# On the functional equation $F(A(z))=G(B(z))$, where $A, B$ are polynomials and $F, G$ are continuous functions 

By F. PAKOVICH $\dagger$<br>Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel.

(Received 20 August 2006; revised 9 November 2006)

## Abstract

In this paper we describe solutions of the equation: $F(A(z))=G(B(z))$, where $A, B$ are polynomials and $F, G$ are continuous functions on the Riemann sphere.

## 1. Introduction

In this paper we describe solutions of the equation

$$
F(A(z))=G(B(z)),
$$

where $A, B$ are polynomials and $F, G: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ are non-constant continuous functions on the Riemann sphere. Our main result is the following theorem.

THEOREM. Let $A, B$ be complex polynomials and $F, G: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ be non-constant continuous functions such that equality $(1 \cdot 1)$ holds for any $z \in \mathbb{C P}^{1}$. Then there exist polynomials $C, D$ such

$$
C(A(z))=D(B(z))
$$

Furthermore, there exists a continuous function $H: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ such that

$$
F(z)=H(C(z)), \quad G(z)=H(D(z))
$$

Note that since all polynomial solutions of equation (1-2) are described by Ritt's theory of factorisation of polynomials (see $[\mathbf{4}, \mathbf{5}]$ ) the theorem above provides an essentially complete solution of the problem. Note also that if the functions $F, G$ are rational then the function $H$ is also rational (see Remark below).

The idea behind our approach is to use a recent result of [3] which describes the collections $A, B, K_{1}, K_{2}$, where $A, B$ polynomials and $K_{1}, K_{2}$ are infinite compact subsets of $\mathbb{C}$ such that the condition

$$
\begin{equation*}
A^{-1}\left\{K_{1}\right\}=B^{-1}\left\{K_{2}\right\} \tag{1.4}
\end{equation*}
$$

holds. It was shown in [3] that (1.4) implies that there exist polynomials $C, D$ and a compact set $K \subset \mathbb{C}$ such that (1.2) holds and

$$
K_{1}=C^{-1}\{K\}, \quad K_{2}=D^{-1}\{K\} .
$$

The connection of ( $1 \cdot 4$ ) and ( $1 \cdot 1$ ) is clear: if equality ( $1 \cdot 1$ ) holds then for any set $K \subset \mathbb{C P}^{1}$ equality (1.4) holds with

$$
\begin{equation*}
K_{1}=F^{-1}\{K\}, \quad K_{2}=G^{-1}\{K\} . \tag{1.5}
\end{equation*}
$$

Therefore, if $F, G$ are any functions $\mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ or $\mathbb{C} \rightarrow \mathbb{C P}^{1}$ such that there exists a set $K \subset \mathbb{C P}^{1}$ for which $F^{-1}\{K\}$ and $G^{-1}\{K\}$ are infinite compact subsets of $\mathbb{C}$ then, the result of [3] permits us to conclude that equality (1.1) for some polynomials $A, B$ implies that there exist polynomials $C, D$ such that equality ( $1 \cdot 2$ ) holds.

Note however that the condition above does not hold for all interesting classes of functions. For instance, for any meromorphic transcendental function on $\mathbb{C}$ the preimage of any non-exceptional value is infinite, and therefore unbounded, and equation (1-1), where $F, G$ are function meromorphic on $\mathbb{C}$, in general does not imply that (1.2) holds (see [2]).

## 2. Proof of the theorem

First of all observe that, since $F, G$ are continuous and $\mathbb{C P}^{1}$ is a connected compact set, the set $R=F\left(\mathbb{C P}^{1}\right)=G\left(\mathbb{C P}^{1}\right)$ is a connected compact set. Let now $t$ be any point of $R$ distinct from $s=F(\infty)=G(\infty)$ and $C$ be a disk with center at $t$ which does not contain $s$. Set $K=R \cap C$.

Since $R$ is connected and contains more than one point the set $K$ is infinite. Besides, in view of compactness of $R$ the set $K$ is closed. Finally, any of sets $K_{1}=F^{-1}\{K\}, K_{2}=$ $G^{-1}\{K\}$ is bounded. Indeed, if say a sequence $x_{n} \in K_{1}$ converges to the infinity then, since $K$ is closed, the continuity of $F$ implies that $F(\infty) \in K$ in contradiction with the initial assumption.

It follows that $K_{1}, K_{2}$ are infinite compact subsets of $\mathbb{C}$ for which equality (1.4) holds. Set $a=\operatorname{deg} A(z), b=\operatorname{deg} B(z)$ and suppose without loss of generality that $a \leqslant b$. By [3, theorem 1] equality (1.4) implies that if $a$ divides $b$ then there exists a polynomial $C(z)$ such that $B(z)=C(A(z))$, while if $a$ does not divide $b$ then there exist polynomials $C, D$ such that equality (1-2) holds. Furthermore, in the last case there exist polynomial $W, \operatorname{deg} W=$ $w=\operatorname{GCD}(a, b)$ and a linear function $\sigma$ such that

$$
A(z)=\tilde{A}(W(z)), \quad B(z)=\tilde{B}(W(z)),
$$

where either

$$
\begin{align*}
& C(z)=z^{c} R^{a / w}(z) \circ \sigma^{-1}, \quad \tilde{A}(z)=\sigma \circ z^{a / w}, \\
& D(z)=z^{a / w} \circ \sigma^{-1}, \quad \tilde{B}(z)=\sigma \circ z^{c} R\left(z^{a / w}\right)
\end{align*}
$$

for some polynomial $R(z)$ and $c \geqslant 0$, or

$$
\begin{array}{ll}
C(z)=T_{b / w}(z) \circ \sigma^{-1}, & \tilde{A}(z)=\sigma \circ T_{a / w}(z) \\
D(z)=T_{a / w}(z) \circ \sigma^{-1}, & \tilde{B}(z)=\sigma \circ T_{b / w}(z)
\end{array}
$$

for the Chebyshev polynomials $T_{a / w}(z), T_{b / w}(z)$.
If $a$ divides $b$ then we have:

$$
F \circ A=G \circ B=G \circ C \circ A .
$$

Therefore, $F(z)=G(C(z))$ and equalities (1.2), (1.3) hold with $D(z)=z$. So, in the following we will assume that $a$ does not divide $b$.

Set $U=F \circ \sigma, V=G \circ \sigma$. Then either equality

$$
U \circ z^{d_{1}}=V \circ z^{e} R\left(z^{d_{1}}\right)
$$

or equality

$$
\begin{equation*}
U \circ T_{d_{1}}(z)=V \circ T_{d_{2}}(z) \tag{2.4}
\end{equation*}
$$

holds with $d_{1}=a / w, d_{2}=\operatorname{deg} z^{e} R\left(z^{d_{1}}\right)=b / w$.
Since $d_{1}, d_{2}$ are coprime the theorem follows now from the following lemma.
LEMMA. Let $U, V: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ be functions such that equality (2•3) (resp. (2•4)) holds with $d_{1}$ and $d_{2}$ coprime. Then there exists a function $H: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ such that the equalities

$$
\begin{equation*}
U(z)=H \circ z^{e} R^{d_{1}}(z), \quad V(z)=H \circ z^{d_{1}} \tag{2.5}
\end{equation*}
$$

(resp.

$$
\begin{equation*}
\left.U(z)=H \circ T_{d_{2}}(z), \quad V(z)=H \circ T_{d_{1}}(z)\right) \tag{2.6}
\end{equation*}
$$

hold. Furthermore, if the functions $U, V$ are continuous then the function $H$ is also continuous.

Proof of the Lemma. We use the following observation (cf. [1]). Let $X$ be an arbitrary set and $f, g: X \rightarrow X$ be two functions. Then $f=h(g)$ for some function $h: X \rightarrow X$ if and only if for any two points $x, y \in X$ such that $g(x)=g(y)$ the equality $f(x)=f(y)$ holds. Indeed, in this case we can define $h$ by the formula $h(z)=f\left(g^{-1}(z)\right)$. Furthermore, if $X=\mathbb{C P}^{1}$ and $f, g$ are continuous then it is clear that $h$ is also continuous. Note also that if $f, g$ are rational functions on $\mathbb{C P}^{1}$ then the function $H(z)$ is also rational.

Consider first the case when equality (2•3) holds. Suppose that for some $z_{1}, z_{2} \in \mathbb{C}$ we have:

$$
z_{1}^{d_{1}}=z_{2}^{d_{1}}
$$

and let $\theta \in \mathbb{C}$ be a point such that $\theta^{e} R\left(\theta^{d_{1}}\right)=z_{1}$ Since $d_{1}$ and $d_{2}$ are coprime, the numbers $e$ and $d_{1}$ also coprime. Therefore, there exists a $d_{1}$-root of unity $\varepsilon$ such that $(\varepsilon \theta)^{e} R\left((\varepsilon \theta)^{d_{1}}\right)=$ $z_{2}$.

Hence,

$$
V\left(z_{1}\right)=V\left(\theta^{e} R\left(\theta^{d_{1}}\right)\right)=U\left(\theta^{d_{1}}\right)=U\left((\varepsilon \theta)^{d_{1}}\right)=V\left((\varepsilon \theta)^{e} R\left((\varepsilon \theta)^{d_{1}}\right)\right)=V\left(z_{2}\right)
$$

and therefore $V=H\left(z^{d_{1}}\right)$ for some continuous function $H$. Furthermore, we have:

$$
U \circ z^{d_{1}}=V \circ z^{e} R\left(z^{d_{1}}\right)=H \circ z^{d_{1}} \circ z^{e} R\left(z^{d_{1}}\right)=H \circ z^{e} R^{d_{1}}(z) \circ z^{d_{1}} .
$$

Therefore, $U=H \circ z^{e} R^{d_{1}}(z)$.
Consider now the case when equality (2-4) holds. Let $z_{1}, z_{2} \in \mathbb{C}$ be points such that

$$
T_{d_{1}}\left(z_{1}\right)=T_{d_{1}}\left(z_{2}\right)
$$

and let $\varphi \in \mathbb{C}$ be a point such that $\cos \varphi=z_{1}$. Set $t_{1}=\cos \left(\varphi / d_{2}\right)$. Then, since $T_{n}(\cos z)=$ $\cos n z$, the equality $T_{d_{2}}\left(t_{1}\right)=z_{1}$ holds.

It follows from (2.7) that $z_{2}$ has the form $z_{2}=\cos \left(\varphi+2 \pi k / d_{1}\right)$ for some $k=1, \ldots, d_{1}-1$. Furthermore, since $d_{1}$ and $d_{2}$ are coprime, there exists a number $l$ such that $d_{2} l \equiv k \bmod d_{1}$. Therefore, for $t_{2}=\cos \left(\varphi / d_{2}+2 \pi l / d_{1}\right)$ the equality $T_{d_{2}}\left(t_{2}\right)=z_{2}$ holds. Besides, clearly $T_{d_{1}}\left(t_{2}\right)=T_{d_{1}}\left(t_{1}\right)$.

Now we have:

$$
V\left(z_{1}\right)=V\left(T_{d_{2}}\left(t_{1}\right)\right)=U\left(T_{d_{1}}\left(t_{1}\right)\right)=U\left(T_{d_{1}}\left(t_{2}\right)\right)=V\left(T_{d_{2}}\left(t_{2}\right)\right)=V\left(z_{2}\right)
$$

and therefore $V=H\left(T_{d_{1}}\right)$ for some continuous function $H$. Furthermore, we have:

$$
U \circ T_{d_{1}}=V \circ T_{d_{2}}=H \circ T_{d_{1}} \circ T_{d_{2}}=H \circ T_{d_{2}} \circ T_{d_{1}} .
$$

Therefore, $U=H \circ T_{d_{2}}$.
Remark. As was remarked in the proof of the Lemma if functions $F, G$ in (1-1) are rational then the function $H$ is also rational and it is clear that an appropriate modification of the theorem holds for any functions $F, G: \mathbb{C P}^{1} \rightarrow \mathbb{C P}^{1}$ or $\mathbb{C} \rightarrow \mathbb{C P}^{1}$ such that there exists a set $K \subset \mathbb{C P}^{1}$ for which $F^{-1}\{K\}$ and $G^{-1}\{K\}$ are infinite compact subsets of $\mathbb{C}$.

Note however that if $F, G$ are rational then the theorem can be established much easier (see also [2, theorem 2], for more general approach to equation (1-1) with rational $F, G$ ). Indeed, if $F=F_{1} / F_{2}$, where polynomials $F_{1}, F_{2}$ have no common roots then polynomials $F_{1}(A), F_{2}(A)$ also have no common roots. Similarly, if $G=G_{1} / G_{2}$, where polynomials $G_{1}, G_{2}$ have no common roots then polynomials $G_{1}(B), G_{2}(B)$ have no common roots. Therefore, if equality ( $1 \cdot 1$ ) holds then there exists $c \in \mathbb{C}$ such that equality ( $1 \cdot 2$ ) holds with $C(z)=F_{1}(z)$ and $D(z)=c G_{1}(z)$. Furthermore, it follows from the Ritt theorem $([4,5])$ that if $C, D$ are polynomials of minimal degrees satisfying (1-2) then $\operatorname{deg} C=b / w$, $\operatorname{deg} D=a / w$. This implies that

$$
\mathbb{C}(A(z)) \cap \mathbb{C}(B(z))=\mathbb{C}(R(z)),
$$

where

$$
R(z)=C(A(z))=D(B(z)) .
$$

Now the Lüroth theorem implies easily that equalities (1-3) hold.
Acknowledgments. I am grateful to A. Eremenko for interesting discussions.

## REFERENCES

[1] A. Eremenko and L. Rubel. The arithmetic of entire functions under composition. Adv. Math. 124 no. 2 (1996), 334-354.
[2] S. LYSENKO. On the functional equation $f(p(z))=g(q(z))$, where $p$ and $q$ are "generalized" polynomials and $f$ and $g$ are meromorphic functions. Izv. Math. 60 no. 5 (1996), 963-984.
[3] F. PaKovich. On polynomials sharing preimages of compact sets, and related questions. preprint, math.DS/0603452. To appear in Geom. Funct. Anal.
[4] J. Ritt. Prime and composite polynomials. Trans. Amer. Math. Soc. 23 no. 1 (1922), 51-66.
[5] A. Schinzel. Polynomials with special regard to reducibility. Encyclopedia Math. Appl. 77 (Cambridge University Press, 2000).

