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Abstract

We consider the problem of vanishing of the moments

mi(P,q) = / Prgx)dux) =0, k=1,2,...,
2
with £2 a compact domain in R” and P(x), g(x) complex polynomials in x € £2 (MVP). The main stress is
on relations of this general vanishing problem to the following conjecture which has been studied recently
in Mathieu (1997) [22], Duistermaat and van der Kallen (1998) [17], Zhao (2010) [34,35] and in other
publications in connection with the vanishing problem for differential operators and with the Jacobian
conjecture:

Conjecture A. For positive u if mp(P,1) =0 fork=1,2,..., then mp(P,q) =0 for k > 1 for any q.

We recall recent results on one-dimensional (MVP) obtained in Muzychuk and Pakovich (2009) [24],
Pakovich (2009,2004) [25,26], Pakovich (preprint) [28] and prove some initial results in several variables,
stressing the role of the positivity assumption on the measure p. On this base we analyze some special cases
of Conjecture A and provide in these cases a complete characterization of the measures p for which this
conjecture holds.
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1. Introduction

In this paper we consider the problem of vanishing of the moments

mk(P,q,M)z/Pk(x)q(x)dp,(x)=0, k=1,2,..., (1.1)
2

with £2 a compact domain in R", u any measure on 2, and P(x), g(x) continuous complex
functions (mainly complex polynomials) in x € £2 (MVP).

The main stress is on relations of this general vanishing problem to certain moment vanishing
conjectures which has been studied recently in [22,17,34,35] and in other publications in connec-
tion with some questions in Representation theory, with the vanishing problem for the powers
of differential operators, and with the Jacobian conjecture. Specifically, we shall consider the
following conjecture proposed in [35] (Conjecture 3.2):

Conjecture A. For positive  and P, q-polynomials if myp(P,1) =0 for k =1,2,..., then
mi(P,q) =0 for k > 1 for any q.

One of the key issues in understanding these kind of problems is the role of the positivity
assumption on the measure w. The positivity assumption plays a central role in the classical
Moment Theory, in particular, in the setting and solution of the Styltjes and Hamburger moment
problems. On the other hand, the “moment vanishing problem” rarely appears in a classical
setting, since here the identical vanishing of the moments usually implies identical vanishing of
the measure p (compare, however, the uniqueness conditions in the classical moment problems:
see, for example, [23]).

In the last two decades a significant progress has been achieved in extending the results of the
classical Moment Theory to the moments on semi-algebraic sets (see [21,30,32] and references
therein). Once more, positivity of the measures and polynomials involved presents an important
ingredient in this theory.

However, for moments on semi-algebraic sets, if we allow non-positive measures, an impor-
tant new phenomenon of an identical vanishing of some series of the moments may occur. Indeed,
consider an algebraic curve S given by y = P(x), x € [a, b], P(x) a real (or complex) polyno-
mial, and let the measure  on S be given by diu = g (x) dx. Then the moments mg = f s ykd 1%
take the form

b

my = mo =/Pk(x)q(x)dx. (1.2)

a

As we shall see below, the moments (1.2) vanish if and only if some natural (but rather subtle)
assumptions on P and ¢ are satisfied. This fact leads to a general MVP (1.1) stated above.

The problem of vanishing of the moments my in (1.2) presents one of the simplest (and already
highly nontrivial) examples of the general MVP. It was completely settled only very recently in
[24,28] (we present the answer in Section 2 below).

Recently various versions of the moment vanishing problem have arisen in a surprisingly wide
variety of applications.

In Qualitative Theory of Differential Equations finding vanishing conditions for the moments
(1.2) turned out to be an infinitesimal version of the classical Poincaré “Center-Focus problem”
(see [7-11,13,14]).
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In Representations Theory a sort of the MVP appeared in a conjecture by O. Mathieu [22]
where polynomials are replaced by M -finite functions on a compact Lie group M. Mathieu’s
conjecture implies the well-known “Jacobian Conjecture” [2,18].

In [34,35] various versions of the MVP and of Mathieu’s conjecture have been related to some
old and new vanishing conjectures for the powers of differential operators and for orthogonal
polynomials.

Let us also mention a more general “moment inversion problem” asking for a reconstruction
from a finite set of the moments (1.1) of the semi-algebraic set §£2 and of the semi-algebraic
measure u on it ([a, b], P and g in the example (1.2)). This question turns out to be important
in the Center-Focus problem mentioned above. It recently appeared also in some questions of
Signal Processing. In this setting the moments are interpreted as the “measurements” of the
signal, while the semi-algebraic set §2 and the semi-algebraic measure p on it are interpreted as
a “finite parametric signal model”. The approach asking for an algebraic reconstruction of the
signal of a known form out of the measurements is sometimes called “Algebraic Sampling” (see
[16] and references therein). Some recent results in this direction (see, especially, [16,20,3,4,31])
closely relate it to the MVP.

In the present paper we first accurately introduce a multidimensional moment vanishing prob-
lem (MVP). Next we recall some recent results on one-dimensional MVP obtained in [24-26,
28].

In particular, we introduce and study a “‘composition condition” which is the basic sufficient
condition for the moments vanishing in one and several variables. We provide vanishing condi-
tions in some special cases of MVP in several variables. This includes a complete characterization
of the moments vanishing on “sub-level” domains through “Abelian integrals”. We compare this
condition with the composition one, stressing the role of the positivity assumption on the mea-
sure . In particular, we show that composition condition typically is not necessary for vanishing
of the moments (1.1) in n variables, while (under certain assumptions) it becomes necessary and
sufficient for vanishing of the n-tuples moments.

On this base we analyze some special cases of Conjecture A:

1. The complex atomic measures /.
2. u concentrated on an algebraic curve and given there by a polynomial density.
3. Complex measures on S' with the densities given by Laurent polynomials.

In the cases 1 and 2 we provide a complete characterization of the measures p for which
Conjecture A holds. Here what is required from p turns out to be much weaker than the positivity
property. In the case 3 we give a sufficient condition on p for Conjecture A to hold. Once more,
it is much weaker than the positivity.

This fact allows us to pose some natural questions, presumably clarifying certain aspects of
Conjecture A.

Finally, we present, following [6], some specific results on moment vanishing based on the
study of the arithmetic properties of the moment sequence.

2. Moment vanishing problem (MVP)
There are various problems concerning vanishing conditions for moments of different types.

In this paper we discuss connections between several such problems. So it is natural to start with
a simple (at least, in formulation) and rather general one.
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2.1. Multidimensional moment vanishing problem

Let £2 be a compact domain in R”. Let F and g be (complex) continuous functions in real
variable x € £2.

The moment vanishing problem (MVP) is to give necessary and sufficient conditions for van-
ishing of all the moments of the form

mk(F,g,Q)=mk=/Fk(x)g(x)dx, k=0,1,..., (2.1)
2

where dx denotes the usual Lebesgue measure on R”.

This problem can be stated for various subclasses of functions F and g and domains £2. It is
interesting and important for some non-compact subsets §2. Already in one variable it present
significant difficulties. In particular, for rational functions F, g on 2 = [a,b] or 2 = S ! the
vanishing condition are far from being completely understood. See [27] for some results in this
direction. Some initial results for certain classes of non-analytic functions can be found in [12].

Now let £2 be a semi-algebraic compact domain in R” (i.e. §2 is defined by a finite number of
polynomial inequalities and set-theoretic operations). Let P and g be polynomials with complex
coefficients in real variable x € £2.

The polynomial moment vanishing problem (PMVP) is to give necessary and sufficient condi-
tions for vanishing of all the moments of the form

mk(P,q,.Q):mk=/Pk(x)q(x)dx, k=0,1,.... (2.2)
2

The main specifics of the polynomial moment vanishing problem is that it has a finite number
of parameters (assuming that the degrees of all the polynomials involved are explicitly bounded).
Consequently, we can hope to get explicit vanishing conditions that can be verified for any given
set of parameters. Moreover, in many cases we can expect the set MC of the parameters providing
moments vanishing to be semi-algebraic or even algebraic subset of the parameter space. See,
for example, [10] for a discussion of the relation between the “moment center set” MC and the
center set C in the Center-Focus problem for Abel differential equation.

2.2. Answer to one-dimensional (PMVP)

In one dimension the main special case of (PMVP) is to describe all the univariate polynomials
P(x) and g (x) for which

b
mszPk(x)q(x)dxzo, k=0,1,.... (2.3)

Even in this simplest case the answer (only recently obtained in [24,28]) is far from being
straightforward. In particular, it involves subtle properties of the polynomial composition al-
gebra.
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We start with formulating this one-dimensional answer. We need the “composition condition”
(CC) as defined in [1,7] and further investigated in [10,11,13,14,24-29]. We give it for differen-
tiable functions, later restricting it to the polynomial case.

Definition 2.1. Differentiable functions f(x) and g(x) on [a, b] C R are said to satisfy a com-
position condition (CC) on [a, b] if there exists differentiable W (x) defined on [a, b] with
W(a) = W(b), and two differentiable functions 7 and G such that F(x) = [ f(x)dx and
G(x) = [ g(x)dx satisfy

Fx)=F(W®), Gx)=G(Wx), xela,bl 2.4)

Composition condition implies vanishing of all the moments
b
my = / Fk(x)g(x) dx.
a

To show this we can rewrite (CC) in the form

Fx)=F(W), gx)dx=G'(W)dw =G (W)W dx, 2.5)
which allows a change of variables in the moments:
W (b)
my = / F(W)XG' (W)ydw =0 (2.6)
W(a)

since in the last integral the integration path goes from W (a) to the same point W (b). Now the
last step splits between the real and complex cases. In the real case we notice that each point in the
integration interval is covered twice, with the opposite signs, and hence all the contributions to
the integral cancel, with no additional assumptions on the regularity of f and g. In complex case
we have to assume that f and g, and hence F, G and F, G are holomorphic in the appropriate
domains. Then the integrals (2.6) vanish being the integrals of holomorphic functions over the
closed contour. (The same argument shows [1,7] that (CC) is a sufficient condition also for the
Abel differential equation y' = f(x)y> 4 g(x)y> to have a “center” on [a, b] i.e. to have for any
its solution y(x) the identity y(a) = y(b).)

A polynomial composition condition (PCC) introduced in [7] just restricts Definition 2.1 to
f, g polynomials. A composition factor W, if it exists, turns out to be also a polynomial.

A necessary and sufficient condition for vanishing of the moments

b
my =/Pk(x)q(x)dx, 2.7

with P(x) and ¢g(x) polynomials in x, was obtained in [24] and [28]. It is given in terms of
(PCC):

Theorem 2.1. (See [24].) The moments my in (2.7) vanish for k =0, 1, ... if and only if g(x) =
q1(x) +---+ qi(x), where q1, ..., q satisfy composition condition (PCC) with P(x) on [a, b],
possibly with different right factors Wy, ..., W}.
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Notice that any g of such form provides vanishing of the moments by the sufficiency of
the composition condition and by linearity of the moments with respect to ¢g. The “nontrivial”
examples do exist: for some P there are g providing vanishing of all the moments which do not
satisfy (PCC) with P. The simplest example of this sort is the following: P (x) = Te(x), Q(x) =
fq(x) =Tx)+T3(x),a= _¢T§’ b= ¢T§’ where T, (x) is the n-th Chebyshev polynomial. We
have Tg(x) = T3(T2(x)) = T2(T3(x)) and T> and T3 take equal values at the endpoints of [a, b].
Here W and W, are just 7> and 73. Recently in [28] strong restrictions have been obtained on
the number of the summands g; in Theorem 2.1 and on their form.

2.3. Multidimensional composition condition

Next we give a definition of a multidimensional composition condition (MCC) directly gener-
alizing Definition 2.1. (MCC) provides a natural sufficient condition for the moments vanishing.
However, as we shall see below, in n > 1 variables this condition is much stronger than the van-
ishing of the “one-sided” moments my = fQ Fk (x)g(x)dx, k=0,1,.... In fact, it is exactly
relevant to the vanishing of the n-fold moments

mo= [ F@) - B g dx, 2.8)
Q
for all the nonnegative multi-indices o = («1, ..., ).

Let £2 be an open relatively compact domain of R" with a smooth boundary 92 . First we need
for maps W : 2 — R" a definition generalizing to higher dimensions the requirement W (a) =
W (b) in dimension one.

Definition 2.2. A continuous mapping W : £2 — R” is said to “flatten the boundary” 92 of £2
if the topological index of Wy, is zero with respect to each point w € R" \ W(952).

Informally, W flattens the boundary 952 of £2 if W(d£2) “does not have interior” in R”".
In particular, this is true if W]y can be factorized through a contractible (n — 1)-dimensional
space X. The simplest example is when X is a point, so W mapping 952 to a point always flattens
the boundary.

Proposition 2.1. A mapping W : 2 — R" flattens the boundary 352 if and only if the integral
f_Q H (W (x))dW (x) vanishes for any function H(W).

Proof. In one direction, assume that W flattens the boundary 9£2. Then the topological index of
W5 is zero with respect to each point w € R" \ W(9£2). This is equivalent to the property that
W (x) covers w an even number of times and in such a way that the total sum of the orientation
signs is zero. But this exactly means that all the contributions of the point w in the integral
f o H(W(x))dW (x) cancel one another. (Once more, this is a direct generalization of the one-
dimensional proof given above.)

In the opposite direction, take a point w € R" \ W(942), and consider H (W) being the §-
function (W — w). Let x1, ..., x, € £2 be all the pre-images of w under W (x). Then H (W (x))
is a sum of §-functions at x;:

r
HW@) =Y (Jac(Wx) '8 — x).

i=1



16 J.P. Francoise et al. / Bull. Sci. math. 135 (2011) 10-32

Integrating against dW (x) = | Jac(W (x))| dx we get the sum of the orientation signs of W at x;.
Hence the vanishing of the integral f o H(W(x))dW (x) for H as above implies that the topo-
logical index of W3¢ is zero with respect to the chosen point w € R” \ W(9£2). O

Now let Fi, ..., Fy be differentiable functions on £2 and let n be a measure on £2 given by
its density g(x): du(x) = g(x) dx.

Definition 2.3. Functions F;,/ =1, ..., s, and a measure x on §2 satisfy multidimensional com-
position condition (MCC) if there exists a differentiable mapping W : 2 — R”, flattening the
boundary 952, functions Fj(w), [ =1,...,s, and g(w) on R" such that Fj(x) = F;(W(x)),
I=1,...,s,anddu(x) =gx)dx = g(W(x))dW.

The composition condition on the measure p can be rewritten in terms of the Jaco-
bian of W: since dW = Jac(W(x))dx the condition on du = g(x)dx = g(W(x))dW =
g(W(x))Jac(W(x))dx is equivalent to

g(x) =g(Wx))Jac(W(x)). (2.9)

Now we have the following simple fact:

Corollary 2.1. If a function F and a measure p on 2 satisfy (MCC) then all the moments
mj = fg F"(X)g(X) dx, k=0,1,..., vanish.

Proof. By the definition above we can write my; = f 0 F (W(x))g(W(x))dW. The result now
follows by Proposition 2.1. 0O

It is important to stress that the composition condition (in one or several variables) excludes
positivity of the measure du(x) = g(x)dx:

Lemma 2.1. Let g(x)dx = g(W(x))dW for a mapping W : 2 — R", flattening the boundary
082. Then for each x € S2 there is x' € 2 such that the arguments of g(x) and g(x') are opposite.

Proof. This follows from the fact that for w = W(x) the mapping W(x) covers w an even
number of times and in such a way that the total sum of the orientation signs is zero. O

In contrast to one-dimensional case, in several variables the composition condition (MCC),
being sufficient, is far from being necessary for vanishing of the “one-sided” moments mj; =
f _Q P¥(x)g(x) dx, even for a generic polynomial P (see the next section).

2.4. Some special cases of multidimensional MVC

In this section we consider some special cases of the multidimensional moment vanishing
problem where a complete answer (or, at least, a reasonable description) can be given.

2.4.1. Moments vanishing and Abelian integrals

We consider a special case of MVP where the function F(x) is assumed to be real. We assume
also that the domain £2 is a “level interval” a < F(x) < b, so its boundary 92 consists of two
level surfaces of F : 0§21 = {F = a}, and 0§2p = {F = b}. Still we allow the measure density
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g(x) to take complex values. To simplify a presentation we shall assume also that F is smooth
enough and does not have critical points in £2 (this last assumption can be easily avoided). Denote
by Z; the level hypersurface {F =t}, t € [a, b]. Then the moment integrals can be rewritten as
follows:

b
mk=/Fk(x)g(x)dx=/tkdt/g(st)||gradF(s,)|| ds;. (2.10)
2 a Z

Here s, denotes a running point on Z; and ds; is the area measure on Z;.
Denote by n(¢) the function

n(t) = / g(s) | grad F (s;)|| ds;. 2.11)
Zt

Proposition 2.2. A necessary and sufficient condition for vanishing of all the moments mj =
f_Q FK(x)g(x)dx, k=0, 1, ..., is the identical vanishing of the function 1(t).

Proof. By (2.10) we have my = [ ab ¥ (1) dt. The required result follows from a density of poly-
nomials in C%([a, b]). O

Corollary 2.2. If all the moments my. vanish, then arg g(x) must take the opposite values on each
level set Z; of F. In particular, my cannot vanish identically for g(x) real and preserving sign
on Z;.

Now assume, that F'(x) = P(x) is areal polynomial on R?, while g(x) = g(x) isa polynomial
with complex coefficients. In this case the function n(t) = f 7,4 (s¢) || grad P(s;)|| ds; becomes an
“Abelian integral” along the level curves of P. Vanishing conditions for Abelian integrals have
been studied in many publications (see especially [15] and references therein). We plan to present
a detailed study of this case separately.

Let us consider some examples.

Example 1. Let P(x,y) = X2+ y2 =r2and let 2 be a ring a < P(x,y) < b. Then writing

x=rcosf,y=rsinf,t =r2, we get
2
n(r):ﬁ/q(rcose,rsine)de. (2.12)
0

Write now a polynomial ¢ (x, ) = > o<,y j<a @, jx'y/ as the sum of the homogeneous compo-

nents: g (x, y) = Yo q1(x, y), qi(x, y) = Yy j=raijx'y! . By (2.10) we get

d 2
N =Y 1% /ql(cose,sine)dé, 2.13)
=0

so n(t) vanishes identically if and only if fozn qi(cos6,sinf)df =0 for eachl =0, ...,d. This
condition determines a linear subspace of codimension d + 1 in the space of polynomials g (x, y)
of degree d.
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Now let us compare the above condition with the composition one. Consider g (x, y) which
can be represented as in (MCC) g(x) = g(W(x))Jac(W(x)). Assume that the degree of the
mapping W : R — R? is . Then the degree of §(W(x)) is d — 8, and the degree of § is k =
‘—1 — 1. Ignoring the condition for W to flatten the boundary of §2 we see that the polynomials g

K(K K(k—=1) +

satlsfylng (MCC) are determined by less than 8(8 D free parameters. This expression

2
attains its maximal value for § =2 and it is of order <> Whlle the dimension of the space of g
is @. So the codimension of the space of polynomial g satisfying (MCC) is roughly %dz.
We see that in a strict contrast with the one-dimensional case, in dimensions greater than 1

(for a fixed P) the identical vanishing of the moments turns out to be a much weaker condition
on g than the composition condition (MCC).

The assumption that the domain £2 is a “ring” and its boundary 952 consists of two level
surfaces of P : 9§21 = {P = a}, and 082, = {P = b}, is not very essential. It is enough to as-
sume that the boundary of 2 is piecewise-algebraic. Then the function n(¢) defined by (2.11)
above is an Abelian integral along the piece of the level curve {P = ¢} between two given
algebraic curves. Such Abelian integrals are well known and the conditions for their identi-
cal vanishing can be given explicitly. Let us consider a very simple example in this direc-
tion.

Example 2. Let P(x) = x and let domain £2 be given by a < x < b, ¢ < y <d. In this case we
have

d

n() =/q(t,y) dy. (2.14)

c

The condition of the identical vanishing of 7(¢) is given here by O(t,c) = Q(t,d) where
O(t.y)= [q(t,y)dy.

As in Example 1, this condition defines a linear subspace of codimension d + 1 inside the
space of all g(x, y) of degree d, given by the coincidence of the coefficients of two polynomials
int: Q(t, ¢) and Q(t, d). Once more, the identical vanishing of the Abelian integrals (2.14) turns
out to be a much weaker condition of a composition representability of Q.

2.4.2. Moments vanishing and relative cohomology

We consider integration domains of the same type as above. Let P : R" — R be a polynomial,
and let 2 = {x e R", a < P(x) < b}, so that P is constant on the boundary of £2. Let g be
another polynomial, assume that

/Pk(x)q(x)dx =0, k=0,1,....
2

As above, this situation is of course asymmetric with respect to P and g. So we would like to
see it as the data of a couple (P, g dx) of a function (polynomial P) and of an n-form g dx. The
problem is: what can be said about this couple?

There is the following elementary observation: if the n-form g(x)dx is zero in the relative
cohomology of P, then all the moments vanish.
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Proof. If g(x)dx =dP Adn, then

/qudx:/Pde/\dn:/Pde/\n:0
2 2 592
because P is constant on the boundary §§2. O

Another simple observation is that if g dx is zero in the cohomology class, then ¢ vanishes on
the critical set of P.

Note that the relative cohomology class condition looks (in some sense) weaker than the
factorization by a diffeomorphism which flattens the boundary. More precisely, assume that g
belongs to the Jacobian ideal of P (generated by the partial derivatives of P). Then there exists
& such that

q(x)dx =dP NE.

Consider the boundary 652 (of dimn — 1), then d&€|s = 0, and £ is closed. If & factorizes by
a W which flattens the boundary, then & = W % (1), and W (§£2) is retractible on §§2. Hence in
that case, £ = W % (n) is exact on 652 and the form ¢(x) dx belongs to the cohomology class
of P.

It is then quite natural to ask wether vanishing of all moments would imply vanishing of the
relative cohomology class of g(x) dx in some appropriated setting. Some results have been re-
cently obtained for complex polynomials [15] where once again composition appears crucially.
We include herein some discussion about this complex setting. First of all, complex setting is
of course much more natural for relative cohomology. Let f : C* — C be a non-constant poly-
nomial function and set X = C", § = C. Let (£2*, d) denote the de Rham complex of global
polynomial differential forms on X and (£2%, d) the corresponding truncated relative de Rham
complex .(2; =Q7/df A 27710 < j <n, and the relative differential is induced by the differ-
ential of the de Rham complex. The cohomology groups H*(£2*, d) have a natural C[¢]-module
structure induced by ¢[w] = [ fw]. There are natural conditions [5] on the polynomial f to en-
sure that the only nontrivial cohomology group H"~!(£2%, d) is a free C[t]-module of rank s,
the total Milnor number of the polynomial f.

Given an n — 1-form & and a vanishing cycle §(c) of the polynomial f, define the generating
function ¢ — &£(s) = f 5(0) &. Christopher and Mardesic [15] showed that two cases appear when
f= % y2 4+ P(x), where P is a one variable polynomial. Either the orbit of é(c) under the ac-
tion of the global monodromy of f generates the homology group of the generic fiber and then
&(s) =0yields £ =df An+dw. Or there is a composition of the polynomial f = f(h(x)) such
that i % (6(c)) =0.

Computations similar to those of relative cohomology appear in [8,9].

2.5. Vanishing of double moments and compositions

In this section we study the double moments of the form

mk,l=/Pk(x,y)Ql(x,y)r(x,y)dxdy, k,1=0,1,..., 2 CR>. (2.15)
2

We show that their vanishing, in some important and natural situations, implies the multidimen-
sional composition condition (MCC) introduced in Section 2.3 above. We shall assume that P
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in the domain of consideration satisﬁes ;é 0 and consider £2 of the form a < P(x,y) <
¢ <y <d. The functions P, Q,r in (2. 15) are assumed to be real analytic, and Q is assumed to
have a simple critical value on each level curve of P inside £2.

Theorem 2.2. Under the above assumptions all the moments myj, k,1 =0, 1, ..., vanish if and
only if P, Q, r satisfy (MCC).

Proof. First of all, we perform a change of variables on 2 introducing new coordinates t =
P(x,y),y =y. The inverse transformation is given by (x, y) = (x(¢, y), ¥) where x(¢, y) is the
only solution inside §2 of the equation P(x, y) =t. The regularity of this transformation follows
from the Implicit Function theorem via the assumptlon ;é 0 above. The Jacobian of the inverse
transformation is given by J (¢, y) = "xi(,%

The expression (2.15) takes now the form

b

d
mk,,=/z’<dt/Q11(z,y)r1(t,y)dy, k,1=0,1,..., (2.16)
C

a

where Q1(¢t,y) = Q(x(t,y),y), r1(t,y) =r(x(t,y), y)J(t,y). Since the composition condition
(MCQ) is invariant with respect to the non-degenerate changes of coordinated, it is enough to
proof Theorem 2.2 only for the moments of the form (2.16).

Now for each / the vanishing of the moments my ;, k =0, 1, ..., implies, as above, the iden-
tical in ¢ vanishing of n;(r) = fcd Ql1 (t, y)ri(t, y)dy. By assumptions, for each ¢ between a
and b the function Ql1 (¢, y) has simple critical values for ¢ < y < d. We conclude, applying
the results of [29], that Q and r satisfy the composition condition (CC): there exist W;(y),
Wi (c) = Wi(d) = wo(r), O;(w) and R, (w) such that

0, y)=0:(W:(»)). R, y)=R(W:(») (2.17)

where R(,y) := [ ri(t, y)dy. We put 7 (w) = AR, (w).

It follows from [29] that W;, Q,, ﬁt depend analytically on 7, so we define W : 2 — R2 by
W(t,y) = (t, W;(y)). We take also P(t w)=1, O, w) = Qt(w) 7(t, w) = Fr(w). With these
notations we have P = P(W) 0= Q(W) ri(t,y)dtdy =r(W)dtdw.

It remains to show that W flattens the boundary 9£2 of the domain £2. Since W;(c) = W;(d) =
wo(t) for each t € [a, b] we conclude that W glues together the segments y = ¢ and y = d of the
boundary of §2. Each of the segments ¢t = a and ¢t = b of the boundary is mapped by W into the
line t = a (t = b, respectively). Hence W maps all the boundary 82 into a tree 7 in R? formed
by a curvilinear segment S = {a <t < b, w = wp(?)} and two straight segments parallel to the
w-axis glued to S at the ends. This implies that W flattens the boundary 92 of the domain £2
(see [12] for details). This completes the proof of Theorem 2.2. O

Remark. Theorem 2.2 can be naturally extended to higher dimensions: under the appropriate as-
sumptions, in dimension n vanishing of n-fold moments generically implies (MCC). The proof

above can be directly extended to the situation where Py, P>, ..., P,_1, x, form a coordinate sys-
temin §2 defined by a; < Py <by,...,ay,—1 < Py—1 < by_1, ay, < x, < by, while P, is assumed
to have a simple critical value on each level curve of Py, Ps, ..., P,—1 inside §2. However, the

result remains true in much more general situations.
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3. Mathieu’s and related vanishing conjectures

Let £2 be an open subset of R” and w a positive measure such that f o &(x) du(x) is finite for
any polynomial g(x) € C[x] in x € R" with complex coefficients. The following conjecture was
proposed in [35] (Conjecture 3.2):

Conjecture A. If for some f(x) € C[x],

/fk(x)du(x):O, k=1,2,..., (3.1)
2

then for any g(x) € C[x] we have fQ fk(x)g(x) du(x)=0, k> 1.

This conjecture has been motivated, in particular, by the following conjecture of O. Mathieu
[22]: let M be a compact Lie group. Denote F (M) the set of M-finite functions on M (i.e.
polynomials in all the characters on M) and let u be the Haar measure on M.

Conjecture B. If for some f(x) € F(M),

/fk(x)du(x)zo, k=1,2,..., (3.2)
M

then for any g(x) € F(M) we have fM fk(x)g(x) du(x)=0,k>1.

Conjecture B has been verified in [17] for the Abelian M, i.e. for M being the n-dimensional
torus 7". In this case M-finite functions are Laurent polynomials in z = (zq,...,2,), zi € C,
|zi| = 1. In fact, the following result has been established in [17]:

Theorem 3.1. Let f(z1, ..., zn) be a Laurent polynomial. Then the constant term of f* vanishes
fork=1,2,...if and only if the convex hull of the support of f does not contain zero.

Here the support of f is the set of multi-indices of all the monomials in f with non-zero co-
efficients. Theorem 3.1 immediately implies Conjecture B since under its conditions the support
of f* eventually gets out of any compact set on Z”", in particular, out of the support of g.

3.1. Special cases of Conjecture A: the role of positivity

Let us return now to Conjecture A. This conjecture has been verified in [35] in some special
cases, in particular, for ¢ being an atomic measure, i.e. a finite linear combination of §-functions.
In this section we consider first the atomic measures but without positivity assumptions. Next,
we extend the consideration to the case of a measure concentrated on an algebraic curve.

3.1.1. Atomic measures

We shall need some notations.

Let u = Zle A;§(x — x;) for some complex coefficients A; and x; € 2,i=1,...,r. Now
assume that f(x) € C[x] is given. We subdivide all the points x, ..., x, into subsets where f(x)
takes equal values: {xq,...,x,} = U§'=0 X;with Xj ={x; |i € I;}. Here [1,r] = U§'=0 I; is the
corresponding partition of the indices. So we assume that for all x; € X; we have f(x;) = f;
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with f; pairwise distinct, j =0, ..., s. We always assume that fy = 0 although the set X may
be empty. The following results are contained either in the statement or in the proof of Proposi-
tion 3.11 in [35]:

Proposition 3.1. For i and f as above

mi = f FrEdum =0, k> 1, (33)
2

if and only if for each j =1, ...,s we have Zielj A; = 0. In other words, the sum of the coeffi-
cients A; in each group X j besides X vanishes, while for Xy it may be arbitrary.

Proposition 3.2. For k > 1 my(g) = fQ FR(x)g(x) du(x) =0 forany g ifand only if the support
of  is contained in the zero level set of f.

Theorem 3.2. Conjecture A holds for a complex atomic measure  if and only if for any | > 2
pOInts Xj, Xiy, ..., X, in the support of i we have Zi:l A;. # 0. In particular, Conjecture A
holds for positive atomic .

Propositions 3.1, 3.2 and Theorem 3.2 provide a rather complete explanation of the role of the
positivity assumption in Conjecture A for atomic measures. As we see, much less than positivity
is really needed: just non-vanishing of integrals of w on all the finite subsets in the support of .
Another example in the same spirit is given in the next section.

3.1.2. The case of i concentrated on curves

Now we assume that p is a measure concentrated on a curve S C §2 which allows a poly-
nomial parametrization x = @ (¢), t € [0, 1], @(0) # @(1). So § is a piece of a rational curve
in R”. To simplify considerations we shall assume that the parameter ¢ on S can be expressed as
a restriction to S of a certain polynomial 7 defined on R": t = T (®(¢)), t € [0, 1].

We further assume that p is defined on S by a polynomial density g (¢). So for each “probe”
function v (x),

1
f Y () dp(x) = / Y (@(0)q(r)dr. (3.4)
2 0

In this section we consider complex polynomials P (x) € C[x] of a real variable x € R”.

Proposition 3.3. All the moments my, = f_Q P¥(x) du(x) vanish for k > 1 if and only if either

1. Px)=0on S, or
2. g@t) =q1(t) + --- + qi(t) with q1,...,q satisfying composition condition (PCC) with
P(D(t)) on [0, 1].

In particular, in the second case P(®(t)) and Q(t) = fot q(t)dt attains equal values att =0
andt=1.
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Proof. We have
1

mi = f PR(x)dp(x) = / PX(@(1))q (1) dt.
Q 0
First we apply Theorem 3.4 and Corollary 3.5 of [27] to conclude that from the vanishing of mj
for k > 1 it follows that all the moments my, k =0, 1, ..., vanish. Next we apply Theorem 2.1
above: fol Pk(x)q(x) dx=0,k=0,1,...,ifandonlyifq(t) =q1(t)+---+¢q;(¢t) withqy, ..., q
satisfying composition condition (PCC) with P (@ (¢)) on [0, 1]. This completes the proof. O

As for atomic measures, we can characterize all the measures p as above for which the mo-
ments my(g) = fQ P¥(x)g(x) du(x) vanish for k > 1 for any g:

Proposition 3.4. For P and p as above the moments my(g) vanish for k > 1 and for each
polynomial g(x) if and only if P(x) =0on S.

Proof. Assume that S is not contained in the zero set of P. Take a polynomial g(¢) such that
fol g)q)dt # 0 and let g(x) = g(T(x)), where T (x) is the polynomial of x € R" which
by assumptions expresses the parameter ¢ on S. Then g(@(r)) = g(T(®(t))) = g(¢). Hence
fol g(@(1))q(r)dr # 0. Apply Proposition 3.3 to the measure i concentrated on S and defined
there by the density g(® (¢))q(¢). We conclude that eventual vanishing of the moments my(g) is
possible only if fol g(@(1))q(t)dt = 0. This contradiction proves the proposition. O

Continuing the analogy with the atomic measures, we can characterize all the measures u as
above for which Conjecture A holds:

Theorem 3.3. Let 1 be a measure as above. Then Conjecture A holds for  if and only if
fol q(t)dt # 0. In particular, Conjecture A holds for positive .

Proof. If fol g(1)dt # 0 then Q = [ g cannot attain equal values at 7 = 0 and 7 = 1. By Propo-
sition 3.3 vanishing of the moments my = f o P*(x)du(x), k> 1, for a certain P implies
P(x) =0 on §. Therefore the moments my(g) = f_Q Pk(x)g(x) d(x) vanish for all £ and for

any g. In the opposite direction, if fol q(t)dt =0 we take P(x) = Q(T(x)), where, as usual,
0= fq. So P(@(t)) = Q(T(D(t))) = Q(t). Therefore P(®(¢)) and Q(t) satisfy composition
condition on [0, 1] and hence all the moments m; vanish. On the other hand, consider a certain
polynomial g(¢) such that fol 2()q(t)dt # 0 and take g(x) = g(T (x)). This excludes the second
option of Proposition 3.3 for g(®(¢))g(¢). By construction, S is not contained in the zero level
set of P, and hence by Proposition 3.3 the moments my(g) do not vanish for arbitrarily large k.
This completes the proof of Theorem 3.3. O

So also here much less than positivity of w is required for Conjecture A to hold. It would be
interesting to generalize this analysis to the union of several algebraic curves.

3.1.3. Moment vanishing for Laurent polynomials
Recently a rather accurate description of moment vanishing conditions for rational functions
and, specifically, for Laurent polynomials has been obtained in [27]. In particular, an extension
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of the result of Duistermaat and van der Kallen (see [17], Theorem 2.1 above) obtained in [27]
provides such conditions:

Theorem 3.4. (See [27], Theorem 6.1.) Let L(z) and m(z) be Laurent polynomials such that the
coefficient of the term % in m(z) is distinct from zero. Assume that f gl LK(m(z)dz =0, k> 1.
Then L(z) is either polynomial with zero constant term in z, or a polynomial with zero constant
termin .

Z

As it was explained above, this property implies that

/L"(z)h(z)dz =0, k>1,
Sl

for any Laurent polynomial /(z). In particular, we get fsl Lk(z)g(z)m(z) dz =0,k > 1, for any
Laurent polynomial g(z). Therefore Conjecture A holds for the measure du(z) = m(z) dz.
Let us stress a certain similarity of the result of Theorem 3.4 and the result of Theorem 3.3

above. The condition of Theorem 3.4 (i.e. that the term % in m(z) is distinct from zero, or

/. g1 Mm(2)dz # 0) presents only one scalar inequality, as well as the condition fol qgt)dt #0
in Theorem 3.3.

The list of examples in this direction can be extended based on [27], Section 6.

The results above allow us to pose the following question: Is it possible to replace the assump-
tion of the positivity of v in Conjecture A by another assumption involving only a finite number
of scalar inequalities? If not in general, could this be possible for semi-algebraic domains §27?

4. Boyarchenko’s proof and some other results

First, let’s use Boyarchenko’s arguments [6] which was originally aimed to Corollary 4.1 to
show the following more general theorem.

Theorem 4.1. For any a # b € C, there exist no non-zero polynomials p(z), q(z) € C[z] with
d:=degp > 1 andr :=degq > 0 such that the following two conditions hold:

(1) the positive integers d and r + 1 are co-prime, i.e. (d,r +1)=1;
(2) there exists N > 1 such that

b

/ P (2)q(z)dz=0 4.1

a

foreachm > N.

Note that this theorem under the slightly stronger condition that Eq. (4.1) holds for all m > 0
has also been proved earlier by the second named author [26].

Proof. We use the contradiction method. Assume that there exist such non-zero polynomials
p(2), q(z) € C[z] with the statements (1) and (2) in the proposition being satisfied. Then we
have the following three reductions on the integral limits a, b € C and the polynomials p(z)
and ¢ (z):
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(1) By applying the affine automorphism z — £=% of C, we may assume a =0 and b = 1.

(2) By multiplying some non-zero constants to p(z) and g(z) if necessary, we may assume
that both p(z) and ¢(z) are monic, i.e. the leading coefficients of p(z) and g(z) are both 1.
Under this reduction, we write p(z) and g(z) explicitly as

d—1

P =2+ a, (4.2)
i=0
r—1 ‘

9@ ="+ bje! 4.3)
j=0

with the coefficients a;, b; € Cforany 0 <i<d —1and0< j <r —1.

(3) Let Q be the algebraic closure of Q in C. Note that Q as a field is algebraic closed.
Then the last reduction is that we may assume p(z), g(z) € Qlz], i.e. we may assume that the
coefficients ¢; (0 <i <d —1)and b; (0< j <r —1) in Egs. (4.2) and (4.3), respectively, are
all algebraic over Q.

This reduction can be proved as follows.

First, we consider the generic polynomials P(z) and Q(z) of the forms

d—1

P)=7+) A, (4.4)
k=0
r—1

0@ =2+ B, (4.5)
i=0

where the coefficients A; (0 <i <d—1) and B; (0 <k <r—1) are free commutative variables.
Denote by A := (Ag, Ay, ..., Ag_1)and B := (By, By, ..., B,_1). Since fol Kdz=1/(k+1)
for each k > 0, it is easy to see that, for any m > 0, the integral

1

B = / P™(2)0(2)dz 4.6)
0

is a polynomial in the commutative free variables A and B over Q.

Second, by our assumption of the existence of the polynomials p(z), g(z) € C[z] in Egs. (4.2)
and (4.3), respectively, the polynomials {®,, | m > N} in the free variables A and B have one
common solution in C¢*”, which is given by the coefficients a; (0 <i <d—1)and b ;(0<j<
r — 1) of p(z) and g (z), respectively.

We claim that the polynomials {®,, | m > N} also have at least one common solution in Q4"
Assume otherwise, let R’ C @[A, B] and R C C[A, B] be the radicals of the ideals generated
by the polynomials ®,, (m > N) in the polynomial algebras Q[A, B] and C[A, B], respectively.
Then by Hilbert’s Nullstellensatz and the fact that Q is algebraically closed, we have 1 € R'.
Since R’ C R, we also have 1 € R. Then by Hilbert’s Nullstellensatz again, the polynomials
{®,, | m > N} cannot have any common solutions in C¢*", which is a contradiction.

Therefore, replacing p(z) and g(z) by the polynomials corresponding to a common solution of
{®,, | m > N} in Q41" if it is necessary, we may assume that all coefficients of the polynomials
p(2) and g (z) in Egs. (4.2) and (4.3), respectively, are algebraic over Q.
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Now, let K be the subfield of C generated by a; (0 <i <d—1Dandb; 0<j<r—1)
over Q. Since g;’s and b;’s are algebraic over Q, the field K is a ﬁmte field extensmn of Q.

For any prime p € N, let v,(:) : Q — Z U {+o00} be the p-valuation of Q, namely, v,(0) =
+ooand v, (m/n) = ord,(m) — ord, (n) for all m, n € Z>*, where, for any k € Z*, ord, (k) is the
greatest nonnegative integer with p°d»® | k. Note that it is well known in Algebraic Number
Theory (e.g. see Proposition 2.4.1, p. 54 in [33]) that, for any prime p, v,(-) can be extended
(not necessarily uniquely) to an additive valuation of any finite field extension of Q. In particular,
this is the case for the finite field extension K of (Q defined above. Hence, the collection, denoted
by &, of all additive valuations of K which are extensions of v, (-) for some primes p € N has
infinitely distinct elements.

Furthermore, by Theorem 4.1.7, p. 123 in [33], the field K with the collection £ forms a
so-called ordinary arithmetic field. In particular, for any fixed ¢ € K*, there are only finitely
many valuations u € £ such that u(c) # 0 (see Remark 4.1.5, p. 122 in [33]). Therefore, for the
coefficients ; (0 <i<d —1)and b; (0< j<r —1) of p(z) and q(z), respectively, there are
only finitely many of valuations p € 5 such that p(a;) # 0 or u(b;) # 0 for some non-zero a;’s
orb;’s.

On the other hand, since (d, r 4+ 1) = 1, by the famous Dirichlet’s theorem on primes in arith-
metic progressions (e.g. see Theorem 66 and Corollary 4.1, p. 297 in [19]), there are infinitely
many m € N such that md + (r + 1) are primes.

Combining the observations in the last there paragraphs, it is easy to see that there exists an
integer m > 0 such that:

(@) m> N and p :=md + (r + 1) is a prime;

(b) there exists an extension u € £ of the valuation v, () of Q to K such that 1(a;) =0 and
wn(bj) =0 for all non-zero g;’s and b;’s. Since (0) = +00, we have that p(a;) > 0 and
n(bj) = 0forall 0<i <d—1and0<] <r-—1.

Throughout the rest of the proof, we will fix such an integer m € N and also the related
notations above. Write p™ (x)g(z) in the following form

md+r—1 p—2
m _ md+r k_ _p—1 k
P (x)q(2) =z + E cz =z2P71 + E crz~. 4.7
k=0 k=0

Since m > N, by Eq. (4.1), we have

: 1 p=2 Ck
/p (2)q(x)dz p+2k+1
o k=0
Set u —Zk Then we have
1
== (4.8)

Note that the coefficients ¢x (0 < k < p —2) of p™(2)q(z) in Eq. (4.7) are sums of monomials
ing; (0<i<d—1Dandb; (0<j<r—1).Since u(a;) 20and u(b;) > 0forall 0 <i <d—1
and 0 < j <r—1,wehave, u(cy) >0 foreachO0< k< p—2.
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Furthermore, forany 0 <k < p—2,wehave,k+1 < pand (k+1, p) = 1. Hence, u(k+1) =
vp(k + 1) = 0 since w(-) is an extension of v, (-). Therefore, for any 0 < k < p — 2, we have

M(%) = ulex) = vp(k + 1) = p(ex) = 0.

Consequently, we also have

. Ck ‘
> — )0k p—-2;20. 4.9
w(u) mm{u<k+l> p } 4.9)

But, on the other hand, u(—1/p) = vp(—l) = —1. Then by Eq. (4.9), we have u(—1/p) <
w(u). But this contradicts to Eq. (4.8). Theref[g)re, the theorem follows. 0O

One immediate consequence of Theorem 4.1 is the following corollary which seems to be a
classical result but we failed to find any earlier references. Note that the corollary also follows
from Theorem 3.4 in the very recent article [27].

Corollary 4.1. Let a # b € C and f(z) € C[z]. Assume that there exists N > 0 such that
[? fm(z)dz =0 for each m > N. Then f(z) =0.

Proof. Assume otherwise, i.e. f(z) # 0. Note first that f(z) cannot be any non-zero constant
¢ € C* since fabcmdzzcm/(b—a) # 0 for any m > N. So we must have d :=deg f > 1.

Now, let g(z) = 1. Then r :=degqg(z) =0 and (d,r + 1) = (d, 1) = 1. So we can apply
Theorem 4.1 with p(z) = f(z) and g(z) = 1, from which we see that such a polynomial f(z)
actually does not exist. Hence we get a contradiction. O

Similar arguments as in the proofs of Theorem 4.1 and Corollary 4.1 can also be applied to
some cases of multi-variables polynomials (see Proposition 4.1 and Corollary 4.2 below). But,
first let’s fix the following terminology.

Let z = (z1, 22, .- -, Zn) be n commutative free variables. For any non-zero f(z) € C[z], we
write
f@= > caz® (4.10)
aeSCN"

for some non-empty finite subset S C N” and ¢, € C* (x € §).
For any fixed 1 <i <n and d > 0, we say f(z) in Eq. (4.10) is dominated by zfl if the
following three conditions hold:

(1) there exists one and only one « € S such that the i'" component of « is equal to d;
(2) for the unique « € S in (1) above, all the other components of « are strictly less than d;
(3) for any B € S with 8 # «, all the components of § are strictly less than d.

For convenience, we also say that any non-zero constant polynomial is dominated by z? for
any 1 <i < n, and the zero polynomial is dominated by z? forany 1 <i <n and d > 0. For
example, for polynomials in two variables, we have:
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(a) the constant polynomial f(z1,z2) = 1 is dominated by z for i=1lor2;
(b) the polynomial g(z1,z2) = 2zlz2 32373 is dominated by 27 Buthy (21, 22) = 22723 — 32123
and hy(z1,22) = 211z2 — 3z1z2 are not dominated by any powers of 71 or z5.

With the terminology fixed above, by applying similar arguments as those in the proof of
Theorem 4.1, it is easy to see that the following proposition also holds.

Proposition 4.1. For any a; # b; € C (1 < i < n), there exist no non-zero polynomials
p(2), q(z) € C[z] such that the following three conditions hold:

(1) p(z) and q(z) are dominated by zf‘! and z}, respectively, for some 1 <i <n, d > 1 and
r=0;

(2) the positive integers d and r + 1 are co-prime, i.e. (d,r +1)=1;

(3) there exists N > 1 such that

by by bn
// /Pm(Z)q(Z)dzn dz,—1---dz1 =0 4.11)
a; ap

foreachm > N.

From the proposition above and by similar arguments as those in the proof of Corollary 4.1,
it is easy to see that the following corollary also holds.

Corollary 4.2. Leta; #b; € C (1 <i <n)and f(z) € Clz]. Assume that f(z) is dominated by
ba 4 for some 1 <i <n andd >0, and there exists N € N such that, for each m > N,

by by by
// /f (z)dzpdzp—1---dz; =0. (4.12)
ay ap

Then f(z) =

Next we consider the following one-variable case that was not covered directly by the recent
paper [27].

Proposition 4.2. Let A € %N and w) (z) == (1 — Zz)/\—%. Then for any f(z) € C[z] such that
I1 M @wi(z)dz =0 when m > 0, we have f(z) =0

Proof. First, note that A — % —5 > —1. It is easy to check that, for any polynomial g(z) € C,

f_ll g(z)wy (z) dz is convergent (and finite). Furthermore, since w; (z) is a positive continuous
function over the interval (—1, 1) C R, we have

1
/wx(z) dz > 0. (4.13)
-1

From the equation above, it is easy to see that f(z) cannot be any non-zero constant polyno-
mial. So we may assume d :=deg f(z) > 1.
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Second, by applying the change of variable z = sint and then followed by u = e'’, we have,
for any m > 0,

/2

1
/fm(Z)w,\(Z)dzz / ™ (sint) cos? 1 dt
-1

—m/2

i (o] 1 n*
Y

where y is the right-half of the unit circle in the complex plane C, which goes from the point
(0,—1) to (0, 1).

Set p(u) = f (5 (u—1/u)) and q(u) = (u+1/u)**u~". Then by Eq. (4.14) and the condition
of the proposition on f(z), we have

/Pm(u)q(u)du =0
Y

when m > 0.

Note that p(u) and g(u) are rational functions in u. By the facts that 21 € N and f(z) is
a polynomial of degree d > 1, it is easy to see that g~ !{oo} C {0, 00} = p~1(00). Therefore,
we can apply Theorem 3.4 in [27] to the rational functions p(u) and g(u), from which we get
f v qm)du =0.

But, on the other hand, from Eq. (4.14) with m = 0 and Eq. (4.13), we have

1

/Cl(u)du=/w)\(z)dz>0.
¥ 21

Hence, we get a contradiction, and the proposition holds. O

Note that the function w; (z) = (1 — Zz)x—% is the weight function of the Jacobi orthogonal
polynomials with the parameters « = § = A — % or the Gegenbauer polynomials with the pa-
rameter A € %N. (See Section 2.1 in [35] and the references therein.) For the special cases with
A =0, 1, 1/2, the Gegenbauer Polynomials are also called the Chebyshev polynomials of the first
kind, the second kind and the Legendre polynomials, respectively.

By Eq. (2.7) in [35], we see that the differential operator associated with this family of or-
thogonal polynomials over the open interval (—1, 1) C R is given by

d 2x—1
a=d @Dz
dz  1-2?
Next, we derive some consequences of Proposition 4.2 on the differential operator A and the
classical orthogonal polynomials above.

Throughout the rest of this section, we fix an arbitrary A € %N and let A denote the differential
operator defined in Eq. (4.15).

(4.15)

Lemma 4.1. Set Im’ A = C[z] N A(C[z]). Then 1 e Im’ A iff A =1/2.
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Proof. (<) If A =1/2,then2A—1=0and A = diz. Since j—z as a linear map from C[z] to C[z]
is surjective, we have Im’ A = C[z] and 1 € Im’ A.

(=) Assume that A # 1/2. Since 1 € Im’ A, there exists g(z) € C[z] such that Ag(z) = 1.
More explicitly, we have

@D
1 —2z2 o

(1-22)(g' @ —1) = 2r — Dzg(2). (4.17)

g 1, (4.16)

Since 2A — 1 # 0, from the equation above it is easy to check directly that g(z) cannot be
the zero polynomial or any non-zero polynomial of d := deg g(z) < 1. Otherwise we would have
either 1 — z2 = 0 or z divides 1 — z2, which are both absurd. So we assume d := degg(z) =22
and the leading term of g(z) is given by cz¢ for some ¢ € C*. Then by comparing the leading
terms of both sides of Eq. (4.17), we get —dc = (2A — 1)c which implies d =1 — 21 < 1. Hence
we get a contradiction. O

Now, let u,,(z) (m > 0) denote the Jacobi orthogonal polynomials with the parameters o =
B=Ai— % Denote by M the subspace of C[z] spanned by u,,(z) (m > 1) over C. Note that M

is also the subspace of polynomials f(z) € C[z] such that f_ll f(x)dz=0.

Proposition 4.3.

M ifA£E1)2;

(a) Im' A = { i
Clz] ifr=1/2.

(b) Assume that A # % Then for any f(z) € C[z] with f™(z) € Im’ A when m > 0, we have
f(@)=0.

Proof. (a) follows directly from Proposition 3.4, (a) in [35] and Lemma 4.1 above. (b) follows
from (a) and Proposition 4.2. O

Finally, without much detail we point out that the following conjectures in [35] follow imme-
diately from Proposition 4.3.

Corollary 4.3. For any X\ € %N, we have:

(a) Conjectures 3.1 in [35] holds for the differential operator A defined in Eq. (4.15).

(b) Conjecture 3.2 in [35] holds for the open interval (—1,1) C R with the positive measure
do=(— zz))\_% dz.

(c) Conjecture 3.5 in [35] holds for the (one-variable) Gegenbauer orthogonal polynomials with
the parameter A. In particular, the conjecture also holds for the Legendre polynomials and
the Chebyshev polynomial of the first and the second kinds.

For more details and discussions on the conjectures mentioned above, we refer the reader
to [35].
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