Recall that a crossroad is a profound vertex at which
three or more branches meet, see Definition 5.19. A typical tree with a crossroad is
shown in Fig. 31. According to Lemma 5.10, all the branches attached to the crossroad,
except maybe one, are isomorphic as rooted trees, with their root edges (shown by thick
lines in the figure) being incident to the crossroad. We call these branches repeating;
in the figure they are denoted by the same letter R; the subtrees of R attached to the
root are denoted by R′. The subtrees R′ are non-empty since otherwise the vertex
to which R and N are attached would not be profound. The number of branches of
the type R can be two or more, but the majority of the transformations given below
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Fig. 31 A typical tree with a
crossroad. The subtrees R′ are
all non-empty. The branch N is
also non-empty. It may, or may
not be isomorphic to R

Fig. 32 A transformation of repeating branches of height 2 with leaves of weight 2

involve only two branches; therefore, in the majority of pictures, we will draw only
two repeating branches.

By convention, we suppose that the branch N is always non-empty. If all the
branches meeting at the crossroad are isomorphic to R and might therefore be all
considered as repeating, we take an arbitrary one of them and, somewhat artificially,
declare it to be the “non-repeating” branch N . The subtree N ′ has a right to be empty.

The roots of repeating branches are adjacent edges which are not leaves. Therefore,
according to Corollary 5.13, their weights must be equal to 1. Finally, the height of
a repeating or non-repeating branch is the distance from its root vertex (that is, the
crossroad) to its farthest leaf.

In the previous section, we classified the brush unitrees, which are by definition
unitrees without crossroads. In this section, we establish a complete list of all possible
unitrees whose repeating branches all have the height 2. More precisely, we assume
that for any crossroad of a unitree under consideration the repeating branches are of
height 2.

Proposition 5.22 (Repeating branches of height 2) A unitree whose all repeating
branches are of height 2 belongs to one of the types F, G, H, or K .

Proof First of all observe that weights of leaves of repeating branches cannot be equal
to 2 since otherwise the transformation shown in Fig. 32 leads to a non-isomorphic
tree (the tree on the right has fewer leaves than the one on the left). Thus, the weights
of these leaves are equal to 1. Therefore, according to Lemma 5.12 the root edge of
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Fig. 33 Non-repeating branch of height 2. These transformations show that the weight of its leaves cannot
be 2 or 3

N can only be of weight 1 or 2. The case N ′ = ∅ (that is, when N consists of a
single edge, see Fig. 31) is a particular case of the series F and G. Suppose then that
N ′ 
= ∅.

If the non-repeating branch is of the height 2, that is, if it is a root edge with a bunch
of leaves attached to it, then these leaves could be of weight 1 or 2 when the root edge
is of weight 1, and they could be of weight 1 or 3 when the root edge is of weight 2.
However, the leaves of the weights 2 and 3 are impossible, as two transformations of
Fig. 33 show. In this figure, we take all the repeating branches but one and re-attach
them to one of the leaves of the non-repeating branch. These transformations always
change the trees: on the left, there appears a non-leaf of weight 2, and on the right,
there appears a non-leaf of weight 3. Thus, all the leaves of the non-repeating branch
must be of weight 1.

In addition, when the root edge of the non-repeating branch is of weight 2, this
branch cannot be isomorphic to the repeating branches. This observation implies that
the degree of the black vertex lying on this branch must be equal to the degrees of the
black vertices of repeating branches since otherwise an exchange of leaves between
repeating and non-repeating branches could be possible. Thus, the only remaining
possibilities are the trees of the types F and G, see Fig. 16.

Consider now the case of a non-repeating branch of height ≥ 3. First suppose that
the vertex q, which is the nearest neighbor of the crossroad vertex p when we move
along the non-repeating branch, is itself a crossroad. According to our supposition, the
tree does not have repeating branches of the height greater than 2. Hence, the repeating
branches growing out of q are of height 2. But then a leaf L of such a branch can be
interchanged with a repeating branch U growing out of p, see Fig. 34. This operation
would create at least three different trees attached to p: one of them would be of
height 1, another one of height 2, and a third one of height 4. Thus, this possibility is
ruled out.

Suppose next that the vertex q is not a crossroad. Then the tree looks like the
one in Fig. 35, top left, where A is non-empty. A priori, there are four possibilities
for the values (s, t), namely, (1, 1), (1, 2), (2, 1), and (2, 3). The case (2, 3) can be
immediately ruled out since the edge of weight 3 should be a leaf by Proposition 5.16,
but we have supposed that A 
= ∅.
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Fig. 34 A leaf L can be
interchanged with a repeating
branch U

Fig. 35 Illustration to the proof of Proposition 5.22

The cases (s, t) = (1, 1) or (2, 1) can be treated together. When t = 1, we can
re-attach A to one of the leaves of the repeating branches, as is shown in the same
figure on the top right. Among the branches attached to the vertex p of the tree thus
obtained, there is only one branch of a height greater than 2: it is W . Therefore, all
the remaining branches are repeating, so we may conclude that s = 1 (the case s = 2
is impossible), and all the repeating branches have only one leaf. Thus, the tree looks
like the one on the bottom left in Fig. 35, where two possibilities may occur: either
u = 1; or u = 2, and then, according to Proposition 5.18, A′ = ∅, so the edges of the
weight u = 2 are leaves.
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Fig. 36 Illustration to the proof of Proposition 5.22

In the first case, we can exchange the repeating branches attached to the vertices
p and r . Therefore, they all must be equal, and we get a tree of the type H , see Fig. 17.
In the second case, we can interchange one of the leaves of weight 2 with two repeating
branches attached to p. The only tree which does not change after this transformation
is the one which has exactly one leaf of weight 2 and exactly two repeating branches
attached to p, that is, the tree K , see Fig. 18.

There remains the last case to be ruled out: when the tree shown in Fig. 35, top
left, has s = 1 and t = 2; see also Fig. 36, left. In this case, we can interchange the
subtree A with all but one repeating branches, see the tree on the right of Fig. 36. We
see that A must consist of several copies of the branch U since otherwise A should
consist of copies of the longer branch at p, and we would get repeating branches of the
height greater than 2. Then, we may take the left tree of Fig. 36, cut all the repeating
branches form p and re-attach them to one of the leaves of A. This operation will
necessarily produce a different tree since the only edge of the weight 2 will be now at
a distance 1 from the leaf, while it was at distance 2 in the initial tree. Therefore, this
case is impossible.

Proposition 5.22 is proved. �	

5.5 Trees with repeating branches of the type (1, s, s + 1)

If a unitree has a crossroad from which grow repeating branches of height > 2, then
these branches “start” either with a path 1, s, s + 1, or with a path 1, t , 1, where s and
t here may be equal to either 1 or 2 (see Figs. 38, 45). In this subsection we classify
unitrees which have no crossroads of the second type. We start with the following
lemma.

Lemma 5.23 If a unitree has a repeating branch of the type (1, s, s + 1), then this
branch has one of the two forms shown in Fig. 37. Furthermore, in the second case
the unitree is necessarily the tree P.

Proof First of all observe that the subtrees A and C in Fig. 38 can be interchanged, and
if one of them was empty, while the other was not, this operation would change the
number of leaves so that the tree in question could not be a unitree. We will show now
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Fig. 37 Illustration to the proof of Lemma 5.23

Fig. 38 Illustration to the proof
of Lemma 5.23: the subtrees A
and C are empty; the subtree B
is a bunch of leaves of weight
s + 1

that the assumption that both trees A and C are not empty also leads to a contradiction
(so that, in fact, both of them are empty).

Since the tree V is isomorphic to a subtree of U and is therefore distinct from U , if
A is not empty, then it consists of a certain number of copies of U or of V . The first
case is impossible since A is a subtree of U . Therefore, A consists of a certain number
of copies of V implying that C is a proper subtree of A. Now, interchanging A and C in
every repeating branch we may prove in the same way that that A is a proper subtree
of C, implying the contradiction that we need. Thus, A and C are empty. In particular,
B is merely a collection of leaves of weight s + 1.

Assume now that s = 2. Then our tree must look as in Fig. 39, top left, where the
number of repeating branches at the vertex p might be two or more. Let us take two
of these branches, apply the transformation shown on top right, and see what takes
place at the vertex q. According to Lemma 5.10, all the subtrees growing out of this
vertex, except maybe one, must be isomorphic. This can only happen when k = 1,
and the subtree growing from q to the left is isomorphic to the one growing from q to
the right. Therefore, before the transformation there were exactly two (and not more)
repeating branches at p, and the subtree N was reduced to a single leaf of weight 3.
The resulting situation is shown in Fig. 39, bottom left. In this case, our transformation
can still be applied, but it leads to a tree isomorphic to the initial one. The unitree thus
obtained is P , see Fig. 19. �	
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Fig. 39 Illustration to the proof of Lemma 5.23: transformations of repeating branches of height 3 with
the weight sequence 1, 2, 3

Proposition 5.24 (Branches of the type (1, s, s +1)) A unitree which has at least one
crossroad of type (1, s, s + 1) but no crossroads of type (1, t, 1) belongs to one of the
types J , L, N , M, O, P, R, or S.

Proof In view of Lemma 5.23, we may assume that the repeating branches have the
form shown in Fig. 37 on the left. Suppose first that the number of the repeating
branches is three or more, and apply the transformation shown in Fig. 40, that is,
interchange the positions of a leaf of weight 2 and of a pair of repeating branches.
If the number of the repeating branches was more than three then the principle “all
branches except maybe one are isomorphic” would be violated at the vertex p. The
same principle would be violated at the vertex q if the number of leaves in a repeating
branch was more than two. Therefore, the number of repeating branches is three, and
our transformation looks as is shown in Fig. 40, bottom. If the number of leaves in a
repeating branch is two, then applying once again the same principle at the point q,
we arrive at the tree O . Assume now that this number is equal to one. Then the height
of N is less than two, since otherwise the new tree would have more crossroads than
the initial one. Furthermore, if N is a bunch of leaves of weight 2, then we could
transfer all these leaves to the vertex q changing the tree. Therefore, N is empty, and
we arrive at the tree N .

Suppose next that the number of repeating branches is two. The starting edge of the
non-repeating branch N is either of weight 2, and then, according to Proposition 5.18,
it is a leaf, and we get the tree J (Fig. 17), or it is of weight 1. In the latter case it does
not have to be a leaf, though this situation imposes another constraint: the repeating
branches must have only one leaf, otherwise the transformation shown in Fig. 41 can
be applied, producing three non-isomorphic branches growing from the crossroad.

What remains is to study more attentively the structure of the non-repeating branch
N . Here we consider the following cases:

• The height of N is 1, that is, N ′ = ∅.
• The height of N is 2.
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Fig. 40 Illustration to the proof of Proposition 5.24: transformations of repeating branches of height 3 with
the weight sequence 1, 1, 2

• The height of N is 3 or more, and N starts with a path having the weights 1, s, 1
where s is equal to 1 or 2.

• The height of N is 3 or more, and N starts with a path having the weights 1, s,
s + 1 where s is equal to 1 or 2.

The height of N equal to 1 case is trivial: we get the tree L (Fig. 19).
The height of N equal to 2 case is illustrated in Fig. 42. If the weight of the leaves of

the non-repeating branch is equal to 2 then, whatever is their number, the reattachment
shown on the left changes the tree since the new tree has one leaf less than the initial
one. If the weight of the leaves of the non-repeating branch is equal to 1 then the
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Fig. 41 Illustration to the proof of Proposition 5.24: two repeating branches

Fig. 42 Illustration to the proof of Proposition 5.24: non-repeating branch of height 2

reattachment shown on the right also changes the tree unless there is only one leaf in
the non-repeating branch. The latter case gives us the tree M (Fig. 19).

Assume now that the height of the non-repeating branch is ≥ 3, and this branch
contains a path with the weights 1, s, 1, see the upper tree in Fig. 43. First of all,
we remark that the subtree A may be interchanged with a chain of length 2 attached
to the vertex p. Then, according to the principle “all branches except maybe one
are isomorphic,” two situations may occur. First, we could thus create two repeating
branches U attached to the vertex q, see the tree in the middle. But such a tree would
contain repeating branches of the type (1, s, 1) which contradicts our supposition.
The other possibility is that A is equal to the chain which was attached to p. Then we
get a vertex r (see the lower tree) which is of degree 2 and is incident to two edges
of weights 1 and 1. Therefore, according to Proposition 5.18, the edge of weight s,
which is not a leaf, cannot have weight 2; hence, s = 1. Finally, we affirm that
C = ∅, otherwise it could be reattached to the vertex p and we would get three
different trees attached to q. The resulting tree is shown in Fig. 43, bottom. If B = ∅

we get the tree S (Fig. 20). If B 
= ∅ then, again according to the principle “all
branches except maybe one are isomorphic,” B must be equal to a chain of weights
1, 1, 2, and we get the tree R (Fig. 20), since otherwise a tree would contain repeating
branches of the type (1, s, 1). (Note that in the last case we obtain the tree T which is
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Fig. 43 Illustration to the proof of Proposition 5.24: a non-repeating branch containing a path with the
weights 1, s, 1

considered in Proposition 5.25 which treats the case of repeating branches of the type
(1, t, 1).)

Finally, consider the case when the non-repeating branch is of height ≥ 3 and
contains a path with the weights 1, s, s + 1, see Fig. 44. We affirm that in this
case s = 1 and all the three subtrees A, B, C are empty so that we get the tree
N of Fig. 19 (and what we call “non-repeating branch” is in this case equal to
the repeating branches). Indeed, the tree contains a path with the weights 1, 1, 1;
therefore, according to Proposition 5.14, the only possible weights are 1 and 2,
so s = 1. Now, if A 
= ∅, then it could be reattached to the vertex q, thus
producing a tree with one more leaf. Therefore, A = ∅. Then, C is also empty
since A and C can be interchanged. Finally, if B 
= ∅ then there are two possi-
bilities. Either B is a bunch of leaves of weight 2; but then it can be reattached
to the vertex p. Or B is a number of copies of the long branch growing out of
the vertex r ; but then, once again, we would create repeating branches of the type
(1, t, 1).

Proposition 5.24 is proved. �	
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Fig. 44 Illustration to the proof of Proposition 5.24: a non-repeating branch containing a path with the
weights 1, s, s + 1

5.6 Trees with repeating branches of the type (1, t, 1)

In this subsection, we classify unitrees which have crossroads of the type (1, t, 1).

Proposition 5.25 (Branches of type (1, t, 1)) A unitree which has at least one cross-
road of type (1, t, 1) belongs to one of the types I , Q, or T .

Proof First of all, observe that by Lemma 5.10 the subtree B is a collection of copies
of the subtree U , and the subtree A is a collection of copies of the subtree V (see
Fig. 45). Further, an sts-operation, applied to the first tree of Fig. 45 gives the second
tree shown in this figure. This image implies that there are only two repeating branches
growing from the vertex p, otherwise the tree would certainly change. Now, looking
at the vertex q of the second tree of Fig. 45 we see that either N = U or N = W . If
N = W then the initial tree would look like the third tree of the same figure. Then we
could once again apply an sts-transformation and make the long branch even longer,
and one of the repeating branches, shorter (see the fourth tree of the figure), which
would give us three different branches attached to p. Hence, N = U . In particular, we
have proved that whenever a unitree has a crossroads of type (1, t, 1) the corresponding
non-repeating branch is a subtree of the repeating branch.

Now, it follows from N = U that the first tree of Fig. 45 has a (unique) center at
the vertex p, while the second one has a (unique) center at the vertex r . Hence, the
vertex p of the first tree must correspond to the vertex r of the second one, and thus,
we must have t = 1 and B = N = U . Therefore, the tree has the form shown in
Fig. 46, with the same number l ≥ 1 of branches growing out of the vertices u and v.

If C = ∅, then we get a tree of the type I . Thus, we may assume that C is non-empty.
Observe first that l = 1. Indeed, if l > 1 then V is a repeating branch. Furthermore,
since C is non-empty, V is either (1, t, t + 1)-branch or (1, t, 1)-branch. The first case
is impossible by Lemma 5.23, while the second case is impossible since, as we have
shown in the previous paragraph, here the corresponding non-repeating branch should
be a subtree of V , and this is not so.

If C is a collection of leaves, then the transformation of Fig. 32 shows that all leaves
are of weight 1. Moreover, C contains not more than one leaf since otherwise we could
transfer all the other leaves to the vertex v, which would change the tree. Therefore,
in this case we get the tree Q. Finally, if C is not a collection of leaves, then W is a
repeating branch of height at least 3, which, as above, is necessarily of type (1, t, t +1),
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Fig. 45 Illustration to the proof of Proposition 5.25
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Fig. 46 Illustration to the proof of Proposition 5.25

and Lemma 5.23 implies that W has the form shown in Fig. 37 on the left, where the
number of leaves is equal to one since otherwise we could transport all the leaves but
one to the vertex w. Therefore, in this case we get the tree T .

Proposition 5.25 is proved. �	

5.7 Proof of the uniqueness of unitrees

Our main tool will be “cutting and gluing leaves,” though these operations will be
carried out not with the trees themselves, but with their passports; the trees must be
kept in mind for an intuitive understanding of the proof. We do not repeat every time
that “the same reasoning remains valid if we interchange black and white.”

(A) There is only one black vertex (see Fig. 11); therefore, all white vertices must
be adjacent to it, which means that they are leaves. The uniqueness is evident.

The uniqueness proofs for the cases from (B) to (E) all follow the same lines. If the
structure of a passport implies the existence of a leaf of degree, say, s, then the only
way to construct a corresponding tree is to glue an edge of the weight s to a vertex of
the opposite color of a tree having one less edge. Furthermore, in the initial (bigger)
tree this edge can only be attached to a vertex of degree bigger than s. If the smaller
tree is a unitree (and usually it is by induction), and if there is essentially one way to
attach the new edge to it, then the bigger tree is also a unitree. In certain cases more
than one way of attaching a new edge may exist, but they all lead to isomorphic trees.

(B) Let us consider, for example, the case of an odd length, and examine not the tree
itself but its passport (α, β). For this tree, α and β are the same: α = β = ((s + t)k, s).
The passport implies that there are two vertices of degree s, a black one and a white
one, while all the other vertices, both black and white, are of degree s + t . These



1046 F. Pakovich, A. K. Zvonkin

latter vertices cannot be leaves since otherwise there should exist vertices of a bigger
degree to which such leaves would be attached. A tree must have at least two leaves.
We conclude that there are exactly two leaves, and they are vertices of degree s. They
are connected to the tree by edges of the weight s. The degree of the vertex to which
such a leaf is attached is s + t , and its color is opposite to the color of the leaf.

Now let us cut off one of these leaves, for example, the white one. Then we get a
tree with one less edge and with the passport α = ((s + t)k−1, s, t) and β = (s + t)k .
This passport corresponds to the chain-tree of smaller (and even) length. We may
inductively suppose that this tree is a unitree. The vertex of degree t of this tree
is a leaf. Now, we must make an operation which would simultaneously fulfill the
following three goals:

• it re-attaches back a white leaf of weight s to the smaller tree;
• it makes the black vertex of degree t in the smaller tree to disappear;
• it makes to appear an additional, kth black vertex of degree s + t , to the already

existing k − 1 ones.

It is clear that the only way to do all that is to attach this white leaf of weight s to
the black vertex of degree t . This operation re-creates the initial chain-tree.

The proof for an even length repeats the previous one almost word to word, only
the leaves are now of the same color and of degrees s and t . The base of induction is
a tree consisting of a single edge, which is obviously unique.

(C) The passport of a tree of the type C is α = (ks + t, sl), β = (ls + t, sk). We
affirm that there exists a leaf of degree s. Indeed, a tree must have at least two leaves,
and the vertex of the biggest degree cannot be a leaf. The biggest degree is either
ks + t , or ls + t , or both.

Suppose that we have a black leaf of degree s. Then it has to be attached to the only
white vertex of degree bigger than s, which is the white vertex of degree ls + t . Cut
this leaf off. We get a smaller tree, with one less edge, with l being replaced with l −1.
This tree is a smaller instance of C which may supposed to be a unitree by induction.
(Note that in particular cases it can also be of type B, or even of A, the latter one when
l was equal to 1.)

Now we no longer work with the passports, but with the trees. We know the smaller
tree since it is unique, and we must re-attach the previously cutoff black leaf to a white
vertex of this smaller tree. Here two cases may take place.

1. If s 
= t , or even if s = t = 1 but l 
= 1, the initial (bigger) tree did not have a
white vertex of degree 2s. Therefore, we cannot attach the cutoff leaf to a white
vertex of degree s. Hence, the only vertex to which it can be attached is the white
vertex of degree (l − 1)s + t .

2. If s = t = 1 and l = 1 then the smaller tree is the star with all its leaves being
of degree 1. Then we may re-attach the leaf to any one of them, the resulting tree
will be the same.

There is an additional subtlety here. The planar structure of our trees means that we
must choose not only a vertex to which we attach a new edge. We must also choose
an angle between neighboring edges incident to the vertex of attachment, and to insert
the leaf into the angle between these edges. If there are m edges incident to a vertex,
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there also are m angles between them and therefore m ways of placing the new edge.
But, obviously, in our case all these ways give the same plane tree, see Fig. 13.

(D) Two black vertices of degree 2s + t cannot be leaves. Therefore, there exists
a leaf of degree s or s + t . Cut it off, and we get either C or E1. Indeed, if the cutoff
(white) leaf was of degree s, and was attached to one of the black vertices of degree
2s + t (there are no other black vertices), then the passport of the smaller tree becomes
α = (2s + t, s + t), β = ((s + t)2, s). This passport corresponds to the pattern E1,
with l = 1 and the length of the chain equal to 4. The uniqueness of the corresponding
tree will be proved in a moment. The only way to glue a leaf of degree s to this tree
and to create a vertex of degree 2s + t instead of vertex of degree s + t is to glue this
leaf to the vertex of degree s + t .

If, on the other hand, the cutoff (white) leaf was of degree s + t , and was attached to
one of the black vertices of degree 2s + t , then the passport of the smaller tree becomes
α = (2s + t, s), β = (s + t, s2). This passport corresponds to a tree of type C , with
k = 2 and l = 1. The uniqueness of such a tree was proved above. Then the only way
to glue back the leaf of degree s + t is to glue it to the black vertex of degree s of the
smaller tree.

It is easy to see that in both cases we get the same tree D.
(E) The proof is similar to the cases considered above, so we will shorten our

presentation. Consider first the cases E3 and E4. All the vertices except two are of
degree s + t ; the two remaining ones are of degrees (k + 1)s + kt and (l + 1)s + lt
for E3, and (k + 1)s + kt and ls + (l + 1)t for E4. Without loss of generality we may
suppose that (k + 1)s + kt is the bigger of the two; therefore, it cannot be a leaf. For
E4, the “second best” vertex cannot be a leaf either since it has the same color. For
E3, if k > l, the vertex of degree (l + 1)s + lt might in principle be a leaf. Whatever
is the case, there exists a leaf of degree s + t . Cut it off, and we obtain a smaller tree,
with the possible pattern transitions as follows: E4 → E4; E3 → E3; E4 → E2; or
E3 → E1, the latter two maybe with renaming the variables.

Now, for the cases E1 and E2 the situation is similar. All the vertices except two
are of degree s + t . The vertex of the biggest degree cannot be a leaf. Therefore, there
exists a leaf of degree s or s + t . Cut it off, and we get a smaller tree, with the possible
pattern transitions as follows: E1 → E1; E1 → E2; E2 → E1; E2 → E2, or we may
arrive to the patterns A or B.

What remains now is to see that there is only one way to re-attach the cutoff leaf to
the smaller unitree.

(F, H, I, Q) The trees F , H , I , Q are ordinary; therefore, the enumerative formula
(13) can be applied.

If m 
= l, a tree of the series F is asymmetric, and therefore, its contribution to (13)
is 1. Now, formula (13) in this case gives 1; therefore, there is no other tree with this
passport.

When m = l, a tree of the series F is symmetric, with the rotational symmetry of
order k. Therefore, its contribution to (13) is 1/k. Now, the formula itself gives 1/k;
therefore, there is no other tree in this case either.

For the trees of the series H , formula (13) gives 1 when k 
= l, and gives 1/2 when
k = l. This corresponds to the symmetry order of these trees: they are asymmetric
when k 
= l, and symmetric of order 2 when k = l.
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The trees of the series I are asymmetric, and formula (13) gives 1.
The tree Q is asymmetric, and formula (13) gives 1.
(G) The tree has km vertices and hence km − 1 edges. Since the total weight is km,

there exists exactly one edge of weight 2, while all the other edges are of weight 1.
The only white vertex to which the edge of weight 2 can be attached is the vertex of
degree k, since all the other white vertices are of degree 1. The rest is obvious.

(J) All white vertices are of degree 2; therefore, a weight of an edge can only be 1 or
2. There are only three black vertices, their degrees being 4, 2k +1, 2k +1. Therefore,
the black vertices cannot be leaves since such leaves could not be attached to a white
vertex of degree 2; thus, all the leaves are white. A white vertex which is not a leaf
must have two black neighbors; therefore, there are exactly two white vertices which
are not leaves: they are “intermediate” white vertices between the black ones. The
edges incident to them are both of weight 1. The black vertex of degree 4 cannot have
two incident edges of weight 2 since these edges should be leaves, and such a tree
would not be connected; it cannot have four incident edges of weight 1 either since
such a tree should need more than three black vertices. Therefore, the weights of the
edges attached to this vertex must be 2, 1, 1, and the edge of weight 2 is a leaf. The
rest is obvious.

(P) All black vertices are of degree 5, all white ones are of degree 3. Therefore,
black vertices cannot be leaves. Arguing now as in the case (J) we conclude that there
are exactly three white leaves, implying easily that there exists only one tree with this
passport.

(K, L, M, N, O, R, S, T) The proof of all these cases follows the same pattern.
Let us take, for example, the tree O . Its passport is (54, 210). Therefore, the number

of vertices is 4 + 10 = 14 and the number of edges is 13, while the total weight is
5 · 4 = 2 · 10 = 20. Thus, the overweight is 7, and it must be distributed among the
edges.

Now, no edge can have a weight greater than 2 since the degrees of white vertices
are all equal to 2. Therefore, the tree O has seven edges of weight 2. Moreover, all of
them are leaves; indeed, if something were attached to the white end of such an edge
then this white end would have a degree greater than 2.

The same reasoning may be carried out for all the above cases, with their respective
overweights and numbers of leaves of weight 2.

Now, let us cut off all the leaves of weight 2. What remains is an ordinary tree,
and we must verify that it is a unitree. Usually it is immediately obvious since the
ordinary tree in question is very small; otherwise, we may apply formula (13), or else
we may remark that such a tree belongs to one of the previously established cases.
For example, for the tree T what remains after cutting off the leaves of weight 2 is the
tree Q.

The last step consists in proving that there is only one way to glue back to this
ordinary unitree the leaves of weight 2 that were previously cut off. For example, in
the case O the ordinary unitree has black vertices of degrees 3, 1, 1, 1, and we have,
by gluing to them seven edges of weight 2, made these degrees equal to 5, 5, 5, 5.
Obviously, there is only one way to do that. In fact, in certain cases there are several
ways of gluing but they give the same result because of a symmetry of the underlying
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ordinary tree. For the tree L , there is an additional condition we must satisfy: white
leaves can only be attached to black vertices.

Theorem 5.4 is proved. �	

6 Other combinatorial Galois invariants

The theory of dessins d’enfants studies combinatorial invariants of the Galois action
on dessins. These invariants have various levels of generality. The most general (and
the most simple) one is the passport; the subject of this paper is precisely the case when
the passport alone guarantees the definability of a dessin over Q. But our exposition
would be incomplete if we did not mention several other Galois invariants which lead
to further examples of dessins and DZ-triples defined over Q.

6.1 Composition

The following proposition is obvious.

Proposition 6.1 (Composition) Let f = f (x) and h = h(t) be two rational functions
such that:

• f is a Belyi function, with the corresponding dessin D f ;
• h is a function (not necessarily a Belyi one), all of whose critical values are either

vertices or face centers of D f .

Then the function F(t) obtained as a composition

F(t) = f (h(t)), that is, F : C
h−→ C

f−→ C,

is a Belyi function. If, furthermore, both f and h are defined over Q, then, obviously,
the same is true for F.

The above proposition gives us a very general method of constructing Belyi func-
tions with all its finite poles being simple, or, in other words, Belyi functions corre-
sponding to weighted trees.

Corollary 6.2 (Decomposable weighted trees) Suppose that the functions f and h of
the above proposition satisfy the following properties:

• the dessin D f corresponds to a weighted tree, that is, all its finite faces are of
degree 1;

• h is a polynomial all of whose critical values except infinity are vertices of D f .

Then all the finite faces of the dessin DF corresponding to the Belyi function F(t) =
f (h(t)) are of degree 1. If, furthermore, both f and h are defined over Q, then,
obviously, the same is true for F.

Proof Since h is a polynomial, the only poles of F = f ◦ h, except infinity, are the
preimages of the simple poles of f , i. e., the preimages of the centers of the small faces
of D f . Since h is not ramified over these simple poles, they remain simple for F , and
each of them is “repeated” deg h times. �	
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Fig. 47 The pictures corresponding to f (x) and F(t) are drawn according to Convention 2.14: only their
black vertices are shown explicitly. In the picture corresponding to u the black vertices are those sent to 0,
and the white ones are those sent to 1

Example 6.3 (Composition 1) Consider the following functions:

f = − 64 x3(x − 1)

8 x + 1
, u = 1

55
· (t2 + 4)3(3 t + 8)2 .

Here f is a Belyi function corresponding to the upper left dessin in Fig. 47, and u is a
Belyi function corresponding to the lower left dessin. Substituting x = u(t) in f we
obtain a Belyi function F corresponding to the dessin shown on the right of Fig. 47.

It is obvious that the combinatorial orbit of the dessin DF consists of more than
one element: for example, the petals attached to the vertices of degrees 9 and 6 can be
cyclically arranged in many different ways. Still, F ∈ Q(x) by construction.

Note that the dessins D f and Du serving as building blocks for the above example
both belong to the classification we have established in Sect. 5: they both correspond
to unitrees, and it is their passports that guarantee that they are defined over Q. We do
not have a simple way of constructing more general examples over Q (when, e. g., the
polynomial u has more than two critical values with prescribed positions at vertices
of D f ).

Example 6.4 (Composition 2) Another example, based on the same function f , is as
follows. We have

f − 1 = − (8 x2 − 4 x − 1)2

8 x + 1
,

so the white vertices of the dessin D f (which are not shown explicitly in Fig. 47) are
the roots of 8 x2 − 4 x − 1, that is, they are equal to (1 ± √

3)/4. Now, the critical
values of the polynomial

v = 1

3
t3 − 3

4
t + 1

4
,
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Fig. 48 The dessin DG
corresponding to the function
G(t) = f (v(t)); this time, not
all white vertices are of degree 2;
therefore, we show them
explicitly

that is, the values of v at the roots of v′ = t2 − 3/4, are equal to exactly (1 ± √
3)/4.

Therefore, the composition G(t) = f (v(t)) is once again a Belyi function, and all its
poles except infinity are simple. The corresponding dessin is shown in Fig. 48.

It is obvious that the dessin DG is not the only one having the passport (3313, 4222).
For example, the two “vertical” edges can both be put above, or both can be put below
the horizontal axis, or they can be cut off and attached to the leftmost white vertex
of degree 2 (the one on the loop), or to the rightmost one (the one on the horizontal
segment). Nevertheless, the dessin thus obtained is defined over Q by construction.

Now the dessins DF and DG , being defined over Q, may themselves serve for a
similar construction: if, for example, w is a polynomial with coefficients in Q whose
critical values are vertices of DG , then the function H = G ◦ w = f ◦ v ◦ w is a
Belyi function corresponding to a dessin DH , all of whose finite faces are of degree 1.
In such a composition, only f has to be a Belyi function, while the subsequent terms
may have more than three critical values.

Remark 6.5 (Symmetric trees) The group of the orientation preserving automorphisms
of a plane tree is always cyclic. If it is Zk then the Belyi function for the corresponding
map is F(x) = f (xk) where f is the Belyi function for the map corresponding to a
single branch of the tree (the vertex of this branch, which will become the center of
the symmetric tree, must be put to the origin). Among the unitrees classified in Sect. 5,
the trees N and R are symmetric (of order 3 and 2, respectively). Some elements of
the infinite series may also be symmetric (for special values of parameters).

We leave it to the reader to see that the series H and I are compositions (although
the composition in this case is not reduced to a rotational symmetry) and that a mul-
tiplication of all the weights of the edges of a tree by a factor d can be represented as
a composition with the following Belyi function:

f (x) = xd

xd − (x − 1)d
, hence f (x) − 1 = (x − 1)d

xd − (x − 1)d
.

6.2 Primitive monodromy groups

Definition 6.6 (Primitive and special groups) A permutation group of degree n acting
on a set X , |X | = n, is called imprimitive if the set X can be subdivided into m
disjoint blocks X1, . . . , Xm of equal size |Xi | = n/m, where 1 < m < n such that
an image of a block under the action of any element of the group is once again a
block. A permutation group which is not imprimitive is called primitive. A primitive
permutation group not equal to Sn or An is called special.
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It is known (see [19]) that a covering is a composition of two or more coverings of
smaller degrees if and only if its monodromy group is imprimitive. Thus, a covering
which is not a composition has a primitive monodromy group. However, in a vast
majority of cases this group is equal to either Sn or An , for a very simple reason: a
permutation group generated by a randomly chosen pair of permutations is Sn or An

with a probability close to 1. This is why special groups are of a particular interest:
since the monodromy group is a Galois invariant, such a group gives an additional
invariant in the absence of the composition.

In the case of weighted trees, that is, in the case of coverings realized by Belyi
functions with all poles except one being simple, the monodromy group must contain
a permutation of the cycle structure (n − r, 1r ): it is the monodromy permutation
corresponding to a loop around infinity on the Riemann sphere. Motivated by our
study of weighted trees, Gareth A. Jones classified all special permutation groups
containing such a permutation, see [16]. In particular, it is shown that in all such
cases r ≤ 2. This property is based on two results. The first is an old theorem by
Jordan [17] stating that a primitive group containing a permutation with the cycle
structure (n − r, 1r ) is (r + 1)-transitive. The second is the complete list of multiply
transitive groups: it is based on the classification theorem of finite simple groups.

The classification due to Jones looks as follows (we use standard notation for
projective, cyclic and affine groups and for the Mathieu groups):

Theorem 6.7 (G. Jones’s classification) Let G be a primitive permutation group of
degree n not equal to Sn or An. Suppose that G contains a permutation with cycle
structure (n − r, 1r ). Then r ≤ 2, and one of the following holds:

1. r = 0 and either
(a) Cp ≤ G ≤ AGL1(p) with n = p prime, or
(b) PGLd(q) ≤ G ≤ P�Ld(q) with n = (qd − 1)/(q − 1) and d ≥ 2 for some

prime power q = pe, or
(c) G = L2(11), M11 or M23 with n = 11, 11 or 23, respectively.

2. r = 1 and either
(a) AGLd(q) ≤ G ≤ A�Ld(q) with n = qd and d ≥ 1 for some prime power

q = pe, or
(b) G = L2(p) or PGL2(p) with n = p + 1 for some prime p ≥ 5, or
(c) G = M11, M12 or M24 with n = 12, 12 or 24, respectively.

3. r = 2 and PGL2(q) ≤ G ≤ P�L2(q) with n = q + 1 for some prime power
q = pe.

Example 6.8 (A tree with a special monodromy group) There are six weighted trees of
degree n = 8 with the passport (7111, 2312, 6112). One may expect that their common
moduli field would be an extension of Q of degree 6. However, this is not the case.
Five trees out of six have the monodromy group S8, while the remaining one, shown
in Fig. 49, left, has the monodromy group PGL2(7). Therefore, this tree is defined
over Q. The other trees form a single Galois orbit over a field of degree 5.

In order to establish that the group in question is indeed PGL2(7), we may proceed
as follows. First, we draw the bicolored map represented by this tree, as it is done in
Fig. 49, right. Then, we label the edges of the map and write down two permutations:
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Fig. 49 The tree on the left (equivalently, the map on the right) has the monodromy group PGL2(7). All
the other trees with the same passport have the monodromy group S8

the first one represents the cyclic order of the edges around its black vertices in the
counterclockwise direction, while the second one represents the cyclic order of the
edges around their white vertices in the same direction. In our case these permutations
are

a = (1, 7, 6, 5, 4, 8, 3), b = (1, 2)(3, 8)(6, 7).

The permutation corresponding to the faces is

c = (ab)−1 = (1, 2, 3, 4, 5, 6),

so that abc = 1. The cycle c can be read in the picture by going around the outer
face. Note that the cycle structures of a, b and c are 7111, 2312 and 6112, respectively.
Then, the monodromy group is

G = 〈a, b〉 = 〈a, b, c〉.

Using Maple it is easy to find out that |G| = 336, and the only transitive subgroup of
S8 of order 336 is PGL2(7) (see, for example, [6]). For the other five trees with the
same passport the same Maple package shows that the size of their monodromy group
is 40 320 = 8!, so the group in question is S8.

Example 6.9 (PGL2(7) once again) One more example is shown in Fig. 50. There are
five trees with the passport (6112, 3212, 6112). One of them is symmetric and therefore
forms a Galois orbit containing a single element and thus defined over Q. Three trees
have the monodromy group S8; they form a cubic Galois orbit. Finally, the remaining
tree shown in Fig. 50 has the monodromy group PGL2(7). Therefore, it forms a Galois
orbit in itself and is thus defined over Q.

The condition of planarity, being added to Theorem 6.7, imposes strong constraints
on the numbers of vertices and faces of the corresponding maps. In [2], the complete
list of ordinary special trees was compiled. In [3], the corresponding classification
was carried out for the weighted trees. First, there are cyclic groups Cp and dihedral
groups Dp for p prime: Cp are realized by the star-trees with p edges, and Dp, are by
the chain-trees with p edges. Beside that, there are, in total, 184 special weighted trees
(ordinary ones included), and 34 special monodromy groups, the biggest one being of
degree 32.
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Fig. 50 One more tree with the
monodromy group PGL2(7)

Fig. 51 A bicolored map (in
unbroken line), and its dual (in
dashed line). The black vertices
of the dual map are designated
by squares. The white vertices
belong to both maps

6.3 Duality and self-duality

A dual to a map is usually constructed as follows. First, one puts a new vertex inside
every face of the initial map: this vertex is called “center” of the face. Then, the centers
of the adjacent faces are connected by edges in such a way that every edge of the initial
map is crossed in its “middle point” by a new edge. A dual of a dual is the initial map.

For the bicolored maps, a specific variant of the above construction is used, when
only black vertices are considered as vertices, while the white vertices play the role
of the edge midpoints. An association is thus made between the faces of the initial
map and black vertices of the dual map. The white vertices belong to both maps. More
exactly, a center of a face is connected by edges with all the white vertices lying on
the border of the face: see an example in Fig. 51 where the initial map is shown in an
unbroken line, and its dual, in a dashed line; the black vertices of the dual map are
designated by the little squares.

From the point of view of Belyi functions, if f (x) is a Belyi function for the initial
map, then 1/ f (x) is a Belyi function for its dual. Indeed, 1/y interchanges 0 and
∞ while leaving 1 untouched. Therefore, the former poles become roots (i. e., black
vertices), and vice versa.

Definition 6.10 (Self-dual map) A bicolored map is called self-dual if it is isomorphic
to its dual map.

Of course, the fact that a map is self-dual does not mean that f = 1/ f where f
is its Belyi function. It means that 1/ f (x) = f (w(x)) where w(x) a linear fractional
transformation of the variable x . The self-duality is an invariant of the Galois action:
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Fig. 52 Two branches of weighted trees of diameter 4 dual to each other. The figure on the right shows
how these branches, represented as maps, fit to one another

if a function satisfies an algebraic relation, while the other function does not satisfy
the same relation, they cannot belong to the same Galois orbit.

A weighted tree represents a map whose all faces except one are of degree 1.
Therefore, its dual map must have all its black vertices except one being of degree 1.
This can only happen if the dual map corresponds to a weighted tree of diameter 4: it
has a black vertex of a degree greater than 1 (its central vertex), while all its black leaves
are of degree 1. Therefore, if we are interested in self-dual maps which correspond to
weighted trees then we must consider only the trees of diameter 4. The condition on
the branches of such trees in order for them to be dual to each other is shown in Fig. 52.

Now we are ready to give an example where the self-duality plays the role of a
Galois invariant.

Example 6.11 (Self-duality as a Galois invariant) Let us take two integers p and q,
p < q, and consider the following passport of degree n = 2p + 2q − 2:

• there is a black vertex of degree p + q (the center), and p + q − 2 black vertices
of degree 1 (the leaves);

• there are two white vertices, of degrees 2p − 1 and 2q − 1, respectively;
• the above data imply that the trees have p + q edges, and therefore, the outer face

is of degree p + q, the same as the degree of the central black vertex.

There are exactly 2p−1 trees with this passport. Their general appearance is shown
in Fig. 53. Here the parameters take the following values: s = 1, 2, . . . , 2p − 1 while

t = (p + q) − s, k = (2p − 1) − s, l = (2q − 1) − t.

Among all these trees, only one is self-dual: it corresponds to the values s = p, t = q,
k = p − 1, and l = q − 1. Therefore, this tree is defined over Q.

(In this example, both branches are dual to themselves. An attempt to make one
branch dual to the other leads to the equality p = q, but we have supposed that p < q.)

Remark 6.12 (Example 6.9 revisited) All the five trees with the passport (6112, 3212,

6112) considered in Example 6.9 are self-dual. Therefore, for them the self-duality
cannot serve as an additional Galois invariant leading to a splitting of the combinatorial
orbit into two (or more) Galois orbits.

Example 6.13 (Four orbits) There are 16 trees corresponding to the passport
(8112, 4212, 8112). They split into four Galois orbits, of sizes 1, 2, 5, and 8, respec-
tively. One tree is special, with the monodromy group PGL2(9); two trees are sym-
metric; five trees are self-dual, while the remaining eight trees are not.
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Fig. 53 Here s + t = p + q,
s + k = 2p − 1, t + l = 2q − 1,
where 1 < p < q. The
combinatorial orbit consists of
2p − 1 trees but it splits into at
least two Galois orbits since
exactly one of these trees is
self-dual, the one with s = p
and t = q

Fig. 54 This combinatorial orbit, corresponding to the passport (α, β, γ ) where α = 310, β = 215,
γ = 24116, splits into three Galois orbits: {a}, {b, c}, and {d}. The dessins a and d are defined over Q

6.4 A sporadic example

The world of dessins d’enfants is rich with various specific cases. Let us consider, for
example, the set of dessins shown in Fig. 54. They constitute a combinatorial orbit for
the passport (α, β, γ ) where α = 310, β = 215, and γ = 24116. We might naïvely
suppose that this combinatorial orbit also constitutes a Galois orbit; if this were the
case, this orbit would be defined over a field of degree 4 (since it has four elements).
However, the reality is more complicated and, in fact, more exciting.

Namely: the dessin a is the only one having a rotational symmetry of order 3 around
a black vertex. Therefore, the singleton {a} constitutes a Galois orbit. Two dessins b
and c are the only ones which have rotational symmetry of order 2, the center being
a white vertex (we recall that the white vertices, being all of degree 2, are not shown
explicitly in the picture). Therefore, the set {b, c} must also be taken apart from the
combinatorial orbit. There are two a priori possibilities: b and c may make two Galois
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orbits, both defined over Q, or they may make a single Galois orbit defined over a
quadratic field. But any map whose Belyi function is defined over a real field must
be axially symmetric since it remains invariant under the complex conjugation. This
observation excludes the possibility of two orbits over Q, and it also excludes a real
quadratic field. We may conclude that the set {b, c} constitutes a single Galois orbit
defined over an imaginary quadratic field.

The dessin d is not symmetric and does not have any other specific combinatorial
features. But it remains solitary, and therefore, it constitutes a Galois orbit all by itself.
Since the orbits {a} and {d} consist of a single element, their Belyi functions are
defined over Q. Thus, the dessin d is defined over Q for no other reason than the fact
that it remains alone after all the other Galois orbits are taken away.

This combinatorial orbit is markworthy for the reason that different authors returned
to it, or to some of its elements, many times. The Belyi function for a was computed
by Birch and already appeared in [5]; the one for d was computed 35 years later by
Elkies [11]. All the four Belyi functions were independently computed by Shioda
[24]. In particular, he found out that the orbit {a, b} is defined over the field Q(

√−3).
Shioda had already used as a starting point the above combinatorial orbit; the other
authors have apparently made a “blind” search.

Our combinatorial approach does not make the computational part of the work any
easier. Its advantage is elsewhere. It consists in the fact that, before any computation,
we may be sure of the following.

• There exist exactly four non-equivalent Belyi functions with the passport
(310, 215, 24116); here “non-equivalent” means that they cannot be obtained from
one another by a linear fractional change of variables.

• Belyi functions corresponding to a and d are defined over Q.
• Belyi function corresponding to a is a rational function in x3 (because of the

threefold symmetry of the dessin a).
• Belyi functions for the orbit {b, c} are defined over an imaginary quadratic field.

More examples similar to this one are given below.

6.5 Sporadic examples of Beukers and Stewart [4]

All the examples in this section are borrowed from the paper [4] by Beukers and
Stewart, which was one of the sources of inspiration for our study. In their paper,
the authors consider only the case of powers of polynomials. Namely, they look for
polynomials A and B, defined over Q, for which the degree deg (Ap − Bq) attains
its minimum. The degrees of polynomials in question are deg A = qr , deg B = pr
where the parameter r may be greater than 1. The passport of the corresponding tree
is (pqr , q pr ).

The authors find, as we do, several infinite series of DZ-triples (which they call
Davenport pairs), and several sporadic examples. The first such example, for which
(p, q, r) = (5, 2, 2), corresponds to our sporadic tree O . The next one, (p, q, r) =
(5, 3, 1), corresponds to the sporadic tree P . However, the subsequent examples do
not correspond to anything we have found up to now. What is going on?
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Fig. 55 Two trees corresponding to the passport (73, 37); one of them is symmetric, the other one is not

Fig. 56 Two trees corresponding to the passport (83, 38)

It turns out that here we encounter once again the phenomenon that we already
explained in Sect. 6.4.

Example 6.14 ((p, q, r) = (7, 3, 1)) There exist two trees corresponding to the pass-
port (73, 37): they are shown in Fig. 55. We see that one of the trees is symmetric, with
the symmetry of order 3, while the other one is not. Therefore, this combinatorial orbit
splits into two Galois orbits, and hence, both trees are defined over Q. The left-hand
one corresponds to the example given in [4].

Note that an axial symmetry is not a Galois invariant.

Example 6.15 ((p, q, r) = (8, 3, 1) and (10, 3, 1)) The situation for the passports
(83, 38) and (103, 310) is similar to the previous one. For the first passport, there are
two trees, and one of them is symmetric, while the other is not (see Fig. 56); therefore,
both are defined over Q. For the second passport there are three trees (see Fig. 57). One
of them is symmetric with the symmetry of order 2; one is symmetric with the sym-
metry of order 3; and one is asymmetric. Therefore, all the three trees are defined over
Q. In both cases, “sporadic” polynomials given in [4] correspond to asymmetric trees.

Example 6.16 (Further sporadic DZ-triples) The next example given in [4] corre-
sponds to the passport (54, 45). This time, there are three trees: one of them is sym-
metric with the symmetry of order 2; another one is symmetric with the symmetry of
order 4; the third one is asymmetric. All the three are therefore defined over Q.

For the passport (65, 56), there are four trees. One of them is symmetric with the
symmetry of order 5; two are symmetric with the symmetry of order 2; the remaining
tree is asymmetric. Therefore, the combinatorial orbit containing four trees splits into
three Galois orbits. The asymmetric tree corresponds to the sporadic example given
in [4]. We leave it to the reader to draw the trees in question.
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Fig. 57 Three trees corresponding to the passport (103, 310)

Fig. 58 This tree,
corresponding to the passport
(95, 59), is defined over Q. All
known combinatorial invariants
of Galois action fail to explain
this phenomenon

Example 6.17 (When nothing works) All known combinatorial invariants fail to
explain why the tree with the passport (95, 59) shown in Fig. 58 is defined over Q.

The trees corresponding to this passport have 13 edges, so the outer face is of degree
13, which is prime. This implies that this tree cannot be a composition. Indeed, the
outer face of a tree DF corresponding to a composition F = f ◦h can only be ramified
over the outer face of the tree D f , so the degree of the outer face of DF should be the
product of the degree of the outer face of D f and of deg h. But 13 cannot be a product
of two integers.

Now, the monodromy group cannot be special because of Theorem 6.7. The tree
cannot be self-dual either since its diameter is greater than 4, etc.

For the moment, this example is the only one of its kind known to us. However,
one cannot hope to reduce the whole body of Galois theory to combinatorics. Note
nevertheless that the direction of “Diophantine invariants” (see the next section) for
the weighted trees remains yet unexplored.

This example is also borrowed from the paper by Beukers and Stewart [4]. There
are no trees in their paper; the DZ-triple corresponding to this example, as well as
several other sporadic triples, are found by a brute force computation using Gröbner
bases.
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7 Further questions

Here we discuss briefly some possibilities for further research. To begin with, there are
quite a few results known for ordinary trees, which might eventually be generalized
to weighted trees.

Enumeration of weighted trees It would be very interesting to find an enumerative
formula which would count the number of weighted trees having a given passport.
However, this problem may turn out to be very difficult because of the fact that the same
passport can be realized by a tree and by a forest. Therefore, an inclusion–exclusion
procedure might be necessary, preventing a nice closed formula of Goulden–Jackson
and Tutte type (see formula (13)). Inclusion–exclusion is indeed used in [18], where
some results in this direction are obtained.

Right now we can prove only much more modest results, namely, enumerate the
weighted trees by their weight and number of edges. A proof of the following theorem
may be found in [30]. Let us call a tree with a distinguished edge edge-rooted.

Theorem 7.1 (Some enumerative results) Let an be the number of edge-rooted
weighted bicolored plane trees of weight n. Then the generating function f (t) =∑

n≥0 antn is equal to

f (t) = 1 − t − √
1 − 6 t + 5 t2

2 t
= 1 + t + 3 t2 + 10 t3 + 36 t4 + 137 t5 + 543 t6 + 2219 t7 + 9285 t8 + . . .

Numbers an satisfy the following recurrence relation:

a0 = 1, a1 = 1, an+1 = an +
n∑

k=0

akan−k for n ≥ 1.

The asymptotic formula for the numbers an is

an ∼ 1

2

√
5

π
· 5n n−3/2.

Let bm,n be the number of edge-rooted weighted bicolored plane trees of weight n
with m edges. Then the generating function h(s, t) = ∑

m,n≥0 bm,nsmtn is equal to

h(s, t) = 1 − t − √
1 − (2 + 4s) t + (1 + 4s) t2

2st
= 1 + st + (s + 2s2) t2 + (s + 4s2 + 5s3) t3

+ (s + 6s2 + 15s3 + 14s4) t4 + . . .
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The following is an explicit formula for the numbers bm,n:

bm,n =
(

n − 1

m − 1

)
· Catm =

(
n − 1

m − 1

)
· 1

m + 1

(
2m

m

)
,

where Catm is the mth Catalan number.
Let cn be the number of non-isomorphic non-rooted trees of weight n, each counted

with the factor 1/|Aut|. Then

cn =
n∑

m=1

bm,n

m
.

The sequence an is listed in the On-Line Encyclopedia of Integer Sequences [26] as
the entry A002212. It has many interpretations; the one corresponding to the weighted
trees is submitted by Roland Bacher.

Inverse enumeration problem The problem is formulated as follows: For a given
m ≥ 1, classify all passports and corresponding weighted trees such that there exist
exactly m trees having this passport. In our paper, we have solved this problem for
m = 1. The following result for ordinary trees was proved in [1]. It does not provide a
classification, but nevertheless gives some important information concerning a general
pattern for the eventual classifications.

Theorem 7.2 (Combinatorial orbits of a given size) For any m ≥ 1 the combinatorial
orbits of ordinary trees containing exactly m elements are classified as follows:

• the series of chain-trees (only for m = 1);
• a finite number of series of diameter 4;
• a finite number of series of diameter 6;
• a finite number of sporadic orbits whose elements have at most 12m + 2 edges.

Our results for weighted trees and for m = 1 fall into line with this pattern, only
the chains must be replaced by brushes, and the bound 12m + 2 must be increased. It
would be interesting to see if a similar theorem is valid for the general case.

Generic-sporadic splitting For the following three passports for ordinary trees:

• (411n−4, p2q2): a series of trees of diameter 4; here n = 2p + 2q and p 
= q;
• (4p, q21n−2q): a series of trees of diameter 6; here n = 4p;
• (4318, 210): sporadic trees of diameter 8; here n = 20

the combinatorial orbits consist of two (ordinary) trees, but one of these trees is sym-
metric, while the other one is not. Therefore, both trees are defined over Q.

For the weighted trees, we have seen similar examples in the previous section: they
correspond to the passports were (73, 37) and (83, 38). An infinite series of weighted
trees with the same property is shown in Fig. 59. It would be interesting to produce a
complete classification of such cases.
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Fig. 59 The combinatorial orbit consists of two trees, but it splits into two Galois orbits since one of the
trees is symmetric, while the other one is not. The degrees of the black vertices are both equal to k ≥ 3; all
leaves are of weight 1

Diophantine invariants The following two examples may be found in [19]. The
first one is due to Adrianov. Consider the following passport for ordinary trees:
(511n−5, p2q3) (here n = 2p + 3q and p 
= q). It is easy to see that there exist
exactly two trees having this passport, and neither of them is symmetric. A sim-
ple computation shows that these trees are defined over the field Q (

√
�) where

� = 3 (p + 2q) (2p + 3q). Now, if we take, for example, p = 6k2 − 3l2 and
q = 2l2 − 3k2, choosing k and l in such a way that p and q become positive and not
equal, we get � to be a perfect square. Therefore, both trees become defined over Q,
and this splitting of the combinatorial orbit into two Galois orbits does not have any
specific combinatorial reason: it is due to certain Diophantine relations between vertex
degrees. Once again, it would be interesting to extend this scheme to weighted trees.

The next example is maybe the most spectacular one. We consider the (ordinary)
trees corresponding to the passport (711n−7, p2q5) (here n = 2p+5q and p 
= q). It is
easy to see that there exist exactly three ordinary trees having this passport. Therefore,
they are defined over a cubic extension of Q; the cubic polynomial generating this
field may be written explicitly. Now, we ask the following question: is it possible that
this polynomial has a rational root? If yes, then the combinatorial orbit in question
will split into two Galois orbits, one defined over Q, and the other one quadratic.

It turns out that the search for polynomials having a rational root can be reduced
to the search for rational points on a particular elliptic curve. The curve in question
contains infinitely many rational points. We have computed the first 11 solutions. The
smallest one corresponds to trees having n = 686 edges (p = 33, q = 124); the 11th
solution corresponds to trees having n ≈ 3.45 · 10134 edges.

A particularly beautiful example involving weighted trees may be found in [31].
There, the question whether a specific quadratic orbit splits into two rational ones is
reduced to the classical Pell equation.

Relaxing the minimum degree condition Let us revisit the initial problem about the
minimum degree of the polynomial A3 − B2, see page 2. When there are no DZ-triples
defined over Q, we may relax the condition of the deg R being the least possible and
thus obtain solutions with bigger deg R but, in return, defined over Q. Two example
of this kind are shown in Figs. 60 and 61. In the first one, k = 6 but deg R = 9 instead
of 7 since one of the faces is of degree 3 instead of 1. In the second example, k = 7
but deg R = 9 instead of 8 since, instead of two black vertices of degree 3 we have
here one black vertex of degree 6.
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Fig. 60 This map represents
two polynomials A and B, of
degrees 2k = 12 and 3k = 18,
respectively, such that
deg (A3 − B2) = 9. Thus, the
degree of the difference does not
attain its minimal value
k + 1 = 7, but in return both A
and B are defined over Q

Fig. 61 This map represents two polynomials A and B, of degrees 2k = 14 and 3k = 21, respectively,
such that deg (A3 − B2) = 9. Thus, the degree of the difference does not attain its minimal value k +1 = 8,
but in return both A and B are defined over Q

Now let us look at the second example. Though a computation of the Belyi function
in this case is not difficult, it is still interesting to analyze this example in purely
combinatorial terms. The map shown on the right in Fig. 61 is a unimap s of Fig. 22,
which is also equal to the unitree S in Fig. 20. Therefore, it is defined over Q. Its black
vertex of degree 2 is a bachelor (Definition 2.16); therefore, it can be placed at any
rational position (Remark 2.17), for example, at the point x = 0. Then it remains to
insert x3 instead of x in its Belyi function, and we get a Belyi function for the bigger
“triple” dessin.

This example shows that the possibilities of the combinatorial approach to this
problem are far from being exhausted. In general, it would be interesting to establish
an upper bound on the difference between the minimum degree attainable in C [x],
and the one attainable in Q [x].
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Unimaps Besides the maps with all finite faces of degree 1, there are other classes
of maps for which the question of uniqueness is interesting. One such example is the
class of maps with exactly two faces: their Belyi functions are Laurent polynomials.
The existence questions for such maps were completely settled in [20]; the uniqueness
remains to be studied. Some new Galois phenomena related to the non-existence of
bachelors appear in this case, see [8].

Acknowledgments Fedor Pakovich is grateful to the Bordeaux University, France, and Alexander
Zvonkin is grateful to the Center for Advanced Studies in Mathematics of the Ben-Gurion University
of the Negev, Israel, for their mutual hospitality. Fedor Pakovich is grateful to the Max-Planck-Institut für
Mathematik, Bonn, where the most part of this paper was written. We would also like to thank Nikolai
Adrianov and Gareth Jones for valuable remarks.

References

1. Adrianov, N.M.: On plane trees with a prescribed number of valency set realizations (in Russian).
Fundam. Prikl. Mat. 13(6), 9–17 (2007)

2. Adrianov, N.M., Kochetkov, Yu.Yu., Suvorov, A.D.: Plane trees with special primitive edge rotation
groups (in Russian). Fundam. Prikl. Mat. 3(4), 1085–1092 (1997)

3. Adrianov, N.M., Zvonkin, A.K.: Primitive monodromy groups of weighted trees. In preparation (2014)
4. Beukers, F., Stewart, C.L.: Neighboring powers. J. Number Theory 130, 660–679 (2010)
5. Birch, B.J., Chowla, S., Hall Jr, M., Schinzel, A.: On the difference x3 − y2. Norske Vid. Selsk. Forh.

(Trondheim) 38, 65–69 (1965)
6. Butler, G., McKay, J.: The transitive groups of degree up to eleven. Commun. Algebra 11(8), 863–911

(1983)
7. Corvaja, P., Petronio, C., Zannier, U.: On certain permutation groups and sums of two squares. Preprint

(2008). arXiv:0810.0591v1
8. Couveignes, J.-M.: Calcul et rationalité de fonctions de Belyi en genre 0. Ann. de l’Inst. Fourier 44(1),

1–38 (1994)
9. Davenport, H.: On f 3(t) − g2(t). Norske Vid. Selsk. Forh. (Trondheim) 38, 86–87 (1965)

10. Edmonds, A.L., Kulkarni, R.S., Stong, R.E.: Realizability of branched coverings of surfaces. Trans.
Am. Math. Soc. 282(2), 773–790 (1984)

11. Elkies, N.D.: Rational points near curves and small non-zero |x3 − y2| via lattice reduction. In:
Bosma, W. (ed.) Algorithmic Number Theory, volume 1838 of the Lect. Notes in Comp. Sci., pp.
33–63. Springer (2000)

12. Girondo, E., González-Diez, G.: Introduction to Compact Riemann Surfaces and Dessins d’Enfants.
London Math. Soc. Student Texts, vol. 79. Cambridge University Press (2012)

13. Goulden, I.P., Jackson, D.M.: The combinatorial relationship between trees, cacti and certain connec-
tion coefficients for the symmetric group. Eur. J. Comb. 13, 357–365 (1992)

14. Hurwitz, A.: Über Riemann’sche Flächen mit gegebenen Verzweigungspunkten. Math. Ann. 39, 1–61
(1891)

15. Husemoller, D.: Ramified coverings of Riemann surfaces. Duke Math. J. 29, 167–174 (1962)
16. Jones, G.A.: Primitive permutation groups containing a cycle. Preprint (2012). arXiv:1209.5169v1. To

appear in the Bull. Austr. Math. Soc.
17. Jordan, C.: Théorèmes sur les groupes primitifs. J. Math. Pures Appl. 16, 383–408 (1871)
18. Kochetkov, Y.: Enumeration of one class of plane weighted trees. Preprint (2013). arXiv:1310.6208v1
19. Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Springer, New York (2004)
20. Pakovich, F.: Solution of the Hurwitz problem for Laurent polynomials. J. Knot Theory Ramif. 18,

271–302 (2009)
21. Pakovich, F., Zvonkin, A.K.: Minimum Degree of the Difference of Two Polynomials over Q. Part II

Davenport–Zannier Triples. In preparation (2014)
22. Pascali, M.A., Petronio, C.: Surface branched covers and geometric 2-orbifolds. Trans. Am. Math.

Soc. 361(11), 5885–5920 (2009)

http://arxiv.org/abs/0810.0591v1
http://arxiv.org/abs/1209.5169v1
http://arxiv.org/abs/1310.6208v1


Minimum degree of the difference of two polynomials over Q, and weighted plane trees 1065

23. Schneps, L. (ed.): The Grothendieck Theory of Dessins d’Enfants. volume 200 of the London Math.
Soc. Lecture Notes Series. Cambridge University Press (1994)

24. Shioda, T.: Elliptic surfaces and Davenport-Stothers triples. Preprint (2004)
25. Stothers, W.W.: Polynomial identities and Hauptmoduln. Q. J. Math. Oxf. (Ser. 2) 32(127), 349–370

(1981)
26. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/
27. Thom, R.: L’équivalence d’une fonction différentiable et d’un polynôme. Topology 3, 297–307 (1965)
28. Tutte, W.T.: The number of planted plane trees with a given partition. Am. Math. Mon. 71(3), 272–277

(1964)
29. Zannier, U.: On Davenport’s bound for the degree of f 3 − g2 and Riemann’s existence theorem. Acta

Arith. 71(2), 107–137 (1995)
30. Zvonkin, A.K.: Enumeration of weighted plane trees. Preprint (2013). http://www.labri.fr/perso/

zvonkin/
31. Zvonkin, A. K.: Diophantine invariants in dessins d’enfants: an example. Preprint (2013). http://www.

labri.fr/perso/zvonkin/

http://oeis.org/
http://www.labri.fr/perso/zvonkin/
http://www.labri.fr/perso/zvonkin/
http://www.labri.fr/perso/zvonkin/
http://www.labri.fr/perso/zvonkin/

	Minimum degree of the difference of two polynomials over mathbbQ, and weighted plane trees
	Abstract
	1 Introduction
	2 From polynomials through Belyi functions to weighted trees
	2.1 Function f=P/R and its critical values
	2.2 Dessins d'enfants and Belyi functions
	2.3 Number fields
	2.4 How do the weighted trees come in

	3 Existence theorem
	3.1 Forests
	3.2 Stitching several trees to get one: the case gcd(α,β)=1
	3.3 Non-coprime weights

	4 Weak bound
	4.1 Polynomials and cacti
	4.2 Proof of Theorem 4.1

	5 Classification of unitrees
	5.1 Statement of the main result
	5.2 Weight distribution
	5.3 Brushes
	5.4 Trees with repeating branches of height 2
	5.5 Trees with repeating branches of the type (1,s,s+1)
	5.6 Trees with repeating branches of the type (1,t,1)
	5.7 Proof of the uniqueness of unitrees

	6 Other combinatorial Galois invariants
	6.1 Composition
	6.2 Primitive monodromy groups
	6.3 Duality and self-duality
	6.4 A sporadic example
	6.5 Sporadic examples of Beukers and Stewart [4]

	7 Further questions
	Acknowledgments
	References


