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Abstract
In this paper we describe solutions of the equation: F'(A(z)) = G(B(z)), where A, B are
polynomials and F, G are continuous functions on the Riemann sphere.

—————————

1. Introduction

In this paper we describe solutions of the equation
F(A(2)) = G(B(2)), -1

where A, B are polynomials and F, G: CP! — CP' are non-constant continuous functions
on the Riemann sphere. Our main result is the following theorem.

THEOREM. Let A, B be complex polynomials and F, G: CP' — CP' be non-constant
continuous functions such that equality (1-1) holds for any z € CP'. Then there exist poly-
nomials C, D such

C(A(z)) = D(B(2)). (1-2)
Furthermore, there exists a continuous function H: CP' — CP' such that
F(z) = H(C(2)), G(2) = H(D(2)). (1-3)

Note that since all polynomial solutions of equation (1-2) are described by Ritt’s theory of
factorisation of polynomials (see [4, 5]) the theorem above provides an essentially complete
solution of the problem. Note also that if the functions F, G are rational then the function
H is also rational (see Remark below).

The idea behind our approach is to use a recent result of [3] which describes the collec-
tions A, B, K, K, where A, B polynomials and K, K, are infinite compact subsets of C
such that the condition

ATYK} = BT{K,)} (1-4)

holds. It was shown in [3] that (1-4) implies that there exist polynomials C, D and a compact
set K C C such that (1-2) holds and

K,=C YK}, K,=D 'K}

1 Supported by ISF, grant no 979/05.
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The connection of (1-4) and (1-1) is clear: if equality (1-1) holds then for any set K C CP!
equality (1-4) holds with

K, =F YK}, K,=G '{K}. (1-5)

Therefore, if F, G are any functions CP! — CP! or C — CP' such that there exists a set
K C CP! for which F~'{K} and G~'{K} are infinite compact subsets of C then, the result
of [3] permits us to conclude that equality (1-1) for some polynomials A, B implies that
there exist polynomials C, D such that equality (1-2) holds.

Note however that the condition above does not hold for all interesting classes of func-
tions. For instance, for any meromorphic transcendental function on C the preimage of any
non-exceptional value is infinite, and therefore unbounded, and equation (1-1), where F, G
are function meromorphic on C, in general does not imply that (1-2) holds (see [2]).

2. Proof of the theorem

First of all observe that, since F, G are continuous and CP' is a connected compact set,
the set R = F(CP') = G(CP") is a connected compact set. Let now ¢ be any point of R
distinct from s = F(00) = G(o0) and C be a disk with center at ¢ which does not contain
s.Set K = RNC.

Since R is connected and contains more than one point the set K is infinite. Besides, in
view of compactness of R the set K is closed. Finally, any of sets K|, = F~'{K}, K, =
G~'{K} is bounded. Indeed, if say a sequence x, € K; converges to the infinity then, since
K is closed, the continuity of F implies that F(co) € K in contradiction with the initial
assumption.

It follows that K, K, are infinite compact subsets of C for which equality (1-4) holds.
Set a = deg A(z), b = deg B(z) and suppose without loss of generality that a < b. By [3,
theorem 1] equality (1-4) implies that if a divides b then there exists a polynomial C(z) such
that B(z) = C(A(z)), while if a does not divide b then there exist polynomials C, D such
that equality (1-2) holds. Furthermore, in the last case there exist polynomial W, deg W =
w = GCD(a, b) and a linear function o such that

A() =AW (@), B =BW(@),
where either
C@)=zR""(2)o0™", A(x)=0o02z"", @21
D) =z7z""00"", B(z) =0 0z°R(z"")
for some polynomial R(z) and ¢ > 0, or

C@ =Ty oo™, AR) =0 0T 2:2)
D(z) = Tyw(z) 00", B(z) =0 0 Tp(2)

for the Chebyshev polynomials 7, (z), Tp(2).
If a divides b then we have:

FoA=GoB=GoCoA.

Therefore, F(z) = G(C(z)) and equalities (1-2), (1-3) hold with D(z) = z. So, in the
following we will assume that a does not divide b.
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Set U = F oo, V = G o 0. Then either equality

Uozh =V oz°R(zM) 2-3)

or equality
UoTy(z) =V oTy(z) 2-4)

holds with d; = a/w, d, = deg z°R(z") = b/w.
Since d;, d, are coprime the theorem follows now from the following lemma.

LEMMA. Let U, V:CP! — CP! be functions such that equality (2-3) (resp. (2-4)) holds
with d, and d, coprime. Then there exists a function H: CP' — CP' such that the equalities

U(z)=HozR"(z), V()=Hoz" (2-5)

(resp.
U@@) =HoTy(z), V(2)=HoTy() (2-6)

hold. Furthermore, if the functions U, V are continuous then the function H is also continu-
ous.

Proof of the Lemma. We use the following observation (cf. [1]). Let X be an arbitrary set and
f> g: X — X be two functions. Then f = h(g) for some function ~: X — X if and only if
for any two points x, y € X such that g(x) = g(y) the equality f(x) = f(y) holds. Indeed,
in this case we can define & by the formula h(z) = f(g~'(z)). Furthermore, if X = CP'
and f, g are continuous then it is clear that & is also continuous. Note also that if f, g are
rational functions on CP' then the function H (z) is also rational.

Consider first the case when equality (2-3) holds. Suppose that for some z;, z, € C we
have:

=z

and let # € C be a point such that 8¢ R(6%) = z, Since d; and d, are coprime, the numbers e
and d, also coprime. Therefore, there exists a d,-root of unity & such that (¢6)°R((¢6)%) =
22.

Hence,

V(z1) = V(°ROM) = UOM) = U((¢0)") = V((€0)°R((¢6)™)) = V(22)
and therefore V = H (z%') for some continuous function H. Furthermore, we have:
Uoz" =Voz'R(E") = Hoz" 0z°R(z") = H 0 2R" (z) 0 2.
Therefore, U = H o z°R% (7).
Consider now the case when equality (2-4) holds. Let z;, zo € C be points such that
Ty (z1) = T4 (22) 27

and let ¢ € C be a point such that cos ¢ = z;. Set t; = cos (¢/d,). Then, since T, (cos z) =
cos nz, the equality 7, (#;) = z; holds.

It follows from (2-7) that z, has the form z, = cos (¢p+2nk/d,) forsome k =1, ..., d, —1.
Furthermore, since d, and d, are coprime, there exists a number / such that d,! = k mod d,.
Therefore, for t, = cos (¢p/d, + 2ml/d;) the equality T,,(f,) = z» holds. Besides, clearly
Ty () = Ty, (11).
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Now we have:
V(z1) = V(Tu (1) = U(Ty (1) = U(Ty (1) = V(T (2) = V(22)
and therefore V = H (T},,) for some continuous function H. Furthermore, we have:
UoT; =VoT,=HoTy; 0T, =HoT,;oTy,.
Therefore, U = H o Ty,.

Remark. As was remarked in the proof of the Lemma if functions F, G in (1-1) are ra-
tional then the function H is also rational and it is clear that an appropriate modification of
the theorem holds for any functions F, G: CP! — CP! or C — CP! such that there exists
aset K C CP! for which F~'{K} and G~'{K} are infinite compact subsets of C.

Note however that if ', G are rational then the theorem can be established much easier
(see also [2, theorem 2], for more general approach to equation (1-1) with rational F, G).
Indeed, if F = F,/F,, where polynomials Fi, F, have no common roots then polynomials
F1(A), F,(A) also have no common roots. Similarly, if G = G;/G,, where polynomials
G, G, have no common roots then polynomials G;(B), G,(B) have no common roots.
Therefore, if equality (1-1) holds then there exists ¢ € C such that equality (1-2) holds
with C(z) = Fi(z) and D(z) = ¢G;(z). Furthermore, it follows from the Ritt theorem
([4, 5]) that if C, D are polynomials of minimal degrees satisfying (1-2) then deg C = b/w,
deg D = a/w. This implies that

C(A(2)) NC(B(2)) = C(R(2)),
where
R(z) = C(A(z)) = D(B(2)).
Now the Liiroth theorem implies easily that equalities (1-3) hold.
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