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On the functional equation F(A(z)) = G(B(z))F(A(z)) = G(B(z))F(A(z)) = G(B(z)), where A, BA, BA, B are
polynomials and F, GF, GF, G are continuous functions
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Abstract

In this paper we describe solutions of the equation: F(A(z)) = G(B(z)), where A, B are
polynomials and F, G are continuous functions on the Riemann sphere.

1. Introduction

In this paper we describe solutions of the equation

F(A(z)) = G(B(z)), (1·1)

where A, B are polynomials and F, G: CP
1 → CP

1 are non-constant continuous functions
on the Riemann sphere. Our main result is the following theorem.

THEOREM. Let A, B be complex polynomials and F, G: CP
1 → CP

1 be non-constant
continuous functions such that equality (1·1) holds for any z ∈ CP

1. Then there exist poly-
nomials C, D such

C(A(z)) = D(B(z)). (1·2)

Furthermore, there exists a continuous function H : CP
1 → CP

1 such that

F(z) = H(C(z)), G(z) = H(D(z)). (1·3)

Note that since all polynomial solutions of equation (1·2) are described by Ritt’s theory of
factorisation of polynomials (see [4, 5]) the theorem above provides an essentially complete
solution of the problem. Note also that if the functions F, G are rational then the function
H is also rational (see Remark below).

The idea behind our approach is to use a recent result of [3] which describes the collec-
tions A, B, K1, K2, where A, B polynomials and K1, K2 are infinite compact subsets of C

such that the condition

A−1{K1} = B−1{K2} (1·4)

holds. It was shown in [3] that (1·4) implies that there exist polynomials C, D and a compact
set K ⊂ C such that (1·2) holds and

K1 = C−1{K }, K2 = D−1{K }.
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The connection of (1·4) and (1·1) is clear: if equality (1·1) holds then for any set K ⊂ CP
1

equality (1·4) holds with

K1 = F−1{K }, K2 = G−1{K }. (1·5)

Therefore, if F, G are any functions CP
1 → CP

1 or C → CP
1 such that there exists a set

K ⊂ CP
1 for which F−1{K } and G−1{K } are infinite compact subsets of C then, the result

of [3] permits us to conclude that equality (1·1) for some polynomials A, B implies that
there exist polynomials C, D such that equality (1·2) holds.

Note however that the condition above does not hold for all interesting classes of func-
tions. For instance, for any meromorphic transcendental function on C the preimage of any
non-exceptional value is infinite, and therefore unbounded, and equation (1·1), where F, G
are function meromorphic on C, in general does not imply that (1·2) holds (see [2]).

2. Proof of the theorem

First of all observe that, since F, G are continuous and CP
1 is a connected compact set,

the set R = F(CP
1) = G(CP

1) is a connected compact set. Let now t be any point of R
distinct from s = F(∞) = G(∞) and C be a disk with center at t which does not contain
s. Set K = R � C.

Since R is connected and contains more than one point the set K is infinite. Besides, in
view of compactness of R the set K is closed. Finally, any of sets K1 = F−1{K }, K2 =
G−1{K } is bounded. Indeed, if say a sequence xn ∈ K1 converges to the infinity then, since
K is closed, the continuity of F implies that F(∞) ∈ K in contradiction with the initial
assumption.

It follows that K1, K2 are infinite compact subsets of C for which equality (1·4) holds.
Set a = deg A(z), b = deg B(z) and suppose without loss of generality that a � b. By [3,
theorem 1] equality (1·4) implies that if a divides b then there exists a polynomial C(z) such
that B(z) = C(A(z)), while if a does not divide b then there exist polynomials C, D such
that equality (1·2) holds. Furthermore, in the last case there exist polynomial W, deg W =
w = GCD(a, b) and a linear function σ such that

A(z) = Ã(W (z)), B(z) = B̃(W (z)),

where either

C(z) = zc Ra/w(z) ◦ σ−1, Ã(z) = σ ◦ za/w, (2·1)
D(z) = za/w ◦ σ−1, B̃(z) = σ ◦ zc R(za/w)

for some polynomial R(z) and c � 0, or

C(z) = Tb/w(z) ◦ σ−1, Ã(z) = σ ◦ Ta/w(z), (2·2)
D(z) = Ta/w(z) ◦ σ−1, B̃(z) = σ ◦ Tb/w(z)

for the Chebyshev polynomials Ta/w(z), Tb/w(z).
If a divides b then we have:

F ◦ A = G ◦ B = G ◦ C ◦ A.

Therefore, F(z) = G(C(z)) and equalities (1·2), (1·3) hold with D(z) = z. So, in the
following we will assume that a does not divide b.
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Set U = F ◦ σ, V = G ◦ σ. Then either equality

U ◦ zd1 = V ◦ ze R(zd1) (2·3)

or equality

U ◦ Td1(z) = V ◦ Td2(z) (2·4)

holds with d1 = a/w, d2 = deg ze R(zd1) = b/w.

Since d1, d2 are coprime the theorem follows now from the following lemma.

LEMMA. Let U, V : CP
1 → CP

1 be functions such that equality (2·3) (resp. (2·4)) holds
with d1 and d2 coprime. Then there exists a function H : CP

1 → CP
1 such that the equalities

U (z) = H ◦ ze Rd1(z), V (z) = H ◦ zd1 (2·5)

(resp.

U (z) = H ◦ Td2(z), V (z) = H ◦ Td1(z)) (2·6)

hold. Furthermore, if the functions U, V are continuous then the function H is also continu-
ous.

Proof of the Lemma. We use the following observation (cf. [1]). Let X be an arbitrary set and
f, g: X → X be two functions. Then f = h(g) for some function h: X → X if and only if
for any two points x, y ∈ X such that g(x) = g(y) the equality f (x) = f (y) holds. Indeed,
in this case we can define h by the formula h(z) = f (g−1(z)). Furthermore, if X = CP

1

and f, g are continuous then it is clear that h is also continuous. Note also that if f, g are
rational functions on CP

1 then the function H(z) is also rational.
Consider first the case when equality (2·3) holds. Suppose that for some z1, z2 ∈ C we

have:

zd1
1 = zd1

2

and let θ ∈ C be a point such that θ e R(θd1) = z1 Since d1 and d2 are coprime, the numbers e
and d1 also coprime. Therefore, there exists a d1-root of unity ε such that (εθ)e R((εθ)d1) =
z2.

Hence,

V (z1) = V (θ e R(θd1)) = U (θd1) = U ((εθ)d1) = V ((εθ)e R((εθ)d1)) = V (z2)

and therefore V = H(zd1) for some continuous function H. Furthermore, we have:

U ◦ zd1 = V ◦ ze R(zd1) = H ◦ zd1 ◦ ze R(zd1) = H ◦ ze Rd1(z) ◦ zd1 .

Therefore, U = H ◦ ze Rd1(z).
Consider now the case when equality (2·4) holds. Let z1, z2 ∈ C be points such that

Td1(z1) = Td1(z2) (2·7)

and let ϕ ∈ C be a point such that cos ϕ = z1. Set t1 = cos (ϕ/d2). Then, since Tn(cos z) =
cos nz, the equality Td2(t1) = z1 holds.

It follows from (2·7) that z2 has the form z2 = cos (ϕ+2πk/d1) for some k = 1, ..., d1−1.

Furthermore, since d1 and d2 are coprime, there exists a number l such that d2l ≡ k mod d1.

Therefore, for t2 = cos (ϕ/d2 + 2πl/d1) the equality Td2(t2) = z2 holds. Besides, clearly
Td1(t2) = Td1(t1).
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Now we have:

V (z1) = V
(
Td2(t1)

) = U
(
Td1(t1)

) = U
(
Td1(t2)

) = V
(
Td2(t2)

) = V (z2)

and therefore V = H(Td1) for some continuous function H. Furthermore, we have:

U ◦ Td1 = V ◦ Td2 = H ◦ Td1 ◦ Td2 = H ◦ Td2 ◦ Td1 .

Therefore, U = H ◦ Td2 .

Remark. As was remarked in the proof of the Lemma if functions F, G in (1·1) are ra-
tional then the function H is also rational and it is clear that an appropriate modification of
the theorem holds for any functions F, G: CP

1 → CP
1 or C → CP

1 such that there exists
a set K ⊂ CP

1 for which F−1{K } and G−1{K } are infinite compact subsets of C.

Note however that if F, G are rational then the theorem can be established much easier
(see also [2, theorem 2], for more general approach to equation (1·1) with rational F, G).
Indeed, if F = F1/F2, where polynomials F1, F2 have no common roots then polynomials
F1(A), F2(A) also have no common roots. Similarly, if G = G1/G2, where polynomials
G1, G2 have no common roots then polynomials G1(B), G2(B) have no common roots.
Therefore, if equality (1·1) holds then there exists c ∈ C such that equality (1·2) holds
with C(z) = F1(z) and D(z) = cG1(z). Furthermore, it follows from the Ritt theorem
([4, 5]) that if C, D are polynomials of minimal degrees satisfying (1·2) then deg C = b/w,

deg D = a/w. This implies that

C(A(z)) � C(B(z)) = C(R(z)),

where

R(z) = C(A(z)) = D(B(z)).

Now the Lüroth theorem implies easily that equalities (1·3) hold.
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