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Abstract

In this paper we investigate the following “polynomial moment problem”: for a given complex
polynomial P(z) and distinctz, b € C to describe polynomialg(z) orthogonal to all powers aP (z)
on [a, b]. We show that for giverP(z), ¢(z) the condition that(z) is orthogonal to all powers
of P(z) is equivalent to the condition that branches of the algebraic fungioR~1(z)), where
0(z) = [q(z) dz, satisfy a certain system of linear equations dfe©On this base we provide the
solution of the polynomial moment problem for wide classes of polynomials. In particular, we give
the complete solution for polynomials of degree less than 10.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In this paper we investigate the following “polynomial moment probleim’a complex
polynomial P (z) and distinct complex numbets b to describe polynomialg(z) such that

b

f Pi(z)q(z)dz =0 1)

a

E-mail addresspakovich@math.bgu.ac.il (F. Pakovich).

0007-4497/$ — see front mattér 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.bulsci.2005.06.001



750 F. Pakovich / Bull. Sci. math. 129 (2005) 749-774

for all integer non-negativeé. Despite its rather classical setting this problem attracted at-
tention only recently in the series of papers [1-8,22], where (1) arose in connection with
the center problem for the Abel differential equation with polynomial coefficients in the
complex domain. Posed initially as an intermediate step toward the center problem, the
polynomial moment problem turned out to be quite delicate question unexpectedly involv-
ing such branches of mathematics as combinatorics and Galois theory.

For the simplest examplB(z) = z the answer follows from the Weierstrass theorem:
since the only continuous complex-valued function which is orthogonal to all powers of
z on a segment is zero, the only polynomial solution to (1) is) = 0. On the other
hand, for instance, foP (z) = z? and[a, b] = [—1, 1] non-trivial polynomial solutions to
(1) already exist since any polynomig{z) such thaiyy(—z) = —¢q(z) clearly satisfies (1).
Actually, for any P(z) € C[z], a, b € C such thatP(a) = P(b), non-trivial polynomial
solutions to (1) exist. Indeed, it is enough to 8&t) = R'(P(z)) P'(z), whereR(z) is any
complex polynomial. Then for any> 0 we have:

b P(b)
/ P'(2)q(z)dz = / y'R'(y)dy =0.
a P(a)

More generally, the following “composition condition” imposed 81iz) and Q(z) =
[ q(z)dz is sufficient for polynomialsP(z), ¢(z) to satisfy (1):there exist polynomials
P(2), 0(z), W(z) such that

P()=P(W(®), Q@ =0(W), and W(a)=W(b). )

The sufficiency of condition (2) follows froniV (a) = W (b) after the change of variable

z — W(z). It was suggested in the papers [2—6] (“the composition conjecture”) that, under
the additional assumptioR (a) = P (b), condition (1) is actually equivalent to condition

(2). This conjecture is shown to be true if the collectiBiz), a, b is generic enough.

For instance, ifz, b are not critical points ofP(z) [9] or if P(z) is indecomposable [14]

(see also [17,19], and the papers cited above). Nevertheless, in general the composition
conjecture fails to be true.

A class of counterexamples to the composition conjecture was constructed in [13].
These counterexamples exploit polynomials which admit “double decompositions” of the
form P(z) = A(B(z)) = C(D(z)), where A(z), B(z), C(z), D(z) are non-linear poly-
nomials. If P(z) is such a polynomial and, in addition, the equalitiB&:) = B(b),

D(a) = D(b) hold, then for any polynomiap(z), which can be represented é5z) =
E(B(z)) + F(D(z)) for some polynomialsE(z), F(z), condition (1) is satisfied with
q(z) = Q' (z) by linearity. On the other hand, it can be shown (see [13]) that iRlegand
degD(z) are coprime then condition (2) is not satisfied alreadyddt) = B(z) + D(z).
Note that, by the second Ritt theorem, double decompositions witd @8g= degD(z),
degB(z) = degC(z) and degB(z), degD(z) coprime are equivalent either to decomposi-
tions with

A(z) =7"R"(2), B(z) =7", C(x)=7", D(z) =7"R(z™)
whereR(z) is a polynomial and GCDx, m) = 1, or to decompositions with
A(z) =T (2), B(2) =T,(2), C(z) =Ty (2), D(z) =Tn(2),
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where T,,(z), T,,(z) are Chebyshev polynomials and GGDm) = 1 (see [18,20]). In
particular, the simplest explicit counterexample to the composition conjecture has the fol-
lowing form:

P(z2) = Ts(2), q(z) =T3(2) + T5(2), a=—-+/3/2, b=+/3/2.

The counterexamples above suggest to transform the composition conjecture as follows
[16]: non-zero polynomial® (z), ¢(z) satisfy conditior(1) if and only if 0(z) = [ ¢(z) dz
can be represented as a sum of polynom@lssuch that

P(x)=Pj(W;(), Qj()=0;(W;j), and W;(a)=W;(b) ©)

for someﬁj (2), Qj(z), W;(z) € C[z]. Note that we do not make any additional assump-
tions about the values aP(z) at the pointsa, b any more. In particular, the conjecture
implies that non-zero polynomials orthogonal to all powers of a given polynomia)

on [a, b] exist if and only if P(a) = P(b). For the case’(z) = T,,(z) conjecture (3) was
proved in [15].

Denote byPi_l(z), 1 < i < n, the single-valued branches @ 1(z) in a simply-
connected domaity c C containing no critical values af (z). Condition (2) via Luroth’s
theorem essentially reduces to the requirement that thedigid Q) is a proper subfield
of C(z) or equivalently to the equality

0(P 1) =0(P, () @)
for somei; # i» (see Section 3 below). Roughly speaking, the main result of this paper,
proved in the second section, states that in general condition (1) is equivalent not to single
equation (4) but to a certaBystenof linear equations connecting branches of the algebraic
function 0 (P~1(z)). More precisely, starting from the collectiai(z), a, b, we construct
explicitly a system of equations

qu ")) =0, 1<s<degP(2), (5)

with f; ; taking values in the sd¢0, —1, 1} such that (1) holds if and only if (5) holds with
0(z) = [ q(z)dz. In order to find (5) we use a special planar graphsuch that the edges
of A p are coded by branches #f~1(z) and the set of vertices afp contains points, b.
The graphyp, called the “cactus” ofP(z), like similar objects named “S-graphs”, “pic-
tures”, or “dessins d’enfants”, provides a full combinatorial description of the monodromy
of P(z), and, in particular, permits to relate properties of the colleckan), a, b which
are connected with the polynomial moment problem to combinatorial properties of the pair
consisting of the treg p and the patiT}, , connecting pointa, b onip.

The criterion (5) has a number of applications. For example, it allows us to reduce an
infinite set of Egs. (1) to a finite set of equationg =0, 0 < k < M, wherewy, are ini-
tial coefficients of the Puiseux expansions of the combinations of branches in (Y and
depends only on degrees Bfz) and Q(z). Furthermore, using the equivalence of (1) and
(5), one can provide a variety of different conditions on a collecftor), a, b under which
(1) and (2) are equivalent — this is the subject of the third section of this paper. Essentially
the finding of such conditions, which are of interest because of applications to the Abel
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equation (see [1,7,8]), reduces to the finding conditions under which system (5) implies
equality (4). In its turn these conditions can be naturally given in terms of combinatorics
of the graph. p. Finally, note that criterion (5) permits to use in the study of the polyno-
mial moment problem the methods of Galois theory since system (5) can be interpreted
as a system of relations between roots of the corresponding irreducible polynomial which
defines the algebraic functia@(P~1(z)) (see e.g. Section 5.3 below).

In the fourth section of this paper we establish a specific geometric property of the
monodromy groups of polynomials, related to the topology of the Riemann sphere, from
which, in particular, we deduce the following resultA{z), Q(z) € C[z], degP(z) =n,
degQ(z) = m satisfy (1), then for coefficients of the Puiseux expansions near infinity

0(P () = Z ugeliz ™~/ (6)
k=—m
the equalityu;, = 0 holds whenever GC@, n) = 1. This fact agrees with conjecture (3)
and, in particular, implies that faP (z), ¢ (z) satisfying (1) the numbersandm cannot be
coprime.

In the fifth section, as an application of the Puiseux expansions technique, we show that
conditions (1) and (2) are equivalent if at least one from paintsis not a critical point
of P(z) orif degP(z) = p" for a prime numbep.

Finally, on the base of obtained results, in the sixth section we show that for any col-
lection P(z), a, b with degP (z) < 10 conditions (1) and (2) are equivalent except the case
when P(z), a, b is linearly equivalent to the collectiofis(z), —v/3/2, v/3/2. Since for
P(z) = T,(z) all solutions to (1) were obtained in [15], this provides the complete solution
of the polynomial moment problem fat(z), a, b with degP (z) < 10.

2. Criterion for a polynomial to be orthogonal to all power s of a given polynomial
2.1. Cauchy type integrals of algebraic functions

A quite general approach to the polynomial moment problem was proposed in the paper
[17] concerning Cauchy type integrals of algebraic functions

d
I0=1(.8.0=5"- / gz(z_) =. W)

Y

In this subsection we briefly recall it (see [17] for details) and outline in this context the
approach of this paper.
First of all notice that condition (1) is equivalent to the condition

b

/ PI(2)0()P'(:)dz =0 ®)

a

fori > 0, whereQ(z) = [ ¢(z) dz is normalized by the conditio@(a) = Q(b) =0 (Q(a)
always equalg2(b) by (1) taken fori = 0). Furthermore, vice versa, condition (8) with
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Q(a) = Q(b) =0 implies that (1) holds witlg (z) = Q'(z). (Actually, it was the condition
(8) that appeared initially in the papers on differential equations cited above.)
Indeed, condition (8) is equivalent to the condition that the function

b
0((z)P'(z)dz

HO= | =p=

a
vanishes identically near infinity, since near infinity
b

H(t)y==> mit~ " wherem; =/P"(z)Q(z)P’(z)dz.

i=0 a

On the other hand, we have:

b b
dH (1) Q(Z)P(Z)dzz—/Q(z)d( : )

d ) (P(x)—1)? P(z) —t
_ Q@ 00 ~
T Pa) —t P(b)—t+H(t)’ ©)
where
; d
ﬁ(t):/ q()dz
P(z)—t

a
Since near infinity
b

oo
H(@) = —Zﬁm_("*l), wheresi; = / Pi(2)q(z)dz,
i=0 p
it follows from (9) that conditions (1) and (8) are equivalent whene¥ér) = Q(b) =0.

Furthermore, performing the change of variable- P(z), we see thafd (¢) coincides
with integral (7) wherey = P([a, b]) and g(z) is an algebraic function obtained by the
analytic continuation of a germ of the algebraic functian) = Q(P~1(z)) alongy. Inte-
gral representation (7) defines a collection of univalent regular funcfigns eachi; (r)
is defined in a domai@/; of the complement of in CPL. Denote byl (¢) the function
defined in the domai/, containing infinity. Then the vanishing df (¢) near infinity
becomes equivalent to the equality (z) = 0.

More generally, consider integral (7), wherds a curve in the complex plaré and
g(z) is any “piecewise-algebraic” function gn More precisely, we assume that after re-
moving fromy a finite set of pointsZ, , the sety \ X, is a union of topological segments
(s such that for eacly; there exists a domail; O y; and an analytic ir¥/; algebraic
function g, (z) such thatg(z) on y, coincides withg,(z). Furthermore, we assume that at
the points of,, , the complete analytic continuatiogs(z) of g;(z) can ramify but do not
have poles. Below we sketch conditions fgs(¢) to be a rational function; if these con-
ditions are satisfied, then in order to verify the equalify(r) = 0 it is enough to examine
possible poles.
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Denote by X, the set of all singularities of;(z) in CPL. Show that any element
(1; (1), U;) can be analytically continued along any cur§e= S;, ;, connecting points
11, t» € CP! and avoiding points from the sels, and X, . First of all notice that if, € 9U;
then an analytical extension ¢f; (¢), U;) to a domain containing is given simply by the
integrall (7, g, 1), wherey is a small deformation of such that, € U;. Furthermore, if
S = Sy,1, is a simple curve connecting pointse U;, 12 € U;, whereU;, U; are domains
with a common segment of the boundaryand (gy, Vy) is the corresponding algebraic
function, then the well-known boundary property of Cauchy type integrals (see e.qg. [12])
implies that

(L), Ui N V) = (1;(1), Uj N Vy) + (g, Vi)

Therefore, the analytic continuation @f (¢), U;) alongS can be defined via the analytic
continuation of the right side of this formula.

Finally, for arbitrary domaing/;, U; and a curveS = §;, ;, connecting points; € U;
and r, € U;, the analytic continuation(/;(¢), U;)s of (I;(z),U;) along S can be de-
fined inductively as follows. LeS Ny = {c1,¢2,...,¢}, ¢s € V, 1 <s <r, and let
(g1, V1), (g2, V2), ..., (gr, V,) be the corresponding algebraic functions. Define a germ
gy,s of an algebraic function near the poratby the formula:

-
grs =) (8, Vs,
i=1
where(g;, Vi)s.,» 1<i < r, denotes the analytic continuation of the elemgntV;) (taken
with the sign corresponding to the orientation of the crossing ahdy) along a part of
S from ¢; to t2. Then, by induction, for the analytic continuation(@f(z), U;) alongsS the
following formula holds:

(Li(0). Ui) g = (1j(0). Uj) + gy.5- (10)

In particular, a complete analytic continuatidir) of the element; (1), U;) is a multi-
valued analytic function with a finite set of singularitigy c X, U %, .

From formula (10) one deduces the following criterion [1]r) is a rational function
if and only if the equality

8y,s=0 (11)
holds for any curveS = §;, ;, as above withry = 1> € U;. Indeed, the necessity of (11)
is obvious. To establish the sufficiency observe that (11) implies, in garticularf,-(hht
has no ramification in its singularities. Thereforezdfis a singularity off; (¢) such that

z0 € CP1\ y, then formula (10) implies thaf is a pole the worst. On the other hand, if
z0 € X, andzp € 0U; then the function/;(¢) nearzo has the form

1j(t) =u(®)log(t — zo) + v(1), (12)

whereu(r) is a function analytic atg andv(z) is a bounded function which has a finite
ramification atzg (see [17]). Therefore, if; (/) has no ramification ato, then necessarily
u(t) =0 and henceg actually is a removable singularity &f(t) sincev(r) andg,(¢) are
bounded neaxtg.
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Although the method above in principle is constructive its practical application is rather
difficult since the calculation of sumg, s is complicated. In this paper we propose a
modification of the method above designed specially for the polynomial moment problem.
This modification permits to avoid any analytic continuations and allows us to obtain a
necessary and sufficient conditions for equality (1) to be satisfied in a closed and convenient
form. The idea is to choose a very special way of integrafiocobnnecting pointg, b (we
can use any of them since integrals (1) do not dependprit turns out thatl” can by
chosen so thaEP! \ P(I") consists of ainiquedomain. Then conditioti, (r) = 0 simply
reduces to the condition that the corresponding algebraic fungtignsvanish onP (I").
Furthermore, we choosE as a subset of a special treg embedded into the Riemann
sphere, called the cactus Bfz), which contains all the information about the monodromy
P(z). The using of this combinatorial tool not only allows us to find explicitly necessary
and sufficient conditions for (1) to be satisfied but also provides an effective technique to
analyze them.

2.2. Cacti

To visualize the monodromy group of a polynomi&(z) it is convenient to consider a
graphical objech p called thecactusof P(z) (see e.g. [11]).

Let c1, ¢, ..., cx be all finite critical values of?(z) and letc be a not critical value.
Draw a stairs joining ¢ with c1, c2, ..., ¢ by non-intersecting arcg,, vo, ..., vr. We will
suppose thaty, ¢, . .., ¢y are numerated in such a way that in a counterclockwise rotation
aroundc the arcy, 1< s <k — 1, is followed by the arg/, 1. By definition, the cactus
Ap is the preimage of under the magP (z) : C — C. More precisely, we considerp as
a (k + 1)-colored graph embedded into the Riemann sphere: vertices oblored by the
sth color, where X s < k, are preimages of the point, vertices colored by thé& + 1)th
color (to be definite we will suppose that it is the white color) are preimages of theqoint
and edges of p are preimages of the argg, 1 <s < k. Itis not difficult to show that the
grapha p is connected and has no cycles. Therefagejs a plane tree.

The valency of a non-white vertexof Ap coincides with the multiplicity oz with
respect toP (z) while all white vertices of. p are of the same valeney= degP(z). The
set of all edges of p adjacent to a white vertex is called astar of Ap centered atv.
Clearly, A p hasnk edges ana stars. The set of stars ap is naturally identified with the
set of branches oP ~1(z) as follows. LetU be a simply connected domain containing no
critical values ofP(z) such thatS \ {c1, c2, ..., ¢k} C U. By the monodromy theorem in
U there exist: single valued branches et 1(z). Any such a branChPl._l(z), 1<i<n,
mapssS \ {c1, c2, ..., c} into a star ofA p and we will label the corresponding star by the
symbolS; (see Fig. 1).

The cactus. p permits to reconstruct the monodromy gratip of P(z). Indeed,Gp is
generated by the permutatiogise S,,, 1 < s < k, whereg; is defined by the condition that
the analytic continuation of the eleme(rﬂj_l(z), U), 1<i < n, along a counterclockwise

oriented loop aroundc; is the eIemen(Pg:(ll.)(z), U). Having in mind the identification
of the set of stars of » with the set of branches @t ~1(z), the permutatiorg,, 1< s <k,
can be identified with the permutatign, 1 <s < k, acting on the set of starts afp in

the following way:g, sends the sta$;, 1 <i < n, to the “next” one in a counterclockwise
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Fig. 1.

direction around its vertex of coler For example, for the cactus shown on Fig. 1 we have:
g1=DQBNED () (6)(B), g2=(1(D()(47)(56)(8), g3 = (1238(4)(57)(6).

Note that sinceP(z) is a polynomial, the permutatiogs, = g142- .. g« IS a cycle of
lengthn. Usually, we will choose the numeration 8f, 1 <i < n, in such a way that this
cycle coincides with the cyclél 2. . . n).

2.3. Criterion

In this subsection we give explicit necessary and sufficient conditionBfor, ¢ (z) €
Clz] anda, b € C, a # b, to satisfy (1), (8). For this propose we choose the way of inte-
gration/, ; connectingz, b so thatl, , would be a subset 6fp.

More precisely, for anyP(z) € C[z] anda, b € C let us define arextendedcactus
p=ip(ct,co, .. ,cp) as follows. Letcy, c2, ..., ¢; be all finite critical values of (z)
complemented by’(a) or P(b) (or by both of them) ifP(a) or P(b) is not a critical value
of P(z). Consider an extended stﬁconnectlng withc, ¢z, ..., c; and seb.p = P~LS)

(we suppose thatis chosen distinct fronP (a), P (b)). Clearly,xp considered asa+ 1
colored graph is still connected and has no cycles. Furthermore, by construction the points
a, b are vertices of p. Sincel p is connected there exists an oriented p&fh C A p with

the starting point and the ending poirii. Moreover, since.p has no cycles there exists
exactly one such a path. We chod3g, as a new way of integration.

Let U be a domain as in Section 2.2 and {&tz) = [ ¢(z) dz be normalized by the
condition Q(a) = Q(b) = 0. For eachs, 1 < s < k, define a linear combinatiop (z) of
branche (P, }(z)), 1<i <n, in U as follows. Set

0s(2) = qu (P7). (13)

where f; ; # 0 if and only if the pathl’, , passes through a vertexof the starsS; colored
by thesth color (we do not take into account the stér$or which I, , N S; contains only
the pointv). Furthermore, if under a moving along, , the vertexwv is followed by the
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center ofS; then f; ; = —1 otherwisef, ; = 1. As an example consider the cactus shown
on Fig. 1. Then for the path, ; pictured by the fat line we have:

01(2) = —0(P; 1)) + Q(P;1(2) — Q(P7 *(2),

2(2) = Q(P; () — Q(P; (@),

¢3(2) = 0(P; () — Q(P; 1) + Q(P, (2).

Theorem 2.1. Let P(z),q(z) € Clz], a,b € C, a # b, and letip(cy, c2, ..., cp) be an
extended cactus corresponding to the collectio@), a, b. Then(1) holds if and only if
the equalityp, (z) = 0 holds inU for anys, 1 <s <k.

Proof. Indeed, condition (8) is equivalent to the condition that the function

Q)P (2)dz

H®)= P(x) —1t

Fa,b

vanishes identically near infinity. On the other hand, using the change of variable
P(z), we can express the functioti(z) as a sum of Cauchy type integrals of algebraic
functions as follows:

k
Hty=Y" / b (Zt) d. (14)
s=1y,

7 —

Since this formula implies that (¢) is analytic in a domairV = CP*\ S we see that the
vanishing ofH (r) near infinity is equivalent to the condition thAt(z) = 0 in V.

Let zg be an interior point o, 1 < s < k. Then by the well-known boundary property
of Cauchy type integrals (see e.g. [12]) we have:

lim TH@) — lim ~H(@) = ¢s(to),
1—>20 t—z20

where the limits are taken respectively fotending tozg from the “left” and from the
“right” parts of V with respect toy,. If H(r) =0in V, then

lim TH()= lim ~H() =0,
=20 t—z20

and, thereforeyp, (z0) = 0. Since this equality holds for any interior poitif of any arcys,
1< s <k, we conclude thap,(z) =0, 1< s <k, in U. On the other hand, if;(z) =0,
1< s <k, in U, then it follows directly from formula (14) tha# (#) =0in V.

Note that some of equatiogs(z) = 0, 1 < s < k, could be trivial. This happens exactly
for the valuess such that the patlt, , does not pass through vertices colored by:te
color. Note also that Egs. (13) are linearly dependent. Indeed, foriesuth that there
exists an index, 1 < s <k, with fs.i # 0 there exist exactly two such indices s and
Cs;,i = —Cs,,i- Therefore, the equality

k
Y eit)=0
s=1

holds inU. O
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2.4. Checking the criterion

Let P(z), Q(z) € C[z], degP(z) = n, degQ(z) =m. Let U be a simply connected
domain containing no critical values @f(z) and IetPl.‘l(z), 1< i < n, be branches of
P~1(z) in U. In this subsection we provide a simple estimation for the order of a zero in
U of a function of the form

V(@) = Zﬁ ). fieC,

via the degrees oP(z) and Q(z). This reduces the verification of the criterion to the
calculation of a finite set of initial coefficients of Puiseux expansions of functions (13)
and, as a corollary, provides a practical method for checking an infinite set of Eq. (1) in a
finite number of steps.

Lemma 2.1. If ¥ (z) # 0 thenyr(z) satisfies an equation
YW@ +a1@)yV @) + - +an(z) =0, (15)

where a;(z) € Clzl, an(z) # 0, and N < n!. Furthermore, dega;(z) < (m/n)/,
1<j<N.

Proof. Indeed, ify (z) # 0 then, since) (z) is a sum of algebraic functiong;(z) itself is
an algebraic function and therefore satisfies an algebraic equation (15);witte C(z),
1< j < N. Furthermore, we can suppose that this equation is irreducible. dhen = 0
and the numben coincides with the number of different analytic continuatiangz)
of ¥ (z) along closed curves. Clearlyy can be bounded by the numb¥y of different
elements of the monodromy group Bfz). In its turn, N1 is bounded by the number of
elements of the full symmetric groufy. Hence,N < n!.

Furthermore, sinceP(z), Q(z) are polynomials, the rational functions;(z),
1< j < N, as the symmetric functions af;(z), 1< j < N, have no poles irlC and
therefore are polynomials. Finally, since near infinity brancﬁ;aé(z) 1<i<n, of

P~1(z) are represented by the Puiseux series

o
Pl-_l(z) = Z vksf,kz_k/”, v, € C, &, =exp2ri/n), (16)
k=—1
the first non-zero exponent of the Puiseux series at infinity for the functioits),
1< j < N, isless or equal tham/n. It follows that deg; (z) < (m/n)/, 1< j< N. O

Corollary 2.1. Let zo € U. To verify thaty (z) = 0 it is enough to check that the first
(m/n)™ + 1 coefficients of the serigf(z) = Y roowk(z — z0)* vanish.

Proof. Indeed, suppose that Qgd) (z) > (m/n)”' but w(z) # 0. Then, by Lemma 2.1,
¥ (z) satisfies (15), where deg(z) < (m/n) < (m/n)", 1< j <N, anday # 0. It
follows that

ordo {yV (2)} > ordy{ai, YN ()} > -+ > ordy{a;, YN T (2)],
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where O< i1 <iz < --- < i = N are all indices for whicla; (z) # 0. Therefore,
ord, (¥ (2) + a1 (@YY @) + - +an (@)} = ordyfan (2)} < o0
in contradiction with equality (15). O

3. Definite polynomials

In this section, as a first application of Theorem 2.1, we provide a number of conditions
on a collectionP(z),a, b, where P(z) € C[z], a,b € C, a # b, under which conditions
(1) and (2) are equivalent; such collections are callefihiteand are of interest because of
applications to the Abel equation (see [1,7,8]).

3.1. A combinatorial condition for a change of variable

The simplest form of the equality; (z) = O is equality (4). Furthermore, (4) has a clear
compositional meaning.

Lemma 3.1. The equality(4) holds if and only if
P)=P(W(@), 0@ =0(W®) 17)
for some polynomial® (z), Q(z), W(z) with degW (z) > 1.

The proof of this lemma easily follows from the Luroth theorem (see e.g. [14,19)). If
condition (17) is satisfied we say th@dlynomialsP (z), Q(z) have a(non-trivial) common
right divisor in the composition algebra of polynomials.

Below we give a convenient combinatorial condition on a collectitan), a, b which
implies that for any; (z) satisfying (1) polynomials(z), Q(z) = [ ¢(z) dz have a com-
mon right divisor in the composition algebra of polynomials. The use of this condition
permits, after the change of varialle> W(z), to reduce the solution of the polynomial
moment problem for a polynomia (z) to that for a polynomial of lesser degr@ez).

Letip be ak + 1 colored extended cactus corresponding to a colle@tian, «, b and
let I', , be the path connecting poinish on A p. For eachs, 1 <s < k, define the weight
w(s) of the sth color onT7, ;, as a number of vertices € I, , colored by thesth color
with the convention that verticas » are counted with the coefficieny2. For example,
for I, , shown on Fig. 1 we have (1) = w(3) =3/2, w(2) = 1.

Theorem 3.1. Let P(z),q(z) € Clz], q(2) #0, a,b € C, a # b satisfy(1). Suppose that
there exists, 1 < s < k, such thatw(s) =1 on I, ;. ThenP(z), Q(z) have a common
right divisor in the composition algebra.

Proof. Indeed, the construction @i, , implies that ifw(s) = 1, then f; ; # 0 exactly for

two valuesiy, i, 1 < i1,i2 < n. Moreover, for these values we havg;, = —c¢;,;, and

hence the equality,(z) = O reduces to (4). Thereforé,(z) and Q(z) have a common
right divisor in the composition algebra by Lemma 3.13
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3.2. Reduction

Although condition (17) in general is weaker than condition (2) it turns out that in order
to prove that for any collectiorP(z), a, b, a # b, satisfying some conditiofk condi-
tions (1) and (2) are equivalent it is often enough to show that for any such a collection
condition (1) implies condition (17). Say that a conditiinis compositionally stabléf
for any collectionP(z),a, b, a # b, satisfyingR such thatP(z) = P(W(z)) for some
P(z), W(z) € C[z], degW (z) > 1, W(a) # W (b), the collectionP (z), W(a), W(b) also
satisfiesk. For instance, the following condition is compositional stable: at least one point
from a, b is not a critical point ofP(z). An other example of a compositional stable con-
dition is the following one: de@ (z) = p”, wherep is a prime.

Lemma 3.2. Let R be a compositionally stable condition. Suppose that for any collec-
tion P(z), a, b, a # b, satisfyingR, condition (1) implies condition(17). Then for any
collectionP(z), a, b, a # b, satisfyingR conditions(1) and (2) are equivalent.

Proof. Let P(z), a, b be a collection satisfyin@. Suppose that (1) holds for somé&z)
Clz]. Then by condition equality (17) holds and hericeP, Q) is a proper subfield of
C(z). Therefore, by the Liroth theorem

C(p, ) =C(W) (18)

for some rational functiorWy(z), degWi(z) > 1, and without loss of generality we can
assume thaW(z) is a polynomial. It follows that

P(z) = P1(W1(2)), 0(2) = 01(W1(2)) (19)

for some polynomial®;(z), Q1(z) such thatP1(z) andQ1(z) have no a common right di-
visor in the composition algebra. To prove the lemma it is enough to show that the equality
Wi(a) = W1(b) holds.

Let us suppose the contrary. Performing the change of variableW(z) we see that
condition (1) is satisfied also faPy(z), Q' (z), Wi(a), W1(b). Therefore, sinc& is com-
positionally stable, it follows from the condition of the lemma tl&tP;, Q1) is a proper
subfield ofC(z) and therefore equalities

P1(2) = P2(W2(2)), 01(2) = Q2(W2(2))

hold for someP»(z), 02(z), Wa(z) € C[z] with degW>(z) > 1. This contradicts the fact
that P1(z), Q1(z) have no a common right divisor in the composition algebra. Therefore,
Wi(a) =Wi(b). O

3.3. Description of some classes of definite polynomials

As a first application of Theorem 3.1 and Lemma 3.2 we give a simple proof of the
following assertion conjectured in [17].

Corollary 3.1. Let P(z),q(z) € Cl[z], q(z) #0, a,b € C, a # b. Suppose thaP (a) =
P(b) = c1 and that all the points of the preimage(c1) except possibly, b are not
critical points of P(z). Then conditiongl) and(2) are equivalent.
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Proof. Since the chain rule implies that the condition of the corollary is compositionally
stable it is enough to show thd(z), Q(z) have a common right divisor in the com-
position algebra. To establish it observe tihgf, cannot pass through vertices o of

the valency 1 distinct frona, b. Therefore, the condition of the corollary implies that
w(1) = 1. It follows now from Theorem 3.1 tha® (z), Q(z) have a common right divisor

in the composition algebra.O

A slight modification of the idea used in the proof of Corollary 3.1 leads to the following
statement.

Corollary 3.2. Let P(z),q(z) € C[z], q(z) #0, a,b € C, a # b. Suppose thaP (a) =
P(b) = ¢1 and that for any critical value of P(z) except possibly; the preimageP ~(c)
contains only one critical point. Then conditiofly and (2) are equivalent.

Proof. Again, it follows from the chain rule that the condition of the corollary is compo-
sitionally stable. Furthermore, observe that the gath contains at least one verte)of a
colors # 1. Sincerl, ;, cannot pass through vertices of the valency 1 distinct faoin it
follows from the condition of the corollary that the equalitys) = 1 holds and, therefore,
by Theorem 3.1P(z), Q(z) have a common right divisor in the composition algebra.

Finally, we give a new proof of an assertion from the paper [17] which provides some
geometric condition for a collectiof (z), a, b to be definite. It turns out that this assertion
actually also can be regarded as a particular case of Theorem 3.1. For afderote by
Vum .« the domain from the collection of domaifi®! \ M which contains infinity. For an
oriented curvel and points/y, do € L denote byL,4, 4, the part ofL betweend; anddo.

Corallary 3.3. Let P(2),q(z) € Clz], () #0, a,b € C, a # b. Suppose thaP (a) =
P(b) = c1 and that there exists a curve connecting pointg, » such thatc1 is a simple
point of P(L) andcy € 3Vp(1),o- Then conditiongl) and(2) are equivalent.

Proof. We will keep the notation introduced in Section 2.2 and 2.3. det(resp.b™)
be a point onL near the point: (resp.b) and letU be a simply connected domain con-
taining no critical values o (z) such that the set§ \ {c1,c2,...,c;}, P(Lgqt) \ c1,
andP(Ly- ) \ c1 are subsets dff. Recall that there is a natural correspondence between
branchesPl.‘l(z), 1<i <n, of P~1(z) in U and stars of the cactusp: branchPl.‘l(z)
mapsU on a domairl/; containings;.

Denote byU;, (resp.Uj,) the domain containing the poimat™ (resp.5~). Then by
construction the result of the analytic continuation of the elemeljﬂ‘lll(z), U) along the

curve P(L,+ ,-) is the eIemen(P;l(z), U). Let cg be an interior point ot/ close toc;.
Consider a small deformatial oflthe curveP (L) obtained as follows: change the part of
P (L) connecting;; andP (a*) to an arcy™ C U connectingg with P(a™) and, similarly,
change the part oP (L) connectingP (b~) andcy to an arcy ™ C U connectingP (b™)
andco (see Fig. 2).



762 F. Pakovich / Bull. Sci. math. 129 (2005) 749-774

Let now [y = llfllll’zzl/ be the image of the curva/ in the fundamental group

w1(X, co), whereX = CPY\ {c1,¢2, c3, ..., ck}. Since the result of the analytic contin-
uation of the eIemer(tszl(z), U) along the curveM is still the eIementPng(z), U), the
final element of the chain of stars

2 =(Ss, Sg,-jll(j)’ ngfgff(j)’ ng}gffgff(j)’ U ngfgff---gf: (f)>
is the starsS,. In particular, the patli7, ; is contained in2. Sincecy € Vi o, the looply
does not appear among the lodpsi;,. ..., ;. Therefore, the common vertex of any two
successive stars in the chaihis not contained in the set~1(c1). In particular, among
of vertices of I, ;, there are no preimages of distinct froma, b and hencew(1) =1
onlyp.

To finish the proof notice that the condition of the corollary is compositionally stable.
Indeed, if L is a curve connecting points, b such thatc; = P(a) = P(b) is a simple
point of P(L) andc1 € 3Vp(1),00, then obviouslyW (L) is a curve connecting points
W (a), W(b) such thatcy = P(W(a)) = P(W (b)) is a simple point of P(W(L)) and

c1 € 3VI5(W(L)),oo' O

4. Monodromy lemma and itscorollaries
4.1. A necessary condition for (1) to be satisfied

While an explicit form of system (5) depends on the collecthti@), a, b, there exists
a necessary condition for (1) to be satisfied the form of which is invariant with respect
to P(z), a, b. Let U be a simply connected domain containing no critical values of
P(z) such thatS \ {c1,c2.....c;} C U. Denote byP,1(z). P (2). ..., Pa_dal(z) (resp.
Pb_ll(z), Pb_zl(z), ...,Pb;:(z)) the branches o ~1(z) in U which map points close to
P(a) (resp.P (b)) to points close ta (resp.b). In particulard, (resp.d,) equals the mul-
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tiplicity of the pointa (resp.b) with respect taP (z). It was shown in [14] forP (a) = P (b)
and in [17] in general case that condition (1) implies the equality

— Z 0P, Y(2) = Z 0(P, (2). (20)
if P(a)= P(b) or the system
—ZQ ) = —ZQ (P @) = (21)

if P(a) # P(b), where as aboveQ(z) = [¢(z)dz is normalized by the condition
Q(a) = Q(b) = 0. For the sake of self-containedness of this paper we provide below a
short derivation of (20), (21) from Theorem 2.1.

Proposition 4.1. Suppose that conditiofi) holds. Then, ifP(a) = P(b), Eq. (20) holds
in U. Furthermore, ifP (a) # P(b), then systeni21) holds inU.

Proof. Suppose first thaP (a) = P (b) = c1. Examine the relation

91() = Zfl, (P (2) =

Leti, 1<i <n, be an index such thak ; # 0 and letx be a vertex of the staf; such that
P(x) = c1. Observe that ifc # a, x # b, then there exists an indéxsuch thatr also is
a vertex of the staf; and flj = — f1;. Furthermore, we have= g{(i) for some natural
number;. Thereforegi(z) has the form

91) =—0(P 1) + 0(P ') — O(P
+0(P Y2) - 0(P

’1< )(Z))
o, @)+ O(P@) =

wherei, (resp.ip) is the index such that C S;, (resp.b C S;,), i1,i2,...,i, are some
other indices and, jo, ..., j- are some natural numbers.

Letn1 be the order of the elemept in the groupG p. For eachs, 0 <s <n;— 1, the
equality

Q(Pg_:([l )(Z)) + Q( (11) (Z)) Q(P_J]:_I-Jrs( )(Z)) +
+0(Pyi, @) — (P W( [@)+ 0(Pyg, @) =

810r)
holds by the analytic continuation of the equality(z) = 0. Summing these equalities and
taking into account that for any 1 <i < n, and any natural numbgrwe have:

81 (lb)

n1—1 ni—1
Z O(Pgy@) =) o(P, ey @)
s=0

we obtaln equality (20).
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In the case whetP (a) # P (b) the proof is similar: ifP(a) = ¢1, P(b) = c2, then one
must examine relationg; (z) =0 andgy(z) =0. O

Note that if pointsz, b are not critical points oP (z), then (20) reduces to (4) while (21)
leads to the equality(z) = 0. In view of Lemmas 3.1 and 3.2 this implies immediately the
following result from [9] (see also [14,17]).

Corollary 4.1. Let P(2), q(z) € Clz],q(z) #0, a,b € C, a # b. Suppose that, b are not
critical points of P(z). Then conditiongl) and(2) are equivalent.

4.2. Relations between branches@fP ~1(z))

In this subsection we examine how linear relations between branches of
Q(P~1(z)) over C reflect on the structure of coefficients of the Puiseux expansion of
Q(P~1(z)) near infinity.

Let P(z) be a non-constant polynomial of degreeand letzg € C be a non-critical
value of P(z). If |zo| is sufficiently large then in a neighborhodd, of zo each branch
of P~1(z) can be represented by a Puiseux series centered at infinity. More precisely, if
Po_l(z) is a fixed branch oP~1(z) nearzg then in U, we have:

o0
P(;l(Z)= Z wz ¥ g eC, g, =exp2ri/n),
k=—1

wherez/” is a branch of the algebraic function which is inverse’tn U,. If lisaloop
around infinity then the result of the analytic continuation of the bram‘:lll(z) alongl/,
0< j <n-—1, isrepresented by the series

o
P = 3wl @)

k=—1

The numeration of branches & 1(z) nearzo defined by Eq. (22) is called canonical.
Clearly, such a numeration depends on the ChOiCEO_Cilf(z). Nevertheless, any canonical
numeration induces the same cyclic ordering of branchésdfz) in U.,. This cyclic or-
dering also will be called canonical. For any non-zero polynomial), degQ(z) = m, the
compositionQ(Pj‘l(z)), 0< j <n—1,isrepresented neap by the series (6) obtained
by the substitution of series (22) B (z).

Let U be a simply-connected domain containing no critical value® @f) such that
some linear combination of branches @i P~1(z)) over C identically vanishes ir.
Considering in case of necessity a bigger domain we can suppose without loss of generality
thatoo € dU. Then series (22) converge in a dom&irc U. Furthermore, we can assume
that the numeration of branches Bf 1(z) in U is induced by a canonical numeration of
branches o?~1(z) in V. If equality

Z /i@ (Z) =0, fjeC, (23)
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holds inU, then substituting in (23) expansions (6) we see that (23) reduces to the system
n—1 )
ijukaﬁ] =0, k>-m.
j=0

Introducing the notatiorf (z) = Z;f;é fjz/ and summing up we get:

Lemma 4.1. The equality(23) holds inU if and only if for anyk > —m eitheru; =0 or
F(eh=o0.

In particular, since ally; can not vanish and de€g(z) < n, the following statement is
true.

Coroallary 4.2. If equality(23) holds inU thenF (e},) = Ofor at leastone, 0 <r <n — 1.
On the other hand, for at least ome0 < r < n — 1, the equalityu;, = 0 holds whenever
k =r modn.

4.3. Lemma about monodromy groups of polynomials

In order to relate Eqgs. (20), (21) with coefficients of the Puiseux expansion of
0(P~1(z)) near infinity we are going to examine which roots of unity can be roots of
the corresponding polynomial

1 & 1 &
r@=-) -y ", (24)
PP I

s=1
or common roots of the corresponding pair of polynomials

1 & 12,
rl(z)=d—ZZ°, rz(z)=d—Zz’- (25)
4 =1 bs:l

For this propose we establish now a geometric property of monodromy groups of polyno-
mials which concerns the mutual arrangement of indigesy, . .., ag, andb1, b, ..., by,
under assumption that the numeration of branches is canonical.

Let P(z) € C[z], degP(z) = n, a,b € C, a # b. Let U be a simply-connected do-
main containing no critical values d@(z) such thatP(a), P(b), o0 € dU. Fix a canon-
ical numeration of branches dt~(z) in U and let?,*(z), P;'(2), ..., P, 1(2) (resp.
P Y2). PN, ..., Pv;,)l(z)) be the branches a?~1(z) in U which map points close to
P(a) (resp.P (b)) to points close to the point (resp.b) numbered by means of this nu-

meration. The lemma below describes the mutual position on the unit circle of the sets

by, .
Via)={e, 6%, ... e} andV (b) = (e, 622, ..., &, ), wheree, = exp(2ri/n).

Let us introduce the following definitions. Say that two sets of pakit¥ on the unit
circle Sy aredisjointedif there exists1, s2 € S1 such that all points fronX are on the one
of two connected components §f \ {s1, s2} while all points fromY are on the other one.
Say thatX, Y arealmost disjointedf X NY consists of a single point and there exists a
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P(2) o0

P(Q)=P(0)

Fig. 3.

points; € S1 such that all points fronX \ s1 are on the one of two connected components
of S1\ {51, s2} while all points fromY \ s; are on the other one.

Monodromy Lemma. The setsV (a) and V (b) are disjointed or almost disjointed. Fur-
thermore, ifP(a) = P(b) thenV (a) and V (b) are disjointed.

Proof. Consider first the case whah(a) = P(b). Let M c U be a simple curve con-
necting pointsP (a) = P(b) andoc. Consider the preimage—1{M} of M under the map
P(z):CP! — CP It is convenient to consideP —1{M} as a bicolored grapke embed-
ded into the Riemann sphere: the black vertices2ofire preimages of (a) = P(b),
the unique white vertex is the preimage®f, and the edges of2 are preimages oM
(see Fig. 3). Since the multiplicity of the vertex equals: and$2 hasn edges2 is con-
nected. The edges &f are identified with branches @ ~1(z) in U as follows: to a branch
Pk_l(z), 1 < k < n, corresponds the edgg such thath_l(z) mapsM \ {P(a), oo} into
ex. In particular, the canonical cyclic ordering of branche®of (z) in U induces a cyclic
ordering on edges ab.

For any vertex of £2 the orientation oCP! induces a natural cyclic ordering on edges
of 2 adjacent ta. In particular, takingy = co, we obtain a cyclic ordering on edgessf
Clearly, this cyclic ordering coincides with that induced by the canonical cyclic ordering of
branches o ~1(z) in U. Let E, = {ear €ay, -+ s €ay, ) (TESP.Ep = {ep,, €p,, ...,ebdh}) be
the union of edges o2 which are adjacent to the vertexresp.b). Let D be the domain
from the collection of domain€P! \ E, which contains poinb and lete;, ¢; € E, be the
edges which bound. Clearly, all the edges frorfi, are contained it€P1\ D. Therefore,
the lemma is equivalent to the following statement: the donfatontainse, \ oo for all
e, € Ep. But the last statement is a corollary of the Jordan theorem since aregdgg,
can intersece; or ¢, only at infinity.

In the case wherP (a) # P(b) the proof is modified as follows. Divide the boundary
of U into three partsW1, M2, M3, where M1 connects the pointo with the pointP (a),

Mo connects the pointo with the point P (b), and M3 connects the poinP (a) with the
point P (b). Consider nowP~1{3U} as a graph2 embedded into the Riemann sphere.
The vertices off2 are divided into three groups: the first one consists of vertices that are
preimages obo, the second one consists of vertices that are preimag®@s/0f and the
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P2) ) =00

Fig. 4.

third one consists of vertices that are preimage® af). Similarly, the edges of2 also
are divided into three groups: the first one consists of edges that are preimadgestbé
second one consists of edges that are preimagé®s oénd the third one consists of edges
that are preimages a¥f/3. Finally, the faces of2 are divided into two groups: the first
one consists of faces that are preimagel &nd the second one consists of faces that are
preimages o P1\ U (see Fig. 4).

The faces from the first group are identified with branchegof(z) in U as follows:
toa branchk‘l(z), 1< k < n, corresponds the facg such thath‘l(z) maps bijectively
U on f; \ 9fx. The edges from the corresponding groups which bofindill be denoted
by e,%, e,f, e,f correspondingly. Note that in a counterclockwise direction around infinity the
edgee,}, 1<k <n, is followed by the edge,f. The canonical cyclic ordering of branches
of P~1(z) in U induces a cyclic ordering of faces & belonging to the first group of
faces. Clearly, this ordering coincides with the natural ordering induced by the orientation
of CP2.

Let E; = {e},. eq,0 - €, ) (resp.Ej = {ej . e, ... ,e,fdb}) be the union of edges
from the first (resp. the second) grogpwhich are adjacent to the vertex(resp.b). Let
D be the domain from the collection of domai@® \ E which contains poinb. Once
again the Jordan theorem implies that all the edges f@mare contained irCP! \ D
while D containse? \ co for all e2 € E2. Taking into account that for any, 1 < k < n, the
edgee,} is followed bye,f this fact implies that/ (a) andV (b) are almost disjointed. Note
that, in contrast to the case whéa) = P(b), now the setd/ (a) and V (b) can have a
non-empty intersection consisting of a single elememt.

4.4, On coefficients of Puiseux expansiordeP ~1(z))

In this subsection we deduce from the monodromy lemma the following important prop-
erty of the Puiseux expansion (6) for pait$z), Q(z) satisfying (20), (21).

Theorem 4.1. Let P(2), Q(z) € C[z], degP(z) =n, a, b € C, a # b. Suppose tha20) or
(21) holds. Theny;, = 0 for anyk such thatGCD(k, n) = 1.
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Proof. Suppose first thaP (a) = P(b). Then Lemma 4.1 implies that, = 0 whenever
the numbeeX is not a root of the polynomial (24). Let us show that if G&Dz) = 1 then
the equalityr (¢X) = 0 is impossible. Indeed, ik, n) = 1, theneX is a primitiventh root
of unity. Since thexth cyclotomic polynomiakp, (z) is irreducible overZ, the equality
r(s’,j) = 0 implies that®, (z) dividesr(z) in the ringZ[z]. Therefore, the primitive:th

root of unitye, = exp(2ri/n) also is a root of (z) and hence the equality

dg dp
D_efda= e /dy
s=1 s=1

holds. The last equality is equivalent to the statement that the mass centers of th@igets
andV (b) coincide. But this contradicts to the monodromy lemma. Indeed, the mass center
of a system of points iff is inside of the convex envelope of this system and therefore the
mass centers of disjointed sets must be distinct.

If P(a) # P(b) then, similarly, the inequality; # 0 for GCD(k, n) = 1 implies that

da db
> e )dg =0, Y ebydy=0.
s=1 s=1

But this again contradicts the monodromy lemma. Indeed, the fact that th& @etand

V (b) are almost disjointed implies that at least one from these sets is contained in an open
half plane bounded by a line passing through the origin and therefore the mass center of
this set is distinct from zero. O

Corollary 4.3. Let P(z),q(z) € C[z], q(z) # 0, degP(z) = n, degQ(z) =m, a,b € C,
a # b. Suppose thatl) holds. TherGCD(m, n) > 1.

Proof. Since in expansions (22) the coefficiant; is distinct from zero, the coefficient
u_p, =v™; in expansions (6) also is distinct from zero. Since (1) implies (20) or (21) by
Proposition 4.1, it follows now from Theorem 4.1 that G@Dn) > 1. O

Notice that Theorem 4.1 agrees with conjecture (3). Indeed, if

02) = 01(W1(2)) + 01(W1(2)) + - - + 0+ (W, (2)). (26)
whereW1(z), Wa(2), ..., W, (z) are (non-trivial) right divisors o (z) in the composition
algebra,

P(z) = PL(W1(2)) = P2o(Wa(2)) = -+ = P, (W, (2)),

then the expansion (6) has the form
(P 12) = 01(P{ @) + 02(P; 1 (@) + -+ 0: (P 1(2)).

Since degf’j(z) <n, 1< j<r it follows easily thatu; = 0 for any £ such that
GCD(k, n) = 1. Conjecturally, vice versa, equalitiag = 0 for all k¥ with GCD(k,n) =1

imply that Q(z) has form (26) at least under some additional assumptions. We plan to
discuss this topic in another paper.
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5. Further description of definite polynomials
5.1. Case when or b is not a critical point ofP(z)

As a first application of the Puiseux expansions technique we provide in this subsection
the following generalization of Corollary 4.1.

Theorem 5.1. Let P(z),q(z) € C[z], q(z) #0, a,b € C, a # b. Suppose that at least one
from pointsa andb is not a critical point of the polynomiaP (z). Then conditiongl) and

(2) are equivalent.

Proof. Since the condition of the theorem is compositionally stable it follows from Lem-

mas 3.2, 3.1 that we only must show that equality (4) holds. To be definite suppose that the
pointa is not a critical point ofP (z). By Proposition 4.1 either the system

dp
Q(pl@)=0. > 0(p,'(2))=0 (27)
s=1
or the equality

0(pat) = ZQ Py (@) (28)

holds. Nevertheless, since the first equation of system (27) leads to the eqality O,
we only must consider Eq. (28).
Applying Lemma 4.1 we see that for akysuch that; # 0 the equality

dp

holds. The triangle inequality implies that this is possible only if

(o)™ = (8)™ = (o) = - = (e8)™.
Therefore,
0(p'(@) = 0(p,,' () = Q(py; @) =--- = C(p;; (). D

5.2. Case whedegP(z) = p

In this subsection we deduce from Theorem 4.1 the solution of the polynomial moment
problem in the case when d&gz) = p” for p prime.

Theorem 5.2. Let P(2), q(z) € Clz], ¢(z) #0, a,b € C, a # b. Suppose thadegP (z) =
p", wherep is a prime number. Then conditio$) and (2) are equivalent.
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Proof. Again, since the condition of the theorem is compositionally stable, it is enough to
show that (4) holds. Consider expansion (6). By Theorem 4.1 the equality0 holds for
anyk with GCD(k, p") = 1. Show that this fact implies the equality

0(P () = 0P}, 1(2)

J+p
foranyj, 0< j <n— 1. Indeed, we have:

Q(P]fl(z)) - Q(P,;lprfl(z)) — Z wez
k=—m

where
wg = uk(si,]f — 8;"#’7%1)]().
If GCD(k, p") = 1 thenu; = 0 and henceuv; = 0. Otherwisek = pk for somek € Z.
Therefore,
QUHPTHk _ ik PR _ ik

P = EprEpr T Epr

and hence agaim; =0. O
5.3. Case wherP(z) is indecomposable

Theorems 2.1, 5.2 allow us to give a short proof of the theorem proved in [14,16]
which describes solutions to (1) in case whel) is indecomposable that is cannot
be represented as a compositiBiiz) = P1(P2(z)) with non-linear polynomialsP:i(z),
Po(2).

Theorem 5.3. Let P(z),q(z) € C[z], q(z) #0, a,b € C, a # b. Suppose thaP(z) is
indecomposable. Then conditiofly and (2) are equivalent. In more detailg)(z) is a
polynomial inP(z) and P(a) = P(b).

Proof. Once again we only must prove that (4) holds. Suppose the contrary that is that all
Q(Pfl(z)), 1<i < n, wheren = degP (z) are different; then the monodromy groGp

of the algebraic functiorQ(P~1(z)) obtained by the complete analytic continuation of
Q(Pl._l(z)), 1 <i < n, coincides with that of?~1(z). SinceP(z) is indecomposable;

is primitive by the Ritt theorem [18]. Since for the case wheg degP (z) is a prime
number the statement follows from Theorem 5.2 we can suppose:tleaf compos-

ite number. By the Schur theorem (see e.g. [21, Theorem 25.3]) a primitive permuta-
tion group of composite degreewhich contains am-cycle is doubly transitive. Recall
now the following fact: rootsy;, 1 <i < n, of an irreducible algebraic equation over a
field k of characteristic zero with doubly transitive Galois group cannot satisfy any rela-
tion

n
ZC,'O{,' =0, Ci Ek,
i=1
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except the case when = cp = --- = ¢, (see [10, Proposition 4], or, in the context of
algebraic functions [14, Lemma 2]. Since the monodromy group of an algebraic function
coincides with the Galois group of the equation o{&r) which defines this function, it
follows that if all Q(Pl-_l(z)), 1 <i < n, are different, then equality (23) is possible only
when

fi=fo=--=fa. (29)

On the other hand, for any non-trivial equatipn(z) = 0 appeared in Theorem 2.1 the
equality (29) is impossible by construction. This contradiction completes the praof.

6. Solution of the polynomial moment problem for polynomials of degree less
than 10

In this section we provide a complete solution of the polynomial moment problem for
polynomials of degree less than.10

For an extended cactus and a path’, ;, definethe skeletorﬁa,b of I, » as follows.
Draw the pathr, , separately from the graphy and erase all its white vertices. Number
the edges of the obtained graﬁ‘ab so that the number of an edgg coincides with the
number of the stas; of Ap for which e; C Sx. The number of edges d?a,h is called the
Iengthl(fu,b) of fu,b. For example, the skeletdﬁ,,l7 of the pathl, 5 from Fig. 1 is shown
on Fig. 5; herd(I', ;) = 4.

Theorem 6.1. Let P(2), q(z) € Clz], q(2) #0, a,b € C, a # b, satisfy(1). Suppose that
degP(z) < 10. Then either conditioif2) holds or there exist linear functions; (z), L2(z)
such that

Lo(P(L1(2)) =Te(),  LiYa)=-v3/2,  L7*(b)=+3/2,
and

0(L1(2)) = A(T3(2)) + B(T2(2))
for someA(z), B(z) € C[z].

Proof. First of all observe that any natural numlaet 10 distinct from 6 is either a prime
number or a degree of a prime number. Therefore, it follows from Theorem 5.2 that it
suffices to consider the case when ddg) = 6. Furthermore, in view of Theorem 5.1 we
can suppose that the pointsh are critical points ofP(z). Finally notice that in order to
prove that condition (2) holds faP(z), ¢(z) satisfying (1) with de@®(z) = 6 it is enough

to establish equality (17). Indeed,W (a) # W (b) in (17) then performing the change of
variablez — W (z) we see that (1) holds faP (z), O(z), W(a), W(b). If degW (z) equals

4
a=2—2—32 L 2 3-b

Fig. 5.
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a=G—P—@=b  a=®—G—@=b

Case 1 Case 2

Fig. 7.

3 or 2, then it follows from Theorem 5.3 thak(z) = R(P(z)) for someR(z) € C[z] and
P(W(a)) = P(W(b)). Therefore, (2) holds with¥ (z) = P(z), O(z) = R(z). On the other
hand, if deg¥ (z) = 6 in (17) then necessamy (a) = W (b) since otherwis&)(z) would

be orthogonal to all powers af on the segmenW (a), W (b). In particular, in view of
Lemma 3.1, we see that in order to prove that conditions (1) and (2) are equivalent it is
enough to establish (4).

Since deg”(z) = 6, cIearIyl(ﬁa,b) < 6. Moreover, since the points, b are critical
points of P(z), the valency of the corresponding verticesigf is at least 2, and, there-
fore, actuallyl(fa,b) < 4. Consider all possible cases. First of all observe that the equality
l(fa,h) =1 is impossible. Indeed, in this case Theorem 2.1 impIiesQ{zﬂ;l(z)) =0,
wherei is the number of the unique edgeﬁ{b, and thereforey (z) = 0. Furthermore, if
I(I',.») = 2 then, since adjacent vertices &if , have different colors[, , can be of one
from the following two forms shown on Fig. 6.

In both cases for the middle vertexwe havew(y) = 1. Therefore by Theorem 3.1
equality (17) holds and hence conditions (1) and (2) are equivalent. Observe, however,
that the first configuration shown on Fig. 6 is actually not realizable since (2) implies that
P(a) = P(b).

Consider now the case Whé«[ﬁa,h) = 3. Itis not difficult to see that in this case either
againw(y) = 1 for some colo or I, , has the form shown on Fig. 7.

Let us examine the last case. Since for the skeleton shown on Fig. 7 wePliaye
P (b), it follows from Proposition 4.1 that system (21) holds. Furthermore, the equality
degP (z) = 6 implies that for at least one vertexc {a, b} the following two conditions
are satisfied: the multiplicity of equals 2 and the connectivity componenief\ s which
does not contaird, ; consists of a unique star. To be definite supposestkat. Then, in
notation of Section 2.2, the first condition implies that

da
Y 0(PM@) =0(P @) + (P, (,))) =0 (30)
s=1

and the second one thgf(g.(i1)) = g« (i1). Therefore, the analytic continuation of (30)
along the loog, leads to the equality

Q(P,* @)+ (P, () () =0. (31)

Now equalities (30), (31) imply thaQ(Pgl(z)) = Q(Pl.gl(z)) and we conclude as above
that the configuration shown on Fig. 7 is not realizable.
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a=x ¥ X Q) X =b
Fig. 8.
H>—0O) (+ S () (O—®
-1 -V3/2 -1/2 0 1/2 V3/2 1
Fig. 9.

Consider finally the case Whénfa,b) =4, Sincef“a,b has 5 vertices, eithap(y) =1
for some colory or fa,b is two-colored. In the last casé“a,b has the form shown on
Fig. 8 and the corresponding cactusis a 6-chain (the cactus with 6 stars of the maximal
diameter). Furthermore, since dB¢;) = 6, it follows from the Riemann—Hurwitz formula
that

Z (mult, P — 1) = 10.
zeCPL

Since mult, P — 1 =5 and the combinatorics afp imply that

> (mult,P—1)=3, > (mult.P-1)=2,

P(2)=cx P(2)=cy

we conclude thaP (z) has only two finite critical values,, c,.

It follows from the Riemann existence theorem (see e.g. [11]) that a complex polynomial
with given critical values is defined by its cactus up to a linear change of variable. On the
other hand, it is easy to see using the formiilacosy) = cosng that 7,,(z) has only
two critical values—1, 1 and that all critical points of;,(z) are simple, Therefore, the
corresponding cactus is a chain. In particular, fat) = Ts(z) the corresponding cactus
realized as the preimage of the segmient, 1] (considered as a star connecting 0 with
points 1 and-1) has the form shown on Fig. 9 (white vertices are omitted).

Therefore, if we choose linear functiohg(z), L2(z) such that:

LiYNa)=—v3/2, L' =+v3/2,  Lac)=-1 L) =1,

the polynomialL(P (L1(z))) will be equalTs(z).
Finally, the last assertion of the theorem follows from the main result of the paper [15]
where all solutions to (1) foP (z) = T,,(z) were described. O
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