Jordan-Hölder theorem for imprimitivity systems and maximal decompositions of rational functions

M. Muzychuk and F. Pakovich

Abstract

In this paper we prove several results about the lattice of imprimitivity systems of a permutation group containing a cyclic subgroup with at most two orbits. As an application we generalize the first Ritt theorem about functional decompositions of polynomials, and some other related results. Besides, we discuss examples of rational functions, related to finite subgroups of Aut $\left(\mathbb{C P}^{1}\right)$, for which the first Ritt theorem fails to be true.

1. Introduction

Let F be a rational function with complex coefficients. The function F is called indecomposable if the equality $F=F_{1} \circ F_{2}$, where $F_{1} \circ F_{2}$ denotes the superposition $F_{1}\left(F_{2}(z)\right)$ of rational functions F_{1} and F_{2}, implies that at least one of the functions F_{1} or F_{2} is of degree 1. A rational function that is not indecomposable is called decomposable. Any representation \mathcal{F} of a rational function F in the form

$$
\begin{equation*}
F=F_{1} \circ F_{2} \circ \ldots \circ F_{r}, \tag{1}
\end{equation*}
$$

where $F_{1}, F_{2}, \ldots, F_{r}$ are rational functions, is called a decomposition of F. If all $F_{1}, F_{2}, \ldots, F_{r}$ are indecomposable of degree greater than one, then the decomposition \mathcal{F} is called maximal. Two decompositions of a rational function F

$$
\begin{equation*}
F=U_{1} \circ U_{2} \circ \ldots \circ U_{k} \quad \text { and } \quad F=V_{1} \circ V_{2} \circ \ldots \circ V_{m} \text {, } \tag{2}
\end{equation*}
$$

which are maximal or not, are called equivalent if they have the same length (that is, $k=m$) and there exist rational functions of degree one μ_{i}, with $1 \leqslant i \leqslant k-1$, such that

$$
U_{1}=V_{1} \circ \mu_{1}, \quad U_{i}=\mu_{i-1}^{-1} \circ V_{i} \circ \mu_{i}, \quad 1<i<k, \quad \text { and } \quad U_{k}=\mu_{k-1}^{-1} \circ V_{k} .
$$

In the paper [28] Ritt described the structure of possible maximal decompositions of polynomials (note that any decomposition of a polynomial into a composition of rational functions is equivalent to a decomposition into a composition of polynomials). This description can be summarized in the form of two theorems usually called the first and the second Ritt theorems (see $[\mathbf{2 8}, \mathbf{3 0}]$). The first Ritt theorem states that, for any two maximal decompositions \mathcal{D} and \mathcal{E} of a polynomial F, there exists a chain of maximal decompositions \mathcal{F}_{i}, with $1 \leqslant i \leqslant s$, of F such that $\mathcal{F}_{1}=\mathcal{D}, \mathcal{F}_{s} \sim \mathcal{E}$, and \mathcal{F}_{i+1} is obtained from \mathcal{F}_{i}, with $1 \leqslant i \leqslant s-1$, by replacing two successive functions in \mathcal{F}_{i} by other functions with the same composition. This implies in particular that any two maximal decompositions of a polynomial have the same length. Below we will call two maximal decompositions \mathcal{D} and \mathcal{E} of a rational function F such that there exists a chain as above weakly equivalent. This defines an equivalence relation on the set of maximal decompositions of F.

[^0]2000 Mathematics Subject Classification 20E15 (primary), 30D05 (secondary).
The research of the first author was supported by the ISF grant no. 979/05.

The first Ritt theorem reduces the description of maximal decompositions of polynomials to the description of indecomposable polynomial solutions of the equation

$$
\begin{equation*}
A \circ C=B \circ D \tag{3}
\end{equation*}
$$

such that the decompositions $A \circ C$ and $B \circ D$ are non-equivalent, and the second Ritt theorem states that if A, B, C, D is such a solution, then there exist polynomials $\hat{A}, \hat{B}, \hat{C}, \hat{D}, \mu_{1}, \mu_{2}$, where $\operatorname{deg} \mu_{1}=1$, and $\operatorname{deg} \mu_{2}=1$, such that

$$
A=\mu_{1} \circ \hat{A}, \quad B=\mu_{1} \circ \hat{B}, \quad C=\hat{C} \circ \mu_{2}, \quad D=\hat{D} \circ \mu_{2}, \quad \hat{A} \circ \hat{C}=\hat{B} \circ \hat{D}
$$

and up to a possible replacement of \hat{A} by \hat{B} and \hat{C} by \hat{D} either

$$
\hat{A} \circ \hat{C} \sim z^{n} \circ z^{r} R\left(z^{n}\right), \quad \hat{B} \circ \hat{D} \sim z^{r} R^{n}(z) \circ z^{n}
$$

where $R(z)$ is a polynomial, $r \geqslant 0, n \geqslant 1$, and $\operatorname{gcd}(n, r)=1$, or

$$
\hat{A} \circ \hat{C} \sim T_{n} \circ T_{m}, \quad \hat{B} \circ \hat{D} \sim T_{m} \circ T_{n}
$$

where T_{n} and T_{m} are the corresponding Chebyshev polynomials, $n, m \geqslant 1$, and $\operatorname{gcd}(n, m)=1$. Furthermore, the second Ritt theorem remains true for arbitrary polynomial solutions of (3) if we replace the equalities $\operatorname{deg} \mu_{1}=1$ and $\operatorname{deg} \mu_{2}=1$, respectively by the equalities

$$
\operatorname{deg} \mu_{1}=\operatorname{gcd}(\operatorname{deg} A, \operatorname{deg} B), \quad \operatorname{deg} \mu_{2}=\operatorname{gcd}(\operatorname{deg} C, \operatorname{deg} D)
$$

(see $[\mathbf{7}, \mathbf{3 1}]$).
Note that the classification of polynomial solutions of (3) appears in a variety of different contexts some of which are quite unexpected. For example, this classification is closely related to the problem of describing Diophantine equations of the form $A(x)=B(y)$, where $A, B \in \mathbb{Z}[z]$, having an infinite number of integer solutions (see $[\mathbf{4}, \mathbf{8}]$), and to the problem of describing polynomials C and D satisfying the equality $C^{-1}\{S\}=D^{-1}\{T\}$ for some compact sets $S, T \subset$ \mathbb{C} (see [22]). Note also that the problem of describing solutions of (3) such that C and D are polynomials while A and B are allowed to be arbitrary rational (or even just continuous) functions on the sphere can be reduced to the description of polynomial solutions (see [21]). Some other recent results related to the second Ritt theorem can be found in the papers $[\mathbf{1 9}$, 24-27].

The classification of polynomial solutions of (3) essentially reduces to the description of the polynomials A and B such that the algebraic curve

$$
\begin{equation*}
A(x)-B(y)=0 \tag{4}
\end{equation*}
$$

has an irreducible factor of genus 0 with one point at infinity. On the other hand, the proof of the first Ritt theorem can be given in purely algebraic terms that do not involve the genus condition in any form. Indeed, if $G(F) \leqslant \operatorname{Sym}(\Omega)$ is the monodromy group of a rational function F, then equivalence classes of maximal decompositions of F are in one-to-one correspondence with the maximal chains of subgroups

$$
\begin{equation*}
G_{\omega}(F)=T_{0}<T_{1}<\ldots<T_{r}=G(F) \tag{5}
\end{equation*}
$$

where $G_{\omega}(F)$ is the stabilizer of an element $\omega \in \Omega$ in the group $G(F)$. Therefore, any two maximal decompositions of F are weakly equivalent if and only if, for any two maximal chains of subgroups as above \mathcal{R}_{1} and \mathcal{R}_{2}, there exists a collection of maximal chains of subgroups \mathcal{T}_{i}, with $1 \leqslant i \leqslant s$, such that $\mathcal{T}_{1}=\mathcal{R}_{1}, \mathcal{T}_{s}=\mathcal{R}_{2}$, and \mathcal{T}_{i+1} is obtained from \mathcal{T}_{i} with $1 \leqslant i \leqslant s-1$, by a replacement of exactly one group. It was shown in the paper [18, Theorem R.3] that the last condition is satisfied for any permutation group G containing an abelian transitive subgroup. Since the monodromy group of a polynomial always contains a cyclic subgroup with one orbit (its generator corresponds to a loop around infinity), this implies in particular the truth of the first Ritt theorem for polynomials.

It was also proved in the paper [18, Claim 1] that if A, B, C, and D are indecomposable polynomials satisfying (3) such that the decompositions $A \circ C$ and $B \circ D$ are non-equivalent, then the groups $G(A)$ and $G(D)$ as well as the groups $G(C)$ and $G(B)$ are permutation equivalent. Since any two maximal decompositions of a polynomial P are weakly equivalent, this implies by induction that for any two maximal decompositions (2) of P there exists a permutation $\sigma \in S_{k}$ such that the monodromy groups of U_{i} and $V_{\sigma(i)}$, with $1 \leqslant i \leqslant k$, are permutation equivalent [19]. The algebraic counterpart of this fact is the following statement: if $G \leqslant \operatorname{Sym}(\Omega)$ is a permutation group containing a cyclic subgroup with one orbit, then for any two maximal chains

$$
G_{\omega}=A_{0}<\ldots<A_{k}=G \quad \text { and } \quad G_{\omega}=B_{0}<\ldots<B_{m}=G
$$

the equality $k=m$ holds and there exists a permutation $\sigma \in S_{k}$ such that the permutation group induced by the action of A_{i} on cosets of A_{i-1} is permutation equivalent to the permutation group induced by the action of $B_{\sigma(i)}$ on the cosets of $B_{\sigma(i)-1}$, where $1 \leqslant i \leqslant k$. If a permutation group G satisfies this condition, then we say that G satisfies the Jordan-Hölder theorem for imprimitivity systems.
In this paper, we extend the above results about the permutation groups G containing a cyclic group with one orbit to the permutation groups containing a cyclic subgroup H with at most two orbits and apply these results to rational functions (or more generally to meromorphic functions on compact Riemann surfaces), the monodromy group of which contains H.
First, we prove that for a permutation group G containing H the lattice $L\left(G_{\omega}, G\right)$ (consisting of subgroups of G containing G_{ω}) is lower semi-modular and even a stronger condition of the modularity of $L\left(G_{\omega}, G\right)$ holds whenever $L\left(G_{\omega}, G\right)$ does not contain a sublattice isomorphic to the subgroup lattice of a dihedral group. It follows easily from the lower semi-modularity of $L\left(G_{\omega}, G\right)$ that one can pass from any chain of subgroups (5) to any other such chain by a sequence of replacements as above and therefore the first Ritt theorem extends to rational functions, the monodromy group of which contains H. Note that this implies, in particular, that the first Ritt theorem holds for rational functions with at most two poles. Although for such functions the result was known previously (see $[\mathbf{2 3}, \mathbf{2 6}, \mathbf{3 2}]$) the algebraic proof turns out to be more simple and illuminating. Note also that our description of the lattice $L\left(G_{\omega}, G\right)$ for groups G containing H has an interesting connection with the problem of describing algebraic curves having a factor of genus 0 with at most two points at infinity, studied in $[4,8]$.
Further, we prove that if a permutation group G contains a cyclic subgroup with exactly two orbits and these orbits have different length, then the lattice $L\left(G_{\omega}, G\right)$ is not only lower semi-modular but also modular and G satisfies the Jordan-Hölder theorem for imprimitivity systems. This implies, in particular, that if F is a rational function that has only two poles and the orders of these poles are distinct, then any two maximal decompositions (2) of F have the same length and there exists a permutation $\sigma \in S_{r}$ such that the monodromy groups of U_{i} and $V_{\sigma(i)}$, with $1 \leqslant i \leqslant r$, are permutation equivalent. We also show that the Jordan-Hölder theorem for imprimitivity systems holds for any permutation group containing a transitive Hamiltonian subgroup that generalizes the corresponding results of [15, 18, 19].
For arbitrary rational functions the first Ritt theorem fails to be true. The simplest examples are provided by the functions that are regular coverings of the sphere (that is, for which $G_{\omega}=e$) with the monodromy group A_{4}, S_{4}, or A_{5}. These functions were described for the first time by Klein [14] and nowadays can be interpreted as Belyi functions of Platonic solids (see [5, $17]$). For such a function its maximal decompositions simply correspond to maximal chains of subgroups in its monodromy group. Therefore, since any of the groups A_{4}, S_{4}, and A_{5} has maximal chains of subgroups of different length, for the corresponding Klein functions the first Ritt theorem is not true.

Although the fact that the Klein functions provide counterexamples to the first Ritt theorem is a well-known part of the mathematical 'folklore', the systematic description of compositional properties of these functions seems to be absent. In particular, to the best of our knowledge maximal decompositions that do not satisfy the first Ritt theorem were found explicitly only for the Klein function corresponding to the group A_{4} (see $[\mathbf{3}, \mathbf{1 2}]$). In the appendix to this paper we provide a detailed analysis of maximal decompositions of the Klein functions and give related explicit examples of non-weakly equivalent maximal decompositions. In particular, we give an example of a rational function with three poles having maximal decompositions of different length. This example shows that with no additional assumptions the first Ritt theorem cannot be extended to rational functions, the monodromy of which contains a cyclic subgroup with more than two orbits.

In conclusion, note that some of results of this paper overlap with the results of the paper [15] which appeared simultaneously with the earlier version of this paper [20]; namely, our Corollary 3.6 is equivalent to Corollary 1.6 of [$\mathbf{1 5}$] while our Corollary 3.4 is a stronger form of Theorem 1.4 of [15].

2. Jordan-Hölder theorem for imprimitivity systems

2.1. Lattices, imprimitivity systems, and decompositions of functions

Recall that a lattice is a partially ordered set (L, \leqslant) in which every pair of elements x, y has a unique supremum $x \vee y$ and an infimum $x \wedge y$ (see, for example, [1]). Our basic example of a lattice is the lattice $L(G)$ of all subgroups of a group G, where by definition $G_{1} \leqslant G_{2}$ if G_{1} is a subgroup of G_{2} (clearly, $G_{1} \cap G_{2}$ is an infimum of G_{1}, G_{2} and $\left\langle G_{1}, G_{2}\right\rangle$ is a supremum). A simplest example of the lattice $L(G)$ is obtained when G is a cyclic group of order n. In this case $L(G)$ is isomorphic to the lattice L_{n} consisting of all divisors of n, where by definition $d_{1} \leqslant d_{2}$ if $d_{1} \mid d_{2}$.

A sublattice of a lattice L is a non-empty subset $M \subseteq L$ closed with respect to \vee and \wedge. For example, for any subgroup H of a group G the set

$$
L(H, G):=\{X \leqslant G \mid H \leqslant X \leqslant G\}
$$

is a sublattice of $L(G)$. Another example of a sublattice of $L(G)$ is the lattice

$$
L(A, A B):=\{X \leqslant G \mid A \leqslant X \subseteq A B\}
$$

(note that in our notation $X \leqslant G$ means that X is a subgroup of G while $X \subseteq A B$ means that X is a subset of the set $A B$ which in general is not supposed to be a group). Recall that by the Dedekind identity (see, for example, [13, p. 8]) for arbitrary subgroups A, B, X of a group G such that $A \leqslant X \subseteq A B$ the equality $X=A(X \cap B)$ holds. It follows from the Dedekind identity that the mapping $f: X \mapsto X \cap B$ is a monomorphism from the lattice $L(A, A B)$ into the lattice $L(A \cap B, B)$ with the image consisting of all subgroups of B that are permutable with A. We call f the Dedekind monomorphism.

For the elements a and b of a lattice L the symbol $a<\cdot b$ denotes that $a \leqslant b$ and there exists no element $c \neq a, b$ of L such that $a \leqslant c \leqslant b$. A lattice L is called semi-modular [$\mathbf{1}]$ if, for any $a, b \in L$, the conditions

$$
\begin{equation*}
a \wedge b<\cdot a, \quad a \wedge b<\cdot b, \tag{6}
\end{equation*}
$$

imply the conditions

$$
\begin{equation*}
b<\cdot a \vee b, \quad a<\cdot a \vee b . \tag{7}
\end{equation*}
$$

Conversely, it condition (7) implies condition (6), then the lattice L is called lower semimodular. A lattice L is called modular if L is semi-modular and lower semi-modular. A maximal
chain \mathcal{R} between the elements a, b of L is a collection $a_{0}, a_{2}, \ldots a_{k}$ of the elements of L such that

$$
\mathcal{R}: a=a_{0}<\cdot a_{1}<\cdot \ldots<\cdot a_{k}=b
$$

The number k is called the length of the chain \mathcal{R} (we always assume that in the lattices considered the length of a chain between a and b is uniformly bounded by a number depending on a and b only).

It is well known (see, for example, [1]) that, for a semi-modular or lower semi-modular lattice, all maximal chains between two elements have the same length. Below, using essentially the same proof, we give a modification of this statement in the spirit of the first Ritt theorem.

We say that two maximal chains between elements a and b of a lattice L are r-equivalent if there exists a sequence of maximal chains $\mathcal{T}_{1}, \mathcal{T}_{2}, \ldots, \mathcal{T}_{s}$ between a and b such that $\mathcal{T}_{1}=\mathcal{R}_{1}$, $\mathcal{T}_{s}=\mathcal{R}_{2}$, and \mathcal{T}_{i+1} is obtained from \mathcal{T}_{i}, with $1 \leqslant i \leqslant s-1$, by a replacement of exactly one element. Clearly, all r-equivalent chains have an equal length.

Theorem 2.1. Let L be a semi-modular or lower semi-modular lattice. Then any two maximal chains between any elements a and b of L are r-equivalent.

Proof. Since after the inversion of the ordering of a lattice the condition of semi-modularity transforms to the condition of lower semi-modularity and vice versa, it is enough to prove the theorem for lower semi-modular lattices.

Fix $a \in L$. For arbitrary $b \in L$ denote by $d(b)$ a maximum of the lengths of maximal chains between a and b. We will prove the theorem by induction on $d(b)$. For b satisfying $d(b) \leqslant 1$ the theorem is obviously true. Suppose that the theorem is proved for b satisfying $d(b) \leqslant n-1$ and let

$$
\mathcal{R}_{1}: a=a_{0}<\cdot a_{2}<\cdot \ldots<\cdot a_{k_{1}}=b, \quad \mathcal{R}_{2}: a=b_{0}<\cdot b_{2}<\cdot \ldots<\cdot b_{k_{2}}=b
$$

be two maximal chains between a and an element $b \in L$ such that $d(b)=n$.
If $a_{k_{1}-1}=b_{k_{2}-1}$, then we are done by induction. Hence, we may assume that $a_{k_{1}-1} \neq b_{k_{2}-1}$. Then, by the maximality of $a_{k_{1}-1}$ and $b_{k_{2}-1}$ in b, we conclude that $a_{k_{1}-1} \vee b_{k_{2}-1}=b$. Hence

$$
a_{k_{1}-1}<\cdot a_{k_{1}-1} \vee b_{k_{2}-1}, \quad b_{k_{2}-1}<\cdot a_{k_{1}-1} \vee b_{k_{2}-1}
$$

and therefore, by the lower semi-modularity of L, we have

$$
\begin{equation*}
a_{k_{1}-1} \wedge b_{k_{2}-1}<\cdot a_{k_{1}-1}, \quad a_{k_{1}-1} \wedge b_{k_{2}-1}<\cdot b_{k_{2}-1} \tag{8}
\end{equation*}
$$

Let

$$
a=c_{0}<\cdot c_{2}<\cdot \ldots<\cdot c_{l}=a_{k_{1}-1} \wedge b_{k_{2}-1}
$$

be any maximal chain between a and $a_{k_{1}-1} \wedge b_{k_{2}-1}$ and let

$$
\begin{equation*}
a=c_{0}<\cdot c_{2}<\cdot \ldots<\cdot c_{l}<\cdot a_{k_{1}-1} \tag{9}
\end{equation*}
$$

be its extension to a maximal chain between a and $a_{k_{1}-1}$. Since $d\left(a_{k_{1}-1}\right)$ is obviously less than $d(b)$, it follows from the induction assumption that the chain

$$
a=a_{0}<\cdot a_{2}<\cdot \ldots<\cdot a_{k_{1}-1}
$$

obtained from \mathcal{R}_{1} by deleting $a_{k_{1}}$ is r-equivalent to the chain (9). Therefore, the chain \mathcal{R}_{1} and the chain

$$
\begin{equation*}
a=c_{0}<\cdot c_{2}<\cdot \ldots<\cdot c_{l}<\cdot a_{k_{1}-1}<\cdot b \tag{10}
\end{equation*}
$$

are also r-equivalent.

Figure 1.

Similarly, the chain \mathcal{R}_{2} is r-equivalent to the chain

$$
\begin{equation*}
a=c_{0}<\cdot c_{2}<\cdot \ldots<\cdot c_{l}<\cdot b_{k_{2}-1}<\cdot b \tag{11}
\end{equation*}
$$

Since the chains (10) and (11) are r-equivalent, we conclude that the chain \mathcal{R}_{1} is r-equivalent to the chain \mathcal{R}_{2}.

REmark. Note that there exist lattices that are not semi-modular or lower semi-modular such that any two maximal chains between any elements are r-equivalent. An example of such a lattice is shown in Figure 1.

Let Ω be a finite set and let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group. Recall that a partition \mathcal{E} of Ω is called an imprimitivity system of G if \mathcal{E} is G-invariant. Elements of \mathcal{E} are called blocks. For a point $\omega \in \Omega$, we denote by $\mathcal{E}(\omega)$ a unique block of \mathcal{E} which contains ω. Since the group G permutes the elements of \mathcal{E} transitively, it follows that all blocks of \mathcal{E} have the same cardinality denoted by $n_{\mathcal{E}}$. Denote by $\mathcal{E}(G)$ the set of all imprimitivity systems of G. It is a partially ordered set, where by definition $\mathcal{E} \leqslant \mathcal{F}$ if \mathcal{E} is a refinement of \mathcal{F}. Note that if $\mathcal{E} \leqslant \mathcal{F}$, then $n_{\mathcal{F}} / n_{\mathcal{E}}$ is an integer denoted by $[\mathcal{F}: \mathcal{E}]$.

It is easy to see that $\mathcal{E}(G)$ is a lattice where the lattice operations are defined as follows:

$$
\begin{aligned}
& \mathcal{E} \wedge \mathcal{F}:=\{\Delta \cap \Gamma \mid \Delta \in \mathcal{E}, \Gamma \in \mathcal{F} \text { and } \Delta \cap \Gamma \neq \emptyset\} \\
& \mathcal{E} \vee \mathcal{F}:=\bigwedge\{\mathcal{D} \in \mathcal{E}(G) \mid \mathcal{E} \leqslant \mathcal{D} \text { and } \mathcal{F} \leqslant \mathcal{D}\}
\end{aligned}
$$

It is well known that the lattice $\mathcal{E}(G)$ is isomorphic to the subgroup lattice $L\left(G_{\omega}, G\right)$, where $\omega \in \Omega$ is an arbitrary fixed point. The correspondence between two sets is given by the formula $\mathcal{E} \mapsto G_{\mathcal{E}(\omega)}$, where

$$
G_{\mathcal{E}(\omega)}:=\left\{g \in G \mid \mathcal{E}(\omega)^{g}=\mathcal{E}(\omega)\right\}
$$

Conversely, an imprimitivity system corresponding to a subgroup $K \in L\left(G_{\omega}, G\right)$ is defined as follows: $\mathcal{E}_{K}:=\left\{\omega^{K g} \mid g \in G\right\}$. Note that, for any $\mathcal{E}, \mathcal{F} \in \mathcal{E}(G)$, we have

$$
G_{(\mathcal{E} \wedge \mathcal{F})(\omega)}=G_{\mathcal{E}(\omega)} \cap G_{\mathcal{F}(\omega)}, \quad G_{(\mathcal{E} \vee \mathcal{F})(\omega)}=\left\langle G_{\mathcal{E}(\omega)}, G_{\mathcal{F}(\omega)}\right\rangle
$$

Moreover, if $\mathcal{E} \leqslant \mathcal{F}$, then $[\mathcal{F}: \mathcal{E}]=\left[G_{\mathcal{F}(\omega)}: G_{\mathcal{E}(\omega)}\right]$.
If G is the monodromy group of a rational function F, then imprimitivity systems of G are in one-to-one correspondence with equivalence classes of decompositions $A \circ B$ of F : namely, suppose that G is realized as a permutation group acting on the set $z_{1}, z_{2}, \ldots, z_{n}$ of preimages of a non-critical value z_{0} of $F=A \circ B$ under the map $F: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$, and let $x_{1}, x_{2}, \ldots, x_{r}$ be the set of preimages of z_{0} under the map $A: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$. Then blocks of the imprimitivity system of G corresponding to the equivalence class of decompositions of F containing $A \circ B$
are just preimages of the points $x_{1}, x_{2}, \ldots, x_{r}$ under the map $B: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$. More generally, equivalence classes of decompositions of a rational function F are in one-to-one correspondence with the chains of subgroups

$$
G_{\omega}=T_{0}<T_{1}<\ldots<T_{r}=G
$$

where G is the monodromy group of F.
Following [26] we say that two maximal decompositions \mathcal{D}_{1} and \mathcal{D}_{2} of a rational function F are weakly equivalent if there exists a chain of maximal decompositions \mathcal{F}_{i}, with $1 \leqslant i \leqslant s$, of F such that $\mathcal{F}_{1}=\mathcal{D}_{1}, \mathcal{F}_{s} \sim \mathcal{D}_{2}$, and \mathcal{F}_{i+1} is obtained from \mathcal{F}_{i}, with $1 \leqslant i \leqslant s-1$, by replacing two successive functions in \mathcal{F}_{i} by other functions with the same composition. The remarks above imply that two maximal decompositions of F are weakly equivalent if and only if the corresponding maximal chains in $L\left(G_{\omega}, G\right)$ are r-equivalent. In particular, the conclusion of the first Ritt theorem is true for a rational function F if and only if all maximal chains between G_{ω} and G in $L\left(G_{\omega}, G\right)$ are r-equivalent. Therefore, Theorem 2.1 implies the following corollary (cf. [26, Theorem 2.5]).

Corollary 2.2. Let F be a rational function such that the lattice $L\left(G_{\omega}, G\right)$, where G is the monodromy group of F, is semi-modular or lower semi-modular. Then all maximal decompositions of F are weakly equivalent.

Corollary 2.2 shows that the groups G for which $L\left(G_{\omega}, G\right)$ is semi-modular or lower semimodular are of special interest for the factorization theory of rational functions. The simplest examples of such groups are groups containing a transitive cyclic subgroup.

Theorem 2.3. Let $G \leqslant S_{n}$ be a permutation group containing a transitive cyclic subgroup C_{n}. Then the lattice $L\left(G_{1}, G\right)$ is a modular lattice isomorphic to a sublattice of the lattice L_{n}.

Proof. Since any sublattice of a modular lattice is modular (see, for example, [1]) and it is easy to see that L_{n} is modular, it is enough to prove that $L\left(G_{1}, G\right)$ is isomorphic to a sublattice of L_{n}.

The transitivity of C_{n} implies that $G=G_{1} C_{n}$. Therefore, the Dedekind monomorphism $f: X \mapsto X \cap C_{n}$ maps $L\left(G_{1}, G\right)$ into a sublattice of $L\left(G_{1} \cap C_{n}, C_{n}\right)$. On the other hand,

$$
L\left(G_{1} \cap C_{n}, C_{n}\right)=L\left(e, C_{n}\right) \cong L_{n}
$$

Note that Theorem 2.3 implies the following proposition (cf. [7, 31]).

Corollary 2.4. Let A, B, C, and D be polynomials such that

$$
A \circ C=B \circ D
$$

Then there exist polynomials $U, V, \hat{A}, \hat{C}, \hat{B}$, and \hat{D}, where

$$
\operatorname{deg} U=\operatorname{gcd}(\operatorname{deg} A, \operatorname{deg} B), \quad \operatorname{deg} V=\operatorname{gcd}(\operatorname{deg} C, \operatorname{deg} D)
$$

such that

$$
A=U \circ \hat{A}, \quad B=U \circ \hat{B}, \quad C=\hat{C} \circ V, \quad D=\hat{D} \circ V
$$

and

$$
\hat{A} \circ \hat{C}=\hat{B} \circ \hat{D} .
$$

In particular, if $\operatorname{deg} A=\operatorname{deg} B$, then the decompositions $A \circ C$ and $B \circ D$ are necessarily equivalent.

2.2. Jordan-Hölder theorem for groups with normal imprimitivity systems

As above let G be a transitive permutation group. It is easy to see that if N is a normal subgroup of G, then its orbits form an imprimitivity system of G. Such an imprimitivity system is called normal and is denoted by Ω / N. For an imprimitivity system $\mathcal{E} \in \mathcal{E}(G)$ set

$$
G_{\mathcal{E}}:=\left\{g \in G \mid \forall_{\Delta \in \mathcal{E}} \Delta^{g}=\Delta\right\}
$$

Note that each block of \mathcal{E} is a union of $G_{\mathcal{E}}$-orbits and $G_{\mathcal{E}}=\operatorname{core}_{G}\left(G_{\mathcal{E}(\omega)}\right)$. In particular, $G_{\mathcal{E}}$ is a normal subgroup of G.

Let us call a subgroup $A \in L\left(G_{\omega}, G\right)$ core-complementary if $A=G_{\omega} \operatorname{core}_{G}(A)$.

Proposition 2.5. An imprimitivity system $\mathcal{E} \in \mathcal{E}(G)$ is normal if and only if the group $G_{\mathcal{E}(\omega)}$ is core-complementary.

Proof. Indeed, if

$$
\begin{equation*}
G_{\mathcal{E}(\omega)}=G_{\omega} \operatorname{core}_{G}\left(G_{\mathcal{E}(\omega)}\right)=G_{\omega} G_{\mathcal{E}} \tag{12}
\end{equation*}
$$

then

$$
\mathcal{E}(\omega)=\omega^{G_{\varepsilon}(\omega)}=\omega^{G_{\varepsilon}}
$$

and hence $G_{\mathcal{E}}$ acts transitively on $\mathcal{E}(\omega)$. Since $G_{\mathcal{E}} \unlhd G$, this implies that $G_{\mathcal{E}}$ acts transitively on every block of \mathcal{E}. Thus blocks of \mathcal{E} are orbits of the normal subgroup $G_{\mathcal{E}}$.

Conversely, if \mathcal{E} is normal, then $\mathcal{E}=\Omega / N$ for some $N \unlhd G$. This implies that $G_{\mathcal{E}(\omega)}=G_{\omega} N$ and $N \leqslant G_{\mathcal{E}}$. It follows now from

$$
G_{\mathcal{E}(\omega)}=G_{\omega} N \leqslant G_{\omega} G_{\mathcal{E}} \leqslant G_{\mathcal{E}(\omega)}
$$

that equality (12) holds.

Recall that two subgroups A and B are called permutable if $A B=B A$ or, equivalently, $\langle A, B\rangle=A B$. Recall also that if A and B are subgroups of the finite index of G, then the inequality

$$
\begin{equation*}
[\langle A, B\rangle: B] \geqslant[A: A \cap B] \tag{13}
\end{equation*}
$$

holds and the equality in (13) is attained if and only if A and B are permutable (see, for example, [16, p. 79]).

Denote by $L_{c}\left(G_{\omega}, G\right)$ the subset of $L\left(G_{\omega}, G\right)$ consisting of all core-complementary subgroups. Note that, in general, $L_{c}\left(G_{\omega}, G\right)$ is not a sublattice of $L\left(G_{\omega}, G\right)$

Proposition 2.6. The following conditions hold.
(a) If $A \in L_{c}\left(G_{\omega}, G\right)$, then $A B=B A$ for each $B \in L\left(G_{\omega}, G\right)$.
(b) If $A, B \in L_{c}\left(G_{\omega}, G\right)$, then $A B \in L_{c}\left(G_{\omega}, G\right)$.

Proof. (a) In order to lighten the notation set $N=\operatorname{core}_{G}(A)$. In view of Proposition 2.5 we have

$$
A B=G_{\omega} N B=N G_{\omega} B=N B=B N=B G_{\omega} N=B A
$$

(b) Set $M=\operatorname{core}_{G}(B)$. Since $M N \unlhd G$ and $M N \leqslant A B$, we have

$$
M N \leqslant \operatorname{core}_{G}(A B) .
$$

It follows now from Proposition 2.5 that

$$
A B=G_{\omega} N G_{\omega} M=G_{\omega} M N \leqslant G_{\omega} \operatorname{core}_{G}(A B) \leqslant A B .
$$

Therefore, $G_{\omega} \operatorname{core}_{G}(A B)=A B$ and hence $A B \in L_{c}\left(G_{\omega}, G\right)$ by Proposition 2.5.

Proposition 2.7. Let $A, B \leqslant G$ be permutable subgroups. If $A \cap B$ is maximal in A and B, then A and B are maximal in $\langle A, B\rangle=A B$.

Proof. Let A_{1} be a subgroup of G satisfying $A \leqslant A_{1} \leqslant A B$. It follows from

$$
A \cap B \leqslant A_{1} \cap B \leqslant B
$$

that either $A_{1} \cap B=A \cap B$ or $A_{1} \cap B=B$. It follows now from the Dedekind identity $A_{1}=$ $A\left(A_{1} \cap B\right)$ that in the first case $A_{1}=A$ while in the second $A_{1}=A B$.

Proposition 2.8. If any two subgroups of $L\left(G_{\omega}, G\right)$ are permutable, then the lattice $L\left(G_{\omega}, G\right)$ is modular.

Proof. Indeed, if $A \cap B$ is maximal in A and B, then A and B are maximal in $\langle A, B\rangle=A B$ by Proposition 2.7.

Suppose now that A and B are maximal in $A B$ and let A_{1} be a subgroup of G satisfying $A \cap B \leqslant A_{1} \leqslant A$. Then

$$
B \leqslant A_{1} B \leqslant A B
$$

implies that either $B=A_{1} B$ or $A_{1} B=A B$. If $B=A_{1} B$, then $A_{1} \leqslant B$ and therefore $A_{1}=$ $A \cap B$. On the other hand, if $A_{1} B=A B$, then it follows from $A \leqslant A B=A_{1} B$ that, for any $a \in A$, there exist $a_{1} \in A_{1}$ and $b \in B$ such that $a=a_{1} b$. Since the last equality yields that $b \in A \cap B$, this implies that $A \leqslant A_{1}(A \cap B) \leqslant A_{1}$ and hence $A_{1}=A$.

Let $H \leqslant G$ be an arbitrary subgroup and let $H \backslash G:=\{H x \mid x \in G\}$. Denote by $G / / H$ a permutation group arising from the natural action of G on $H \backslash G$. Thus $G / / H$ is always considered as a subgroup of $\operatorname{Sym}(H \backslash G)$. Note that if $N \unlhd G$ is contained in H, then the groups $G / / H$ and $(G / N) / /(H / N)$ are permutation equivalent. Below we denote permutation equivalence by \cong_{p}.

Say that a transitive permutation group $G \leqslant \operatorname{Sym}(\Omega)$ satisfies the Jordan-Hölder theorem for imprimitivity systems if any two maximal chains

$$
G_{\omega}=A_{0}<\ldots<A_{k}=G \quad \text { and } \quad G_{\omega}=B_{0}<\ldots<B_{m}=G
$$

of the lattice $L\left(G_{\omega}, G\right)$ have the same length (that is, $k=m$) and there exists a permutation $\sigma \in S_{k}$ such that the permutation groups $A_{i} / / A_{i-1}$ and $B_{\sigma(i)} / / B_{\sigma(i)-1}$, with $1 \leqslant i \leqslant k$, are permutation equivalent. Note that if G is the monodromy group of a rational function F, then it follows from the correspondence between imprimitivity systems of G and equivalence classes of decompositions of F that G satisfies the Jordan-Hölder theorem for imprimitivity systems if and only if any two maximal decompositions of F

$$
F=U_{1} \circ U_{2} \circ \ldots \circ U_{k} \quad \text { and } \quad F=V_{1} \circ V_{2} \circ \ldots \circ V_{m},
$$

have the same length and there exists a permutation $\sigma \in S_{k}$ such that the monodromy groups of U_{i} and $V_{\sigma(i)}$, with $1 \leqslant i \leqslant k$, are permutation equivalent.

Theorem 2.9. Let G be a permutation group such that $L\left(G_{\omega}, G\right)=L_{c}\left(G_{\omega}, G\right)$. Then the lattice $L\left(G_{\omega}, G\right)$ is modular and G satisfies the Jordan-Hölder theorem for imprimitivity systems.

Proof. First of all observe that since, by Proposition 2.6, any two subgroups of $L\left(G_{\omega}, G\right)$ are permutable, it follows from Proposition 2.8 that $L\left(G_{\omega}, G\right)$ is a modular lattice. Now let

$$
\mathcal{A}:=G_{\omega}=A_{0}<\ldots<A_{k}=G \quad \text { and } \quad \mathcal{B}:=G_{\omega}=B_{0}<\ldots<B_{m}=G
$$

be two maximal chains of $L\left(G_{\omega}, G\right)$. Since $L\left(G_{\omega}, G\right)$ is a modular lattice, it follows from Theorem 2.1 that $k=m$ and \mathcal{A} and \mathcal{B} are r-equivalent. Therefore by induction it is sufficient to prove the theorem for the case when \mathcal{B} and \mathcal{A} differ at exactly one place, say $i(1 \leqslant i<k)$. Clearly, in this case we have

$$
A_{i-1}=B_{i-1}=A_{i} \cap B_{i}, \quad A_{i+1}=B_{i+1}=A_{i} B_{i} .
$$

In order to lighten the notation set

$$
N:=\operatorname{core}_{A_{i+1}}\left(A_{i}\right) .
$$

It follows from the equality $A_{i}=G_{\omega} \operatorname{core}_{G}\left(A_{i}\right)$ that $A_{i}=A_{i-1} \operatorname{core}_{G}\left(A_{i}\right)$. Therefore,

$$
A_{i}=A_{i-1} \operatorname{core}_{G}\left(A_{i}\right) \leqslant A_{i-1} N \leqslant A_{i}
$$

and hence

$$
A_{i}=A_{i-1} N=B_{i-1} N
$$

and

$$
A_{i+1}=A_{i} B_{i}=A_{i-1} N B_{i}=B_{i-1} N B_{i}=B_{i} N .
$$

Since $N \leqslant A_{i}=B_{i-1} N$ and $N \unlhd A_{i+1}=B_{i} N$, this implies that

$$
A_{i+1} / / A_{i}=\left(B_{i} N\right) / /\left(B_{i-1} N\right) \cong_{p}\left(B_{i} N\right) / N / /\left(B_{i-1} N\right) / N .
$$

By the Second Isomorphism Theorem the group $\left(B_{i} N\right) / N$ is isomorphic to the group $B_{i} /\left(B_{i} \cap N\right)$ and the image of $\left(B_{i-1} N\right) / N$ under this isomorphism is

$$
B_{i-1}\left(B_{i} \cap N\right) /\left(B_{i} \cap N\right)
$$

Furthermore, it follows from $N \leqslant A_{i}$ that $B_{i} \cap N \leqslant A_{i} \cap B_{i}=B_{i-1}$. Therefore,

$$
B_{i-1}\left(B_{i} \cap N\right) /\left(B_{i} \cap N\right)=B_{i-1} /\left(B_{i} \cap N\right)
$$

and hence

$$
\left(B_{i} N\right) / N / /\left(B_{i-1} N\right) / N \cong_{p} B_{i} /\left(B_{i} \cap N\right) / / B_{i-1} /\left(B_{i} \cap N\right) .
$$

Finally, since $B_{i} \cap N \unlhd B_{i}$, it follows that

$$
B_{i} /\left(B_{i} \cap N\right) / / B_{i-1} /\left(B_{i} \cap N\right) \cong_{p} B_{i} / / B_{i-1}
$$

and hence $A_{i+1} / / A_{i} \cong_{p} B_{i} / / B_{i-1}$. Replacing A and B in the above argument, we obtain similarly that $B_{i+1} / / B_{i} \cong_{p} A_{i} / / A_{i-1}$.

Recall that a group is called Hamiltonian if all its subgroups are normal.

Theorem 2.10. Let G be a permutation group containing a transitive Hamiltonian subgroup K. Then $L\left(G_{\omega}, G\right)$ is a modular lattice isomorphic to a sublattice of $L(K)$ and G satisfies the Jordan-Hölder theorem for imprimitivity systems.

Proof. It follows from the transitivity of K that $G=G_{\omega} K$. Therefore, by the Dedekind monomorphism $L\left(G_{\omega}, G\right)$ is isomorphic to a sublattice of $L\left(G_{\omega} \cap K, K\right)$. Clearly, $G_{\omega} \cap K=$ K_{ω}. Furthermore, since K is Hamiltonian, it follows that the subgroup K_{ω} is normal in K and therefore, for any $\omega^{\prime} \in \Omega$, the equality $K_{\omega}=K_{\omega^{\prime}}$ holds. This implies that $K_{\omega}=1$ and hence $L\left(G_{\omega}, G\right)$ is isomorphic to a sublattice of $L(K)$. Since $L(K)$ is modular by Proposition 2.8, it follows that $L\left(G_{\omega}, G\right)$ is modular as well.

By Theorem 2.9 in order to prove that G satisfies the Jordan-Hölder theorem it is enough to show that $L_{c}\left(G_{\omega}, G\right)=L\left(G_{\omega}, G\right)$. Observe first that it follows from $G=G_{\omega} K$ that, for arbitrary $A \in L\left(G_{\omega}, G\right)$, the equality

$$
\begin{equation*}
\operatorname{core}_{G}(A)=\bigcap_{g \in K} g A g^{-1} \tag{14}
\end{equation*}
$$

holds. On the other hand, since K is Hamiltonian, we have: $A \cap K \unlhd K$. Therefore, for each $g \in K$ we have

$$
g^{-1}(A \cap K) g=A \cap K \leqslant A
$$

implying that

$$
\begin{equation*}
A \cap K \leqslant g A g^{-1} . \tag{15}
\end{equation*}
$$

It follows now from (14) and (15) that $A \cap K \leqslant \operatorname{core}_{G}(A)$ and hence

$$
G_{\omega}(A \cap K) \leqslant G_{\omega} \operatorname{core}_{G}(A) \leqslant A .
$$

Since by Dedekind's identity $G_{\omega}(A \cap K)=A$, we conclude that $G_{\omega} \operatorname{core}_{G}(A)=A$ for any $A \in$ $L\left(G_{\omega}, G\right)$ and hence $L_{c}\left(G_{\omega}, G\right)=L\left(G_{\omega}, G\right)$ by Proposition 2.5.

Corollary 2.11. Let F be a rational function such that its monodromy group contains a transitive Hamiltonian subgroup. Then any two maximal decompositions of F are weakly equivalent. Furthermore, for any two decompositions of F

$$
F=U_{1} \circ U_{2} \circ \ldots \circ U_{k} \quad \text { and } \quad F=V_{1} \circ V_{2} \circ \ldots \circ V_{k} \text {, }
$$

there exists a permutation $\sigma \in S_{k}$ such that the monodromy groups of U_{i} and $V_{\sigma(i)}$, with $1 \leqslant i \leqslant k$, are permutation equivalent.

Remark. Note that the condition of Corollary 2.11 is satisfied in particular if K is cyclic or abelian. Therefore, Corollary 2.11 generalizes Theorem R. 3 and Claim 1 of [18], and Theorem 1.3 of [19]. Note also that if a group G satisfies the Jordan-Hölder theorem for imprimitivity systems, then G automatically possesses the so-called 'Jordan property' defined in [15]. In particular, Theorem 2.10 provides a more precise version of [15, Proposition 1.2] for permutation groups containing a transitive Hamiltonian subgroup.
2.3. Jordan-Hölder theorem for groups containing a cyclic subgroup with two orbits of different length

Let Ω be a finite set, let $h \in \operatorname{Sym}(\Omega)$ be a permutation which is a product of exactly two disjoint cycles, and let $H:=\langle h\rangle$. For the rest of this subsection it is assumed that $G \leqslant \operatorname{Sym}(\Omega)$ is a transitive permutation group containing H. Without loss of generality we may assume that $G \leqslant S_{n}$ and

$$
h=\left(12 \ldots n_{1}\right)\left(n_{1}+1 n_{1}+2 \ldots n_{1}+n_{2}\right),
$$

where $1 \leqslant n_{1}, n_{2}<n$ and $n_{1}+n_{2}=n$.

Say that an imprimitivity system $\mathcal{E} \in \mathcal{E}(G)$ is H-transitive or H-intransitive if the action of H on the blocks of \mathcal{E} is transitive or intransitive, respectively. Say that a group $K \in L\left(G_{\omega}, G\right)$ is H-transitive or H-intransitive if the corresponding $\mathcal{E}_{K} \in \mathcal{E}(G)$ is H-transitive or H-intransitive, respectively.
Since H permutes blocks of \mathcal{E}, it is easy to see that if \mathcal{E} is H-transitive, then there exist numbers $d \mid n$ and i_{1}, i_{2} with $1 \leqslant i_{1}, i_{2} \leqslant d$, such that any block of \mathcal{E} is equal to $W_{i_{1}, d}^{1} \cup W_{i_{2}, d}^{2}$, where the symbols $W_{j, l}^{1}$ and $W_{j, l}^{2}$ denote the union of numbers equal to j by modulo l from the segment $\left[1, n_{1}\right]$ and from the segment $\left[n_{1}+1, n_{1}+n_{2}\right]$ respectively. On the other hand, if $\mathcal{E} \in \mathcal{E}(G)$ is H-intransitive, then there exist the numbers $d_{1}\left|n_{1}, d_{2}\right| n_{2}$ and i_{1}, i_{2}, with $1 \leqslant i_{1} \leqslant d_{1}$, $1 \leqslant i_{2} \leqslant d_{2}$, such that

$$
\begin{equation*}
n_{1} / d_{1}=n_{2} / d_{2}=n_{\varepsilon} \tag{16}
\end{equation*}
$$

and any block of \mathcal{E} is equal either to $W_{i_{1}, d_{1}}^{1}$ or to $W_{i_{2}, d_{2}}^{2}$.
Proposition 2.12. Any H-intransitive imprimitivity system $\mathcal{E} \in \mathcal{E}(G)$ is normal.
Proof. In the notation above set $r=\operatorname{lcm}\left(d_{1}, d_{2}\right)$ and $K:=\left\langle h^{r}\right\rangle$. Clearly, we have $K \leqslant G_{\varepsilon}$ and therefore any orbit of $G_{\mathcal{E}}$ is a union of orbits of K. The length of any orbit of K on [1, $\left.n_{1}\right]$ is equal to

$$
\frac{n_{1}}{\operatorname{gcd}\left(n_{1}, r\right)}=\frac{n_{\varepsilon}}{\operatorname{gcd}\left(n_{\varepsilon}, r / d_{1}\right)} .
$$

On the other hand, the length of any orbit of K on $\left[n_{1}+1, n_{1}+n_{2}\right]$ is equal to

$$
\frac{n_{2}}{\operatorname{gcd}\left(n_{2}, r\right)}=\frac{n_{\varepsilon}}{\operatorname{gcd}\left(n_{\varepsilon}, r / d_{2}\right)} .
$$

Therefore, the length of any orbit of G_{ε} on Ω is divisible by

$$
\operatorname{lcm}\left(\frac{n_{\mathcal{E}}}{\operatorname{gcd}\left(n_{\varepsilon}, r / d_{1}\right)}, \frac{n_{\mathcal{E}}}{\operatorname{gcd}\left(n_{\mathcal{E}}, r / d_{2}\right)}\right)=\frac{n_{\mathcal{E}}}{\operatorname{gcd}\left(n_{\varepsilon}, \operatorname{gcd}\left(r / d_{1}, r / d_{2}\right)\right)}=n_{\mathcal{E}} .
$$

This implies that an orbits of $G_{\mathcal{E}}$ coincide with the blocks of \mathcal{E} and hence \mathcal{E} is normal.

Proposition 2.13. If an H-transitive imprimitivity system $\mathcal{E} \in \mathcal{E}(G)$ is not normal, then $n_{1}=n_{2}$ and there exists a normal imprimitivity system $\mathcal{E}^{\prime} \leqslant \mathcal{E}$ such that $\left[\mathcal{E}: \mathcal{E}^{\prime}\right]=2$. Furthermore, ε^{\prime} is H-intransitive, its blocks coincide with an orbits of $G_{\mathcal{\varepsilon}}$, and for any H-intransitive imprimitivity system $\mathcal{F} \in \mathcal{E}(G)$, such that $\mathcal{F} \leqslant \mathcal{E}$, we have $\mathcal{F} \leqslant \mathcal{E}^{\prime}$.

Proof. In the notation above set $K=\left\langle h^{d}\right\rangle$. Clearly, any block $W_{i_{1}, d}^{1} \cup W_{i_{2}, d}^{2}$ of \mathcal{E} is a union of exactly two orbits of K and $K \leqslant G_{\mathcal{E}}$. Since \mathcal{E} is not normal, this implies that the orbits of G_{ε} coincide with the orbits of K. In particular, since the orbits of $G_{\mathcal{\varepsilon}}$ have the same length, the same is true for the orbits of K and hence $n_{1}=n_{2}$. The remaining statements of the proposition are now obvious.

THEOREM 2.14. If a transitive permutation group G contains a cyclic subgroup with two orbits of different length, then $L\left(G_{\omega}, G\right)$ is modular and G satisfies the Jordan-Hölder theorem for imprimitivity systems.

Proof. It follows from Propositions 2.12 and 2.13 that $L\left(G_{\omega}, G\right)=L_{c}\left(G_{\omega}, G\right)$. Now the theorem follows from Theorem 2.9.

Corollary 2.15. Let F be a rational function such that F has only two poles and the orders of these poles are distinct. Then any two maximal decompositions of F are weakly equivalent. Furthermore, for any two decompositions of F

$$
F=U_{1} \circ U_{2} \circ \ldots \circ U_{k} \quad \text { and } \quad F=V_{1} \circ V_{2} \circ \ldots \circ V_{k} \text {, }
$$

there exists a permutation $\sigma \in S_{k}$ such that the monodromy groups of U_{i} and $V_{\sigma(i)}$, with $1 \leqslant i \leqslant k$, are permutation equivalent.
3. The lattice of imprimitivity systems for groups containing a cyclic subgroup with two orbits

3.1. Semimodularity and modularity of $L\left(G_{\omega}, G\right)$

Proposition 3.1. Let G be a transitive permutation group. Suppose that $L\left(G_{\omega}, G\right)$ contains the subgroups E and F such that $[E: E \cap F]=[F: E \cap F]=2$. Then $E \cap F$ is normal in $\langle E, F\rangle$ and $\langle E, F\rangle / E \cap F \cong D_{2 m}$, where $2 m:=[\langle E, F\rangle: E \cap F]$. Furthermore, $L(E \cap F,\langle E, F\rangle) \cong L\left(D_{2 m}\right)$.

Proof. Since $[E: E \cap F]=[F: E \cap F]=2$, the subgroup $E \cap F$ is normal in E and F simultaneously and therefore $E \cap F \unlhd\langle E, F\rangle$. Since

$$
\langle E, F\rangle /(E \cap F)=\langle E /(E \cap F), F /(E \cap F)\rangle
$$

and $E /(E \cap F) \cong \mathbb{Z}_{2}$ and $F /(E \cap F) \cong \mathbb{Z}_{2}$, the group $\langle E /(E \cap F), F /(E \cap F)\rangle$ is isomorphic to $D_{2 m}$ for some $m \geqslant 1$ (see, for example, $\left.[\mathbf{6}]\right)$. Furthermore, since

$$
[\langle E, F\rangle:(E \cap F)]=|\langle E, F\rangle /(E \cap F)|
$$

we have $[\langle E, F\rangle:(E \cap F)]=2 m$. Finally, it is clear that

$$
L(E \cap F,\langle E, F\rangle) \cong L(\langle E, F\rangle /(E \cap F))
$$

and therefore $L(E \cap F,\langle E, F\rangle) \cong L\left(D_{2 m}\right)$.
In the rest of this subsection it is assumed that $G \leqslant \operatorname{Sym}(\Omega)$ is a transitive permutation group containing H.

Proposition 3.2. The lattice $L\left(G_{\omega}, G\right)$ is lower semi-modular.

Proof. Assume the contrary and let $E_{1} \in L\left(G_{\omega}, G\right)$ be a subgroup of G such that

$$
\begin{equation*}
E \cap F<E_{1}<E \tag{17}
\end{equation*}
$$

where $E, F \in L\left(G_{\omega}, G\right)$, with $E \neq F$, are maximal in $\langle E, F\rangle$. Note that then

$$
E_{1} \cap F=E \cap F
$$

If E_{1} is permutable with F, then $\left\langle E_{1}, F\right\rangle=E_{1} F$ and by (13)

$$
\left[\left\langle E_{1}, F\right\rangle: F\right]=\left[E_{1}: E_{1} \cap F\right]=\left[E_{1}: E \cap F\right]<[E: E \cap F] \leqslant[\langle E, F\rangle: F]
$$

Therefore, $\left\langle E_{1}, F\right\rangle<\langle E, F\rangle$. Since $F \leqslant\left\langle E_{1}, F\right\rangle$ and F is maximal in $\langle E, F\rangle$, this implies that $\left\langle E_{1}, F\right\rangle=F$. Hence, $E_{1} \leqslant F$ and therefore $E_{1} \leqslant E \cap F$, in contradiction with the assumption that $E \cap F<E_{1}$.

Suppose now that F and E_{1} are not permutable. Then Proposition 2.6 implies that both E_{1} and F are not core-complementary. It follows now from Propositions 2.5 and 2.13 that there exist $F^{\prime}, E_{1}^{\prime} \in L_{c}\left(G_{\omega}, G\right)$ such that $\left[E_{1}: E_{1}^{\prime}\right]=\left[F: F^{\prime}\right]=2$. Note that each of the groups F^{\prime} and E_{1}^{\prime} is permutable with any $X \in L\left(G_{\omega}, G\right)$ by Proposition 2.6. In particular, $E_{1}^{\prime} F \in L\left(G_{\omega}, G\right)$ and $E F^{\prime} \in L\left(G_{\omega}, G\right)$.

It follows from

$$
F \leqslant E_{1}^{\prime} F \leqslant\langle E, F\rangle
$$

that either $E_{1}^{\prime} F=\langle E, F\rangle$ or $E_{1}^{\prime} F=F$. If $E_{1}^{\prime} F=\langle E, F\rangle$, then the inclusions

$$
\langle E, F\rangle \supseteq E F \supseteq E_{1} F \supseteq E_{1}^{\prime} F=\langle E, F\rangle
$$

imply that $E_{1} F=\langle E, F\rangle \in L\left(G_{\omega}, G\right)$, in contradiction with the assumption that E_{1} and F are not permutable. Thus, assume that $E_{1}^{\prime} F=F$. In this case $E_{1}^{\prime} \leqslant F$ and hence $E_{1}^{\prime} \leqslant E \cap F$. Together with $E \cap F<E_{1}$ and $\left[E_{1}: E_{1}^{\prime}\right]=2$, this implies that

$$
\begin{equation*}
E_{1}^{\prime}=E \cap F=E_{1} \cap F . \tag{18}
\end{equation*}
$$

In view of Proposition 2.13 the last equality yields that $E \cap F$ is H-intransitive and $E \cap F \leqslant F^{\prime}$. Consequently,

$$
\begin{equation*}
E \cap F=E \cap F^{\prime} . \tag{19}
\end{equation*}
$$

It follows from

$$
E \leqslant E F^{\prime} \leqslant\langle E, F\rangle
$$

that either $E F^{\prime}=\langle E, F\rangle$ or $E F^{\prime}=E$. If the equality $E F^{\prime}=\langle E, F\rangle$ holds, then (13) and (19) imply the inequality

$$
[F: E \cap F] \leqslant[\langle E, F\rangle: E]=\left[E F^{\prime}: E\right]=\left[F^{\prime}: E \cap F^{\prime}\right]=\left[F^{\prime}: E \cap F\right]=\frac{1}{2}[F: E \cap F],
$$

which is impossible. Thus, assume that $E F^{\prime}=E$. In this case $F^{\prime} \leqslant E$ and therefore $F^{\prime} \leqslant E \cap F \leqslant F$. Together with $\left[F: F^{\prime}\right]=2$ this implies that either $E \cap F=F$ or $E \cap F=F^{\prime}$. Furthermore, since owing to the maximality of F and E in $\langle E, F\rangle$ the equality $F \cap E=F$ is impossible, we may assume that $F^{\prime}=E \cap F$. In this case $[F: E \cap F]=2$. Together with (18) and $\left[E_{1}: E_{1}^{\prime}\right]=2$, this implies that

$$
\begin{equation*}
\left[F: E_{1} \cap F\right]=\left[E_{1}: E_{1} \cap F\right]=2 \tag{20}
\end{equation*}
$$

It follows now from Proposition 3.1 that the lattice $L\left(E_{1} \cap F,\left\langle E_{1}, F\right\rangle\right)$ is isomorphic to the subgroup lattice of a dihedral group $D_{2 m}$, where $2 m=\left[\left\langle E_{1}, F\right\rangle: E_{1} \cap F\right]$. Furthermore, it follows from $F \leqslant\left\langle E_{1}, F\right\rangle \leqslant\langle E, F\rangle$ that either $\left\langle E_{1}, F\right\rangle=F$ or $\left\langle E_{1}, F\right\rangle=\langle E, F\rangle$. The first case is impossible since $E \cap F<E_{1}<E$. Therefore $\left\langle E_{1}, F\right\rangle=\langle E, F\rangle$ and hence

$$
\begin{equation*}
L(E \cap F,\langle E, F\rangle)=L\left(E_{1} \cap F,\left\langle E_{1}, F\right\rangle\right) \cong L\left(D_{2 m}\right) . \tag{21}
\end{equation*}
$$

Since maximal subgroups of $D_{2 m}$ have prime index, it follows from (21) that the number $p:=[\langle E, F\rangle: F]$ is prime and hence

$$
[\langle E, F\rangle: E \cap F]=[\langle E, F\rangle: F][F: E \cap F]=2 p
$$

On the other hand, by (20) we have

$$
[\langle E, F\rangle: E \cap F]=[\langle E, F\rangle: E]\left[E: E_{1}\right]\left[E_{1}: E \cap F\right]=2[\langle E, F\rangle: E]\left[E: E_{1}\right] .
$$

Therefore, $[\langle E, F\rangle: E]\left[E: E_{1}\right]=p$. Since this equality implies that at least one of the numbers $[\langle E, F\rangle: E],\left[E: E_{1}\right]$ is equal to one, we conclude that there exists no $E_{1} \in L\left(G_{\omega}, G\right)$ satisfying (17) and therefore the lattice $L\left(G_{\omega}, G\right)$ is lower semi-modular.

Proposition 3.3. Let $E, F \in L\left(G_{\omega}, G\right)$, with $E \neq F$. Suppose that $E \cap F$ is maximal in E and F. Then either E and F are permutable and E and F are maximal in $\langle E, F\rangle$, or $E \cap F \unlhd$ $\langle E, F\rangle$ and $\langle E, F\rangle /(E \cap F) \cong D_{2 m}$ for some $m \geqslant 1$. Furthermore, $L(E \cap F,\langle E, F\rangle) \cong L\left(D_{2 m}\right)$.

Proof. If E and F are permutable, then E and F are maximal in $\langle E, F\rangle=E F$ by Proposition 2.7. Hence, suppose that E and F are not permutable and consider the core-complementary subgroups $E^{\prime}<E$ and $F^{\prime}<F$ from Proposition 2.13.

It follows from

$$
E \cap F \leqslant E^{\prime}(E \cap F) \leqslant E
$$

that either $E^{\prime}(E \cap F)=E$ or $E^{\prime}(E \cap F)=E \cap F$. In the first case we obtain

$$
E F=E^{\prime}(E \cap F) F=E^{\prime} F \in L\left(G_{\omega}, G\right)
$$

that contradicts the assumption that E and F are not permutable. Therefore $E^{\prime}(E \cap F)=$ $E \cap F$ or, equivalently, $E^{\prime} \leqslant E \cap F$. Since $\left[E: E^{\prime}\right]=2$, this implies that $E^{\prime}=E \cap F$. Analogously, $F^{\prime}=E \cap F$. Thus

$$
[E: E \cap F]=[F: E \cap F]=2
$$

Now Proposition 3.1 yields the result.

Corollary 3.4. Let $E, F \in L\left(G_{\omega}, G\right)$ be maximal in $\langle E, F\rangle$. Then $E \cap F$ is maximal in E and F and either $E F=F E$, or $E \cap F \unlhd\langle E, F\rangle$ and $\langle E, F\rangle /(E \cap F) \cong D_{2 m}$ for a prime m.

Proof. By Proposition 3.2 the group $E \cap F$ is maximal in F and E. If E and F are not permutable, then Proposition 3.3 implies that $E \cap F \unlhd\langle E, F\rangle$ and $\langle E, F\rangle /(E \cap F) \cong D_{2 m}$ for some $m \geqslant 1$. Furthermore, since F is maximal in $\langle E, F\rangle$, the group $F /(E \cap F) \cong \mathbb{Z}_{2}$ is maximal in the group $\langle F, E\rangle /(E \cap F) \cong D_{2 m}$ and therefore m is prime.

We can summarize Propositions 3.2 and 3.3 as follows.

THEOREM 3.5. Let G be a transitive permutation group containing a cyclic subgroup with two orbits. Then the lattice $L\left(G_{\omega}, G\right)$ is lower semi-modular. Furthermore, $L\left(G_{\omega}, G\right)$ is modular unless there exists an interval of $L\left(G_{\omega}, G\right)$ which is isomorphic to the subgroup lattice of a dihedral group.

Proof. By Proposition 3.2 the lattice $L\left(G_{\omega}, G\right)$ is lower semi-modular. If it is not modular, then the existence of an interval isomorphic to $L\left(D_{2 m}\right)$ follows from Proposition 3.3.

Corollary 3.6. Let F be a rational function such that its monodromy group contains a cyclic subgroup with at most two orbits. Then any two maximal decompositions of F are weakly equivalent. Furthermore, if

$$
F=F_{1} \circ F_{2} \circ \ldots \circ F_{k} \quad \text { and } \quad F=R_{1} \circ R_{2} \circ \ldots \circ R_{k}
$$

are two decompositions of F, then the set of degrees of the functions F_{i}, with $1 \leqslant i \leqslant k$, coincides with the set of degrees of the functions G_{i}, with $1 \leqslant i \leqslant k$.

Proof. The first part of corollary follows from Theorem 3.5 and Corollary 2.2. Furthermore, it follows from the first part that in order to prove the second part it is enough to establish
that if A and B are subgroups of G such that $A \cap B$ is maximal in A and B, and A and B are maximal in $\langle A, B\rangle$, then the sets $\{[\langle A, B\rangle: B],[B: A \cap B]\}$ and $\{[\langle A, B\rangle: A],[A: A \cap B]\}$ coincide. If A and B are permutable, then this is a corollary of formula (13). On the other hand, if A and B are not permutable, then the property needed easily follows from Corollary 3.4.

Remark. The proof of Theorem 3.5 given above is a simplified version of the proof given in the earlier preprint of the authors [20].
3.2. Non-permutable subgroups of $L\left(G_{1}, G\right)$ and algebraic curves having a factor of genus 0 with at most two points at infinity

The following result is the algebraic counterpart of [9, Proposition 2] (see also [4, Theorem 8.1;
26, Theorem 3.5]).

Proposition 3.7. Let G be a group, and let A and B be non-permutable subgroups of G. Then there exist non-permutable subgroups \hat{A} and \hat{B} of G such that $A \leqslant \hat{A}$ and $B \leqslant \hat{B}$, and core $_{G} \hat{A}=\operatorname{core}_{G} \hat{B}$.

Proof. For $C \leqslant G$ denote by $d(C)$ a maximal number such that there exists a maximal chain of subgroups

$$
C=C_{0}<C_{1}<\ldots<C_{d(C)}=G
$$

We use the induction on the number $d=d(A)+d(B)$. In order to lighten notation, set $N=$ $\operatorname{core}_{G} A$ and $M=$ core $_{G} B$.

First of all note that the subgroups $A M$ and $B N$ are not permutable since

$$
(A M)(B N)=A B, \quad(B N)(A M)=B A
$$

In particular, $A M \neq G$ and $B N \neq G$. Hence, if $d=2$ (that is, if both A and B are maximal in G), then $A M=A$ and $B N=B$, and hence $M \leqslant A$ and $N \leqslant B$. Since $M \unlhd G$ and $N \unlhd G$, this implies that $M \leqslant N$ and $N \leqslant M$, and hence $M=N$. Therefore, if $d=2$, then we can set $\hat{A}:=A$ and $\hat{B}:=B$.

Assume now that $d>2$. If $d(A M)<d(A)$ or $d(B N)<d(B)$, then the proposition follows from the induction assumption. On the other hand, if $d(A M)=d(A)$ and $d(B N)=d(B)$, then as above $A M=A, B N=B$, and $M=N$. Therefore, we can set $\hat{A}:=A$ and $\hat{B}:=B$.

Proposition 3.7 together with previous results allows us to describe non-permutable subgroups of $L\left(G_{\omega}, G\right)$.

Theorem 3.8. Let G be a transitive permutation group containing a cyclic subgroup with two orbits and let $E, F \in L\left(G_{\omega}, G\right)$ be non-permutable subgroups of G such that $\langle E, F\rangle=G$. Then there exists $N \unlhd G$ such that $E \cap F \leqslant N$ and $G / N \cong D_{2 m}$ for some $m \geqslant 1$.

Proof. By Proposition 3.7 there exist non-permutable subgroups \hat{E} and \hat{F} of G such that $E \leqslant \hat{E}$ and $F \leqslant \hat{F}$, and $\operatorname{core}_{G} \hat{E}=\operatorname{core}_{G} \hat{F}$. Furthermore, Proposition 2.6 implies that both \hat{E} and \hat{F} are not core-complementary. Therefore, by Propositions 2.12 and 2.13

$$
\begin{equation*}
\left[\hat{E}: \hat{E}^{\prime}\right]=2, \quad\left[\hat{F}: \hat{F}^{\prime}\right]=2 \tag{22}
\end{equation*}
$$

where $\hat{E}^{\prime}=\left(\operatorname{core}_{G} \hat{E}\right) G_{\omega}$ and $\hat{F}^{\prime}=\left(\operatorname{core}_{G} \hat{F}\right) G_{\omega}$.

Since $\operatorname{core}_{G} \hat{E}=\operatorname{core}_{G} \hat{F}$, we obtain $\hat{E}^{\prime}=\hat{F}^{\prime} \leqslant \hat{E} \cap \hat{F}$. On the other hand, the inequality $\hat{E} \hat{F} \neq \hat{F} \hat{E}$ implies that $\hat{E} \cap \hat{F}$ is a proper subgroup of both \hat{E} and \hat{F}. It follows now from (22) that $\hat{E}^{\prime}=\hat{F}^{\prime}=\hat{E} \cap \hat{F}$ and $[\hat{E}: \hat{F} \cap \hat{F}]=[\hat{F}: \hat{F} \cap \hat{F}]=2$. Therefore, the theorem follows from Proposition 3.1 taking into account that $E \cap F \leqslant \hat{E} \cap \hat{F}$.

Theorem 3.8 has an interesting connection with the problem of describing the algebraic curves

$$
\begin{equation*}
A(x)-B(y)=0 \tag{23}
\end{equation*}
$$

having a factor of genus 0 with at most two points at infinity. This problem is closely related to number theory and in this context was studied in the papers [4, 8]. In particular, in [4] a complete classification of such curves (defined over any field k of characteristic zero) was obtained. Another proof of this classification (over \mathbb{C}) was given in the paper [26] in the context of description of double decompositions

$$
\begin{equation*}
L=A \circ B=C \circ D \tag{24}
\end{equation*}
$$

of rational functions L, with at most two poles, into compositions of rational functions. The last problem turns out to be more general than the previous one since if the curve (23) has an irreducible factor of genus 0 with two points at infinity, then this factor may be parameterized by some Laurent polynomials and therefore there exist Laurent polynomials L, L_{1}, and L_{2} such that the equality

$$
\begin{equation*}
L=A \circ L_{1}=B \circ L_{2} \tag{25}
\end{equation*}
$$

holds. On the other hand, there exist double decompositions (24) which cannot be reduced to decompositions (25).
Both proofs of the classification of curves (23) having a factor of genus 0 with at most two points at infinity split into two parts: the first one is the analysis of the condition that, under the assumption that (23) is irreducible, the genus of (23) is zero, and the second one is the reduction of the general case to the case when (23) is irreducible. The first part essentially consists of a straightforward although highly laborious analysis of the formula which calculates the genus of (23) via the branching data of A and B, while the second part requires some more sophisticated considerations.
Denote by G the monodromy group of L, and let G_{A} and G_{B} be subgroups of $L\left(G_{\omega}, G\right)$ corresponding to decompositions (25). Then the condition that (23) is reducible is equivalent to the condition that $G_{A} G_{B} \neq G$. Therefore, Theorem 3.8 can be viewed as an algebraic counterpart of the portion of the discussed classification related to the reducible case, and implies easily the corresponding result (cf. [4, Theorem 9.3; 26, Theorem 7.3]).

Proposition 3.9. Suppose that curve (23) is reducible and has a factor of genus 0 with at most two points at infinity. Then there exist the polynomials R, \tilde{A}, \tilde{B}, and μ, where $\operatorname{deg} \mu=1$, such that

$$
\begin{equation*}
A=R \circ \tilde{A}, \quad B=R \circ \tilde{B} \tag{26}
\end{equation*}
$$

and either the curve $\tilde{A}(x)-\tilde{B}(y)=0$ is irreducible, or

$$
\begin{equation*}
\tilde{A}=-T_{l r} \circ \mu, \quad \tilde{B}=T_{l s} \circ \mu, \tag{27}
\end{equation*}
$$

where $T_{l r}$ and $T_{l s}$ are the corresponding Chebyshev polynomials with $r, s \geqslant 1, l>2$, and $\operatorname{gcd}(r, s)=1$.

Proof. Without loss of generality we may assume that there exists no polynomial R, with $\operatorname{deg} R>1$, such that (26) holds for some polynomials \tilde{A} and \tilde{B}, or equivalently that $\left\langle G_{A}, G_{B}\right\rangle=$
G. If curve (23) is irreducible, then there is nothing to prove and so assume that (23) is reducible. In this case L_{1} and L_{2} are not polynomials since otherwise Corollary 2.4 and the assumption about solutions of (26) imply the equality $\operatorname{gcd}(\operatorname{deg} A, \operatorname{deg} B)=1$ which in its turn implies easily the irreducibility of curve (23). Therefore, the cyclic subgroup H of G generated by the permutation corresponding to a loop around infinity has two orbits.

It follows now from Theorem 3.8 that there exists $N \unlhd G$ such that $N \in L\left(G_{\omega}, G\right)$ and $G / N \cong D_{2 m}$ for some $m \geqslant 1$. Furthermore, since $N \unlhd G$ the action of G on the cosets of N is regular. Therefore,

$$
G / / N \cong_{p}(G / N)_{r} \cong_{p}\left(D_{2 m}\right)_{r}
$$

where X_{r} denote the right regular permutation representation of X.
Hence there exists a decomposition $L=U \circ V$ of L such that the monodromy group of U is a regular covering of the sphere with the dihedral monodromy group. By the well-known classification of regular coverings of the sphere, which goes back to Klein (see [14] and the appendix), this implies that

$$
U=\mu_{1} \circ \frac{1}{2}\left(z^{m}+\frac{1}{z^{m}}\right) \circ \mu_{2},
$$

where μ_{1} and μ_{2} are automorphisms of the sphere.
Clearly, without loss of generality we may assume that $\mu_{1}=z$. Furthermore, since L has poles only at the points 0 and ∞, it follows from $L=U \circ V$ that $\mu_{2} \circ V=z^{ \pm n} \circ(c z)$ for some $n \geqslant 1$ and $c \in \mathbb{C}$. Therefore,

$$
\begin{equation*}
L=\frac{1}{2}\left(z^{m n}+\frac{1}{z^{m n}}\right) \circ(c z) \tag{28}
\end{equation*}
$$

and $G=D_{2 m n}$. Now the proposition follows easily from the description of possible double decompositions of function (28) (see Appendix below).

Appendix

In this appendix we describe the structure of maximal decompositions of rational functions which are regular coverings of the sphere that is of the functions for which $G_{\omega}=e$. These functions, appearing in a variety of different contexts from differential equations to Galois theory, were first described by Klein [14]. For such a function f its monodromy group G is isomorphic to its automorphism group and therefore is isomorphic to a finite subgroup of Aut $\mathbb{C P}^{1}$. Any such subgroup is isomorphic to one of the groups: $C_{n}, D_{2 n}, A_{4}, S_{4}$, and A_{5} and the corresponding function f is defined by its group up to a composition $\mu_{1} \circ f \circ \mu_{2}$, where μ_{1}, $\mu_{2} \in$ Aut $\mathbb{C P}^{1}$.

The Klein functions provide the simplest examples of rational functions for which the first Ritt theorem fails to be true. Indeed, if f is a Klein function, then its maximal decompositions correspond to the maximal chains of subgroups of its monodromy group G. Therefore, in order to find counterexamples to the first Ritt theorem, it is enough to find non- r-equivalent maximal chains of subgroups of G. For the groups C_{n} and D_{n} such chains do not exist while for the groups A_{4}, S_{4}, and A_{5} they do. For example, it is easy to see that

$$
\begin{equation*}
e<C_{2}<V_{4}<A_{4}, \quad e<C_{3}<A_{4}, \tag{A.1}
\end{equation*}
$$

where C_{2} or C_{3} is a cyclic group of order 2 or 3 , respectively, and V_{4} is the Klein four-group, are the maximal chains of different length in A_{4} and therefore for the corresponding Klein function the first Ritt theorem fails to be true. The fact that the first Ritt theorem is not true for arbitrary rational functions was already observed by Ritt in [28]. Although Ritt did not give any indications about the nature of such examples (see the discussion in $[\mathbf{2}, \mathbf{1 0}, \mathbf{1 1}]$), the
fact that the Klein functions corresponding to A_{4}, S_{4}, and A_{5} were mentioned by him in [29] suggests that he meant exactly these functions.
Below we give a detailed analysis of the decompositions of the Klein functions. We show that, for a function f corresponding to A_{4} or S_{4}, the number of weak equivalence classes of its maximal decompositions equals two and that two non-equivalent maximal decompositions of f are weakly equivalent if and only if they have the same length. On the other hand we show that the function corresponding to A_{5} has six weak equivalence classes of maximal decompositions, five of which have the same length. Besides, we give several related explicit examples of nonweakly equivalent maximal decompositions. In particular, we give an example of a rational function with three poles for which the first Ritt theorem fails to be true.

A.1. Decompositions of $f_{C_{n}}$ and $f_{D_{2 n}}$

For the cyclic and dihedral groups the representatives of the corresponding classes of Klein functions are

$$
f_{C_{n}}=z^{n}, \quad f_{D_{2 n}}=\frac{1}{2}\left(z^{n}+\frac{1}{z^{n}}\right)
$$

and by Corollary 3.6 all maximal decompositions of these functions are weakly equivalent. Observe that any decomposition of $f_{C_{n}}$ into a composition of two functions is equivalent to the decomposition

$$
z^{n / d} \circ z^{d},
$$

where $d \mid n$, while any decomposition of $f_{D_{2 n}}$ is equivalent either to the decomposition

$$
\frac{1}{2}\left(z^{n}+\frac{1}{z^{n}}\right)=\frac{1}{2}\left(z^{n / d}+\frac{1}{z^{n / d}}\right) \circ z^{d}
$$

where $d \mid n$, or to the decomposition

$$
\frac{1}{2}\left(z^{n}+\frac{1}{z^{n}}\right)=\mu^{n / d} T_{n / d} \circ \frac{1}{2}\left(\mu z^{d}+\frac{1}{\mu z^{d}}\right),
$$

where $d \mid n$ and $\mu^{2 n / d}=1$.

A.2. Decompositions of $f_{A_{4}}$

The subgroup lattice of the group A_{4} can be described as follows. The group A_{4} has three pairwise conjugate subgroups C_{2}^{1}, C_{2}^{2}, and C_{2}^{3} of order 2 which are contained in a unique subgroup of order 4 which is the Klein four-group $V_{4}=\{e,(12)(34),(13)(24),(14)(23)\}$. In addition, A_{4} has four conjugated subgroups $C_{3}^{1}, C_{3}^{2}, C_{3}^{3}$, and C_{3}^{4} of order 3 which are maximal in A_{4}. This implies that $f_{A_{4}}$ has seven non-equivalent decompositions corresponding to the chains

$$
\begin{equation*}
e<C_{2}^{1}<V_{4}<A_{4}, \quad e<C_{2}^{2}<V_{4}<A_{4}, \quad e<C_{2}^{3}<V_{4}<A_{4}, \tag{A.2}
\end{equation*}
$$

and

$$
\begin{equation*}
e<C_{3}^{1}<A_{4}, \quad e<C_{3}^{2}<A_{4}, \quad e<C_{3}^{3}<A_{4}, \quad e<C_{3}^{4}<A_{4} . \tag{A.3}
\end{equation*}
$$

Clearly, all decompositions from the first group are r-equivalent. The same is true for decompositions from the second group. On the other hand, compositions from the first and the second groups obviously are non-equivalent since they have different lengths.

A.3. Decompositions of $f_{S_{4}}$

Similarly to the case of the group A_{4}, two maximal chains in S_{4} are r-equivalent if and only if they have the same length. However, since S_{4} has already 28 proper subgroups, in order to prove this statement, we use an argument distinct from the examination of all maximal chains.
First of all, notice that any maximal subgroup of S_{4} distinct from A_{4} is conjugate either to

$$
D_{8}=\{e,(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1432)\},
$$

or to S_{3}. Besides, it is easy to see that any maximal chain of subgroups of A_{4} has length 3 or 4. We show now that any two maximal chains

$$
\mathcal{F}: 1<F_{1}<F_{2}<S_{4} \quad \text { and } \quad \mathcal{E}: 1<E_{1}<E_{2}<S_{4}
$$

of length 3 are r-equivalent. If $E_{2}=F_{2}$, then the statement is clear and so we may assume that $E_{2} \neq F_{2}$. This implies in particular that $E_{2} \cap F_{2}$ is a proper subgroup of the groups E_{2} and F_{2}. Observe that $E_{2} \cap F_{2}$ is non-trivial, since otherwise we would have $\left|S_{4}\right| \geqslant\left|E_{2}\right|\left|F_{2}\right| \geqslant 36>\left|S_{4}\right|$. In order to prove that the chains \mathcal{F} and \mathcal{E} are r-equivalent, it is enough to show that the chains

$$
\tilde{\mathcal{F}}: 1<F_{2} \cap E_{2}<F_{2}<S_{4} \quad \text { and } \tilde{\varepsilon}: 1<F_{2} \cap E_{2}<E_{2}<S_{4}
$$

are maximal since then

$$
\mathcal{F} \sim \tilde{\mathcal{F}} \sim \tilde{\mathcal{E}} \sim \mathcal{E} .
$$

First, note that $E_{2}, F_{2} \not \not D_{8}$, since maximal chains in D_{8} have length 3 . Therefore, at least one of the groups E_{2} and F_{2}, say F_{2}, is isomorphic to S_{3} and hence the chain $\tilde{\mathcal{F}}$ is maximal since $\left|S_{3}\right|=6$. If $E_{2} \cong S_{3}$, then the chain $\tilde{\mathcal{E}}$ is maximal as well. On the other hand, if $E_{2}=A_{4}$, then $\left|F_{2} \cap E_{2}\right|=\left|S_{3} \cap A_{4}\right|=3$ implying that the chain $1<F_{2} \cap E_{2}<E_{2}$ is one of the chains (A.3) and, therefore, is maximal.
Similarly, any two chains

$$
\mathcal{F}: 1<F_{1}<F_{2}<F_{3}<S_{4} \quad \text { and } \quad \mathcal{E}: 1<E_{1}<E_{2}<E_{3}<S_{4}
$$

of length 4 are r-equivalent. Indeed, if $E_{3}=F_{3}$, then either $E_{3}=F_{3} \cong D_{8}$ or $E_{3}=F_{3}=A_{4}$ and the statement is true since maximal chains of equal length in the groups D_{8} and A_{4} are r-equivalent. Therefore, we may assume that $F_{3}=A_{4}$ and $E_{3}=D_{8}$. Now setting

$$
V_{4}=\{e,(12)(34),(13)(24),(14)(23)\}, \quad C_{2}=\{e,(12)(34)\}
$$

and observing that $E_{3} \cap F_{3}=V_{4}$, we see that the chains

$$
\tilde{\mathcal{F}}: 1<C_{2}<V_{4}<A_{4}<S_{4} \quad \text { and } \tilde{\mathcal{E}}: 1<C_{2}<V_{4}<D_{8}<S_{4}
$$

are maximal. Since any two chains of equal length inside D_{8} and A_{4} are equivalent, this implies that

$$
\mathcal{F} \sim \tilde{\mathcal{F}} \sim \tilde{\mathcal{E}} \sim \mathcal{E} .
$$

A.4. Decompositions of $f_{A_{5}}$

It is easy to see that any maximal subgroup of A_{5} is conjugated to A_{4} or to D_{10}, or to S_{3} and that any maximal chain of subgroups in $f_{A_{5}}$ has length 3 or 4 . In contrast to the groups A_{4} and S_{4}, in the group A_{5} we face a new phenomenon: although any two maximal chains of length 3 in A_{5} are r-equivalent, there exist non-r-equivalent decompositions of length 4 .

First prove that any two maximal chains

$$
\mathcal{F}: 1<F_{1}<F_{2}<A_{5} \text { and } \quad \mathcal{E}: 1<E_{1}<E_{2}<A_{5}
$$

of length 3 in A_{5} are r-equivalent. If $E_{2}=F_{2}$, then the statement is clear and so we may suppose that $E_{2} \neq F_{2}$.

Assume first that $E_{2} \cong D_{10}$ and $F_{2} \cong S_{3}$. Since A_{5} is not a product of D_{10} and S_{3}, the intersection $E_{2} \cap F_{2}$ is non-trivial. Therefore the chains

$$
\tilde{\mathcal{F}}: 1<F_{2} \cap E_{2}<F_{2}<A_{5} \quad \text { and } \quad \tilde{\mathcal{E}}: 1<F_{2} \cap E_{2}<E_{2}<A_{5}
$$

are maximal, implying that

$$
\mathcal{F} \sim \tilde{\mathcal{F}} \sim \tilde{\mathcal{E}} \sim \mathcal{E}
$$

By transitivity of \sim this yields that any two maximal chains of length 3 such that $E_{2} \cong S_{3}$, $F_{2} \cong S_{3}$ or $E_{2} \cong D_{10}, F_{2} \cong D_{10}$ also are r-equivalent.

Now let

$$
\mathcal{B}: 1<B_{1}<B_{2}<A_{5}
$$

be a maximal chain such that $B_{2} \cong A_{4}$. Then (A.3) implies that $\left|B_{1}\right|=3$. One can check that the normalizer C of any group of order 3 in A_{5} is isomorphic to S_{3}. Therefore, \mathcal{B} is equivalent to a maximal chain

$$
1<B_{1}<C<A_{5}
$$

with $C \cong S_{3}$. It follows now from the transitivity of \sim that all the chains of length 3 are r-equivalent.

Let us show now that two maximal chains of length 4

$$
\mathcal{B}:=1<B_{1}<B_{2}<B_{3}<A_{5} \quad \text { and } \quad \mathcal{C}:=1<C_{1}<C_{2}<C_{3}<A_{5}
$$

in A_{5} are equivalent if and only if their maximal subgroups coincide. Clearly, we have $B_{3} \cong$ $C_{3} \cong A_{4}$. If $B_{3}=C_{3}$, then $\mathcal{B} \sim \mathcal{C}$ since any two chains of length 4 in A_{4} are r-equivalent.

Assume now that $B_{3} \neq C_{3}$. If the chains \mathcal{B} and \mathcal{C} are equivalent, then in the sequence of maximal chains which connects them there should be two chains of the form

$$
1<P_{1}<P_{2}<P_{3}<A_{5}, \quad 1<P_{1}<P_{2}<Q_{3}<A_{5}
$$

where $P_{3} \neq Q_{3}$. The maximality condition implies that $P_{3} \cap Q_{3}=P_{2}$. Furthermore, $P_{2} \cong V_{4}$ by (A.2). On the other hand, A_{4} contains a unique Sylow 2 -subgroup of order 4 which is normal in A_{4}. Therefore, $P_{2} \unlhd P_{3}$ and $P_{2} \unlhd Q_{3}$, and hence $P_{2} \unlhd\left\langle P_{3}, Q_{3}\right\rangle=A_{5}$. Since this contradicts the simplicity of A_{5}, we conclude that \mathcal{B} and \mathcal{C} are not r-equivalent.

A.5. Explicit formulas

Although all the information about maximal decompositions of Klein functions can be obtained from the analysis given above, the actual finding of the corresponding decompositions requires some non-trivial calculations. In particular, the corresponding maximal decompositions which do not satisfy the first Ritt theorem were found explicitly only for the simplest chains (A.1) (see $[\mathbf{3}, \mathbf{1 2}])$. It turns out that a convenient tool for such calculations is the Grothendieck theory of 'Dessins d'enfants', which provides an identification of $f_{A_{4}}, f_{S_{4}}$, and $f_{A_{5}}$ with the Belyi functions of the tetrahedron, cube, and octahedron, respectively. Below we give several explicit examples of non-equivalent maximal decompositions obtained by this method, referring the reader interested in the details of calculations to the forthcoming paper 'Dessins d'enfants and functional equations' by the second author and Zvonkin.

First, a calculation shows that the Belyi functions for the tetrahedron can be written in the form

$$
\begin{equation*}
f_{A_{4}}=-\frac{1}{64} \frac{z^{3}\left(z^{3}-8\right)^{3}}{\left(z^{3}+1\right)^{3}} \tag{A.4}
\end{equation*}
$$

and any maximal decomposition of $f_{A_{4}}$ is weakly equivalent either to

$$
f_{A_{4}}=-\frac{1}{64} \frac{z(z-8)^{3}}{(z+1)^{3}} \circ z^{3}
$$

or to the decomposition

$$
\begin{equation*}
f_{A_{4}}=-\frac{1}{64} z^{3} \circ \frac{z^{2}-4}{z-1} \circ \frac{z^{2}+2}{z+1} \tag{A.5}
\end{equation*}
$$

Furthermore, one can show that the inclusion $A_{4} \subset S_{4}$ implies that

$$
\begin{equation*}
f_{S_{4}}=-\frac{4 x}{x^{2}+1-2 x} \circ f_{A_{4}}=\frac{256 z^{3}\left(z^{6}-7 z^{3}-8\right)^{3}}{\left(z^{6}+20 z^{3}-8\right)^{4}} \tag{A.6}
\end{equation*}
$$

and therefore the decompositions of $f_{S_{4}}$ corresponding to the chains

$$
1<C_{3}<A_{4}<S_{4}, \quad 1<C_{2}<V_{4}<A_{4}<S_{4}
$$

are, respectively,

$$
f_{S_{4}}=\left(-\frac{4 x}{x^{2}+1-2 x}\right) \circ\left(-\frac{1}{64} \frac{z(z-8)^{3}}{(z+1)^{3}}\right) \circ z^{3},
$$

and

$$
f_{S_{4}}=\left(-\frac{4 x}{x^{2}+1-2 x}\right) \circ\left(-\frac{1}{64} z^{3}\right) \circ\left(\frac{z^{2}-4}{z-1}\right) \circ\left(\frac{z^{2}+2}{z+1}\right) .
$$

On the other hand, one can show that, for example, the maximal decompositions of $f_{S_{4}}$ (written in a slightly different normalization) corresponding to the chains

$$
\begin{equation*}
1<C_{2}<C_{4}<D_{8}<S_{4}, \quad 1<C_{2}<S_{3}<S_{4} \tag{A.7}
\end{equation*}
$$

are, respectively,

$$
-\frac{1}{432} \frac{\left(16 x^{8}-56 x^{4}+1\right)^{3}}{x^{4}\left(4 x^{4}+1\right)^{4}}=\left(\frac{1}{54} \frac{(z+7)^{3}}{(z-1)^{2}}\right) \circ\left(\frac{1}{2}\left(z+\frac{1}{z}\right)\right) \circ\left(-z^{2}\right) \circ 2 z^{2}
$$

and

$$
-\frac{1}{432} \frac{\left(16 x^{8}-56 x^{4}+1\right)^{3}}{x^{4}\left(4 x^{4}+1\right)^{4}}=\left(-\frac{256}{27} z^{3}(z-1)\right) \circ\left(\frac{1}{4} \frac{(z-1)^{3}}{z^{2}+1}+1\right) \circ\left(z-\frac{1}{2 z}\right) .
$$

Finally, identifying the chains of subgroups

$$
\begin{equation*}
C_{2}<S_{3}<S_{4}, \quad C_{2}<V_{4}<D_{8}<S_{4} \tag{A.8}
\end{equation*}
$$

with maximal decompositions of the function

$$
\begin{equation*}
-\frac{1}{27} \frac{\left(z^{4}+2 z^{2}-3\right)^{3}}{\left(z^{2}+1\right)^{4}} \tag{A.9}
\end{equation*}
$$

which is a left compositional factor of $f_{S_{4}}$, one can show that the maximal decompositions corresponding to A. 8 are:

$$
-\frac{1}{27} \frac{\left(z^{4}+2 z^{2}-3\right)^{3}}{\left(z^{2}+1\right)^{4}}=\left(\frac{1}{54} \frac{(7-z)^{3}}{(z+1)^{2}}\right) \circ\left(2 z^{2}+4 z+1\right) \circ z^{2}
$$

and

$$
-\frac{1}{27} \frac{\left(z^{4}+2 z^{2}-3\right)^{3}}{\left(z^{2}+1\right)^{4}}=\left(-\frac{256}{27} z^{3}(z-1)\right) \circ\left(\frac{1}{4} \frac{(z-1)^{3}}{z^{2}+1}+1\right) .
$$

Note that since function (A.9) has three poles, this example shows that with no additional assumptions the first Ritt theorem cannot be extended to rational functions, the monodromy of which contains a cyclic subgroup with more than two orbits.

Acknowledgement. The authors would like to thank I. Kovacs, P. Müller, U. Zannier, and A. Zvonkin for discussions of different questions related to the subject of this paper.

References

1. M. Aigner, Combinatorial theory, Grundlehren der Mathematischen Wissenschaften 234 (Springer, New York, 1979).
2. W. Bergweiler, 'An example concerning factorization of rational functions', Expo. Math. 11 (1993) 281-283.
3. W. Bergweiler, 'Erratum to the paper "An example concerning factorization of rational functions', Preprint, http://analysis.math.uni-kiel.de/bergweiler/schrift.html\#preprints.
4. Y. Bilu and R. Tichy, 'The Diophantine equation $f(x)=g(y)$ ', Acta Arith. 95 (2000) 261-288.
5. J. M. Couveignes and L. Granboulan, 'Dessins from a geometric point of view', The Grothendieck theory of dessins d'enfants (Cambridge University Press, Cambridge, 1994) 79-113.
6. Moser W. O. J. and Coxeter H. S. M., Generators and relations for discrete groups, 4th edn (Springer, New York, 1980).
7. H. Engstrom, 'Polynomial substitutions', Amer. J. Math. 63 (1941) 249-255.
8. M. Fried, 'On a theorem of Ritt and related diophantine problems', J. reine angew. math. 264 (1973) 40-55.
9. M. Fried, 'Fields of definition of function fields and a problem in the reducibility of polynomials in two variables', Illinois J. Math. 17 (1973) 128-146.
10. F. Gross, 'On factorization theory of meromorphic functions', Comment. Math. Univ. St. Pauli 24 (1975/76) 47-60.
11. F. Gross, 'Factorization of meromorphic functions and some open problems', Complex analysis, Lecture Notes in Mathematics 599 (Springer, Berlin, 1977) 50-67.
12. J. Gutierrez and D. Sevilla, 'Building counterexamples to generalizations for rational functions of Ritt's decomposition theorem', J. Algebra 303 (2006) 655-667.
13. B. Huppert, Endliche gruppen, I (Springer, Berlin 1967).
14. F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree (Dover, New York, 1956).
15. G. Kuperberg and M. Zieve, 'Analogues of the Jordan-Hölder theorem for transitive G-sets', Preprint, 2007, arXiv:0712.4142v1.
16. A. Kurosch, The theory of groups, vol. I (Chelsea, New York, 1955).
17. N. Magot and A. Zvonkin, 'Belyi functions for Archimedean solids', Discrete Math. 217 (2000) 249-271.
18. P. MüLLER, 'Primitive monodromy groups of polynomials', Recent developments in the inverse Galois problem, Contemporary Mathematics 186 (American Mathematical Society, Providence, RI, 1995) 385-401.
19. P. Müller and M.Zieve, 'On Ritt's polynomial decomposition theorem', Preprint, 2008, arXiv:0807.3578v1.
20. M. Muzychuk and F. Pakovich, 'On maximal decompositions of rational functions', Preprint, 2007, arXiv:0712.3869v1.
21. F. Pakovich, 'On the functional equation $F(A(z))=G(B(z))$, where A, B are polynomial and F, G are continuous functions', Math. Proc. Cambridge Philos. Soc. 143 (2007) 469-472.
22. F. Pakovich, 'On polynomials sharing preimages of compact sets, and related questions', Geom. Funct. Anal. 18 (2008) 163-183.
23. F. Pakovich, 'On analogues of Ritt theorems for rational functions with at most two poles', Russian Math. Surveys 63 (2008) 181-182.
24. F. Pakovich, 'The algebraic curve $P(x)-Q(y)=0$ and functional equations', Complex Var. Elliptic Equ., to appear, arXiv:0804.0736v2.
25. F. Pakovich, 'On the equation $P(f)=Q(g)$, where P, Q are polynomials and f, g are entire functions', Amer. J. Math., to appear, arXiv:0804.0739v3.
26. F. Pakovich, 'Prime and composite Laurent polynomials', Bull. Sci. Math. 133 (2009) 693-732.
27. F. Pakovich, 'Generalized "second Ritt theorem" and explicit solution of the polynomial moment problem', Preprint, 2009, arXiv:0908.2508v3.
28. J. Ritt, 'Prime and composite polynomials', Amer. Math. Soc. Transl. 23 (1922) 51-66.
29. J. Ritt, 'Equivalent rational substitutions', Amer. Math. Soc. Transl. 26 (1924) 221-229.
30. A. Schinzel, Polynomials with special regard to reducibility, Encyclopedia of Mathematics and its Applications 77 (Cambridge University Press, Cambridge, 2000).
31. P. Tortrat, 'Sur la composition des polynômes', Colloq. Math. 55 (1988) 329-353.
32. M. Zieve, 'Decompositions of Laurent polynomials', Preprint, 2007, arXiv:0710.1902v1.

M. Muzychuk
Department of Mathematics
Netanya Academic College
Kibbutz Galuyot St. 16
Netanya 42365
Israel
muzy@netanya.ac.il

F. Pakovich
Department of Mathematics
Ben Gurion University
P.O.B. 653
Beer Sheva 84105
Israel
pakovich@math.bgu.ac.il

[^0]: Received 28 December 2007; revised 31 December 2009; published online 6 May 2010.

