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Jordan–Hölder theorem for imprimitivity systems and maximal
decompositions of rational functions

M. Muzychuk and F. Pakovich

Abstract

In this paper we prove several results about the lattice of imprimitivity systems of a permutation
group containing a cyclic subgroup with at most two orbits. As an application we generalize
the first Ritt theorem about functional decompositions of polynomials, and some other related
results. Besides, we discuss examples of rational functions, related to finite subgroups of
Aut(CP

1), for which the first Ritt theorem fails to be true.

1. Introduction

Let F be a rational function with complex coefficients. The function F is called indecomposable
if the equality F = F1 ◦ F2, where F1 ◦ F2 denotes the superposition F1(F2(z)) of rational
functions F1 and F2, implies that at least one of the functions F1 or F2 is of degree 1. A
rational function that is not indecomposable is called decomposable. Any representation F of
a rational function F in the form

F = F1 ◦ F2 ◦ . . . ◦ Fr, (1)

where F1, F2, . . . , Fr are rational functions, is called a decomposition of F. If all F1, F2, . . . , Fr

are indecomposable of degree greater than one, then the decomposition F is called maximal.
Two decompositions of a rational function F

F = U1 ◦ U2 ◦ . . . ◦ Uk and F = V1 ◦ V2 ◦ . . . ◦ Vm, (2)

which are maximal or not, are called equivalent if they have the same length (that is, k = m)
and there exist rational functions of degree one μi, with 1 � i � k − 1, such that

U1 = V1 ◦ μ1, Ui = μ−1
i−1 ◦ Vi ◦ μi, 1 < i < k, and Uk = μ−1

k−1 ◦ Vk.

In the paper [28] Ritt described the structure of possible maximal decompositions of
polynomials (note that any decomposition of a polynomial into a composition of rational
functions is equivalent to a decomposition into a composition of polynomials). This description
can be summarized in the form of two theorems usually called the first and the second Ritt
theorems (see [28, 30]). The first Ritt theorem states that, for any two maximal decompositions
D and E of a polynomial F , there exists a chain of maximal decompositions Fi, with 1 � i � s,
of F such that F1 = D, Fs ∼ E, and Fi+1 is obtained from Fi, with 1 � i � s − 1, by replacing
two successive functions in Fi by other functions with the same composition. This implies in
particular that any two maximal decompositions of a polynomial have the same length. Below
we will call two maximal decompositions D and E of a rational function F such that there
exists a chain as above weakly equivalent. This defines an equivalence relation on the set of
maximal decompositions of F .
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The first Ritt theorem reduces the description of maximal decompositions of polynomials to
the description of indecomposable polynomial solutions of the equation

A ◦ C = B ◦ D (3)

such that the decompositions A ◦ C and B ◦ D are non-equivalent, and the second Ritt theorem
states that if A,B,C,D is such a solution, then there exist polynomials Â, B̂, Ĉ, D̂, μ1, μ2,
where deg μ1 = 1, and deg μ2 = 1, such that

A = μ1 ◦ Â, B = μ1 ◦ B̂, C = Ĉ ◦ μ2, D = D̂ ◦ μ2, Â ◦ Ĉ = B̂ ◦ D̂,

and up to a possible replacement of Â by B̂ and Ĉ by D̂ either

Â ◦ Ĉ ∼ zn ◦ zrR(zn), B̂ ◦ D̂ ∼ zrRn(z) ◦ zn,

where R(z) is a polynomial, r � 0, n � 1, and gcd(n, r) = 1, or

Â ◦ Ĉ ∼ Tn ◦ Tm, B̂ ◦ D̂ ∼ Tm ◦ Tn,

where Tn and Tm are the corresponding Chebyshev polynomials, n,m � 1, and gcd(n,m) = 1.
Furthermore, the second Ritt theorem remains true for arbitrary polynomial solutions of (3)
if we replace the equalities deg μ1 = 1 and deg μ2 = 1, respectively by the equalities

deg μ1 = gcd(deg A,deg B), deg μ2 = gcd(deg C,deg D)

(see [7, 31]).
Note that the classification of polynomial solutions of (3) appears in a variety of different

contexts some of which are quite unexpected. For example, this classification is closely related to
the problem of describing Diophantine equations of the form A(x) = B(y), where A,B ∈ Z[z],
having an infinite number of integer solutions (see [4, 8]), and to the problem of describing
polynomials C and D satisfying the equality C−1{S} = D−1{T} for some compact sets S, T ⊂
C (see [22]). Note also that the problem of describing solutions of (3) such that C and D
are polynomials while A and B are allowed to be arbitrary rational (or even just continuous)
functions on the sphere can be reduced to the description of polynomial solutions (see [21]).
Some other recent results related to the second Ritt theorem can be found in the papers [19,
24–27].

The classification of polynomial solutions of (3) essentially reduces to the description of the
polynomials A and B such that the algebraic curve

A(x) − B(y) = 0 (4)

has an irreducible factor of genus 0 with one point at infinity. On the other hand, the proof
of the first Ritt theorem can be given in purely algebraic terms that do not involve the genus
condition in any form. Indeed, if G(F ) � Sym(Ω) is the monodromy group of a rational function
F , then equivalence classes of maximal decompositions of F are in one-to-one correspondence
with the maximal chains of subgroups

Gω(F ) = T0 < T1 < . . . < Tr = G(F ), (5)

where Gω(F ) is the stabilizer of an element ω ∈ Ω in the group G(F ). Therefore, any two
maximal decompositions of F are weakly equivalent if and only if, for any two maximal chains
of subgroups as above R1 and R2, there exists a collection of maximal chains of subgroups Ti,
with 1 � i � s, such that T1 = R1, Ts = R2, and Ti+1 is obtained from Ti with 1 � i � s − 1,
by a replacement of exactly one group. It was shown in the paper [18, Theorem R.3] that
the last condition is satisfied for any permutation group G containing an abelian transitive
subgroup. Since the monodromy group of a polynomial always contains a cyclic subgroup with
one orbit (its generator corresponds to a loop around infinity), this implies in particular the
truth of the first Ritt theorem for polynomials.
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It was also proved in the paper [18, Claim 1] that if A,B,C, and D are indecomposable
polynomials satisfying (3) such that the decompositions A ◦ C and B ◦ D are non-equivalent,
then the groups G(A) and G(D) as well as the groups G(C) and G(B) are permutation
equivalent. Since any two maximal decompositions of a polynomial P are weakly equivalent,
this implies by induction that for any two maximal decompositions (2) of P there exists a
permutation σ ∈ Sk such that the monodromy groups of Ui and Vσ(i), with 1 � i � k, are
permutation equivalent [19]. The algebraic counterpart of this fact is the following statement:
if G � Sym(Ω) is a permutation group containing a cyclic subgroup with one orbit, then for
any two maximal chains

Gω = A0 < . . . < Ak = G and Gω = B0 < . . . < Bm = G

the equality k = m holds and there exists a permutation σ ∈ Sk such that the permutation
group induced by the action of Ai on cosets of Ai−1 is permutation equivalent to the
permutation group induced by the action of Bσ(i) on the cosets of Bσ(i)−1, where 1 � i � k. If
a permutation group G satisfies this condition, then we say that G satisfies the Jordan–Hölder
theorem for imprimitivity systems.

In this paper, we extend the above results about the permutation groups G containing a
cyclic group with one orbit to the permutation groups containing a cyclic subgroup H with at
most two orbits and apply these results to rational functions (or more generally to meromorphic
functions on compact Riemann surfaces), the monodromy group of which contains H.

First, we prove that for a permutation group G containing H the lattice L(Gω, G) (consisting
of subgroups of G containing Gω) is lower semi-modular and even a stronger condition of the
modularity of L(Gω, G) holds whenever L(Gω, G) does not contain a sublattice isomorphic
to the subgroup lattice of a dihedral group. It follows easily from the lower semi-modularity
of L(Gω, G) that one can pass from any chain of subgroups (5) to any other such chain by
a sequence of replacements as above and therefore the first Ritt theorem extends to rational
functions, the monodromy group of which contains H. Note that this implies, in particular,
that the first Ritt theorem holds for rational functions with at most two poles. Although for
such functions the result was known previously (see [23, 26, 32]) the algebraic proof turns out
to be more simple and illuminating. Note also that our description of the lattice L(Gω, G) for
groups G containing H has an interesting connection with the problem of describing algebraic
curves having a factor of genus 0 with at most two points at infinity, studied in [4, 8].

Further, we prove that if a permutation group G contains a cyclic subgroup with exactly
two orbits and these orbits have different length, then the lattice L(Gω, G) is not only lower
semi-modular but also modular and G satisfies the Jordan–Hölder theorem for imprimitivity
systems. This implies, in particular, that if F is a rational function that has only two poles
and the orders of these poles are distinct, then any two maximal decompositions (2) of
F have the same length and there exists a permutation σ ∈ Sr such that the monodromy
groups of Ui and Vσ(i), with 1 � i � r, are permutation equivalent. We also show that
the Jordan–Hölder theorem for imprimitivity systems holds for any permutation group
containing a transitive Hamiltonian subgroup that generalizes the corresponding results of
[15, 18, 19].

For arbitrary rational functions the first Ritt theorem fails to be true. The simplest examples
are provided by the functions that are regular coverings of the sphere (that is, for which Gω = e)
with the monodromy group A4, S4, or A5. These functions were described for the first time
by Klein [14] and nowadays can be interpreted as Belyi functions of Platonic solids (see [5,
17]). For such a function its maximal decompositions simply correspond to maximal chains
of subgroups in its monodromy group. Therefore, since any of the groups A4, S4, and A5 has
maximal chains of subgroups of different length, for the corresponding Klein functions the first
Ritt theorem is not true.
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Although the fact that the Klein functions provide counterexamples to the first Ritt theorem
is a well-known part of the mathematical ‘folklore’, the systematic description of compositional
properties of these functions seems to be absent. In particular, to the best of our knowledge
maximal decompositions that do not satisfy the first Ritt theorem were found explicitly only
for the Klein function corresponding to the group A4 (see [3, 12]). In the appendix to this
paper we provide a detailed analysis of maximal decompositions of the Klein functions and
give related explicit examples of non-weakly equivalent maximal decompositions. In particular,
we give an example of a rational function with three poles having maximal decompositions of
different length. This example shows that with no additional assumptions the first Ritt theorem
cannot be extended to rational functions, the monodromy of which contains a cyclic subgroup
with more than two orbits.

In conclusion, note that some of results of this paper overlap with the results of the paper
[15] which appeared simultaneously with the earlier version of this paper [20]; namely, our
Corollary 3.6 is equivalent to Corollary 1.6 of [15] while our Corollary 3.4 is a stronger form
of Theorem 1.4 of [15].

2. Jordan–Hölder theorem for imprimitivity systems

2.1. Lattices, imprimitivity systems, and decompositions of functions

Recall that a lattice is a partially ordered set (L,�) in which every pair of elements x, y has a
unique supremum x ∨ y and an infimum x ∧ y (see, for example, [1]). Our basic example of a
lattice is the lattice L(G) of all subgroups of a group G, where by definition G1 � G2 if G1 is
a subgroup of G2 (clearly, G1 ∩ G2 is an infimum of G1, G2 and 〈G1, G2〉 is a supremum). A
simplest example of the lattice L(G) is obtained when G is a cyclic group of order n. In this
case L(G) is isomorphic to the lattice Ln consisting of all divisors of n, where by definition
d1 � d2 if d1 | d2.

A sublattice of a lattice L is a non-empty subset M ⊆ L closed with respect to ∨ and ∧. For
example, for any subgroup H of a group G the set

L(H,G) := {X � G |H � X � G}
is a sublattice of L(G). Another example of a sublattice of L(G) is the lattice

L(A,AB) := {X � G |A � X ⊆ AB}
(note that in our notation X � G means that X is a subgroup of G while X ⊆ AB means that
X is a subset of the set AB which in general is not supposed to be a group). Recall that by
the Dedekind identity (see, for example, [13, p. 8]) for arbitrary subgroups A,B,X of a group
G such that A � X ⊆ AB the equality X = A(X ∩ B) holds. It follows from the Dedekind
identity that the mapping f : X �→ X ∩ B is a monomorphism from the lattice L(A,AB) into
the lattice L(A ∩ B,B) with the image consisting of all subgroups of B that are permutable
with A. We call f the Dedekind monomorphism.

For the elements a and b of a lattice L the symbol a < · b denotes that a � b and there exists
no element c �= a, b of L such that a � c � b. A lattice L is called semi-modular [1] if, for any
a, b ∈ L, the conditions

a ∧ b < · a, a ∧ b < · b, (6)

imply the conditions
b < · a ∨ b, a < · a ∨ b. (7)

Conversely, it condition (7) implies condition (6), then the lattice L is called lower semi-
modular. A lattice L is called modular if L is semi-modular and lower semi-modular. A maximal
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chain R between the elements a, b of L is a collection a0, a2, . . . ak of the elements of L such that

R : a = a0 < · a1 < · . . . < · ak = b.

The number k is called the length of the chain R (we always assume that in the lattices
considered the length of a chain between a and b is uniformly bounded by a number depending
on a and b only).

It is well known (see, for example, [1]) that, for a semi-modular or lower semi-modular lattice,
all maximal chains between two elements have the same length. Below, using essentially the
same proof, we give a modification of this statement in the spirit of the first Ritt theorem.

We say that two maximal chains between elements a and b of a lattice L are r-equivalent if
there exists a sequence of maximal chains T1,T2, . . . , Ts between a and b such that T1 = R1,
Ts = R2, and Ti+1 is obtained from Ti, with 1 � i � s − 1, by a replacement of exactly one
element. Clearly, all r-equivalent chains have an equal length.

Theorem 2.1. Let L be a semi-modular or lower semi-modular lattice. Then any two
maximal chains between any elements a and b of L are r-equivalent.

Proof. Since after the inversion of the ordering of a lattice the condition of semi-modularity
transforms to the condition of lower semi-modularity and vice versa, it is enough to prove the
theorem for lower semi-modular lattices.

Fix a ∈ L. For arbitrary b ∈ L denote by d(b) a maximum of the lengths of maximal chains
between a and b. We will prove the theorem by induction on d(b). For b satisfying d(b) � 1
the theorem is obviously true. Suppose that the theorem is proved for b satisfying d(b) � n − 1
and let

R1 : a = a0 < · a2 < · . . . < · ak1 = b, R2 : a = b0 < · b2 < · . . . < · bk2 = b

be two maximal chains between a and an element b ∈ L such that d(b) = n.
If ak1−1 = bk2−1, then we are done by induction. Hence, we may assume that ak1−1 �= bk2−1.

Then, by the maximality of ak1−1 and bk2−1 in b, we conclude that ak1−1 ∨ bk2−1 = b. Hence

ak1−1 < · ak1−1 ∨ bk2−1, bk2−1 < · ak1−1 ∨ bk2−1

and therefore, by the lower semi-modularity of L, we have

ak1−1 ∧ bk2−1 < · ak1−1, ak1−1 ∧ bk2−1 < · bk2−1. (8)

Let

a = c0 < · c2 < · . . . < · cl = ak1−1 ∧ bk2−1

be any maximal chain between a and ak1−1 ∧ bk2−1 and let

a = c0 < · c2 < · . . . < · cl < · ak1−1 (9)

be its extension to a maximal chain between a and ak1−1. Since d(ak1−1) is obviously less than
d(b), it follows from the induction assumption that the chain

a = a0 < · a2 < · . . . < · ak1−1

obtained from R1 by deleting ak1 is r-equivalent to the chain (9). Therefore, the chain R1 and
the chain

a = c0 < · c2 < · . . . < · cl < · ak1−1 < · b (10)

are also r-equivalent.
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Figure 1.

Similarly, the chain R2 is r-equivalent to the chain

a = c0 < · c2 < · . . . < · cl < · bk2−1 < · b. (11)

Since the chains (10) and (11) are r-equivalent, we conclude that the chain R1 is r-equivalent
to the chain R2.

Remark. Note that there exist lattices that are not semi-modular or lower semi-modular
such that any two maximal chains between any elements are r-equivalent. An example of such
a lattice is shown in Figure 1.

Let Ω be a finite set and let G � Sym(Ω) be a transitive permutation group. Recall that a
partition E of Ω is called an imprimitivity system of G if E is G-invariant. Elements of E are
called blocks. For a point ω ∈ Ω, we denote by E(ω) a unique block of E which contains ω.
Since the group G permutes the elements of E transitively, it follows that all blocks of E have
the same cardinality denoted by nE. Denote by E(G) the set of all imprimitivity systems of G.
It is a partially ordered set, where by definition E � F if E is a refinement of F. Note that if
E � F, then nF/nE is an integer denoted by [F : E].

It is easy to see that E(G) is a lattice where the lattice operations are defined as follows:

E ∧ F := {Δ ∩ Γ |Δ ∈ E,Γ ∈ F and Δ ∩ Γ �= ∅},
E ∨ F :=

∧
{D ∈ E(G) |E � D and F � D}.

It is well known that the lattice E(G) is isomorphic to the subgroup lattice L(Gω, G), where
ω ∈ Ω is an arbitrary fixed point. The correspondence between two sets is given by the formula
E �→ GE(ω), where

GE(ω) := {g ∈ G |E(ω)g = E(ω)}.
Conversely, an imprimitivity system corresponding to a subgroup K ∈ L(Gω, G) is defined as
follows: EK := {ωKg | g ∈ G}. Note that, for any E,F ∈ E(G), we have

G(E∧F)(ω) = GE(ω) ∩ GF(ω), G(E∨F)(ω) = 〈GE(ω), GF(ω)〉.
Moreover, if E � F, then [F : E] = [GF(ω) : GE(ω)].

If G is the monodromy group of a rational function F , then imprimitivity systems of G are
in one-to-one correspondence with equivalence classes of decompositions A ◦ B of F : namely,
suppose that G is realized as a permutation group acting on the set z1, z2, . . . , zn of preimages
of a non-critical value z0 of F = A ◦ B under the map F : CP

1 → CP
1, and let x1, x2, . . . , xr

be the set of preimages of z0 under the map A : CP
1 → CP

1. Then blocks of the imprimitivity
system of G corresponding to the equivalence class of decompositions of F containing A ◦ B
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are just preimages of the points x1, x2, . . . , xr under the map B : CP
1 → CP

1. More generally,
equivalence classes of decompositions of a rational function F are in one-to-one correspondence
with the chains of subgroups

Gω = T0 < T1 < . . . < Tr = G,

where G is the monodromy group of F .
Following [26] we say that two maximal decompositions D1 and D2 of a rational function F

are weakly equivalent if there exists a chain of maximal decompositions Fi, with 1 � i � s, of
F such that F1 = D1, Fs ∼ D2, and Fi+1 is obtained from Fi, with 1 � i � s − 1, by replacing
two successive functions in Fi by other functions with the same composition. The remarks
above imply that two maximal decompositions of F are weakly equivalent if and only if the
corresponding maximal chains in L(Gω, G) are r-equivalent. In particular, the conclusion of
the first Ritt theorem is true for a rational function F if and only if all maximal chains between
Gω and G in L(Gω, G) are r-equivalent. Therefore, Theorem 2.1 implies the following corollary
(cf. [26, Theorem 2.5]).

Corollary 2.2. Let F be a rational function such that the lattice L(Gω, G), where G
is the monodromy group of F , is semi-modular or lower semi-modular. Then all maximal
decompositions of F are weakly equivalent.

Corollary 2.2 shows that the groups G for which L(Gω, G) is semi-modular or lower semi-
modular are of special interest for the factorization theory of rational functions. The simplest
examples of such groups are groups containing a transitive cyclic subgroup.

Theorem 2.3. Let G � Sn be a permutation group containing a transitive cyclic subgroup
Cn. Then the lattice L(G1, G) is a modular lattice isomorphic to a sublattice of the lattice Ln.

Proof. Since any sublattice of a modular lattice is modular (see, for example, [1]) and it is
easy to see that Ln is modular, it is enough to prove that L(G1, G) is isomorphic to a sublattice
of Ln.

The transitivity of Cn implies that G = G1Cn. Therefore, the Dedekind monomorphism
f : X �→ X ∩ Cn maps L(G1, G) into a sublattice of L(G1 ∩ Cn, Cn). On the other hand,

L(G1 ∩ Cn, Cn) = L(e, Cn) ∼= Ln.

Note that Theorem 2.3 implies the following proposition (cf. [7, 31]).

Corollary 2.4. Let A,B,C, and D be polynomials such that

A ◦ C = B ◦ D.

Then there exist polynomials U, V, Â, Ĉ, B̂, and D̂, where

deg U = gcd(deg A,deg B), deg V = gcd(deg C,deg D),

such that

A = U ◦ Â, B = U ◦ B̂, C = Ĉ ◦ V, D = D̂ ◦ V,

and

Â ◦ Ĉ = B̂ ◦ D̂.
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In particular, if deg A = deg B, then the decompositions A ◦ C and B ◦ D are necessarily
equivalent.

2.2. Jordan–Hölder theorem for groups with normal imprimitivity systems

As above let G be a transitive permutation group. It is easy to see that if N is a normal subgroup
of G, then its orbits form an imprimitivity system of G. Such an imprimitivity system is called
normal and is denoted by Ω/N . For an imprimitivity system E ∈ E(G) set

GE := {g ∈ G | ∀Δ∈E Δg = Δ}.
Note that each block of E is a union of GE-orbits and GE = coreG(GE(ω)). In particular, GE is
a normal subgroup of G.

Let us call a subgroup A ∈ L(Gω, G) core-complementary if A = GωcoreG(A).

Proposition 2.5. An imprimitivity system E ∈ E(G) is normal if and only if the group
GE(ω) is core-complementary.

Proof. Indeed, if

GE(ω) = GωcoreG(GE(ω)) = GωGE, (12)

then

E(ω) = ωGE(ω) = ωGE

and hence GE acts transitively on E(ω). Since GE � G, this implies that GE acts transitively
on every block of E. Thus blocks of E are orbits of the normal subgroup GE.

Conversely, if E is normal, then E = Ω/N for some N � G. This implies that GE(ω) = GωN
and N � GE. It follows now from

GE(ω) = GωN � GωGE � GE(ω)

that equality (12) holds.

Recall that two subgroups A and B are called permutable if AB = BA or, equivalently,
〈A,B〉 = AB. Recall also that if A and B are subgroups of the finite index of G, then the
inequality

[〈A,B〉 : B] � [A : A ∩ B] (13)

holds and the equality in (13) is attained if and only if A and B are permutable (see, for
example, [16, p. 79]).

Denote by Lc(Gω, G) the subset of L(Gω, G) consisting of all core-complementary subgroups.
Note that, in general, Lc(Gω, G) is not a sublattice of L(Gω, G)

Proposition 2.6. The following conditions hold.
(a) If A ∈ Lc(Gω, G), then AB = BA for each B ∈ L(Gω, G).
(b) If A,B ∈ Lc(Gω, G), then AB ∈ Lc(Gω, G).

Proof. (a) In order to lighten the notation set N = coreG(A). In view of Proposition 2.5 we
have

AB = GωNB = NGωB = NB = BN = BGωN = BA.
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(b) Set M = coreG(B). Since MN � G and MN � AB, we have

MN � coreG(AB).

It follows now from Proposition 2.5 that

AB = GωNGωM = GωMN � GωcoreG(AB) � AB.

Therefore, GωcoreG(AB) = AB and hence AB ∈ Lc(Gω, G) by Proposition 2.5.

Proposition 2.7. Let A,B � G be permutable subgroups. If A ∩ B is maximal in A and
B, then A and B are maximal in 〈A,B〉 = AB.

Proof. Let A1 be a subgroup of G satisfying A � A1 � AB. It follows from

A ∩ B � A1 ∩ B � B

that either A1 ∩ B = A ∩ B or A1 ∩ B = B. It follows now from the Dedekind identity A1 =
A(A1 ∩ B) that in the first case A1 = A while in the second A1 = AB.

Proposition 2.8. If any two subgroups of L(Gω, G) are permutable, then the lattice
L(Gω, G) is modular.

Proof. Indeed, if A ∩ B is maximal in A and B, then A and B are maximal in 〈A,B〉 = AB
by Proposition 2.7.

Suppose now that A and B are maximal in AB and let A1 be a subgroup of G satisfying
A ∩ B � A1 � A. Then

B � A1B � AB

implies that either B = A1B or A1B = AB. If B = A1B, then A1 � B and therefore A1 =
A ∩ B. On the other hand, if A1B = AB, then it follows from A � AB = A1B that, for any
a ∈ A, there exist a1 ∈ A1 and b ∈ B such that a = a1b. Since the last equality yields that
b ∈ A ∩ B, this implies that A � A1(A ∩ B) � A1 and hence A1 = A.

Let H � G be an arbitrary subgroup and let H \ G := {Hx |x ∈ G}. Denote by G//H a
permutation group arising from the natural action of G on H \ G. Thus G//H is always
considered as a subgroup of Sym(H \ G). Note that if N � G is contained in H, then the
groups G//H and (G/N)//(H/N) are permutation equivalent. Below we denote permutation
equivalence by ∼=p.

Say that a transitive permutation group G � Sym(Ω) satisfies the Jordan–Hölder theorem
for imprimitivity systems if any two maximal chains

Gω = A0 < . . . < Ak = G and Gω = B0 < . . . < Bm = G

of the lattice L(Gω, G) have the same length (that is, k = m) and there exists a permutation
σ ∈ Sk such that the permutation groups Ai//Ai−1 and Bσ(i)//Bσ(i)−1, with 1 � i � k, are
permutation equivalent. Note that if G is the monodromy group of a rational function F , then
it follows from the correspondence between imprimitivity systems of G and equivalence classes
of decompositions of F that G satisfies the Jordan–Hölder theorem for imprimitivity systems
if and only if any two maximal decompositions of F

F = U1 ◦ U2 ◦ . . . ◦ Uk and F = V1 ◦ V2 ◦ . . . ◦ Vm,

have the same length and there exists a permutation σ ∈ Sk such that the monodromy groups
of Ui and Vσ(i), with 1 � i � k, are permutation equivalent.
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Theorem 2.9. Let G be a permutation group such that L(Gω, G) = Lc(Gω, G). Then
the lattice L(Gω, G) is modular and G satisfies the Jordan–Hölder theorem for imprimitivity
systems.

Proof. First of all observe that since, by Proposition 2.6, any two subgroups of L(Gω, G)
are permutable, it follows from Proposition 2.8 that L(Gω, G) is a modular lattice. Now let

A := Gω = A0 < . . . < Ak = G and B := Gω = B0 < . . . < Bm = G

be two maximal chains of L(Gω, G). Since L(Gω, G) is a modular lattice, it follows from
Theorem 2.1 that k = m and A and B are r-equivalent. Therefore by induction it is sufficient
to prove the theorem for the case when B and A differ at exactly one place, say i (1 � i < k).
Clearly, in this case we have

Ai−1 = Bi−1 = Ai ∩ Bi, Ai+1 = Bi+1 = AiBi.

In order to lighten the notation set

N := coreAi+1(Ai).

It follows from the equality Ai = GωcoreG(Ai) that Ai = Ai−1coreG(Ai). Therefore,

Ai = Ai−1coreG(Ai) � Ai−1N � Ai

and hence

Ai = Ai−1N = Bi−1N

and

Ai+1 = AiBi = Ai−1NBi = Bi−1NBi = BiN.

Since N � Ai = Bi−1N and N � Ai+1 = BiN, this implies that

Ai+1//Ai = (BiN)//(Bi−1N) ∼=p (BiN)/N // (Bi−1N)/N.

By the Second Isomorphism Theorem the group (BiN)/N is isomorphic to the group
Bi/(Bi ∩ N) and the image of (Bi−1N)/N under this isomorphism is

Bi−1(Bi ∩ N)/(Bi ∩ N).

Furthermore, it follows from N � Ai that Bi ∩ N � Ai ∩ Bi = Bi−1. Therefore,

Bi−1(Bi ∩ N)/(Bi ∩ N) = Bi−1/(Bi ∩ N)

and hence

(BiN)/N // (Bi−1N)/N ∼=p Bi/(Bi ∩ N) //Bi−1/(Bi ∩ N).

Finally, since Bi ∩ N � Bi, it follows that

Bi/(Bi ∩ N) //Bi−1/(Bi ∩ N) ∼=p Bi//Bi−1

and hence Ai+1//Ai
∼=p Bi//Bi−1. Replacing A and B in the above argument, we obtain

similarly that Bi+1//Bi
∼=p Ai//Ai−1.

Recall that a group is called Hamiltonian if all its subgroups are normal.

Theorem 2.10. Let G be a permutation group containing a transitive Hamiltonian
subgroup K. Then L(Gω, G) is a modular lattice isomorphic to a sublattice of L(K) and
G satisfies the Jordan–Hölder theorem for imprimitivity systems.
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Proof. It follows from the transitivity of K that G = GωK. Therefore, by the Dedekind
monomorphism L(Gω, G) is isomorphic to a sublattice of L(Gω ∩ K,K). Clearly, Gω ∩ K =
Kω. Furthermore, since K is Hamiltonian, it follows that the subgroup Kω is normal in K and
therefore, for any ω′ ∈ Ω, the equality Kω = Kω′ holds. This implies that Kω = 1 and hence
L(Gω, G) is isomorphic to a sublattice of L(K). Since L(K) is modular by Proposition 2.8, it
follows that L(Gω, G) is modular as well.

By Theorem 2.9 in order to prove that G satisfies the Jordan–Hölder theorem it is enough
to show that Lc(Gω, G) = L(Gω, G). Observe first that it follows from G = GωK that, for
arbitrary A ∈ L(Gω, G), the equality

coreG(A) =
⋂

g∈K

gAg−1 (14)

holds. On the other hand, since K is Hamiltonian, we have: A ∩ K � K. Therefore, for each
g ∈ K we have

g−1(A ∩ K)g = A ∩ K � A

implying that

A ∩ K � gAg−1. (15)

It follows now from (14) and (15) that A ∩ K � coreG(A) and hence

Gω(A ∩ K) � GωcoreG(A) � A.

Since by Dedekind’s identity Gω(A ∩ K) = A, we conclude that GωcoreG(A) = A for any A ∈
L(Gω, G) and hence Lc(Gω, G) = L(Gω, G) by Proposition 2.5.

Corollary 2.11. Let F be a rational function such that its monodromy group contains
a transitive Hamiltonian subgroup. Then any two maximal decompositions of F are weakly
equivalent. Furthermore, for any two decompositions of F

F = U1 ◦ U2 ◦ . . . ◦ Uk and F = V1 ◦ V2 ◦ . . . ◦ Vk,

there exists a permutation σ ∈ Sk such that the monodromy groups of Ui and Vσ(i), with
1 � i � k, are permutation equivalent.

Remark. Note that the condition of Corollary 2.11 is satisfied in particular if K is cyclic
or abelian. Therefore, Corollary 2.11 generalizes Theorem R.3 and Claim 1 of [18], and
Theorem 1.3 of [19]. Note also that if a group G satisfies the Jordan–Hölder theorem for
imprimitivity systems, then G automatically possesses the so-called ‘Jordan property’ defined
in [15]. In particular, Theorem 2.10 provides a more precise version of [15, Proposition 1.2] for
permutation groups containing a transitive Hamiltonian subgroup.

2.3. Jordan–Hölder theorem for groups containing a cyclic subgroup with two orbits of
different length

Let Ω be a finite set, let h ∈ Sym(Ω) be a permutation which is a product of exactly two
disjoint cycles, and let H := 〈h〉. For the rest of this subsection it is assumed that G � Sym(Ω)
is a transitive permutation group containing H. Without loss of generality we may assume that
G � Sn and

h = (1 2 . . . n1)(n1 + 1n1 + 2 . . . n1 + n2),

where 1 � n1, n2 < n and n1 + n2 = n.
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Say that an imprimitivity system E ∈ E(G) is H-transitive or H-intransitive if the action of
H on the blocks of E is transitive or intransitive, respectively. Say that a group K ∈ L(Gω, G) is
H-transitive or H-intransitive if the corresponding EK ∈ E(G) is H-transitive or H-intransitive,
respectively.

Since H permutes blocks of E, it is easy to see that if E is H-transitive, then there exist
numbers d | n and i1, i2 with 1 � i1, i2 � d, such that any block of E is equal to W 1

i1,d ∪ W 2
i2,d,

where the symbols W 1
j,l and W 2

j,l denote the union of numbers equal to j by modulo l from
the segment [1, n1] and from the segment [n1 + 1, n1 + n2] respectively. On the other hand, if
E ∈ E(G) is H-intransitive, then there exist the numbers d1n1, d2n2 and i1, i2, with 1 � i1 � d1,
1 � i2 � d2, such that

n1/d1 = n2/d2 = nE (16)

and any block of E is equal either to W 1
i1,d1

or to W 2
i2,d2

.

Proposition 2.12. Any H-intransitive imprimitivity system E ∈ E(G) is normal.

Proof. In the notation above set r = lcm(d1, d2) and K := 〈hr〉. Clearly, we have K � GE

and therefore any orbit of GE is a union of orbits of K. The length of any orbit of K on [1, n1]
is equal to

n1

gcd(n1, r)
=

nE

gcd(nE, r/d1)
.

On the other hand, the length of any orbit of K on [n1 + 1, n1 + n2] is equal to
n2

gcd(n2, r)
=

nE

gcd(nE, r/d2)
.

Therefore, the length of any orbit of GE on Ω is divisible by

lcm
(

nE

gcd(nE, r/d1)
,

nE

gcd(nE, r/d2)

)
=

nE

gcd(nE, gcd(r/d1, r/d2))
= nE.

This implies that an orbits of GE coincide with the blocks of E and hence E is normal.

Proposition 2.13. If an H-transitive imprimitivity system E ∈ E(G) is not normal,
then n1 = n2 and there exists a normal imprimitivity system E′ � E such that [E : E′] = 2.
Furthermore, E′ is H-intransitive, its blocks coincide with an orbits of GE, and for any
H-intransitive imprimitivity system F ∈ E(G), such that F � E, we have F � E′.

Proof. In the notation above set K = 〈hd〉. Clearly, any block W 1
i1,d ∪ W 2

i2,d of E is a union
of exactly two orbits of K and K � GE. Since E is not normal, this implies that the orbits of
GE coincide with the orbits of K. In particular, since the orbits of GE have the same length,
the same is true for the orbits of K and hence n1 = n2. The remaining statements of the
proposition are now obvious.

Theorem 2.14. If a transitive permutation group G contains a cyclic subgroup with two
orbits of different length, then L(Gω, G) is modular and G satisfies the Jordan–Hölder theorem
for imprimitivity systems.

Proof. It follows from Propositions 2.12 and 2.13 that L(Gω, G) = Lc(Gω, G). Now the
theorem follows from Theorem 2.9.
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Corollary 2.15. Let F be a rational function such that F has only two poles and the
orders of these poles are distinct. Then any two maximal decompositions of F are weakly
equivalent. Furthermore, for any two decompositions of F

F = U1 ◦ U2 ◦ . . . ◦ Uk and F = V1 ◦ V2 ◦ . . . ◦ Vk,

there exists a permutation σ ∈ Sk such that the monodromy groups of Ui and Vσ(i), with
1 � i � k, are permutation equivalent.

3. The lattice of imprimitivity systems for groups containing a cyclic subgroup with two
orbits

3.1. Semimodularity and modularity of L(Gω, G)

Proposition 3.1. Let G be a transitive permutation group. Suppose that L(Gω, G)
contains the subgroups E and F such that [E : E ∩ F ] = [F : E ∩ F ] = 2. Then E ∩ F
is normal in 〈E,F 〉 and 〈E,F 〉/E ∩ F ∼= D2m, where 2m := [〈E,F 〉 : E ∩ F ]. Furthermore,
L(E ∩ F, 〈E,F 〉) ∼= L(D2m).

Proof. Since [E : E ∩ F ] = [F : E ∩ F ] = 2, the subgroup E ∩ F is normal in E and F
simultaneously and therefore E ∩ F � 〈E,F 〉. Since

〈E,F 〉/(E ∩ F ) = 〈E/(E ∩ F ), F/(E ∩ F )〉
and E/(E ∩ F ) ∼= Z2 and F/(E ∩ F ) ∼= Z2, the group 〈E/(E ∩ F ), F/(E ∩ F )〉 is isomorphic
to D2m for some m � 1 (see, for example, [6]). Furthermore, since

[〈E,F 〉 : (E ∩ F )] = |〈E,F 〉/(E ∩ F )|
we have [〈E,F 〉 : (E ∩ F )] = 2m. Finally, it is clear that

L(E ∩ F, 〈E,F 〉) ∼= L (〈E,F 〉/(E ∩ F ))

and therefore L(E ∩ F, 〈E,F 〉) ∼= L(D2m).

In the rest of this subsection it is assumed that G � Sym(Ω) is a transitive permutation
group containing H.

Proposition 3.2. The lattice L(Gω, G) is lower semi-modular.

Proof. Assume the contrary and let E1 ∈ L(Gω, G) be a subgroup of G such that

E ∩ F < E1 < E, (17)

where E,F ∈ L(Gω, G), with E �= F, are maximal in 〈E,F 〉. Note that then

E1 ∩ F = E ∩ F.

If E1 is permutable with F , then 〈E1, F 〉 = E1F and by (13)

[〈E1, F 〉 : F ] = [E1 : E1 ∩ F ] = [E1 : E ∩ F ] < [E : E ∩ F ] � [〈E,F 〉 : F ] .

Therefore, 〈E1, F 〉 < 〈E,F 〉. Since F � 〈E1, F 〉 and F is maximal in 〈E,F 〉, this implies that
〈E1, F 〉 = F. Hence, E1 � F and therefore E1 � E ∩ F , in contradiction with the assumption
that E ∩ F < E1.
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Suppose now that F and E1 are not permutable. Then Proposition 2.6 implies that both E1

and F are not core-complementary. It follows now from Propositions 2.5 and 2.13 that there
exist F ′, E′

1 ∈ Lc(Gω, G) such that [E1 : E′
1] = [F : F ′] = 2. Note that each of the groups F ′ and

E′
1 is permutable with any X ∈ L(Gω, G) by Proposition 2.6. In particular, E′

1F ∈ L(Gω, G)
and EF ′ ∈ L(Gω, G).

It follows from

F � E′
1F � 〈E,F 〉

that either E′
1F = 〈E,F 〉 or E′

1F = F . If E′
1F = 〈E,F 〉, then the inclusions

〈E,F 〉 ⊇ EF ⊇ E1F ⊇ E′
1F = 〈E,F 〉

imply that E1F = 〈E,F 〉 ∈ L(Gω, G), in contradiction with the assumption that E1 and F
are not permutable. Thus, assume that E′

1F = F . In this case E′
1 � F and hence E′

1 � E ∩ F.
Together with E ∩ F < E1 and [E1 : E′

1] = 2, this implies that

E′
1 = E ∩ F = E1 ∩ F. (18)

In view of Proposition 2.13 the last equality yields that E ∩ F is H-intransitive and E ∩ F � F ′.
Consequently,

E ∩ F = E ∩ F ′. (19)

It follows from

E � EF ′ � 〈E,F 〉
that either EF ′ = 〈E,F 〉 or EF ′ = E. If the equality EF ′ = 〈E,F 〉 holds, then (13) and (19)
imply the inequality

[F : E ∩ F ] � [〈E,F 〉 : E] = [EF ′ : E] = [F ′ : E ∩ F ′] = [F ′ : E ∩ F ] = 1
2 [F : E ∩ F ],

which is impossible. Thus, assume that EF ′ = E. In this case F ′ � E and therefore
F ′ � E ∩ F � F . Together with [F : F ′] = 2 this implies that either E ∩ F = F or E ∩ F = F ′.
Furthermore, since owing to the maximality of F and E in 〈E,F 〉 the equality F ∩ E = F is
impossible, we may assume that F ′ = E ∩ F . In this case [F : E ∩ F ] = 2. Together with (18)
and [E1 : E′

1] = 2, this implies that

[F : E1 ∩ F ] = [E1 : E1 ∩ F ] = 2. (20)

It follows now from Proposition 3.1 that the lattice L(E1 ∩ F, 〈E1, F 〉) is isomorphic to the
subgroup lattice of a dihedral group D2m, where 2m = [〈E1, F 〉 : E1 ∩ F ]. Furthermore, it
follows from F � 〈E1, F 〉 � 〈E,F 〉 that either 〈E1, F 〉 = F or 〈E1, F 〉 = 〈E,F 〉. The first case
is impossible since E ∩ F < E1 < E. Therefore 〈E1, F 〉 = 〈E,F 〉 and hence

L(E ∩ F, 〈E,F 〉) = L(E1 ∩ F, 〈E1, F 〉) ∼= L(D2m). (21)

Since maximal subgroups of D2m have prime index, it follows from (21) that the number
p := [〈E,F 〉 : F ] is prime and hence

[〈E,F 〉 : E ∩ F ] = [〈E,F 〉 : F ][F : E ∩ F ] = 2p.

On the other hand, by (20) we have

[〈E,F 〉 : E ∩ F ] = [〈E,F 〉 : E][E : E1][E1 : E ∩ F ] = 2[〈E,F 〉 : E][E : E1].

Therefore, [〈E,F 〉 : E][E : E1] = p. Since this equality implies that at least one of the numbers
[〈E,F 〉 : E], [E : E1] is equal to one, we conclude that there exists no E1 ∈ L(Gω, G) satisfying
(17) and therefore the lattice L(Gω, G) is lower semi-modular.



JORDAN–HÖLDER THEOREM FOR IMPRIMITIVITY SYSTEMS 15

Proposition 3.3. Let E,F ∈ L(Gω, G), with E �= F . Suppose that E ∩ F is maximal in E
and F . Then either E and F are permutable and E and F are maximal in 〈E,F 〉, or E ∩ F �
〈E,F 〉 and 〈E,F 〉/(E ∩ F ) ∼= D2m for some m � 1. Furthermore, L(E ∩ F, 〈E,F 〉) ∼= L(D2m).

Proof. If E and F are permutable, then E and F are maximal in 〈E,F 〉 = EF by Proposi-
tion 2.7. Hence, suppose that E and F are not permutable and consider the core-complementary
subgroups E′ < E and F ′ < F from Proposition 2.13.

It follows from

E ∩ F � E′(E ∩ F ) � E

that either E′(E ∩ F ) = E or E′(E ∩ F ) = E ∩ F . In the first case we obtain

EF = E′(E ∩ F )F = E′F ∈ L(Gω, G)

that contradicts the assumption that E and F are not permutable. Therefore E′(E ∩ F ) =
E ∩ F or, equivalently, E′ � E ∩ F . Since [E : E′] = 2, this implies that E′ = E ∩ F . Analo-
gously, F ′ = E ∩ F . Thus

[E : E ∩ F ] = [F : E ∩ F ] = 2.

Now Proposition 3.1 yields the result.

Corollary 3.4. Let E,F ∈ L(Gω, G) be maximal in 〈E,F 〉. Then E ∩ F is maximal in
E and F and either EF = FE, or E ∩ F � 〈E,F 〉 and 〈E,F 〉/(E ∩ F ) ∼= D2m for a prime m.

Proof. By Proposition 3.2 the group E ∩ F is maximal in F and E. If E and F are not
permutable, then Proposition 3.3 implies that E ∩ F � 〈E,F 〉 and 〈E,F 〉/(E ∩ F ) ∼= D2m for
some m � 1. Furthermore, since F is maximal in 〈E,F 〉, the group F/(E ∩ F ) ∼= Z2 is maximal
in the group 〈F,E〉/(E ∩ F ) ∼= D2m and therefore m is prime.

We can summarize Propositions 3.2 and 3.3 as follows.

Theorem 3.5. Let G be a transitive permutation group containing a cyclic subgroup
with two orbits. Then the lattice L(Gω, G) is lower semi-modular. Furthermore, L(Gω, G) is
modular unless there exists an interval of L(Gω, G) which is isomorphic to the subgroup lattice
of a dihedral group.

Proof. By Proposition 3.2 the lattice L(Gω, G) is lower semi-modular. If it is not modular,
then the existence of an interval isomorphic to L(D2m) follows from Proposition 3.3.

Corollary 3.6. Let F be a rational function such that its monodromy group contains
a cyclic subgroup with at most two orbits. Then any two maximal decompositions of F are
weakly equivalent. Furthermore, if

F = F1 ◦ F2 ◦ . . . ◦ Fk and F = R1 ◦ R2 ◦ . . . ◦ Rk

are two decompositions of F , then the set of degrees of the functions Fi, with 1 � i � k,
coincides with the set of degrees of the functions Gi, with 1 � i � k.

Proof. The first part of corollary follows from Theorem 3.5 and Corollary 2.2. Furthermore,
it follows from the first part that in order to prove the second part it is enough to establish
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that if A and B are subgroups of G such that A ∩ B is maximal in A and B, and A and B
are maximal in 〈A,B〉, then the sets {[〈A,B〉 : B], [B : A ∩ B]} and {[〈A,B〉 : A], [A : A ∩ B]}
coincide. If A and B are permutable, then this is a corollary of formula (13). On the other hand,
if A and B are not permutable, then the property needed easily follows from Corollary 3.4.

Remark. The proof of Theorem 3.5 given above is a simplified version of the proof given
in the earlier preprint of the authors [20].

3.2. Non-permutable subgroups of L(G1, G) and algebraic curves having a factor of genus 0
with at most two points at infinity

The following result is the algebraic counterpart of [9, Proposition 2] (see also [4, Theorem 8.1;
26, Theorem 3.5]).

Proposition 3.7. Let G be a group, and let A and B be non-permutable subgroups of G.
Then there exist non-permutable subgroups Â and B̂ of G such that A � Â and B � B̂, and
coreGÂ = coreGB̂.

Proof. For C � G denote by d(C) a maximal number such that there exists a maximal
chain of subgroups

C = C0 < C1 < . . . < Cd(C) = G.

We use the induction on the number d = d(A) + d(B). In order to lighten notation, set N =
coreGA and M = coreGB.

First of all note that the subgroups AM and BN are not permutable since

(AM)(BN) = AB, (BN)(AM) = BA.

In particular, AM �= G and BN �= G. Hence, if d = 2 (that is, if both A and B are maximal
in G), then AM = A and BN = B, and hence M � A and N � B. Since M � G and N � G,
this implies that M � N and N � M , and hence M = N. Therefore, if d = 2, then we can set
Â := A and B̂ := B.

Assume now that d > 2. If d(AM) < d(A) or d(BN) < d(B), then the proposition follows
from the induction assumption. On the other hand, if d(AM) = d(A) and d(BN) = d(B), then
as above AM = A, BN = B, and M = N. Therefore, we can set Â := A and B̂ := B.

Proposition 3.7 together with previous results allows us to describe non-permutable
subgroups of L(Gω, G).

Theorem 3.8. Let G be a transitive permutation group containing a cyclic subgroup with
two orbits and let E,F ∈ L(Gω, G) be non-permutable subgroups of G such that 〈E,F 〉 = G.
Then there exists N � G such that E ∩ F � N and G/N ∼= D2m for some m � 1.

Proof. By Proposition 3.7 there exist non-permutable subgroups Ê and F̂ of G such that
E � Ê and F � F̂ , and coreGÊ = coreGF̂ . Furthermore, Proposition 2.6 implies that both Ê
and F̂ are not core-complementary. Therefore, by Propositions 2.12 and 2.13

[Ê : Ê′] = 2, [F̂ : F̂ ′] = 2, (22)

where Ê′ = (coreGÊ)Gω and F̂ ′ = (coreGF̂ )Gω.
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Since coreGÊ = coreGF̂ , we obtain Ê′ = F̂ ′ � Ê ∩ F̂ . On the other hand, the inequality
ÊF̂ �= F̂ Ê implies that Ê ∩ F̂ is a proper subgroup of both Ê and F̂ . It follows now from (22)
that Ê′ = F̂ ′ = Ê ∩ F̂ and [Ê : F̂ ∩ F̂ ] = [F̂ : F̂ ∩ F̂ ] = 2. Therefore, the theorem follows from
Proposition 3.1 taking into account that E ∩ F � Ê ∩ F̂ .

Theorem 3.8 has an interesting connection with the problem of describing the algebraic
curves

A(x) − B(y) = 0 (23)

having a factor of genus 0 with at most two points at infinity. This problem is closely related
to number theory and in this context was studied in the papers [4, 8]. In particular, in [4]
a complete classification of such curves (defined over any field k of characteristic zero) was
obtained. Another proof of this classification (over C) was given in the paper [26] in the
context of description of double decompositions

L = A ◦ B = C ◦ D (24)

of rational functions L, with at most two poles, into compositions of rational functions. The
last problem turns out to be more general than the previous one since if the curve (23) has an
irreducible factor of genus 0 with two points at infinity, then this factor may be parameterized
by some Laurent polynomials and therefore there exist Laurent polynomials L,L1, and L2 such
that the equality

L = A ◦ L1 = B ◦ L2 (25)

holds. On the other hand, there exist double decompositions (24) which cannot be reduced to
decompositions (25).

Both proofs of the classification of curves (23) having a factor of genus 0 with at most two
points at infinity split into two parts: the first one is the analysis of the condition that, under
the assumption that (23) is irreducible, the genus of (23) is zero, and the second one is the
reduction of the general case to the case when (23) is irreducible. The first part essentially
consists of a straightforward although highly laborious analysis of the formula which calculates
the genus of (23) via the branching data of A and B, while the second part requires some more
sophisticated considerations.

Denote by G the monodromy group of L, and let GA and GB be subgroups of L(Gω, G)
corresponding to decompositions (25). Then the condition that (23) is reducible is equivalent
to the condition that GAGB �= G. Therefore, Theorem 3.8 can be viewed as an algebraic
counterpart of the portion of the discussed classification related to the reducible case, and
implies easily the corresponding result (cf. [4, Theorem 9.3; 26, Theorem 7.3]).

Proposition 3.9. Suppose that curve (23) is reducible and has a factor of genus 0 with at
most two points at infinity. Then there exist the polynomials R, Ã, B̃, and μ, where deg μ = 1,
such that

A = R ◦ Ã, B = R ◦ B̃ (26)

and either the curve Ã(x) − B̃(y) = 0 is irreducible, or

Ã = −Tlr ◦ μ, B̃ = Tls ◦ μ, (27)

where Tlr and Tls are the corresponding Chebyshev polynomials with r, s � 1, l > 2, and
gcd(r, s) = 1.

Proof. Without loss of generality we may assume that there exists no polynomial R, with
deg R > 1, such that (26) holds for some polynomials Ã and B̃, or equivalently that 〈GA, GB〉 =
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G. If curve (23) is irreducible, then there is nothing to prove and so assume that (23) is
reducible. In this case L1 and L2 are not polynomials since otherwise Corollary 2.4 and the
assumption about solutions of (26) imply the equality gcd(deg A,deg B) = 1 which in its turn
implies easily the irreducibility of curve (23). Therefore, the cyclic subgroup H of G generated
by the permutation corresponding to a loop around infinity has two orbits.

It follows now from Theorem 3.8 that there exists N � G such that N ∈ L(Gω, G) and
G/N ∼= D2m for some m � 1. Furthermore, since N � G the action of G on the cosets of N is
regular. Therefore,

G//N ∼=p (G/N)r
∼=p (D2m)r

where Xr denote the right regular permutation representation of X.
Hence there exists a decomposition L = U ◦ V of L such that the monodromy group of U

is a regular covering of the sphere with the dihedral monodromy group. By the well-known
classification of regular coverings of the sphere, which goes back to Klein (see [14] and the
appendix), this implies that

U = μ1 ◦ 1
2

(
zm +

1
zm

)
◦ μ2,

where μ1 and μ2 are automorphisms of the sphere.
Clearly, without loss of generality we may assume that μ1 = z. Furthermore, since L has

poles only at the points 0 and ∞, it follows from L = U ◦ V that μ2 ◦ V = z±n ◦ (cz) for some
n � 1 and c ∈ C. Therefore,

L =
1
2

(
zmn +

1
zmn

)
◦ (cz) (28)

and G = D2mn. Now the proposition follows easily from the description of possible double
decompositions of function (28) (see Appendix below).

Appendix

In this appendix we describe the structure of maximal decompositions of rational functions
which are regular coverings of the sphere that is of the functions for which Gω = e. These
functions, appearing in a variety of different contexts from differential equations to Galois
theory, were first described by Klein [14]. For such a function f its monodromy group G is
isomorphic to its automorphism group and therefore is isomorphic to a finite subgroup of
Aut CP

1. Any such subgroup is isomorphic to one of the groups: Cn, D2n, A4, S4, and A5 and
the corresponding function f is defined by its group up to a composition μ1 ◦ f ◦ μ2, where μ1,
μ2 ∈ Aut CP

1.
The Klein functions provide the simplest examples of rational functions for which the first

Ritt theorem fails to be true. Indeed, if f is a Klein function, then its maximal decompositions
correspond to the maximal chains of subgroups of its monodromy group G. Therefore, in order
to find counterexamples to the first Ritt theorem, it is enough to find non-r-equivalent maximal
chains of subgroups of G. For the groups Cn and Dn such chains do not exist while for the
groups A4, S4, and A5 they do. For example, it is easy to see that

e < C2 < V4 < A4, e < C3 < A4, (A.1)

where C2 or C3 is a cyclic group of order 2 or 3, respectively, and V4 is the Klein four-group,
are the maximal chains of different length in A4 and therefore for the corresponding Klein
function the first Ritt theorem fails to be true. The fact that the first Ritt theorem is not true
for arbitrary rational functions was already observed by Ritt in [28]. Although Ritt did not
give any indications about the nature of such examples (see the discussion in [2, 10, 11]), the
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fact that the Klein functions corresponding to A4, S4, and A5 were mentioned by him in [29]
suggests that he meant exactly these functions.

Below we give a detailed analysis of the decompositions of the Klein functions. We show
that, for a function f corresponding to A4 or S4, the number of weak equivalence classes of its
maximal decompositions equals two and that two non-equivalent maximal decompositions of f
are weakly equivalent if and only if they have the same length. On the other hand we show that
the function corresponding to A5 has six weak equivalence classes of maximal decompositions,
five of which have the same length. Besides, we give several related explicit examples of non-
weakly equivalent maximal decompositions. In particular, we give an example of a rational
function with three poles for which the first Ritt theorem fails to be true.

A.1. Decompositions of fCn
and fD2n

For the cyclic and dihedral groups the representatives of the corresponding classes of Klein
functions are

fCn
= zn, fD2n

=
1
2

(
zn +

1
zn

)

and by Corollary 3.6 all maximal decompositions of these functions are weakly equivalent.
Observe that any decomposition of fCn

into a composition of two functions is equivalent to
the decomposition

zn/d ◦ zd,

where d | n, while any decomposition of fD2n
is equivalent either to the decomposition

1
2

(
zn +

1
zn

)
=

1
2

(
zn/d +

1
zn/d

)
◦ zd,

where d | n, or to the decomposition

1
2

(
zn +

1
zn

)
= μn/dTn/d ◦ 1

2

(
μzd +

1
μzd

)
,

where d|n and μ2n/d = 1.

A.2. Decompositions of fA4

The subgroup lattice of the group A4 can be described as follows. The group A4 has three
pairwise conjugate subgroups C1

2 , C2
2 , and C3

2 of order 2 which are contained in a unique
subgroup of order 4 which is the Klein four-group V4 = {e, (12)(34), (13)(24), (14)(23)}. In
addition, A4 has four conjugated subgroups C1

3 , C2
3 , C3

3 , and C4
3 of order 3 which are maximal

in A4. This implies that fA4 has seven non-equivalent decompositions corresponding to the
chains

e < C1
2 < V4 < A4, e < C2

2 < V4 < A4, e < C3
2 < V4 < A4, (A.2)

and

e < C1
3 < A4, e < C2

3 < A4, e < C3
3 < A4, e < C4

3 < A4. (A.3)

Clearly, all decompositions from the first group are r-equivalent. The same is true for
decompositions from the second group. On the other hand, compositions from the first and the
second groups obviously are non-equivalent since they have different lengths.
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A.3. Decompositions of fS4

Similarly to the case of the group A4, two maximal chains in S4 are r-equivalent if and only
if they have the same length. However, since S4 has already 28 proper subgroups, in order to
prove this statement, we use an argument distinct from the examination of all maximal chains.

First of all, notice that any maximal subgroup of S4 distinct from A4 is conjugate either to

D8 = {e, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1432)},
or to S3. Besides, it is easy to see that any maximal chain of subgroups of A4 has length 3 or
4. We show now that any two maximal chains

F : 1 < F1 < F2 < S4 and E : 1 < E1 < E2 < S4

of length 3 are r-equivalent. If E2 = F2, then the statement is clear and so we may assume that
E2 �= F2. This implies in particular that E2 ∩ F2 is a proper subgroup of the groups E2 and F2.
Observe that E2 ∩ F2 is non-trivial, since otherwise we would have |S4| � |E2||F2| � 36 > |S4|.
In order to prove that the chains F and E are r-equivalent, it is enough to show that the chains

F̃ : 1 < F2 ∩ E2 < F2 < S4 and Ẽ : 1 < F2 ∩ E2 < E2 < S4

are maximal since then

F ∼ F̃ ∼ Ẽ ∼ E.

First, note that E2, F2 �∼= D8, since maximal chains in D8 have length 3. Therefore, at least one
of the groups E2 and F2, say F2, is isomorphic to S3 and hence the chain F̃ is maximal since
|S3| = 6. If E2

∼= S3, then the chain Ẽ is maximal as well. On the other hand, if E2 = A4, then
|F2 ∩ E2| = |S3 ∩ A4| = 3 implying that the chain 1 < F2 ∩ E2 < E2 is one of the chains (A.3)
and, therefore, is maximal.

Similarly, any two chains

F : 1 < F1 < F2 < F3 < S4 and E : 1 < E1 < E2 < E3 < S4

of length 4 are r-equivalent. Indeed, if E3 = F3, then either E3 = F3
∼= D8 or E3 = F3 = A4

and the statement is true since maximal chains of equal length in the groups D8 and A4 are
r-equivalent. Therefore, we may assume that F3 = A4 and E3 = D8. Now setting

V4 = {e, (12)(34), (13)(24), (14)(23)}, C2 = {e, (12)(34)}
and observing that E3 ∩ F3 = V4, we see that the chains

F̃ : 1 < C2 < V4 < A4 < S4 and Ẽ : 1 < C2 < V4 < D8 < S4

are maximal. Since any two chains of equal length inside D8 and A4 are equivalent, this implies
that

F ∼ F̃ ∼ Ẽ ∼ E.

A.4. Decompositions of fA5

It is easy to see that any maximal subgroup of A5 is conjugated to A4 or to D10, or to S3

and that any maximal chain of subgroups in fA5 has length 3 or 4. In contrast to the groups
A4 and S4, in the group A5 we face a new phenomenon: although any two maximal chains of
length 3 in A5 are r-equivalent, there exist non-r-equivalent decompositions of length 4.

First prove that any two maximal chains

F : 1 < F1 < F2 < A5 and E : 1 < E1 < E2 < A5
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of length 3 in A5 are r-equivalent. If E2 = F2, then the statement is clear and so we may
suppose that E2 �= F2.

Assume first that E2
∼= D10 and F2

∼= S3. Since A5 is not a product of D10 and S3, the
intersection E2 ∩ F2 is non-trivial. Therefore the chains

F̃ : 1 < F2 ∩ E2 < F2 < A5 and Ẽ : 1 < F2 ∩ E2 < E2 < A5

are maximal, implying that

F ∼ F̃ ∼ Ẽ ∼ E.

By transitivity of ∼ this yields that any two maximal chains of length 3 such that E2
∼= S3,

F2
∼= S3 or E2

∼= D10, F2
∼= D10 also are r-equivalent.

Now let

B : 1 < B1 < B2 < A5

be a maximal chain such that B2
∼= A4. Then (A.3) implies that |B1| = 3. One can check that

the normalizer C of any group of order 3 in A5 is isomorphic to S3. Therefore, B is equivalent
to a maximal chain

1 < B1 < C < A5

with C ∼= S3. It follows now from the transitivity of ∼ that all the chains of length 3 are
r-equivalent.

Let us show now that two maximal chains of length 4

B := 1 < B1 < B2 < B3 < A5 and C := 1 < C1 < C2 < C3 < A5

in A5 are equivalent if and only if their maximal subgroups coincide. Clearly, we have B3
∼=

C3
∼= A4. If B3 = C3, then B ∼ C since any two chains of length 4 in A4 are r-equivalent.

Assume now that B3 �= C3. If the chains B and C are equivalent, then in the sequence of
maximal chains which connects them there should be two chains of the form

1 < P1 < P2 < P3 < A5, 1 < P1 < P2 < Q3 < A5,

where P3 �= Q3. The maximality condition implies that P3 ∩ Q3 = P2. Furthermore, P2
∼= V4

by (A.2). On the other hand, A4 contains a unique Sylow 2-subgroup of order 4 which is normal
in A4. Therefore, P2 � P3 and P2 � Q3, and hence P2 � 〈P3, Q3〉 = A5. Since this contradicts
the simplicity of A5, we conclude that B and C are not r-equivalent.

A.5. Explicit formulas

Although all the information about maximal decompositions of Klein functions can be obtained
from the analysis given above, the actual finding of the corresponding decompositions requires
some non-trivial calculations. In particular, the corresponding maximal decompositions which
do not satisfy the first Ritt theorem were found explicitly only for the simplest chains (A.1) (see
[3, 12]). It turns out that a convenient tool for such calculations is the Grothendieck theory
of ‘Dessins d’enfants’, which provides an identification of fA4 , fS4 , and fA5 with the Belyi
functions of the tetrahedron, cube, and octahedron, respectively. Below we give several explicit
examples of non-equivalent maximal decompositions obtained by this method, referring the
reader interested in the details of calculations to the forthcoming paper ‘Dessins d’enfants and
functional equations’ by the second author and Zvonkin.
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First, a calculation shows that the Belyi functions for the tetrahedron can be written in the
form

fA4 = − 1
64

z3(z3 − 8)3

(z3 + 1)3
(A.4)

and any maximal decomposition of fA4 is weakly equivalent either to

fA4 = − 1
64

z(z − 8)3

(z + 1)3
◦ z3

or to the decomposition

fA4 = − 1
64

z3 ◦ z2 − 4
z − 1

◦ z2 + 2
z + 1

. (A.5)

Furthermore, one can show that the inclusion A4 ⊂ S4 implies that

fS4 = − 4x

x2 + 1 − 2x
◦ fA4 =

256z3
(
z6 − 7z3 − 8

)3

(z6 + 20z3 − 8)4
(A.6)

and therefore the decompositions of fS4 corresponding to the chains

1 < C3 < A4 < S4, 1 < C2 < V4 < A4 < S4

are, respectively,

fS4 =
(
− 4x

x2 + 1 − 2x

)
◦

(
− 1

64
z(z − 8)3

(z + 1)3

)
◦ z3,

and

fS4 =
(
− 4x

x2 + 1 − 2x

)
◦

(
− 1

64
z3

)
◦

(
z2 − 4
z − 1

)
◦

(
z2 + 2
z + 1

)
.

On the other hand, one can show that, for example, the maximal decompositions of fS4

(written in a slightly different normalization) corresponding to the chains

1 < C2 < C4 < D8 < S4, 1 < C2 < S3 < S4 (A.7)

are, respectively,

− 1
432

(16x8 − 56x4 + 1)3

x4(4x4 + 1)4
=

(
1
54

(z + 7)3

(z − 1)2

)
◦

(
1
2

(
z +

1
z

))
◦ (−z2) ◦ 2z2

and

− 1
432

(16x8 − 56x4 + 1)3

x4(4x4 + 1)4
=

(
−256

27
z3(z − 1)

)
◦

(
1
4

(z − 1)3

z2 + 1
+ 1

)
◦

(
z − 1

2z

)
.

Finally, identifying the chains of subgroups

C2 < S3 < S4, C2 < V4 < D8 < S4 (A.8)

with maximal decompositions of the function

− 1
27

(z4 + 2z2 − 3)3

(z2 + 1)4
, (A.9)

which is a left compositional factor of fS4 , one can show that the maximal decompositions
corresponding to A.8 are:

− 1
27

(z4 + 2z2 − 3)3

(z2 + 1)4
=

(
1
54

(7 − z)3

(z + 1)2

)
◦ (

2z2 + 4z + 1
) ◦ z2
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and

− 1
27

(z4 + 2z2 − 3)3

(z2 + 1)4
=

(
−256

27
z3(z − 1)

)
◦

(
1
4

(z − 1)3

z2 + 1
+ 1

)
.

Note that since function (A.9) has three poles, this example shows that with no additional
assumptions the first Ritt theorem cannot be extended to rational functions, the monodromy
of which contains a cyclic subgroup with more than two orbits.
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